
Semantic FileSystems

David K. Gi�ord, Pierre Jouvelot 1,

Mark A. Sheldon, James W. O'Toole, Jr.

ProgrammingSystems ResearchGroup

MITLaboratoryfor Computer Science

Abstract

A semantic �le syst emis an informationstorage systemthat
provides exible associative access tothe system's contents
by automatically extracting attributes from�les with �le
typespeci�c t ransducers. Associativeaccess is providedbya
conservativeextensiontoexistingtree-structured�lesystem
protocols, andbyprotocols that aredesignedspeci�callyfor
content based access. Compatiblity with existing �le sys-
temprotocols is providedby introducing the concept of a
vi rtual di rectory. Virtual directorynames areinterpretedas
queries, andthus provide exible associative access to�les
anddirectories inamanner compatible withexisting soft-
ware. Rapid attribute-based access to �le systemcontents
is implementedbyautomatic extractionandindexingof key
properties of �le systemobjects. Theautomatic indexingof
�les anddirectories is called \semantic" because user pro-
grammabletransducers useinformationabout thesemantics
of updated�le systemobjects toextract the properties for
indexing. Experimental results fromasemantic �le system
implementationsupport thethesis thatsemantic�lesystems
present amore e�ective storage abstraction thando tradi-
tional tree structured �le systems for information sharing
andcommandlevel programming.

1 Introduction

Wewouldlike todevelopanapproachfor informationstor-
age that bothpermits users to share informationmore ef-
fectively, andprovides reductions inprogramminge�ort and
programcomplexity. Tobee�ectivethis newapproachmust
be used, and thus an approach that provides a transition
pathfromexisting �le systems is desirable.

In this paper we explore the thesis that semant i c �l e
syst ems present a more e�ective storage abstraction than
do traditional tree structured �le systems for information
sharing and command level programming. Asemantic �le
systemis aninformationstorage systemthat provides exi-

This research was funded by the Defense Advanced Research
Projects Agency of the U.S. Department of Defense and was mon-
i tored by the O�ce of Naval Research under grant number N00014-
89-J-1988.
1 Alsowith CRI, Ecole des Mines de Pari s, France.

ble associative access tothe system's contents byautomat-
ically extracting attributes from�les with�le type speci�c
t ransducers. Associativeaccess isprovidedbyaconservative
extension to existing tree-structured �le systemprotocols,
andbyprotocols that are designed speci�cally for content
based access. Automatic indexing is performedwhen�les
or directories are createdor updated.

The automatic indexing of �les anddirectories is called
\semantic"because user programmable transducers use in-
formation about the semantics of updated �le systemob-
jects to extract the properties for indexing. Through the
use of specialized transducers, a semantic �le system\un-
derstands"thedocuments, programs, object code, mail, im-
ages, name service databases, bibliographies, andother �les
containedbythe system. For example, the transducer for a
Cprogramcouldextract the names of the procedures that
the programexports or imports, procedure types, andthe
�les includedbytheprogram. Asemantic�le systemcanbe
extendedeasilybyusers throughthe additionof specialized
transducers.

Associative access is designedtomake it easier for users
to share information byhelping themdiscover and locate
programs, documents, and other relevant objects. For ex-
ample, �les canbelocatedbasedupontransducer generated
attributes suchas author, exportedor importedprocedures,
words contained, type, andtitle.

Asemantic �le systemprovides both a user interface
and an application programming interface to its associa-
tive access facilities. User interfaces based upon browsers
[Inf90, Ver90] have provento be e�ective for query based
access toinformation, andweexpect browsers tobe o�ered
bymost semantic �le systemimplementations. Application
programming interfaces that permit remote access include
specialized protocols for information retrieval [NIS91], and
remote procedure call basedinterfaces [GCS87].

It is also possible to export the facilities of a semantic
�le systemwithout introducing any newinterfaces. This
canbe accomplishedbyextending the naming semantics of
�les anddirectories tosupport associative access. Abene�t
of this approachis that all existing applications, including
user interfaces, immediately inherit the bene�ts of associa-
tive access.

Asemantic �le systemintegrates associative access into
atreestructured�lesystemthroughtheconcept of avi rtual
di rectory. Virtual directorynames areinterpretedas queries
andthus provide exible associative access to �les anddi-
rectories inamanner compatible withexisting software.

For example, in the following session with a semantic

�le systemwe �rst locate within a library all of the �les
that export the procedure lookup fault, andthen further
restrict this set of �les tothose that have the extensionc:

% cd /sfs/exports:/lookup_fault
% ls -F
virtdir_query.c@ virtdir_query.o@
% cd ext:/c
% ls -F
virtdir_query.c@
%

Semantic �le systems canprovide associative access to
a group of �le servers in a distributed system. This dis-
tributedsearchcapability provides a simpli�edmechanism
for locating informationinlarge nationwide �le systems.

Semantic�le systems shouldbe of use tobothindividu-
als andgroups. Individuals canuse the query facility of a
semantic�lesystemtolocate�les andtoprovidealternative
views of data. Groups of users should�ndsemantic�le sys-
temsane�ectivewaytolearnabout shared�les andtokeep
themselvesuptodateabout thestatusof groupprojects. As
workgroups increasinglyuse�le serversas sharedlibraryre-
sources weexpect that semantic �le systemtechnologywill
become evenmore useful.

Because semantic�le systems arecompatiblewithexist-
ingtreestructured�lesystems, implementations of semantic
�le systems canbe fully compatible withexisting network
�lesystemprotocols suchasNFS[SGK +85, Sun88] andAFS
[Kaz88]. NFScompatibilitypermits existingclientmachines
to use the indexing andassociative access features of a se-
mantic �le systemwithout modi�cation. Files stored in a
semantic�le systemviaNFSwill beautomatically indexed,
and query result sets will appear as virtual directories in
theNFSname space. This approachdirectlyaddresses the
\dustydata" problemof existingUNIX �le systems byal-
lowingexistingUNIX�le servers tobe convertedtranspar-
entlytosemantic �le systems.

Wehavebuilt aprototype semantic �le systemandrun
a series of experiments to test our thesis that semantic �le
systemspresentamoree�ectivestorageabstractionthando
traditional tree structured�le systems for informationshar-
ing and command level programming. We tried to locate
various documents and programs in the �le systemusing
unmodi�edNFSclients. The results of these experiments
suggest that semantic �le systems canbe used to �nd in-
formationmore quickly than is possible using ordinary �le
systems, andadd expressive power to command level pro-
gramming languages.

In the remainder of the paper we discuss previous re-
search(Section2), introduce the interface anda semantics
for a semantic �le system(Section 3), reviewthe design
and implementation of a semantic �le system(Section 4),
present our experimental results (Section 5) and conclude
withobservations on other applications of virtual directo-
ries (Section6).

2 Previous Work

Associative access to on-line informationwas pioneered in
earlybibliographic retrieval systems where it was foundto
be of great value inlocating information inlarge databases
[Sal83]. The utilityof associative access motivatedits sub-
sequent applicationto�leanddocumentmanagement. The
previous researchwebuildupon includes workonpersonal

computer indexing systems, information retrieval systems,
distributed�lesystems, newnamingmodels for�lesystems,
andwide-areanamingsystems:

� Personal computer indexingsystems suchasOnLoca-
tion [Tec90], Magellan [Cor], andthe Digital Librar-
ian[NC89b, NC89a] providewindow-based�le system
browsers that permit word-basedassociative access to
�le systemcontents. MagellanandtheDigital Librar-
ianpermit searches baseduponbooleancombinations
of words, whileOnLocationis limitedtoconjunctions
of words. All threesystems rankmatching�les usinga
relevancescore. Thesesystems all create indexes tore-
duce searchtime. OnLocationautomatically indexes
�les inthe background, while Magellanandthe Digi-
tal Librarianrequire users toexplicitlycreate indexes.
Both OnLocation and the Digital Librarian permit
users toaddappropriatekeywordgenerationprograms
[Cla90, NC89b] to indexnewtypes of �les. However,
Magellan, OnLocation, andtheDigital Librarianare
limitedtoalist of words for �le description.

� Information retrieval systems such as Basis [Inf90],
Verity[Ver90], andBoss DMS[Log91] extendthe se-
mantics of personal computer indexing systems by
adding�eldspeci�cqueries. Fields thatcanbequeried
include document category, author, type, title, identi-
�er, status, date, and text contents. Many of these
document relationships and attributes canbe stored
in relational database systems that provide a general
query language and support application programac-
cess. TheWAISsystempermits informationat remote
sites tobe queried, but relies uponthe user tochoose
anappropriateremotehost fromadirectoryof services
[KM91, Ste91]. Distributed informationretrieval sys-
tems [GCS87, DANO91] performqueryroutingbased
upon database content labels to ensure that all rele-
vant hosts are contactedinresponse toaquery.

� Distributed�lesystems [Sun89, Kaz88] provideremote
access to�les withtree structurednames. These sys-
tems haveenabled�le sharingamonggroups of people
andover wide geographic areas. ExistingUNIXtools
suchas grep andfind [Gro86] are oftenusedtoper-
formassociative searches indistributed�le systems.

� Newnamingmodels for�lesystemsincludethePortable
Common Tool Environment (PCTE) [GMT86], the
Property List DIRectory system(PLDIR) [Mog86],
Virtual Systems [Neu90] andSun's NetworkSoftware
Environment (NSE) [SC88]. PCTEprovidesanentity-
relationship database that models the attributes of
objects including �les. PCTEhas been implemented
as a compatible extensiontoUNIX. However, PCTE
users must use specialized tools to query the PCTE
database, andthus donot receive thebene�ts of asso-
ciativeaccess viaa�le systeminterface. TheProperty
List DIRectorysystemimplements a�le systemmodel
designedaround�leproperties ando�ers aUnixfront-
enduser interface. Similarly, Virtual Systems permit
users tohand-craft customizedviews of services, �les,
anddirectories. However, neither systemprovides au-
tomaticattributeextraction(although[Mog86] alludes
toit as apossible extension) or attribute-basedaccess
to their contents. NSEis anetworktransparent soft-
ware development tool that allows di�erent views of

a�le systemhierarchycalled envi ronments to be de-
�ned. Unlike virtual directories, these views must be
explicitly createdbefore beingaccessed.

� Wide-areanamingsystemssuchasX.500[CCI88], Pro-
�le [Pet88], and the NetworkedResource Discovery
Project[Sch89] provideattribute-basedaccess toawide
varietyof objects, but theyare not integrated into a
�le systemnor do they provide automatic attribute-
basedaccess tothe contents of a�le system.

Keyadvances o�eredbythe present workinclude:

� Virtual directories integrateassociativeaccess intoex-
isting tree structured�le systems inamanner that is
compatible withexisting applications.

� Virtual directories permit unmodi�edremote hosts to
access the facilities of a semantic �le systemwithex-
istingnetwork�le systemprotocols.

� Transducers canbe programmedbyusers to perform
arbitrary interpretation of �le anddirectory contents
inorder toproduceadesiredsetof �eld-valuepairs for
later retrieval. The use of �elds allows transducers to
describemanyaspects of a�le, andthus permits sub-
sequent sophisticated associative access to computed
properties. In addition, transducers can identify en-
tities within�les as independent objects for retrieval.
For example, individual mail messages within amail
�le canbe treatedas independent entities.

Previous researchsupports our viewthat overloading�le
systemsemantics canimprovesystemuniformityandutility
whencomparedwiththealternativeof creatinganewinter-
face that is incompatible withexisting applications. Exam-
ples of this approachinclude:

� Devices inUNIXappear as special �les [RT74] inthe
/dev directory, enabling themtobe usedas ordinary
�les fromUNIXapplications.

� UNIXSystemIII namedpipes [Roc85, p. 159f] appear
as special �les, enablingprograms torendezvous using
�le systemoperations.

� Filesystemsappearasspecial directories inAutomount
daemondirectories [CL89, Pen90, PW90], enablingthe
binding of aname toa�le systemtobe computedat
the time of reference.

� Processes appear as special directories inKillian's pro-
cess �le system[Kil84], enabling process observation
andcontrol via�le operations.

� Services appear as special directories in Plan 9
[PPTT90], enablingserviceaccess inadistributedsys-
temthrough �le systemoperations in the service's
name space.

� Arbitrary semantics canbe associated with �les and
directories using Watchdogs [BP88], Pseudo Devices
[WO88], andFilters [Neu90], enabling �le systemex-
tensions suchas terminal drivers, networkprotocols, X
servers, �le access control, �le compression, mail no-
ti�cation, user speci�c directoryviews, heterogeneous
�le access, andservice access.

� TheATTICsystem[CG91] usesamodi�edNFSserver
to provide transparent access to automatically com-
pressed�les.

author: smith
exports: init_xdr_rcv
exports: move_xdr_rep
imports: malloc

from: smith
to: jones
subject: meeting
text: fine

author: smith
section: introduction
text: beginning
text: distributed

Document
Transducer

Mail
Transducer

Object
Transducermove_xdr.o

prop.tex

mail.txt

Figure 1: Sample Transducer Output

3 Semanti c Fi le SystemSemanti cs

Semantic �le systems can implement a wide varietyof se-
mantics. Inthis sectionwepresent one suchsemantics that
wehave implemented. Section6 describes some other pos-
sibilities.

Files storedinasemantic �le systemare interpretedby
�le type speci�c transducers toproduce aset of descriptive
attributes thatenable later retrieval of the�les. Anat t ri bute
is a�el d-val uepair, wherea�el ddescribes apropertyof a�le
(suchas its author, or the words inits text), andaval ue is
astringor aninteger. Agiven�le canhavemanyattributes
thathavethesame�eldname. Forexample, atext�lewould
have as manytext: attributes as it has unique words. By
convention, �eldnames endwithacolon.

Auser extensible t ransducer tabl e is usedto determine
the transducer that shouldbe usedto interpret agiven�le
type. One way of implementing a transducer table is to
permit users to store subtree speci�c transducers in the
subtree's parent directory, and to look for an appropriate
transducer at indexing time bysearching up the directory
hierarchy.

To accommodate �les (such as mail �les) that contain
multiple objects wehavegeneralizedthe unit of associative
access beyondwhole �les. We call the unit of associative
access anent i t y. Anentitycanconsist of anentire �le, an
object withina�le, or adirectory. Directories are assigned
attributes bydirectorytransducers.

Atransducer is a�lter that takesas input thecontentsof
a�le, andoutputs the�le's entities andtheir corresponding
attributes. Asimple transducer couldtreat aninput �le as
asingle entity, anduse the�le's uniquewords as attributes.
Acomplex transducer might performtype reconstruction
onaninput �le, identifyeachprocedure as anindependent
entityanduseattributes torecordtheir reconstructedtypes.
Figure 1shows examples of anobject �le transducer, amail
�le transducer, andaT EX�le transducer.

The semantics of a semantic �le systemcanbe readily
extendedbecause users canwrite newtransducers. Trans-
ducers are free to use new�eld names to describe special
attributes. For example, aCAD�le transducer couldintro-
duce adrawing: �eldtodescribe adrawing identi�er.

The associative access interface to a semantic �le sys-
temis baseduponqueries that describe desired attributes
of entities. Aquery is a description of desired attributes
that permits ahighdegree of selectivityinlocating entities
of interest. The result of a query is a set of �les and/or
directories that containthe entities described. Queries are

booleancombinations of attributes, whereeachattributede-
scribes the desiredvalue of a�eld. It is alsopossible toask
for all of the values of a given �eld in a query result set.
The values of a�eldcanbe useful whennarrowingaquery
toeliminate entities that are not of interest.

Asemantic �le systemis query consi stent whenit guar-
anteesqueryresults that correspondtoits current contents.
If updates cease tothe contents of asemantic �le systemit
will eventuallybe queryconsistent. This propertyis known
as convergentconsistency. Therateat whichagivenimple-
mentationconverges is administrativelydeterminedbybal-
ancingtheuser bene�ts of fast convergencewhencompared
withthehigher processingcost of indexingrapidlychanging
entities multiple times. It is of course possible toguarantee
that a semantic �le systemis always queryconsistent with
appropriate use of atomic actions.

Intheremainder of this sectionwewill explore howcon-
junctive queries can be mapped into tree-structured path
names. As wementionedearlier, this is onlyoneof thepos-
sible interfaces to the query capabilities of a semantic �le
system. It is alsopossible tomapdisjunctionandnegation
into tree-structurednames, but they have not been imple-
mentedinour prototype andwewill not discuss them.

Queries areperformedinasemantic �le systemthrough
use of virtual directories to describe a desired viewof �le
systemcontents. Avirtual directory is computed on de-
mandbyasemantic�le system. Fromthepoint of viewof a
client program, avirtual directoryis indistinguishable from
anordinarydirectory. However, unlike ordinarydirectories,
virtual directories donot havetobeexplicitlycreatedtobe
accessed.

The query facilities of a semantic �le systemappear as
virtual directories at each level of the directory tree. A
�el d vi rtual di rectory is namedbya�eld, andhas one entry
for eachpossible value of its corresponding �eld. Thus in
/sfs, thevirtual directory/sfs/owner: corresponds tothe
owner: �eld. The�eldvirtual directory/sfs/owner: would
haveoneentryfor eachowner thathaswrittena�le in/sfs.
For example:

% ls -F /sfs/owner:
jones/ root/ smith/
%

The entries ina�eldvirtual directory are value virtual
directories. Aval ue vi rtual di rectory has one entryfor each
entitydescribed bya �eld-value pair. Thus the value vir-
tual directory/sfs/owner:/smith contains entries for �les
in/sfs that are ownedbySmith. Eachentryis asymbolic
linktothe �le. For example:

% ls -F /sfs/owner:/smith
bio.txt@ paper.tex@ prop.tex@
%

Whenanentityis smaller thananentire �le, aviewof
the�lecanbepresentedbyextending�lenamingsemantics
toinclude viewspeci�cations. Topermit theconjunctionof
attributes ina query, value virtual directories contain�eld
virtual directories. For example:

% ls -F /sfs/owner:/smith/text:/resume
bio.txt@
%

Apleasant property of virtual directories is their syn-
ergistic interactionwith existing �le systemfacilities. For
example, when a symbolic link names a virtual directory
the link describes a computed viewof a �le system. It is
also possible touse �le saveprograms, suchas tar, onvir-
tual directories to saveacomputedsubset of a�le system.
It wouldbe possible also togeneralize virtual directories to
present views of �le systems withrespect toacertain time
inthe past.

Asemantic �le systemcanbe overlaidontopof anor-
dinary �le system, allowing all �le systemoperations togo
throughthe SFSserver. The overlaidapproachhas the ad-
vantagethat it provides the powerof asemantic �le system
toauser at all times without the needto refer toadistin-
guished directory for query processing. It also allows the
server to do indexing in response to �le systemmutation
operations. Alternatively, a semantic �le systemmaycre-
ate virtual directories that containlinks to the �les in the
underlying �le system. This means that subsequent client
operations bypass the semantic �le systemserver.

Whenanoverlaidapproachis used�eldvirtual directo-
ries must be invisible to preserve the proper operation of
tree traversal applications. Adirectory is i nvi si bl e whenit
is not returnedbydirectory enumerationrequests, but can
be accessed via explicit lookup. If �eld virtual directories
were visible, the set of trees under /sfs in our above ex-
ample wouldbe in�nite. Unfortunatelymaking directories
invisible causes the UNIXcommand pwd to fail when the
current pathincludes aninvisible directory. It is possible to
�xthis through inclusionof unusual .. entries in invisible
directories.

The distinguished field: virtual directory makes �eld
virtual directories visible. This permits users toenumerate
possible search�elds. The field: directory is itself invisi-
ble. For example:

% ls -F /sfs/field:
author:/ exports:/ owner:/ text:/
category:/ ext:/ priority:/ title:/
date:/ imports:/ subject:/ type:/
dir:/ name:/
% ls -F /sfs/field:/text:/semantic/owner:/jones
mail.txt@ paper.tex@ prop.tex@
%

The syntaxof semantic �le systempathnames is:

<sfs-path> ::= /<pn> | <pn>
<pn> ::= <name> | <attribute>

<field-name> | <name>/<pn>
<attribute>/<pn>

<attribute> ::= field: | <field-name>/<value>
<field-name> ::= <string>:
<value> ::= <string>
<name> ::= <string>

The semantics of semantic �le systempathnames is:

� The universe of entities is de�nedby the pathname
pre�xbefore the �rst virtual directoryname.

� The contents of a �eld virtual directory is a set of
value virtual directories, one for eachvalue that the
�elddescribes inthe universe.

Pathname
Interface

Indexing
Process

File
Server
Process

Mount
Daemon

Virtual
Directory

Query
Processing

SFS Server

Indexer

Transducer

Index
Master

Event
Queue

Shared
Index and
UNIX
File
System File

Figure 2: SFSBlockDiagram

� The contents of a value virtual directory is a set of
entries, one for each entity in the the universe that
has the attribute described bythe name of the value
virtual directoryandits parent �eldvirtual directory.
The contents of a value virtual directory de�nes the
universe of entities for its subdirectories. In the ab-
sence of name conicts, the name of an entry in a
valuevirtual directoryis its original entryname. Entry
name conicts are resolvedbyassigning nonce names
toentries.

� The contents of a field: virtual directory is the set
of �elds inuse.

4 Semanti c Fi l e SystemImplementation

We have built a semantic �le systemthat implements the
NFS[SGK +85, Sun89] protocol as its external interface. To
usethesearchfacilities of our semantic�le system, anInter-
net clientcansimplymountour�lesystematadesiredpoint
andbegin using virtual directory names. Our NFSserver
computes the contents of virtual directories as necessaryin
response toNFSlookup andreaddir requests.

Ablockdiagramof our implementationis showninFig-
ure2. Thedashedlines inthe�guredescribeprocess bound-
aries. Themajor processes are:

� Thecl i ent process is responsible forgenerating�lesys-
temrequests using normal NFSstyle pathnames.

� The �l e server process is responsible for creating vir-
tual directories inresponsetopathnamebasedqueries.
The SFSServer module implements a user level NFS
serverandis responsible for implementingtheNFSin-
terface to the system. The SFSServer uses di rectory
faul t s torequest computationof neededentries bythe

Virtual Directory module. Afaulting mechanismis
usedbecause the SFSServer caches virtual directory
results, andwill only fault whenneeded information
is requestedthe �rst time or is nolonger cached. The
Virtual Directorymodule inturncalls theQueryPro-
cessingmodule toactually compute the contents of a
virtual directory.

The �le server process records �le systemmodi�ca-
tion events in a write-behind log. The modi�cation
logeliminates duplicate modi�cationevents.

� The i ndexi ng process is responsible for keepingthe in-
dexof �lesystemcontentsup-to-date. TheIndexMas-
termoduleexamines themodi�cationloggeneratedby
the �le server process everytwominutes. The index-
ingprocess responds toa�lesystemmodi�cationevent
by choosing anappropriate transducer for the modi-
�edobject. Anappropriate transducer is selectedby
determinationof the typeof the object (e.g. Csource
�le, object �le, directory). If no special transducer is
foundadefault transducer is used. The output of the
transducer is fedtotheIndexermodulethat inserts the
computedattributes into the index. Indexing andre-
trieval arebaseduponPeterWeinberger'sBTreepack-
age [Wei] and an adapted version of the refer [Les]
softwaretomaintainthemappings betweenattributes
andobjects.

� Themount daemon is contactedtodetermine the root
�le handle of the underlying UNIX�le system. The
�le server process exports its NFS service using the
same root �le handle onadistinct port number.

� The kernel implements a standard�le systemthat is
usedtostore the sharedindex. The�le server process
could be integrated into the kernel by a VFSbased
implementation[Kle86] of ansemantic�lesystem. We
chose to implement our prototype using a user level
NFSserver tosimplifydevelopment.

Insteadof computingall of thevirtual directories thatare
present inapathname, our implementationonlycomputes
a virtual directory if it is enumeratedby a client readdir
request or alookup is performedonone of its entries. This
optimizationallows the SFSServer topostpone querypro-
cessing inthe hope that further attribute speci�cations will
reduce theamountof worknecessaryfor computationof the
result set. This optimization is implementedas follows:

� The SFS Server responds to a lookup request on a
virtual directorywithalookup not found fault tothe
Virtual Directorymodule. TheVirtual Directorymod-
ulecheckstomakesurethatthevirtual directoryname
is syntacticallywell formedaccording tothe grammar
inSection3. If the name is well formed, the directory
fault is immediatelysatis�edbycallingthecreate dir
procedure intheSFSServer. This procedure creates a
placeholder directorythat is usedtosatisfytheclient's
original lookup request.

� The SFSServer responds to a readdir request on a
virtual directoryor alookup ononeof its entries with
afill directory fault totheVirtual Directorymod-
ule. The Virtual Directorymodule collects all of the
attribute speci�cations in the virtual directory path

nameandpasses themtotheQueryProcessingmod-
ule. TheQueryProcessingmodule uses simple heuris-
tics toreorder theprocessingof attributes tooptimize
queryperformance. Thematchingentriesarethenma-
terialized in the placeholder directory bythe Virtual
Directory module that calls the create link proce-
dure intheSFSServer for eachmatching�le or direc-
tory.

Thetransducers that arepresentlysupportedbyour se-
mantic�le systemimplementationinclude:

� Atransducer that describes NewYorkTimes articles
withtype:, priority:, date:, category:, subject:,
title:, author:, andtext: attributes.

� Atransducer that describes object �les withexports:
and imports: attributes for procedures and global
variables.

� Atransducer that describes C, Pascal, and Scheme
source �les with exports: andimports: attributes
for procedures.

� Atransducer that describes mail �les withfrom:, to:,
subject:, andtext: attributes.

� Atransducer that describes text �les withtext: at-
tributes. The text �le transducer is the default trans-
ducer for ASCII �les.

Inadditiontothe specializedattributes listedabove, all
�les anddirectories are further described byowner, group,
dir, name, andext attributes.

Atpresent, weonlyindexpubliclyreadable �les. Weare
investigating indexing protected �les as well, and limiting
queryresults toentities that canbe readbythe requester.
Weareinthe process of makinganumber of improvements
to our prototype implementation. These enhancements in-
clude1) full support formulti-host queries usingqueryrout-
ing, 2) anenhanced query language, 3) better support for
�le deletion andrenaming, and4) integration of views for
entitiessmaller than�les. Ourpresentimplementationdeals
withdeletions bykeepingatable of deletedentities andre-
moving themfromthe results of query processing. Enti-
ties arepermanentlyremovedfromthedatabasewhenafull
reindexingof the systemis performed. Weare investigating
performing �le and directory renames without reindexing
the underlying �les.

5 Resul ts

Weranaseriesof experimentsusingour semantic�lesystem
implementationtotest our thesis that semantic�le systems
present amore e�ective storage abstraction thando tradi-
tional tree structured �le systems for information sharing
andcommand level programming. All of the experimental
datawereportarefromour researchgroup's �leserverusing
asemantic �le system. The server is aMicrovax-3running
UNIXversion4.3bsd. The server indexes all of its publicly
readable �les anddirectories.

To compact the indexes our prototype systemrecon-
structs a full index of the �le systemcontents everyweek.
On23July 1991, full indexing of our user �le systempro-
cessed 68 MBytes in 7,771 �les (Table 5). 1 Indexing the

1The 162 MBytes in publ i cly readable �les that were not pro-
cessedwere in �les for which transducers have not yet been wri tten:
executable �les, PostScript �les, DVI �les, tar �les, image data, etc.

Total �le systemsize 326 MBytes
Amount publicly readable 230 MBytes
Amount withknowntransducer 68 MBytes

Number of distinct attributes 173,075
Number of attributes indexed 1,042,832

Type Number of Files KBytes

Object 871 8,503
Source 2,755 17,991
Text 1,871 20,638
Other 2,274 21,187

Total 7,771 68,319

Table 1: User File SystemStatistics for 23July1991

Part of index Size inKBytes

IndexTables 6,621
IndexTrees 3,398

Total 10,019

Phase Time (hh:mm)

DirectoryEnumeration 0:07
Determine File Types 0:01
TransduceDirectory 0:01
TransduceObject 0:08
Transduce Source 0:23
TransduceText 0:23
TransduceOther 0:24

BuildIndexTables 2 1:22
BuildIndexTrees 0:06

Total 1:36

Table 2: User FSIndexing Statistics on23July1991

resulting 1 million attributes took 1 hour and 36 minutes
(Table 2). This works out to an indexing rate of 712
KBytes/minute.

File systemmutationoperations trigger incremental in-
dexing. Inupdate tests simulating typical user editing and
compiling, incremental indexing is normally completed in
less than 5 minutes. In these tests, only 2 megabytes of
modi�ed�le data were reindexed. Incremental indexing is
slower than full indexing in the prototype systembecause
theincremental indexerdoesnotmakegooduseof real mem-
oryfor caching. The full indexer uses 10megabytes of real
memoryfor caching; the incremental indexer uses less than
1megabyte.

Theindexingoperations of ourprototypeareI/Obound.
The CPUis 60% idle during indexing. Our measurements
showthat transducers generateapproximately30disktrans-
fers per second, thereby saturating the disk. Indexing the
resulting attributes also saturates the disk. Although the
transducers and the indexer use di�erent disk drives, the
transducer-indexer pipeline does not allowI/Ooperations
toproceed inparallel onthe twodisks. Thus, we feel that
wecoulddouble thethroughput byimprovingthepipeline's

2 in paral l el wi th Transduce

structure.
Weexpectour indexingstrategytoscaletolarger�lesys-

temsbecause indexingis limitedbytheupdate ratetoa�le
systemrather than its total storage capacity. Incremental
processingof updateswill requireadditional readbandwidth
approximatelyequal tothewritetra�cthatactuallyoccurs.
Past studies of Unix�le systemactivity[OCH +85] indicate
thatupdateratesarelow, andthatmostnewdatais deleted
or overwrittenquickly; thus, delayingslightlytheprocessing
of updates might reduce the additional bandwidthrequired
byindexing.

Todetermine the increasedlatency of overlaidNFSop-
erations introducedbyinterposing our SFSserver between
theclientandthenative�le system, weusedthenhfsstone
benchmark[Leg89] at lowloads. Thedelays observedfrom
anunmodi�edclient machine were smaller thanthe varia-
tioninlatencies of the nativeNFSoperations. Preliminary
measurements showthat lookup operations are delayedby
2ms onaverage, andoperations that generate update noti-
�cations incur alarger delay.

Thefollowinganecdotal evidencesupportsourthesis that
a semantic�le systemis more e�ective thantraditional �le
systems for informationsharing:

� Thetypical response time for the�rst ls commandon
a virtual directory is approximately 2 seconds. This
response time reects a substantial time savings over
linear search through our entire �le systemwith ex-
isting tools. Inaddition, subsequent ls commands re-
spondimmediatelywithcachedresults.

Weranaseries of experiments totest howthenumber
of attributes in a virtual directory name altered the
observedperformanceof thels commandonavirtual
directory. Attributes wereaddedone at a time toar-
riveat the �nal pathname:

/sfs/text:/virtual/
text:/directory/
text:/semantic/
ext:/tex/
owner:/gifford

The twoproperties of aquerythat a�ect its response
time are the number of attributes in the query and
the number of objects inthe result set. The e�ect of
anincrease ineither of these factors is additional disk
accesses. Figure 3 illustrates the interplay of these
factors. Eachpoint onthe response time graphis the
averageof threeexperiments. Inaseparateexperiment
wemeasuredanaverage response time of 5.4 seconds
whenthe result set grewto545entities.

� Webegan to use the semantic �le systemas soonas
it was operable to help coordinate the production of
this paper and for a varietyof other everydaytasks.
We have found the virtual directory interface to be
easy to use. (We were immediately able to use the
GNUEmacsdirectoryeditorDIRED[Sta87] tosubmit
queries andbrowse the results. Nocodemodi�cation
was required.) At least twousers inour groupreex-
aminedtheir �le protections inviewof the ease with
whichother users could locate interesting �les in the
system.

R
es

p
o

n
se

 T
im

e

 (
se

co
n

d
s)

R
es

u
lt

 C
o

u
n

t

Number of Attributes

200

150

100

50

0

0 1 2 3 4 5 6

0

1

2

3
Response Time
Result Count

Figure 3: Plot of Number of Attributes vs. Response Time
andNumber of Results

� Usersoutsideourresearchgrouphavesuccessfullyused
the query interface to locate information, including
newspaper articles, inour �le system.

� Users outside our research group have failed to �nd
�les for which no transducer had yet been installed.
Wearedevelopingnewtransducers inresponsetothese
failedqueries.

Thefollowinganecdotal evidencesupportsourthesisthat
asemantic �le systemis more e�ective thantraditional �le
systems for commandlevel programming:

� The UNIXshell pathname expansion facilities inte-
grate well withvirtual directories. For example, it is
possible toquerythe�le systemfor all dvi �les owned
byaparticular user, andtoprint those whose names
beginwithacertainsequence of characters.

� Symbolic links have provento be ane�ective wayto
describe �le systemviews. The result of using sucha
symbolic linkasadirectoryis adynamicallycomputed
set of �les.

6 Conclusions

Wehave described howa semantic �le systemcanprovide
associative attribute-based access to the contents of anin-
formationstorage systemwiththe helpof �le type speci�c
transducers. Wehavealsodiscussedhowthis access canbe
integratedintothe�le systemitself withvirtual directories.
Virtual directories are directories that are computedupon
demand.

The results to date are consistent with our thesis that
semantic �le systems present a more e�ective storage ab-
stractionthandotraditional tree structured�le systems for
informationsharing andcommandlevel programming. We
plan to conduct further experiments to explore this thesis
in further detail. We plan also to examine howvirtual di-
rectories candirectlybene�t applicationprogrammers.

Our experimental systemhas tested one semantics for
virtual directories, but there are many other possibilities.
For example:

� The virtual directory syntaxcanbe extendedto sup-
portaricherquerylanguage. Disjunctivequerieswould
permit users to use \or" in their queries, andwould
alsoo�er the abilitytosearchonmultiple networkse-
mantic�le systems concurrently.

� Users couldassignattributes to�le systementities in
addition to the attributes that are automatically as-
signedbytransducers.

� Transducers couldbecreatedfor audioandvideo�les.
Inprinciple this wouldpermit access bytime, frame
number, or content [Nee91].

� Thedatamodel underlyingasemantic�lesystemcould
beenhanced. Forexample, anentity-relationshipmodel
[Cat83] wouldprovidemoreexpressivepowerthansim-
ple attribute basedretrieval.

� The entities indexed by a semantic �le systemcould
include a wide varietyof object types, including I/O
devices and �le servers. Wide-area naming systems
suchas X.500 [CCI88] couldbe presentedinterms of
virtual directories.

� Aconfederationof semantic�lesystems, possiblynum-
bering inthe thousands, canbe organized intoanse-
mant i c l i brary syst em. Asemantic library systemex-
ports the same interfaceas anindividual semantic�le
system, and thus a semantic library systempermits
associative access to the contents of its constituent
servers with existing �le systemprotocols as well as
withprotocols that are designed speci�cally for con-
tent based access. Asemantic library systemis im-
plementedbyservers that use content based routing
[GLB85] todirect asingle user request toone ormore
relevant semantic �le systems.

Wehave alreadycompletedthe implementationof an
NFScompatiblequeryprocessingsystemthatforwards
requests tomultiple hosts andcombines the results.

� Virtual directories canbeusedas aninterfacetoother
systems, suchasinformationretrieval systemsandpro-
grammingenvironmentsupport systems, suchasPCTE.
Weare exploring alsohowexisting applications could
access object repositories viaavirtual directoryinter-
face. It is possible toextendthesemantics of aseman-
tic �le systemto include access to individual entities
inamanner suitable for anobject repository[GO91].

� Relevance feedbackandqueryresults couldbe added
byintroducing newvirtual directories.

Theimplementationof real-time indexingmayrequire a
substantial amount of computing power at a semantic �le
server. We are investigating howto optimize the task of
real-time indexing inorder tominimize this load. Another
areaof researchis exploringhowmassiveparallelism[SK86]
might replace indexing.

Aninterestinglimitingcaseof ourdesignisasystemthat
makes anunderlying tree structurednaming systemsuper-
uous. Insuchasystemall directories wouldbe computed

upondemand, including directories that correspondtotra-
ditional treestructured�lenames. Suchasystemmighthelp
us share informationmore e�ectivelybyencouraging query
basedaccess that wouldleadtothediscoveryof unexpected
but useful information.

Acknowledgments

We would like to thankDoug Grundman, AndrewMyers,
andRaymieStata, for their various contributions tothepa-
per andtheimplementation. Thereferees providedvaluable
feedbackandconcrete suggestions that wehaveendeavored
to incorporate into the paper. Inparticular, weverymuch
appreciate the useful and detailed comments provided by
MikeBurrows.

References

[BP88] Brian N. Bershad and C. Brian Pinkerton.
Watchdogs: Extending the UNIX�le system.
In USENIX Associ at i on 1988 Winter Conf er-
ence Proceedings, pages 267{275, Dallas, Texas,
February1988.

[Cat83] R. G. G. Cattell. Designandimplementationof
arelationship-entity-datumdatamodel. Techni-
cal Report CSL-83-4, XeroxPARC, Palo Alto,
California, May1983.

[CCI88] CCITT. TheDirectory- Overviewof Concepts,
Models and Services. Recommendation X.500,
1988.

[CG91] VincentCateandThomasGross. Combiningthe
concepts of compressionandcaching for a two-
level �lesystem. InFourth Internat i onal Conf er-
ence on Archi t ectural Support f or Programming
Languages and Operat i ng Systems, pages 200{
211, SantaClara, California, April 1991. ACM.

[CL89] Brent Callaghan and TomLyon. The auto-
mounter. InUSENIXAssoci at i on 1989 Winter
Conf erence Proceedi ngs, 1989.

[Cla90] Claris Corporation, Santa Clara, California,
January1990. News Release.

[Cor] Lotus Corporation. Lotus Magellan: Quick
Launch. Product tutorial, Lotus Corporation,
Cambridge, Massachusetts. Part number 35115.

[DANO91] Peter B. Danzig, JongsukAhn, JohnNoll, and
Katia Obraczka. Distributed indexing: Ascal-
able mechanismfor distributed information re-
trieval. Technical Report USC-TR91-06, Uni-
versity of Southern California, Computer Sci-
enceDepartment, 1991.

[GCS87] DavidK. Gi�ord, Robert G. Cote, andDavidA.
Segal. Walter user's manual. Technical Report
MIT/LCS/TR-399, M.I.T. LaboratoryforCom-
puter Science, September 1987.

[GLB85] David K. Gi�ord, John M. Lucassen, and
Stephen T. Berlin. An architecture for large
scale information systems. In10th Symposium
on Operat i ng SystemPri nci pl es, pages 161{170.
ACM, December 1985.

[GMT86] Ferdinando Gallo, Regis Minot, and Ian
Thomas. The object management system
of PCTEas a software engineering database
management system. In Second ACM SIG-
SOFT/SIGPLANSof tware Engi neeri ng Sympo-
si umon Pract i cal Sof tware Devel opment Envi -
ronments, pages 12{15. ACM, December 1986.

[GO91] David K. Gi�ord and James W. O'Toole.
Intelligent �le systems for object reposito-
ries. In Operat i ng Systems of the 90s and
Beyond, Saarbr�ucken, Germany, July 1991.
Internationales Begegnales- und Forschungs-
zentrum f�ur Informatik, Schloss Dagstuhl-
Gesch�aftsstelle. To be published by Springer-
Verlag.

[Gro86] Computer Systems Research Group. UNIX
User's ReferenceManual. 4.3BerkeleySoftware
Distribution, Berkeley, California, April 1986.
Virtual VAX-11Version.

[Inf90] Information Dimensions, Inc. BASISplus. The
KeyToManaging The WorldOf Information.
Information Dimensions, Inc., Dublin, Ohio,
1990. Product description.

[Kaz88] Michael Leon Kazar. Synchronization and
caching issues in the AndrewFile System. In
USENIXAssoci at ion 1988 Winter Conf erence
Proceedi ngs, pages 31{43, 1988.

[Kil84] T. J. Killian. Processes as �les. InUSENIXAs-
soci ati on 1984 Summer Conf erence Proceedi ngs,
Salt LakeCity, Utah, 1984.

[Kle86] S. R. Kleiman. Vnodes: An architecture for
multiple �le systemtypes in Sun UNIX. In
USENIXAssoci at ion 1986 Winter Conf erence
Proceedi ngs, pages 238{247, 1986.

[KM91] Brewster Kahle andArt Medlar. An informa-
tion systemfor corporate users: Wide area in-
formationservers. Technical Report TMC-199,
ThinkingMachines, Inc., April 1991. Version3.

[Leg89] LegatoSystems, Inc. Nhfsstone. Softwarepack-
age. LegatoSystems, Inc., PaloAlto, California,
1989.

[Les] M. E. Lesk. Some applications of inverted in-
dexes onthe UNIXsystem. UNIXSupplemen-
taryDocument, Section30.

[Log91] Boss Logic, Inc. Boss DMSdevelopment speci-
�cation. Technical documentation, Boss Logic,
Inc., Fair�eld, IA, February1991.

[Mog86] Je�rey C. Mogul. Representing information
about �les. Technical Report 86-1103, Stanford
Univ. Department of CS, March 1986. Ph.D.
Thesis.

[NC89a] NeXTCorporation. 1.0release notes: Indexing.
NeXTCorporation, PaloAlto, California, 1989.

[NC89b] NeXTCorporation. Text indexing facilities on
the NeXTcomputer. NeXTCorporation, Palo
Alto, California, 1989. from1.0Release Notes.

[Nee91] RogerNeedham, 1991. Personal communication.

[Neu90] B. Cli�ordNeuman. The virtual systemmodel:
Ascalableapproachtoorganizinglarge systems.
Technical Report 90-05-01, Univ. of Washington
CSDepartment, May1990. Thesis Proposal.

[NIS91] Ansi z39.50 version 2. National Information
Standards Organization, Bethesda, Maryland,
January1991. SecondDraft.

[OCH +85] John K. Ousterhout, Herv�e Da Costa, David
Harrison, John A. Kunze, Mike Kupfer, and
James G. Thompson. Atrace-driven analysis
of the unix 4.2bsd �le system. In Symposium
on Operat i ng SystemPri nci pl es, pages 15{24.
ACM, December 1985.

[Pen90] Jan-Simon Pendry. Amd| an automounter.
Department of Computing, Imperial College,
London, May1990.

[Pet88] Larry Peterson. The Pro�le Naming Ser-
vice. ACMTransact i ons on Computer Syst ems,
6(4):341{364, November 1988.

[PPTT90] RobPike, Dave Presotto, KenThompson, and
HowardTrickey. Plan 9 fromBell Labs. UK
UUGproceedings, 1990.

[PW90] Jan-Simon Pendry and Nick Williams. Amd:
The4.4BSDautomounterreferencemanual, De-
cember 1990. Documentation for software revi-
sion5.3Alpha.

[Roc85] Marc J. Rochkind. Advanced UNIXProgram-
ming. Prentice-Hall, Inc., EnglewoodCli�s, New
Jersey, 1985.

[RT74] D. M. Ritchie and K. Thompson. The UNIX
Time-SharingSystem. Comm. ACM, 17(7):365{
375, July1974.

[Sal83] GerardSalton. Int roduct ionto ModernInf orma-
t i on Ret ri eval . McGraw-Hill, NewYork, 1983.

[SC88] SunCorporation. The NetworkSoftwareEnvi-
ronment. Technical report, SunComputer Cor-
poration, MountainView, California, 1988.

[Sch89] Michael F. Schwartz. TheNetworkedResource
DiscoveryProject. InProceedi ngs of the IFIPXI
Worl d Congress, pages 827{832. IFIP, August
1989.

[SGK +85] R. Sandberg, D. Goldberg, S. Kleiman,
D. Walsh, andB. Lyon. Designandimplementa-
tionof theSunNetworkFilesystem. InUSENIX
Associ ati on 1985 Summer Conf erence Proceed-
i ngs, pages 119{130, 1985.

[SK86] C. Stan�ll and B. Kahle. Parallel Free-Text
Search on the Connection Machine System.
Comm. ACM, pages 1229{1239, December1986.

[Sta87] Richard Stallman. GNUEmacs Manual . Free
Software Foundation, Cambridge, MA, March
1987. SixthEdition, Version18.

[Ste91] RichardMarlon Stein. Browsing through ter-
abytes: Wide-area information servers open a
newfrontier inpersonal andcorporate informa-
tionservices. Byte, pages 157{164, May1991.

[Sun88] SunMicrosystems, Sunnyvale, California. Net -
work Programming, May 1988. Part Number
800-1779-10.

[Sun89] NFS: Network�le systemprotocol speci�cation.
Sun Microsystems, Network Working Group,
Request forComments(RFC1094), March1989.
Version2.

[Tec90] ONTechnology. ONTechnology, Inc. announces
OnLocationfor theAppleMacintoshcomputer.
News Release ONTechnology, Inc., Cambridge,
Massachusetts, January1990.

[Ver90] Verity. Topic. Product description, Verity,
MountainView, California, 1990.

[Wei] Peter Weinberger. CBTProgramdocumenta-
tion. Bell Laboratories.

[WO88] BrentB.WelchandJohnK. Ousterhout. Pseudo
devices: User-level extensions to the Sprite �le
system. InUSENIXAssoci at i on 1988 Summer
Conf erence Proceedi ngs, pages 37{49, SanFran-
cisco, California, June 1988.

