
Verification Support for Plug-and-Play Architectural Design

Shangzhu Wang, George S. Avrunin, Lori A. Clarke
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{shangzhu,avrunin,clarke}@cs.umass.edu

ABSTRACT
In software architecture, components are intended to rep-
resent the computational units of the system and connec-
tors are intended to represent the interactions between those
units. Choosing the semantics of these interactions is a key
part of the design process, but the wide range of alternatives
from which to choose and the complexity of the behavior af-
fected by the choices makes it difficult to get them right.

We propose an approach in which connectors with partic-
ular semantics are constructed from a library of pre-defined
building blocks and changes in the semantics of a connector
can be accomplished by replacing some of its building blocks
with others. In our approach, a small set of standard inter-
faces allows components to communicate with each other
through a wide variety of connectors, so the impact on com-
ponents for even substantial changes in the semantics of the
connectors is minimized.

In this paper, we focus on the way this approach supports
design-time verification to provide feedback about the cor-
rectness of the design. By enhancing the re-use of models
of both components and connectors, this approach has the
potential to significantly reduce the cost of verification as a
design evolves.

1. INTRODUCTION
In software architecture, connectors are intended to rep-

resent the specific semantics of how components interact
with each other. They capture some of the most important
yet subtle aspects of a system, such as non-determinism,
interleavings of computations, synchronization, and inter-
component communication. These are all concerns that can
be particularly difficult to fully comprehend in terms of their
impact on the overall system behavior.

The large design space of available interaction mechanisms
and their variations only adds to this difficulty. Choosing
appropriate interaction semantics for a connector often in-
volves not only a choice from commonly used interaction
mechanisms, such as remote procedure call, message pass-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ing, and publish/subscribe, but also decisions about such
details as the particular type and size of a message buffer or
whether a communication should be synchronous or asyn-
chronous. Thus, during architectural design, it is impor-
tant that designers be able to select the specific interaction
semantics they think should be employed and then to get
feedback about the appropriateness of those choices based
on their impact on the overall system behavior.

In particular, one would like to be able to propose a de-
sign, and use design-time verification to determine whether
some important properties of the system are satisfied. Vio-
lations of these properties often reflect system behavior that
was not anticipated by the designer due to the complexity
of the interactions between components. When such a vio-
lation is found during design-time verification, changes have
to be made to correct the specific interaction semantics that
are causing the violation, and verification needs to be re-
applied to confirm that the changes fix the problem. Given
the wide variety of interaction mechanisms and the complex-
ity of their semantics, it is expected that a system designer
would have to go through a number of iterations modifying
their decisions on interactions and re-verifying the overall
system before a satisfactory design is achieved.

One major obstacle to the realization of this vision of de-
sign and verification is that the semantics of the interactions
are often intertwined with the semantics of the components’
computations. For example, a change from an asynchronous
communication to a synchronous one often requires making
changes to the components so that a callback can be placed
to explicitly notify the sender of the receipt of messages.
In general, experimenting with alternative choices of inter-
action semantics tends to be very difficult and inefficient
when changes made in the interactions often require non-
trivial changes in the components’ computations.

This problem also complicates design-time verification.
When using finite-state verification techniques, for instance,
it is necessary to build a model of the system that represents
the computation of each component and the interactions
between them. With semantics of interactions intertwined
with semantics of computations, any changes made to the in-
teractions will often result in not only the re-construction of
the connector models but also the component models. When
repeated changes and verification of a design are necessary,
the lack of reusability of the component and connector mod-
els could increase the cost of the design-time verification
significantly.

Our approach tries to address these difficulties by provid-
ing system designers with an efficient way of experiment-

ing with alternative design choices for connectors, and the
ability to evaluate these design decisions based on the cor-
rectness of the overall system design using finite-state veri-
fication. In our approach, with just a small set of standard
interfaces, components can communicate with each other
through different connectors that express a wide range of
interaction semantics. These standard interfaces allow de-
signers to change the semantics of connectors without having
to make significant changes to the components. In addition,
connectors are decomposed into building blocks that cap-
ture different aspects of the semantics of connectors. This
makes it possible to support a library of pre-defined build-
ing blocks from which a wide variety of connectors can be
constructed.

With the standard component interfaces and the reusable
building blocks for connectors, designers can easily experi-
ment with alternative choices of interaction semantics. De-
signers may construct connectors with specific semantics by
combining a subset of the building blocks from the library.
They can subsequently make changes to the connectors by
selectively adding, removing or replacing one or more of the
building blocks. With the standard component interfaces,
such changes in the connectors often require no changes in
the components.

Our approach also facilitates design-time verification. In
particular, designers may wish to get feedback about the
correctness of the overall system design while experiment-
ing with alternative design choices of interaction semantics.
With our approach, reusable models can be created for the
connector building blocks, and since changes in the connec-
tors do not often require changes in the components, compo-
nent models can also be reused for most of the time. There-
fore, our approach creates savings in model-construction
time during design-time verification.

Section 2 shows how this approach can be realized to sup-
port the plug-and-play design of a family of message passing
semantics. In Section 3, we discuss how this plug-and-play
design approach facilitates design-time verification. Sec-
tion 4 describes the related work, and Section 5 discusses
the status of our work and some future directions.

2. PLUG-AND-PLAY WITH MESSAGE PASS-
ING

Message passing is one of the most commonly used in-
teraction mechanisms for distributed systems. Many lan-
guages, such as CSP [10], Occam [5], and Linda [4] incorpo-
rate message passing facilities. There are also message pass-
ing libraries such as MPI [16] and PVM [7]. Although the
fundamental message passing semantics come from two basic
operations, send and receive messages, there are a surpris-
ing number of variations in their semantics. For example,
a message may be sent synchronously or asynchronously;
a component that receives messages may block or continue
when a requested message is not available. Other message
passing semantics such as how messages are stored in the
buffer, how they are delivered, and what information is re-
layed to the sender component and the receiver component
may also vary.

Based on a study of the most commonly used message
passing semantics, we have defined a set of building blocks
for the construction of message passing connectors. This set
of building blocks consists of different kinds of send ports,

Waits for a message from the sender and sends a confirmation
back immediately; the message may or may not be accepted

Waits for a message from the sender and sends a confirmation
back AFTER the message has been accepted by the channel.

Waits for a message from the sender and forwards it to the
channel. If the message cannot be accepted by the channel,
it returns and sends a notification to the sender. Otherwise,
it blocks until the message is accepted and sends a
confirmation back to the sender.

Waits for a message from the sender and sends a confirmation
back AFTER it is notified by the channel that the message
has been received by the receiver.

Similar to "asynchronous checking send" except that when
the message can be accepted by the channel, it blocks until
the message is received by the receiver and then sends a
confirmation back to the sender.
Waits for a "receive request" from the receiver and forwards
it to the channel. It blocks until a desired message is retrieved
from the channel and sends a confirmation to the receiver.

and handled by the channel.

Similar to "blocking receive" except that it returns immediately

a notification along with an empty message to the receiver.
if no desired message can be retrieved currently. It then sends

Asynchronous
Nonblocking

Asynchronous
Blocking

Asynchronous
Checking

Synchronous
Blocking

Synchronous
Checking

Port
Send

1−slot buffer A buffer of size 1.

FIFO queue A FIFO queue of size N.

Priority queue A priority queue of size N.

Receive
Port

Channel

Blocking
(copy/remove)

Nonblocking
(copy/remove)

Figure 1: A set of message passing building blocks

.

..

}
.
..

.

..

.

..
}

m;send
receive

SendStatus;m,

SendStatus;

(a) Component−send port protocol (b) Component−receive port protocol

Message

send
receive

Message m, RecvRequest,

RecvRequest;
RecvStatus;

receive m;

RecvStatus;
Component{ Component{

Figure 2: Standard component interfaces

receive ports, and channels that together can be used to ex-
press a wide variety of message passing semantics. Figure 1
gives a few examples of the message passing building blocks
we have defined.

As we can see from the description of the building blocks,
channels are essentially message buffers that capture se-
mantics such as the buffering and delivery of messages. A
send port is a mediator between a sender component and a
channel, and captures such semantics as whether a message
should be sent synchronously or asynchronously or whether
the sender should block when the message buffer is full. Dif-
ferent send ports provide different semantics by forwarding
and interleaving the messages between the sender compo-
nent and the channel in different ways. A similar notion
applies to receive ports. To construct a message passing
connector with specific semantics, we simply select the ap-
propriate channel we are going to use to store and deliver
messages, and then select the appropriate ports that com-
ponents may send messages to and receive messages from.

Figure 2 shows the standard interfaces for components to
send and receive messages. In Figure 2(a), a sender compo-
nent waits for a SendStatus message from the connector after
sending a message. This interface is designed to work with
connectors that implement different semantics for sending
messages. For example, in the case of asynchronous mes-
sage passing, the connector should immediately return the
SendStatus message to the sender component, while for syn-

send m

time

sender send port channel

send m

sender send port channel

time

SendStatus =
"sendOk"

Asynchronous Send(a) Synchronous Send(b)

m

"receiveOk"

"receiveOk"

m

"sendOk"
SendStatus =

Figure 3: Example scenarios of message passing in-
teractions (using send ports)

chronous message passing, the connector should not return
the SendStatus message until the sender’s message has been
delivered. Such a difference is captured in a send port be-
tween a component and a channel. Using a notation similar
to Message Sequence Charts, Figure 3 illustrates how a send
port controls the interleaving of the messages between the
component and the channel to give different interaction se-
mantics. Notice that the same protocol is used between
the sender component and the send port, and between the
send port and the channel for both synchronous and asyn-
chronous message passing. Switching between asynchronous
message passing and synchronous message passing can be
simply achieved by substituting the send port that is used
with the other kind.

Similarly, in Figure 2(b), a component that wishes to re-
ceive a message first sends a receive request to the port and
waits for feedback (the RecvStatus message) on whether the
requested message has been successfully retrieved. It then
waits for a message from the receive port, either a real mes-
sage (when the receive is successful) or an empty message
(when the receive has failed). By always having the receive
port send back an explicit status message to the receiver
component, the same interface can be used for both block-
ing and nonblocking semantics. A blocking receive port does
not send a success status message to the component until a
message has been successfully received from the channel and
can be delivered to the component. A nonblocking receive
port sends a failure status message immediately to the com-
ponent when there is no message currently available in the
channel, allowing the receiver component to continue its ex-
ecution.

With the standard interfaces, changes in such design de-
cisions as the specific semantics for sending and receiving
messages, or the behavior of the message buffers can be ac-
complished by simply replacing the send or receive ports,
or the channels that are employed in the connector. The
components do not have to be involved in these changes.
This way, designers can easily experiment with alternative
choices of different message passing semantics.

In this section, we have shown how we support the plug-
and-play design for a family of message passing semantics.
However, our approach is not restricted to message pass-
ing. In fact, we have extended the message passing build-
ing blocks to support other kinds of interaction mechanisms
such as the publish/subscribe and RPC(remote procedure
call). More details of this work can be found in [19].

3. VERIFICATION SUPPORT FOR THE PLUG-
AND-PLAY DESIGN APPROACH

In this section, we describe how our plug-and-play design
approach facilitates design-time verification. We first briefly
introduce the modeling language and model checker we use
to verify the designs. We then give a detailed discussion
about how reusable models for the message passing building
blocks are defined, how they can be composed to form differ-
ent connectors, and how the connector models are composed
with component models through components’ standard in-
terfaces. Finally, through a small example, we illustrate
how these pre-defined building blocks can be used in the
design and verification of a message passing system. With
this example, we show that our plug-and-play approach not
only makes it easy to change the message passing semantics
represented by the connectors but also allows the re-use of
models for verification.

3.1 Creating and Composing Building Block
Models

For an initial evaluation of our approach, we use the Spin [11]
model checker to verify the system designs created using our
plug-and-play approach. We define the formal models of the
message passing building blocks in Promela, the input lan-
guage of Spin. These models are defined in such a way that
they can be readily composed with other parts of the model
of any system that uses these building blocks.

In Promela, communicating components are defined as
processes using the keyword proctype. Communications
between processes take place through channels that provide
either buffered or synchronous (when the channel size is 0)
message passing. A Promela channel can be declared using
the keyword chan, along with the size of the buffer and the
data type for each field of the messages that can be accepted
by the channel. The following Promela code shows an exam-
ple of a typical channel declaration and the basic operations
for sending and receiving messages.

/* a channel of size 3 that takes messages of type short */
chan myChannel = [3] of {short};

/* sends a message of value 3 to myChannel */
myChannel!3;

/* receives a message from myChannel
* and stores it in variable myMsg */

myChannel?myMsg;

/* receives a message from myChannel with a value
* that matches the constant 3 */

myChannel?3;

With the send operation “!”, the message is appended at
the end of the channel, assuming space is available in the
channel when the message is sent. With the receive opera-
tion “?”, the first message in the channel is retrieved. When
constants are used in one of the fields after “?”, only mes-
sages with values that match the constants can be retrieved.
The receiving process is blocked when the value of the first
message in the channel does not match the constant speci-
fied. There are a number of variations on the send and re-
ceive operations supported by Promela. For example, with
the receive operation “??”, the first matching message in
the channel will be retrieved. The receiver process does not
block as long as there is at least one matching message in
the channel.

typedef SynChan{
chan signal = [0] of {InternalMsg};
chan data = [0] of {DataMsg}

}
proctype SynBlSendPort(SynChan componentChan;

SynChan channelChan){
DataMsg m;
do
:: componentChan.data?m;

m.sender_id = _pid;
do
:: channelChan.data!m;

if
:: channelChan.signal?IN_OK,_;

break;
:: channelChan.signal?IN_FAIL,_;
fi;

od;
channelChan.signal?RECV_OK,eval(_pid);
componentChan.signal!SEND_SUCC,-1;

od;
}

Figure 4: Promela model for a synchronous blocking
send port

proctype AsynNbSendPort(SynChan componentChan;
SynChan channelChan){

DataMsg m;
do
:: channelChan.signal?_,eval(_pid);
:: componentChan.data?m;

componentChan.signal!SEND_SUCC, -1;
m.sender_id = _pid;
channelChan.data!m

od
}

Figure 5: Promela model for an asynchronous non-
blocking send port

It is important to notice the difference between the Promela
channels and the channels used as building blocks for con-
nectors in our design approach. Promela channels are used
for sending and receive messages between Promela processes.
Promela channels can only support the simplest kinds of
message buffers such as a FIFO queue. On the other hand,
our channels are architecture-level building blocks for con-
nectors that can essentially capture arbitrary interaction se-
mantics among components, and therefore are not neces-
sarily message buffers. For example, a channel in a pub-
lish/subscribe connector may represent an event pool where
delivery of events is based on subscription. Even when
our channels are used as building blocks for message pass-
ing connectors, they can be much more complicated than
simple message buffers. Such a channel may be able to
handle messages based on their priorities, notify compo-
nents of the current buffer status, or deliver messages to a
group of interested components. In the following discussion,
we will always refer to channels supported in Promela as
Promela channels to distinguish them from the architecture-
level channels in our approach.

For the purpose of this approach, all the ports, channels,
and components in the design are modeled as communicat-
ing processes in Promela. We use Promela channels to model
all the internal communications between components and
ports, and between ports and channels.

Figure 3.1 shows the Promela model for a synchronous
blocking send port. The port is modeled as a Promela pro-

cess (proctype) that takes two parameters of type SynChan.
componentChan is a set of two Promela channels, data and
signal, for the communication between the send port and
the component. componentChan.signal is used for com-
municating internal signals such as the status of the buffer
and the status of message delivery; componentChan.data

is used for communicating messages that actually contain
application-specific data. The two Promela channels in
channelChan are used in a similar way for the communica-
tion between the send port and our architecture-level chan-
nel.

As we have described in Section 2, a send port is a medi-
ator between a sender component and a channel that inter-
cepts their communication of data messages and message de-
livery status signals. In this model, the send port receives a
data message m from the component (componentChan.data?m),
forwards it to the channel (channelChan.data!m), and then
waits for a signal back from the channel that indicates whether
the message can be properly stored in its buffer. Such a
signal could either be IN OK or IN FAIL. Since this is a syn-
chronous blocking send port, it keeps sending message m to
the channel until the message is successfully stored in the
channel, and an IN OK signal is received (this can be seen
from the do...od loop). It then waits for a RECV OK sig-
nal from the channel that indicates the successful delivery
of the message m. Finally, after receiving both IN_OK and
RECV_OK signals from the channel, the synchronous blocking
send port sends the send status message (SEND_SUCC) back
to the sender component. Notice that one port can only be
used by one component, but multiple ports may be talking
to a single channel. Therefore, a send port has to check if a
delivery confirmation RECV_OK from the channel is addressed
to itself by making sure the tag matches with its own _pid

(eval(_pid) gives the constant value of eval(_pid)). Since
the IN OK and IN FAIL signals are issued immediately after
the port tries to send message m to the channel, they will
always be properly addressed to the send port.

As one may have guessed, the definition of an asynchronous
blocking send port is similar to its synchronous counter-
part except that an asynchronous send port immediately
sends SEND_SUCC to the component after receiving IN_OK

from the channel. Similarly, for a nonblocking send port,
SEND_SUCC may be sent to the component before the mes-
sage has been stored in the buffer by the channel. Figure 3.1
shows the Promela model for an asynchronous nonblock-
ing send port. This port receives a message m from the
component and immediately returns a SEND SUCC status sig-
nal to the sender component, regardless whether message m
will be successfully stored in the channel or eventually re-
ceived by the a receiver component. In fact, the port ignores
any signals sent from the channel using a wildcard receive
channelChan.signal?_,eval(_pid) (in Promela, _ can be
matched with anything).

Figure 6 illustrates what a component model may look
like to send messages through a send port. In this model,
the component sends its message to the send port and im-
mediately waits for a status signal back. Depending on the
specific semantics of the send port the component is send-
ing messages through, the status signal may be returned
at different stages of message delivery and may indicate ei-
ther a failure or success. But no matter what kind of send
ports the component is communicating with, the same in-
terface can be used. This allows the model of the port to be

proctype aSendComponent(SynChan sendPortChan){
DataMsg myMsg;

...
sendPortChan.data!myMsg;
/* sendStatus could be SEND_OK or SEND_FAIL */
sendPortChan.signal?sendStatus,_;

...
}

Figure 6: A sender component

proctype aRecvComponent(SynChan recvPortChan){
DataMsg myMsg;

...
recvPortChan.data!recvRequest;
/* recvStatus could be RECV_OK or RECV_FAIL */
recvPortChan.signal?recvStatus,_;
/* myMsg should not be used when recvStatus is RECV_FAIL */
recvPortChan.data?myMsg;

...
}

Figure 7: A receiver component

changed or replaced without having to change the model of
the component.

Similarly, Figure 7 shows the component interface for re-
ceiving a message. In this model, a receiver component sends
a receive request to the receive port, and it tries to receive a
status signal from the port, followed by a data message de-
livered by the channel. If recvStatus indicates RECV SUCC,
the message myMsg is the actual requested message delivered
by the channel. If recvStatus indicates RECV FAIL, the mes-
sage myMsg is an empty message sent by the receive port as
a stub, and therefore should not be used by the component.

Such an interface for receiving messages makes it possible
to support both blocking and nonblocking semantics. Fig-
ure 8 shows the Promela model for a blocking receive port.
The receive port starts by waiting for a recvRequest mes-
sage from the component. When it arrives, it tries to send
the request to the channel until the request is confirmed
by the channel (indicated by the OUT_OK signal). After the
port successfully retrieves a message m from the channel
(channelChan.data?m), it then sends a RECV_SUCC confir-
mation to the receiver component followed by the message
m delivered by the channel. A nonblocking receive port
would send a RECV_FAIL signal immediately to the compo-
nent when the receive request is rejected by the channel
(indicated by signal OUT_FAIL). It then sends an empty mes-
sage to the receiver component as a stub to accormodate the
standard interface of the receiver component.

Note that other variations of receive ports may be sup-
ported. For example, a receive port (whether blocking or
nonblocking) may ask the channel to keep the message (copy
receive) that has been received in the buffer or to remove it
(remove receive)1. A receive port may also support selec-
tive receive where a tag is used as the matching criteria to
retrieve a message from a channel.

For message passing, channels are essentially buffers that
store and deliver messages. There are a number of different
properties of a message buffer that may affect the overall
correctness of the system. For example, some channels may
notify the sender component when its buffer is full so that

1In order for this to work, the channel has to provide such
service

proctype BlRecvPort(SynChan componentChan;
SynChan channelChan){

DataMsg recvRequest,m;
do
:: componentChan.data?recvRequest;

do
:: channelChan.data!recvRequest;

if
:: channelChan.signal?OUT_OK,_;

channelChan.data?m;
break;

:: channelChan.signal?OUT_FAIL,_;
fi;

od;
componentChan.signal!RECV_SUCC,-1;
componentChan.data!m;

od;
}

Figure 8: Promela model for a blocking receive port

the component may choose to send at a different moment;
other channels block the sender until space is available in the
buffer; a third kind of channels may simply drop messages
that are sent after its buffer becomes full without notifying
the sender. Of course channels may have buffers with dif-
ferent sizes and may implement different message delivery
policies. We have defined the Promela models for a num-
ber of message passing channels that implement a variety of
such semantics.

Figure 9 shows our model for a single-slot-buffer, a mes-
sage buffer that only holds one message. The process model
of a message passing channel takes two parameters of type
SynChan. senderChan is used for the communication with
the send ports that components are using to send messages
to the channel. receiverChan is used for the communica-
tion with the receive ports that components are using to
receive messages from the channel. The channel accepts a
receive request from a receive port or a message forwarded
by a send port, and handles them according to the cur-
rent status of its buffer. In this particular implementation,
the channel notifies the send port with an IN FAIL signal
when its message buffer is full, and notifies the receive port
with an OUT FAIL signal when no requested message is cur-
rently available in the buffer. This channel model can be
easily composed with a number of send and receive ports by
matching the Promela channels channelChan used by the
send ports and the channelChan used by the receive ports
with the senderChan and receiverChan used by the chan-
nel, respectively.

Figure 9 only gives an example of a fixed-sized message
buffer. It is possible to create a model for a channel that
have a message buffer of an arbitrary size. In this case,
the Promela process of the channel takes an additional pa-
rameter that specifies the size of the buffer. Semantics of
how messages are stored and delivered also need to be im-
plemented. In fact, in addition to the single-slot buffer, we
have also defined the Promela models for a channel that
stores and delivers messages in a FIFO order, and one that
handles messages based on their priorities. The models for
both types of channels can be instantiated with the size of
the message buffer used in the channel. This allows a range
of similar message passing channels to be defined by param-
eterizing the same model. [SW: If we have space, we
will show the mode for a FIFO queue as appendix.]

As we have described above, building blocks are mod-

proctype single_slot_buffer (SynChan senderChan;
SynChan receiverChan){

DataMsg recvRequest, m, buffer;
bool buffer_empty = 1;
do
:: receiverChan.data?recvRequest;

if
:: (!buffer_empty && !recvRequest.selective)

|| (!buffer_empty && recvRequest.selective
&& buffer.selectiveData

== recvRequest.selectiveData) ->
receiverChan.signal!OUT_OK,-1;
receiverChan.data!buffer;
senderChan.signal!RECV_OK,buffer.sender_id;
if
:: recvRequest.remove ->

buffer_empty = 1
:: else
fi

:: else ->
receiverChan.signal!OUT_FAIL,-1

fi
:: senderChan.data?m;

if
:: buffer_empty ->

senderChan.signal!IN_OK,-1;
buffer.data = m.data;
buffer.sender_id = m.sender_id;
buffer.selectiveData = m.selectiveData;
buffer.selective = m.selective;
buffer.remove = m.remove;
buffer_empty = 0

:: else ->
senderChan.signal!IN_FAIL,-1

fi
od

}

Figure 9: Promela model for a single-slot buffer
channel

eled as communicating Promela processes. They can be
easily composed to form a connector model and then com-
posed with the component models by matching the specific
Promela channels associated with them. When design de-
cisions about the semantics of a connector are changed and
the system design needs to be re-verified, formal models of
the system can be modified by simply replacing the Promela
processes of the existing building blocks of the connector
with those of the new ones. For example, when different
semantics for sending messages are needed for a component,
we can use the model for a different send port in place of
the existing one, and pass in the same Promela channels that
allow the new send port process to communicate properly
with the component process. With component models im-
plementing the standard interfaces, such a change will not
require any changes in the models of the components.

Through an example, Section 3.2 shows how the way we
have defined the standard component interfaces, and the
way we have modeled our building blocks helps create sav-
ings in model-construction time, when verification is applied
to designs that are subject to frequent changes in their in-
teraction semantics.

3.2 The single-lane bridge example
Consider a bridge that is only wide enough to let through a

single lane of traffic at a time. An appropriate traffic control
mechanism is necessary to prevent crashes on the bridge. For
this example, we assume traffic control is managed by two
controllers, one at each end of the bridge. Communication is
allowed between two controllers as well as between cars and

���
���
���

���
���
���

���
���
���

���
���
���

ControllerController
RedBlue

Red Car

Blue CarBlue Car

Red Car

Figure 10: A single-lane bridge with two controllers

controllers. To make the discussion easier to follow, we refer
to cars entering the bridge from one end as the blue cars and
refer to that end’s controller as the blue controller; similarly
the cars and controller on the other end are referred to as
the red cars and the red controller, respectively, as shown in
Figure 10.

There are a number of possible ways to control the traf-
fic on the bridge. We first consider a very simple traffic
control mechanism called “exactly-N -cars-per-turn”. With
this version of the bridge system, controllers take turns to
let cars enter the bridge, and at each turn, exactly N cars
are allowed to enter the bridge. Specifically, when it is the
blue controller’s turn, the blue controller counts exactly N
blue cars entering the bridge and the red controller counts
exactly N blue cars exiting the bridge. The two controllers
then switch turns, and the red controller counts N red cars
entering the bridge and the blue controller counts N red cars
exiting the bridge. The above process then repeats. Notice
that with this version of the bridge example, no communi-
cation is required between the two controllers.

A more efficient traffic control mechanism, which we re-
fer to as “at-most-N -cars-per-turn”, may allow turns to be
switched immediately when no more cars are waiting to en-
ter the bridge from the end that is currently in control, be-
fore the controller’s count reaches N . In this case, com-
munications are necessary between two controllers to notify
the yielding of turns. No matter what traffic control mech-
anism is used, we want to make sure the bridge is safe, that
is, no cars traveling in the opposite directions can be al-
lowed on the bridge at the same time. Designing a bridge
system that ensures the safety property requires careful de-
sign of the specific interaction semantics for the connectors
between the two controllers, and between the cars and the
controllers.

In particular, a designer may have to decide whether it is
more appropriate to use message passing or event-based no-
tification for the communication between components; whether
the communication between cars and controllers need to be
synchronous or can be asynchronous; if message passing is
chosen, what types of buffers should be used to store mes-
sages; what happens if a message gets dropped by a buffer,
and so on. It is very easy to make mistakes on such matters
when designing appropriate interaction semantics. Design-
time verification can be very useful in evaluating the ap-
propriateness of these design decisions. In particular, the
designer can use verification to check the safety property of
the bridge against an initial design of the system. When a
violatin is reported, the designer may have to experiment
with other alternative choices of interaction semantics and
re-verify the system design to make sure the safety property
still holds.

For this example, we choose message passing to handle
the communications between components. Specifically, a

RedController

BlRecv

Single−slot buffer

BlRecv

AsynBlSend

Single−slot buffer

BlueController

FIFO queue

BlRecv

ComponentMultiple Components Send port Receive portChannel Multiple send ports

FIFO queue

BlRecv

AsynBlSend

SynBlSend

RedEnterBlueEnter RedExit BlueExit

SynBlSend

������
������
������
������������
������
������
������

������
������
������
������������
������
������
������

	�		�	
	�		�	

�

�

�

�
������
������
������
������

��
��
������
������������
������
������
������

������
������
������
������������
������
������
������

���
���
���
���
���
���

������
������
������
������

�����
�����
���
���

�����
�����
���
���

���
���
���
��� ���

���
 �
 �

BlueCars RedCars

Figure 11: The architecture design of the “exactly-
N-cars-per-turn” single-lane bridge problem

blue car component sends an enter request message to the
blue controller when it tries the enter the bridge and sends
an exit request message to the red controller when it ex-
its the bridge. Similarly, a red car component sends an
enter request message to the red controller when it tries to
enter the bridge and sends an exit request message to the
blue controller when it exits the bridge. For the “exactly-
N -cars-per-turn” version of the bridge example, no message
passing is needed between two controllers. Controllers re-
ceive enter request and exit request messages, update
their counters, and decide when to switch turns. Since
there are multiple cars that communicate with each con-
troller, enter request and exit request messages need to
be buffered in the connectors between car components and
controller components.

Figure 11 shows the design of the “exactly-N -cars-per-
turn” single-lane bridge example. In this design, interac-
tions between components are described using the message
passing building blocks. Since we want to make sure that
an enter request has been received and acknowledged by the
controller before a car component can enter the bridge, a
synchronous blocking send port is used for a car component
to send the enter request message. These messages are
buffered in a FIFO queue channel so that the requests are
processed by the controller in a first-in-first-out order. A
controller component uses a blocking receive port to receive
enter request messages from different car components. For
the exit request messages, we use asynchronous blocking
send ports since in this case, no acknowledgement is needed.
But we do need to make sure the exit notification message
has been safely stored in the channel so that eventually it
will be delivered to the controller. In this case, we can use a
blocking asynchronous send port so that the car component
is blocked when the message buffer in the channel is full.
And a single-slot buffer channel defined in the previous sec-
tion can be used to handle exit request messages. Finally, a
blocking receive port is used by a controller component to
handle exit request messages.

To make sure that our bridge system functions properly,
that is, it does not run into a deadlock state or cause cars
from opposite directions to crash, we can use finite-state

verification to check the design. Any misuse of the message
passing building blocks may cause the verification to report a
violation of the properties. For example, if an asynchronous
blocking send port is used for sending enter requests in place
of a synchronous blocking send port, a car can head on to
the bridge without being acknowledged by the controller,
causing a possible crash on the bridge. If a nonblocking
send port is used for sending exit requests and a channel
that drops new messages when its buffer is full is used for
storing those messages, the system may run into a deadlock
state where a controller is blocked waiting for an exit request
message which has been lost.

To apply design-time verification using Spin, the Promela
model of the overall system design needs to be constructed.
With our approach, the system design is composed of com-
ponents and various message passing building blocks. There-
fore, a system model is simply a composition of all the
Promela models for the message passing building blocks and
components in the system. Specifically, models of the se-
lected message passing building blocks are pre-defined (as
described in Section 3.1) and can be simply included in the
system model at the verification time. In general, our ap-
proach expects designers to provide formal models for the
components in a design that implement the standard inter-
faces. These component models can often be automatically
generated from their design. For the purpose of this ex-
ample, we simply use hand-constructed Promela models for
the car components and controller components. To allow the
component models to be composed properly with the build-
ing block models, appropriate Promela channels are used to
set up the connections between component processes and
building block processes at the start of the Promela system.
Due to space limitation, the complete Promela model for this
vesion of the bridge example is presented in [19]. The safety
property of the bridge example is described in LTL (Linear
Temporal Logic), which can then be checked by Spinagainst
the Promela model of the system. Possible deadlock of the
system can be automatically reported by Spin.

As we can see from this example, the pre-defined build-
ing block models can be easily composed with component
models to create a system model. These pluggable models
also make it easier to make changes in the model, especially
when such changes only involve the semantics of the con-
nectors. Suppose that we now wish to modify the previous
version of the bridge example so that controllers may give
higher priority to emergency vehicles when they are issuing
acknowledgement for enter requests. To make the change,
we simply replace the FIFO queue channel used to buffer
enter request messages with a channel that implements a
priority queue. With this new channel, enter requests from
emergency vehicles will always be at the front of the queue,
allowing the controllers to handle them before enter requests
from non-emergency vehicles. To apply verification to make
sure that this change does not violate the safety property
of the bridge, the model for the new design can be created
by simply replacing the model for the FIFO queue channel
with the pre-defined model for a channel that implements
a priority queue. With our approach, neither the compo-
nent models nor any building block models need to be re-
constructed; only the composition of these models need to
be re-computed.

Of course, not all modifications to a system require only
simple changes in the connectors. Suppose that, in order

BlueController

Multiple Components Component

SynBlSendNbRecv

NbRecvSynBlSend

Single−slot buffer

Single−slot buffer
BlueToRed

RedToBlue

Single−slot buffer Single−slot buffer

RedExit BlueExit

FIFO queueFIFO queue

RedController

Channel Send port Receive port Multiple send ports

BlueEnter RedEnter

NbRecv
NbRecvNbRecv

NbRecv

AsynBlSend
SynBlSend

AsynBlSend
SynBlSend

������
������
������
������������
������
������
������

������
������
������
������������
������
������
������

	�		�	
	�		�	

�

�

�

�
������
������
������
������

��
��
������
������������
������
������
������

������
������
������
������������
������
������
������

������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����

���������������������
��������������� �������

�������
�������

 � �
 � �
 � � !�!�!!�!�!!�!�!
"�"�""�"�""�"�"

#�#�#
#�#�#
#�#�#
$�$�$
$�$�$
$�$�$

%�%
%�%
%�%
&�&
&�&
&�&

'�'�'
'�'�'
'�'�'
(�(�(
(�(�(
(�(�(

BlueCars RedCars

Figure 12: The architecture design of the “at-most-
N-cars-if-waiting” single-lane bridge

to improve traffic flow, the designer wishes to change the
“exactly-N -cars-per-turn” version of the bridge system into
the “at-most-N -cars-per-turn” version. This requires the
addition of new communication between the controllers and
the modification of the controller components. Since this
version of the system has additional functionality, it is not
unreasonable to have to change the components to support
this functionality. Still, however, we would like to limit the
impact of these changes and reuse models of the components
and connectors as much as possible.

Figure 12 shows a possible design for the modified system,
with two new connectors between the controllers, one for the
blue controller to notify the red controller that no blue cars
are waiting and one for the red controller to notify the blue
controller that no red cars are waiting. In this case the de-
signer chose synchronous blocking send, nonblocking receive,
and a reliable single-slot buffer. Since the controllers will
poll for messages from cars and from the other controller,
we must also change the connectors between cars and con-
troller to have nonblocking receive semantics. To verify that
this new system still prevents crashes of cars traveling in op-
posite directions on the bridge, the component models need
to be modified to reflect the new communications. Models
of the new connectors, however, can be constructed from the
library models of the building blocks.

3.3 Discussion
From the examples illustrated in the previous section, we

can see that our verification support works in the same plug-
and-play manner as the design approach we have proposed.
Models of components and connector building blocks are de-
fined independently and can be plugged together in many
different ways to represent different semantics. Model recon-
struction is minimized when changes have to be made to the
components or the connectors. Having reusable models for
building blocks of connectors and the models of components
stay relatively stable when only interactions are changed, we
reduce the cost of repeated verification in the iterative design
process, and therefore make it easier and more efficient to
experiment with alternative choices of design of interaction
mechanisms, and eventually help achieve a better system

more efficiently.
Be aware that the way we have modeled the various mes-

sage passing building blocks is not necessarily the most ef-
ficient. Special care needs to be taken to allow these mod-
els to work with the standard component interfaces and
the different kinds of channels. In addition, for demonstra-
tion purposes, these models are defined to be intuitive and
easy to understand in terms of the protocols used between
building blocks. Such implementation may often have re-
dundant data structures (e.g. channels, messages) or state-
ments, which may result in inefficient code and the increase
of the state space for the overall system model. Another
problem related to this one is that by breaking connectors
into ports and channels that are modeled as communicat-
ing processes, we introduce additional concurrency to the
model, which may contribute to the state explosion prob-
lem with finite-state verification. Therefore, our approach
may be restricted to only very small systems. Optimiza-
tions on the pre-defined building block models need to be
applied right before the models are composed. Additional
optimizations may be applied after the models have been
composed. However, these optimizations can be applied in
transparent to the users of the building block models. [SW:
still thinking about some concrete examples for such
optimizations]

Another concern of our approach is the difficulty with
tracing counterexamples. In finite-state verification, a coun-
terexample is often provided when a property violation is
found. A counterexample gives an execution of the model
that leads to the violation of the property. With our ap-
proach, tracing an error may require going into the models
of the building blocks which requires a good understanding
of the semantics. This is often not the case when interac-
tions are specified by putting together a set of pre-defined
building blocks. It would be helpful if our approach can in-
dicate which of the building blocks of the connectors may
be causing the property violation. For example, a deadlock
in a system may be due to the use of a message buffer that
drops messages inadvertently. This way, designers can di-
rectly investigate the building blocks that are used in the
system and experiment with alternative choices using our
plug-and-play approach until the problem is fixed.

Note that by using Spin and Promela to support design-
time verification, we are only showing one possible way to
combine our design approach and verification. Our approach
is not tied to particular formalisms or verification techniques.
In fact, we have defined the same set of building blocks in
the process algebra FSP and used LTSA [12] to verify the
system designs. It is reasonable to expect, however, that
when using different formalisms and verification techniques,
specialized optimizations will need to be developed.

4. RELATED WORK
[SW: Related work still needs some work.]
Our approach differs from previous work on architectural

evolution (e.g., [13,18]) in our focus on supporting the explo-
ration of different interaction semantics at the design stage
and our emphasis on modeling and verification. A number of
approaches have also been proposed for assembling existing
components into applications, including mediators [17], ac-
tive interfaces [9], and various techniques for wrapping com-
ponents. Our interest here is more in the alternative design
choices of interaction semantics of connectors and less on

the adaptation of existing components to interact with each
other.

There are a few existing work on specifying complex con-
nectors and modeling them for verification. The Wright ar-
chitecture description language [1], for example, used the
CSP process algebra to describe arbitrary connectors, and
the Architectural Interaction Diagrams (AIDs) of Ray and
Cleaveland [15] use process algebra methods to construct
connectors hierarchically. Constraint automata based ap-
proaches have also been proposed to specify and analyze
the semantics of connectors composed from a set of prim-
itive channels [2, 14]. In approaches like these, the bur-
den is on the designer to construct a model of a connec-
tor with the right semantics from powerful, but low-level,
primitives. Our approach is aimed more at providing a li-
brary of building blocks from which connectors representing
a variety of interaction semantics can be easily constructed,
offering “ready-to-use” pieces that hide from the user most
of the details of how these pieces are actually constructed
and modeled. As we noted above, however, the actual for-
mal models of our building blocks used for verification could
be built using any suitable formalisms with verification sup-
port, including CSP or AIDs.

In terms of applying verification to one particular inter-
action mechanism, as we did with message passing, there
has been extensive work on modeling and verifying pub-
lish/subscribe systems(e.g. [3,8,20]) However, this work has
not attempted to introduce explicit design-level building
blocks to allow the construction of connectors with differ-
ent semantics as we did.

5. CONCLUSION AND FUTURE WORK
While designing a software architecture, choosing the ap-

propriate interaction semantics for the connectors in a sys-
tem tends to be very difficult given the large design space.
In this paper, we describe an approach that allows easy ex-
perimentation with alternative design choices of interaction
semantics. Our approach supports a library of ready-to-
use building blocks for constructing connectors with a wide
variety of interaction semantics. We also support a set of
standard interfaces that components may use to communi-
cate with different connectors and therefore minimize the
changes to the components when connectors are changed.
To support design-time verification, we create parameteri-
zable and reusable formal models for the building blocks.
System models are composed from component models and
the pre-defined building block models. Using our approach,
designers may experiment with their choice of design for
various interaction semantics by plugging and playing with
the building blocks in the connectors. And they can use
design-time verification to evaluate their design decisions on
interaction semantics. While this process may repeat, our
approach allows considerable reuse of the models of compo-
nents and connectors.

There are a few ongoing work with this approach. First,
we have started the implementation of this approach in an
architecture design environment called AcmeStudio http://

www.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html, de-
veloped at CMU. Our tool is going to use the same notation
for components, channels and ports in Acme [6] but with an
extension of their semantics. We will also integrate the ar-
chitecture design environment with finite-state verification,
in particular, the Spinmodel checker, to provide the capabil-

ity of running verification directly on the designs created in
Acme Studio. Another ongoing work is extending the cur-
rent approach to support other kinds of interaction mecha-
nisms such as publish/subscribe and remote procedure call.

One important future work related to verification is the
development of optimizations to reduce the system models
that are composed from the building blocks and models of
the components; these depend, of course, on the particular
modeling formalism and verification tools being applied. We
need to explore these optimizations and learn when they can
be profitably applied. Some of the other future work may
include the formalization of our definition for building blocks
so that designers may be able to define their own building
blocks. Finally, more extensive case studies need to be done
to evaluate the effectiveness of our approach.

6. ACKNOWLEDGEMENTS
We are grateful to Prashant Shenoy for helpful conversa-

tions about this work.
This material is based upon work supported by the Na-

tional Science Foundation under awards CCF-0427071 and
CCR-0205575 and by the U.S. Department of Defense/Army
Research Office under award DAA-D19-01-1-0564 and award
DAAD19-03-1-0133. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views
of the National Science Foundation or the U. S. Department
of Defense/Army Research Office.

7. REFERENCES
[1] R. Allen and D. Garlan. A formal basis for

architectural connection. ACM Trans. on Softw. Eng.
and Methodol., pages 140–165, 1997.

[2] F. Arbab, C. Baier, J. J. M. M. Rutten, and
M. Sirjani. Modeling component connectors in reo by
constraint automata: (extended abstract). Electr.
Notes Theor. Comput. Sci., 97:25–46, 2004.

[3] J. S. Bradbury and J. Dingel. Evaluating and
improving the automatic analysis of implicit
invocation systems. In Proc. 11th ACM Symp. on
Found. of Softw. Eng., Finland, Sept. 2003.

[4] Carriero, N., and D. Gelernter. Linda in context.
Comm. ACM, 32(4):444–58, Apr 1989.

[5] M. Day. Occam. SIGPLAN Notices, 18(4):69–79, Apr
1983.

[6] D. Garlan, R. Monroe, and D. Wile. ACME: An
architecture description interchange language. In
Proceedings of CASCON’97, pages 169–183, Toronto,
Ontario, Nov. 1997.

[7] Geist, A., A. Beguelin, J. Dongarra, W. Wiang,
R. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine, A User’s Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

[8] D. Giannakopoulou and J. Magee. Fluent model
checking for event-based systems. In Proc. 9th
European Softw. Eng. Conf. / 11th ACM SIGSOFT
Intl. Symp. on Found. of Softw. Eng., pages 257–266,
Helsinki, Finland, 2003.

[9] G. Heineman. Adaption of software components. In
2nd Intl. Workshop on Component-Based Softw. Eng.
/ the 21st Intl. Conf. on Softw. Eng., Los Angeles,
CA, June 1999.

[10] Hoare and C.A.R. Communicating Sequential
Processes. Englewood Cliffs, NJ:Prentice-Hall Intl.,
1985.

[11] G. J. Holzmann. The Spin Model Checker.
Addison-Wesley, Boston, 2004.

[12] J. Magee and J. Kramer. Concurrency State Models
and Java Programs. John Wiley and Sons, 1999.

[13] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A
language and environment for architecture-based
software development and evolution. In Proc. 21st
Intl. Conf. on Soft. Eng., pages 44–53, Los Angeles,
May 1999.

[14] N. R. Mehta, N. Medvidovic, M. Sirjani, and
F. Arbab. Modeling behavior in compositions of
software architectural primitives. In 19th IEEE Intl.
Conf. on Automated Softw. Eng., pages 371–374, 2004.

[15] A. Ray and R. Cleaveland. Architectural interaction
diagrams: AIDs for system modeling. In Proc. 25th
Intl. Conf. on Softw. Eng., pages 396–406, 2003.

[16] Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI: The Complete Reference. MIT
Press, 1996.

[17] K. J. Sullivan and D. Notkin. Reconciling environment
integration and software evolution. ACM Trans.
Softw. Eng. Methodol., 1(3):229–268, 1992.

[18] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and
N. Medvidovic. Taming architectural evolution. In
P. Inverardi, editor, Proc. 8th European Softw. Eng.
Conf./9th Symp. on the Found. of Softw. Eng., pages
1–10, Vienna, Sept. 2001.

[19] S. Wang, G. S. Avrunin, and L. A. Clarke.
Architectural building blocks for plug-and-play system
design. Technical Report UM-CS-2005-16, Dept. of
Comp. Sci., Univ. of Massachusetts, 2005.

[20] L. Zanolin, C. Ghezzi, and L. Baresi. An approach to
model and validate publish/subscribe architectures. In
Proc. Specification and Verification of
Component-Based Systems, pages 35–41, Helsinki,
Finland, 2003.

