Towards a Quantum Programming Language

Peter Selinger

Department of Mathematics, University of Ottawa

Abstract

The field of quantum computation suffers from a lack of syntax. In the absence of a convenient programming
language, algorithms are frequently expressed in terms of hardware circuits or Turing machines. Neither approach
particularly encourages structured programming or abstractions such as data types. In this paper, we describe the
syntax and semantics of a simple quantum programming language. This language provides high-level features such
as loops, recursive procedures, and structured data types. It is statically typed, and it has an interesting denotational
semantics in terms of complete partial orders of superoperators.

1 Introduction

Quantum computation is traditionally studied either at the level of gates and circuits, or in terms of quantum Turing
machines. The former viewpoint emphasizes data flow and neglects control flow; indeed, control mechanisms are
usually dealt with at the meta-level, as a set of instructions on how to construct a parameterized family of quantum
circuits. On the other hand, quantum Turing machines can express both data flow and control flow, but in a sense that
is sometimes considered too general to have practical applications outside of complexity theory.

In this paper, we seek to investigate quantum computation from the point of view of programming languages. We
propose a view of quantum computation which is able to express both data flow and control flow, while not relying
on any particular hardware model. Our approach can be summarized by the slogan “quantum data, classical control”.
Thus, the data which programs manipulate may involve quantum superpositions, but the control state of a program
is always classical; there is no “quantum branching” and no notion of executing a quantum superposition of two
different statements. This is more general than quantum circuits, where control flow is not modeled at all, but more
restrictive than quantum Turing machines, where both data and control may be “quantum”. The paradigm “quantum
data, classical control” seems to be precisely what is embodied in most known practical quantum algorithms, such as
Shor’s factoring algorithm or the Quantum Fourier Transform.

The programming language presented in this papéuristional in the sense that each (atomic or composite)
statement operates by transforming a specific set of inputs to outputs. This is in coningsttativeprogramming
languages, which operate by updating global variables. Our language statisally typedwhich implies that the
well-formedness of a program can be checked at compile time, rather than relying on run-time checks. A well-typed
program is guaranteed to be free of run-time errors. The language provides high-level control features such as loops
and recursion, and it can accommodate structured data types such as lists or trees. Syntactically, we give two alternative
representations of quantum programs: a graphical representation in terms of flow charts, and a textual, more structured
representation. The choice of syntax is a matter of taste, since semantically, the two representations are equivalent.

Perhaps the most important feature of our programming language is that is adimitstational semantic§ his
is achieved by assigningsaiperoperatoto each program fragment. For the semantics of loops and recursion, we use
the fact that the superoperators of any given type form a complete partial order. The denotational senfalfyics is
abstractin the sense that two program fragments are denotationally equivalent if and only if they are indistinguishable
in the context of any larger program.

While the semantics of our quantum programming language can (and will) be described without any reference to
any particular hardware model, it helps the intuition to think of a particular hardware device on which the language
might be implemented. Here, it is understood that actual future quantum hardware may differ; these differences must
be handled by implementors and are not part of the language design. A suitable hardware model for our purposes
is the QRAMmachine of [8]. This machine consists of a general-purpose classical computer which controls a spe-
cial quantum hardware device. The quantum device provides a potentially large number of individually addressable

guantum bits. Quantum bits can be manipulated via two fundamental operations: (1) unitary transformations and (2)
measurements. Typically, the quantum device will implement a fixed, finite set of unitary transformations which oper-
ate on one or two quantum bits at a time. The classical controller communicates with the quantum device by sending
a sequence of instructions, specifying which fundamental operations are to be performed. The only output from the
guantum device consists of the results of measurements, which are sent back to the classical controller. Note that in
the QRAM model, it is not necessary for the classical hardware and the quantum device to be in the same physical
location; it is even possible for several classical controllers to share access to a single quantum device.

In quantum complexity theory, algorithms are often presented in a certain normal form: a quantum computation
consists of an initialization, followed by a unitary transformation, followed by a single measurement at the very
end, just before the classical result of the algorithm is read. While no theoretical generality is lost in postponing
all measurements until the end, this presentation does not necessarily lead to the most natural programming style.
Quantum algorithms are often more naturally described by interleaving quantum and classical operations, allowing
the results of measurements to influence subsequent operations. In addition to being conceptually more natural, this
style of programming can also lead to savings in the resources consumed by an algorithm, for instance, in the number
of quantum bits that must be allocated.

One issue not addressed in this paper is the questiguarfitum communicationThe programming language
described here deals with quantum computation in a closed world, i.e., it describes a single process which computes
a probabilistic result depending only on its initial input parameters. We do not deal with issues related to the passing
of quantum information, or even classical information, between different quantum processes. In particular, our pro-
gramming language currently does not support primitives for input or output, or other side effects such as updating
shared global data structures. While adding such features would not cause any problems from an operational point
of view, the denotational semantics of the resulting language is not currently very well understood. In other words,
in a setting with side effects, it is not clear how the behavior of a complex system can be described in terms of the
behaviors of its individual parts. These difficulties are on the one hand typical of the passage from purely functional
programming languages to concurrent languages. On the other hand, there are particular complications that arise from
the very nature of quantum information flow, which is a subject of ongoing research.

Another issue that we do not address in this paper is the issue of “idealized” vs. “real” hardware. Just as in classical
programming language theory, we assume that our language runs on idealized hardware, i.e., hardware that never pro-
duces flawed results, where quantum states do not deteriorate, where no unintended information is exchanged between
programs and their environment, etc. This seems a reasonable assumption to make from the viewpoint of language
design, although it might only be approximated in actual implementations. It is intended that implementations will
use quantum error correction techniques to limit the adverse effects of imperfect physical hardware. Error correction
can potentially be handled, transparently to the programmer, at several different levels: it could be built into the hard-
ware, it could be handled by the operating system, or it could be added automatically by the compiler. The tradeoffs
associated with each of these choices remain the subject of future work, and we do not consider them further in this
paper.

Since there are considerable differences between the languages of physics and computer science, it seems appro-
priate to comment on the notation used in this paper. The paper was primarily written with an eye towards computer
scientists as the “intended” audience. The author has therefore chosen to use computer science notation, rather than
physics notation, throughout the paper. For instance, operators are represented as matrices, the bra-ket notation is
avoided, and contrary to the usual practice in physics, state vectors are written as column vectors. It is nevertheless
hoped that the paper will remain readable to readers with a background in physics.

Previous work

The recent literature contains several proposals for quantum programming languages. One of the first contributions
in this direction is an article by Knill [8]. While not proposing an actual programming language, Knill outlines a set

of basic principles for writing pseudo-code for quantum algorithms. These principles have influenced the design of
some later language designs. The first actual quantum programming language i©duer {®]. Omer defines a rich
procedural language QCL, which contains a full-fledged classical sublanguage and many useful high-level quantum
features, such as automatic scratch space management and syntactic reversibility of user-defined quantum operators.
Partly building onOmer’s work, Bettelli et al. [2] present a quantum programming language which is an extension of

the well-known language C++. The distinguishing feature of this language is that it treats quantum operators as first-
class objects which can be explicitly constructed and manipulated at run-time, even allowing run-time optimizations

of operator representations.

A guantum programming language of a somewhat different flavor is given by Sanders and Zuliani [11]. Their
language qGCL, which is based on an extension of Dijkstra’s guarded-command language, is primarily useful as a
specification language. Its syntax includes high-level mathematical notation, and the language supports a mechanism
for stepwise refinement which can be used for systematic program derivation and verification.

Of the languages surveyed, only that of Sanders and Zuliani possesses a formal semantics. This semantics is
purely operational, and it works by assigning to each possible input state a probability distribution on output states.
One problem with this approach is that the resulting probability distributions are generally very large, incorporating
much information which is not physically observable. The present paper offers a better solution to this problem, using
density matrices and superoperators instead of probability distributions.

A common feature of the quantum programming languages surveyed in the literature is that they are realized as
imperativeprogramming languages. Quantum data is manipulated in terausayfs of quantum bit references. This
style of data representation requires the insertion of a number of run-time checks into the compiled code, including out-
of-bounds checks and distinctness checks. For instance, distinctness checks are necessary because quantum operators
can only be applied to lists distinct quantum bits. In imperative languages, this condition cannot be checked
at compile-time. For similar reasons, most optimizations cannot be performed at compile-time and must therefore
be handled at run-time in these languages. By contrast, the language proposed in the present papetioaa
programming language with a static type system which guarantees the absence of any run-time errors.

2 Basic notions from linear algebra

We start by recalling a few well-known concepts from linear algebra. Readers may wish to skip this section and refer
back to it when needed.

2.1 \ectors and matrices

Let C be the set of complex numbers, which are also called scalars. The complex conjugate®fis written z.
We write C" for the space ofi-dimensional column vectors, ait? <™ for the space of matrices witlhhrows andm
columns. We identifyC™ with C**! andC! with C. Matrix multiplication is defined as usual. The identity matrix is
written I. The adjoint of a matrixd = (a;;) € C**™ is given byA* = (a;;) € C™*".

Column vectors are denoted byv, etc. We writee; for theith canonical basis vector. Note thatiis a column
vector, theru* is a row vector. The vectar is called aunit vectorif v*u = 1.

If A, B, C andD are matrices of equal dimensions, we often denote the matrix obtained by “horizontal and vertical

concatenation” by
Al B
-)

Sometimes, we also use an analogous notation for vectors.

2.2 Trace and norm.

Thetraceof a square matrixl = (a;;) € C**" is defined as tA =) _, a,;;. Note that ford, B € C"*", tr(AB) =
tr(BA). Thenorm|A| of a matrix A is defined by A|? = tr(A* A) = > i Qijaij.

2.3 Unitary matrices

A square matrixS € C"*" is calledunitary if S*S = I is the identity matrix, or equivalently, §* = S=1. If S'is
unitary andA = SBS*, then trA = tr B and|A| = | B|. Thus, trace and norm are invariant under a unitary change of
basis.

2.4 Hermitian and positive matrices

A square matrixA € C"*" is calledhermitianif A = A*. Note that ifA is hermitian, then,* Au is always real. A
matrix A is calledpositive hermitianor simply positive if it is hermitian andu*Au > 0 for all v € C™. Note that

hermitian matrices are closed under addition and real scalar multiples, i.e., they f@#irmar subspace df"*".
Moreover, the positive matrices are closed under addition and non-negative real scalar multiples.

A matrix A is hermitian if and only ifA = SDS*, for some unitary matriXS and some real-valued diagonal
matrix D. The diagonal entries db are the eigenvalues of, and they are uniquely determined up to a permutation.
The columns of5 are the corresponding eigenvectors. Moreover, a hermitian matsyositive iff all its eigenvalues
are non-negative.

A matrix A € C"*™ is calledpureif A = vv* for somev € C™. Every pure matrix is positive; conversely, every
positive matrix is a non-negative real linear combination of pure matrices.

Remark2.1 If A is positive hermitian, thepd| < tr A. It suffices to prove this property for diagonal matrices, where
it follows trivially from the fact that\? + ... + A2 < (A1 + ...+ A\p)%, forAg, ..., A, = 0.

Remark2.2. Any complexC™*™ matrix is a linear combination of four positive hermitian matrices. Because first, any
complex matrixA can be written as a linear combinatiéh+ iC' of two hermitian matrices, whetB = 1(A* + A)
andC = %(A* — A). Second, any hermitian matrix can be written as the difference of two positive matrices, namely
B = (B + M) — (M), where—)\ is the most negative eigenvalue Bf

Remark2.3. Every positive matrixA € C™*" is of the formBB*, for someB € C"*™. This is evident for diagonal
matrices, and follows for arbitrary positive matrices by a change of basis.

2.5 Tensor product

The tensor product of two vector spaces is defined as usual; here we only need two speci@l’tas€s? = C"™
and(cnxn ® mem — (Cnm,xnm,_

The tensor produab = v ® v € C"™ of two vectorsu € C", v € C™ is defined byw(; ;) = u;v;. Similarly, the
tensor producC = A ® B € C*™*™™ of two matrices is defined by, ;) (i ;) = aiirb;j. Here we order the pairs
(i, 4) lexicographically; thus, for instance,

(5 0)er= (o)

3 Basic notions from quantum computation

In this section, we very briefly summarize the basic notions of quantum computation. For a more thorough introduc-
tion, see e.g. [3, 5, 10].

3.1 Quantum bits

The basic data type of quantum computation guantum bit also called ajubit or, even more succinctly, gbit.
Recall that the possible states of a classicab hiteb = 0 andb = 1. By contrast, the state of a quantum fpitan be
any complex linear combination= a0 + §1, wherea, 5 € C and«, 5 are not both zero. The coefficientsand 3
are called theamplitudesof this quantum state, and they are only significant up to scalar multipleg, #eq0 + 51
andq¢’ = /0 + 3’1 denote the same quantum state/if= y« and3’ = 3 for some non-zerey € C. One often
assumes that the amplitudesind 3 are normalized, i.e., that|> + |3|> = 1. Note, however, that this normalization
does not determine and uniquely; they are still only well-defined up to multiplication by a complex unit.

The basis stateg = 0 andgq = 1 are called theclassicalstates, and any other state is said to bguantum
superpositiorof 0 and1. In the literature, quantum states are often written in the so-called “ket” notatiefOast
B |1). Here “ket” is the second half of the word “bracket”. However, we do not use this notation here; it suffices to
keep in mind that bold-fac@ and1 are boolean constants, rather than scalars.

The first interesting fact about quantum bits is that the state of two or more quantum bits is not just a tuple of its
components, as one might have expected. Recall the four possible states of a pair of classi@@] 0its10, and
11. The state of a pair of quantum bits is a formal complex linear combination of these four classical states, i.e., itis
a linear combination of the form

1
050000 + Ot0101 + 041010 + Oéll].]. = Z aijij.
2,j=0

As before, at least one of thg; must be non-zero, and the state is only well-defined up to a complex scalar multiple.
If ¢ = a0+ 51 andp = ~0 + 41 are two independent quantum bits, then their combined state is

q® p = ay00 + ad01 + Bv10 + B611.

However, note that the general state of a pair of quantum bits need not be of the dopmFor instance, the state

1 1
—00+ —<=11
V2 V2
is clearly not of the forny ® p, for anyq andp. If the state of a pair of quantum bits is of the fog® p, then the pair

is said to bendependentotherwise it is calleéntangled
In general, the state of quantum bits is a non-zero vector@? ", i.e., a formal linear combination

1

E [C 7RI & ERIIP VP

i1,.yin=0

taken modulo scalar multiples.

3.2 Indexing conventions

Consider a quantum state= «00 + 501 + 10 + 011. By identifying the basis vecto@0, 01, 10, and11 with
the canonical basis di*, we can write the statgas a column vector

2 @R

Here, the ordering of the basis vectors is relevant. In general, we need an indexing convention which determines how
the bit vectors of length are to be identified with the canonical basis vector§ df.

Conventior8.1 Consider the set of bit vectors of lengthi.e.,n-tuples of the elementd), 1}. We identify each such
bit vector with the numbei € 0, ..., 2™ — 1 of which it is the binary representation, and also with dtiecanonical
basis vector of*2".

Note that this convention implies that we always order bit vectors lexicographically when they are used to index
the rows or columns of some vector or matrix.

Sometimes, we need to consider a permutation of quantum bits, for instance, exchanging the first with the second
guantum bit in a sequence. This induces a corresponding permutation of states. More precisely, any permutation of
elementsg : {1,...,n} — {1,...,n}, induces a permutatid of the set of bit vectors of length, which is defined
by 2¢(xq,...,2,) = (Ty-1(1)s -+ Tp-1(ny)s fOrzy, ..., 2, € {0,1}.

3.3 Unitary transformations

There are precisely two kinds of operations by which we can manipulate a quantum state: unitary transformations and
measurements. We describe unitary transformations in this section and measurements in the next one.

The state of a quantum system can be transformed by applying a unitary transformation to it. For instance, consider
a quantum bit in state = «0 + §1, and letS be a unitary2 x 2-matrix. Then we can perform the operation

(5)~5(5)

Similarly, if v = «00 + £01 + v10 + 611 is the state of a 2-gbit quantum system, we can transform it by a unitary

4 x 4-matrix, and similarly for three or more quantum bits. A unitary operatiom guantum bits is also known as
ann-ary quantum gateWhile every unitary matrix can be realized in principle, one usually assumes a fixed finite set
of gates that are built into the hardware. The particular choice of basic gates is not important, because a compiler will

easily be able to translate one such set to another. One possible choice is the following, which consists of four unary
and four binary gates:

(V) () () (%)
R T A)

The unary gateV is called thenot-gate, because it induces the following mapping of basis vediors:1 and1 — 0.
The binary gateV.. is called thecontrolled notgate. It also corresponds to a permutation of basis vedd@rs: 00,
01 +— 01,10 — 11, and11 — 10. Its action can be described as follows: if the first bidjglo nothing, else apply
the NV-gate to the second bit. In this sense, the first bit controls the action of the second one. More generally, for each
unary gateS, there is a corresponding binary controlled géte

Unitary transformations can be used to create quantum superpositions, and they can also be used to create entan-
glement between quantum bits. For example, the so-chllthmardgate H, when applied to the classical stdte

creates a quantum superpositi%lo + %1. Also, the controlled not-gate, applied to two independent quantum bits

(%0 + %1) ® 0, creates an entangled sta\}gOO + %11.

A quantum gate can be applied in the presence of additional quantum bits. For example, to apply a usaty gate
the2nd quantum bit in @-bit system, we transform the system by the maifrixS ® I ® I. Herel is the2 x 2-identity
matrix.

Proposition 3.2 (see [3]).The above set of standard gatex@npletgi.e., anyn-ary gate can be approximated, up
to an arbitrarily small errore, by a combination of the eight given gates.

3.4 Measurement

Besides unitary transformations, there is another fundamental operation on the state of a quantum system, known as
a measurementThis occurs when we try to “observe” the value of a quantum bit and convert it into a classical bit.
Consider for instance the state of a single quantum bita0 + 51. For simplicity, let us assume that the amplitudes
have been normalized such that? + |3|? = 1. The act of measuring this quantum bit will yield an answer which is
either0 or 1. The answe0 will occur with probability|«|?, and1 with probability|3|2. Moreover, the measurement
causes the quantum statedollapse after the measurement, the quantum state will have changed to @itiet,
depending on the result of the measurement. In particular, if we immediately measure the same quantum bit again, we
always get the same answer as the first time.

The situation is more complex if more than one quantum bit is involved. Consider a 2-gbit system in the state
00+ 01 +~v10+ 611. We assume again that the amplitudes have been normalized. If we measure the value of the
first bit, one of the following things will happen:

1. with probability|a|? + |3]2, the result of the measurement will Beand the quantum state will collapse to
«00 + 501, and

2. with probability |y|> + |§|?, the result of the measurement will heand the quantum state will collapse to
710 + 611.

Note that only the portion of the quantum state pertaining to the bit that we are observing collapses. If we were
observing the second bit instead, the observed answer woullavite probability |«|? + ||, and1 with probability
|82 + ||, and the quantum state would collapse, respectivelyp®+ 10 or 501 + §11.

Now let us see what happens if we measure the second quantum bit after the first one. The situation can be

summarized in the following diagram:

200 + 301 + 10 + 611

po=lal?+I8]> —7 M2+52

00 + 301 710 + 011

\6\2
p p
PO al +|5}/ \’: la| +|m? T +|6|/ \“ 72 +15]2

00

In this tree, the nodes are labeled with states, and the transitions are labeled with probabilities. Note that the overall
probability of observing)0 as the result of the two measurementpggoo = |a|?, the probability of observing1
is popo1 = |B|%, and so forth. In particular, these probabilities are independent of the order of measurement; thus,
the result does not depend on which quantum bit we measure first (or indeed, whether we measure both of them
simultaneously).

We mentioned that it is customary to normalize quantum states so that the sum of the squares of the amplitudes is
1. However, in light of the above diagram, we find that it is often more convenient to normalize states differently.

Conventior3.3. We normalize each state in such a way that the sum of the squares of the amplitudes is equal to the
total probability that this state is reached

With this convention, it becomes unnecessary to renormalize the state after a measurement has been performed.
We will see later that this convention greatly simplifies our computations.

3.5 Pure and mixed states

We know that the state of a quantum system at any given time can be completely described by its statesv€2tar

modulo a scalar multiple. However, an outside observer might have incomplete knowledge about the state of the
system. For instance, suppose that we know that a given system is either in@tatestatev, with equal probability.

We use the ad hoc notatign{u} + 3 {v} to describe this situation. In general, we welte{u; } + . .. + A, {um,} for

a system which, from the viewpoint of some observer, is known to be instateh probability \;, where) , A; = 1.

Such a probability distribution on quantum states is call@daed state The underlying quantum states, suchuas

are sometimes callguure statego distinguish them from mixed states.

It is important to realize that a mixed state is a description of an obsekwersledgeof the state of a quantum
system, rather than a property of the system itself. In particular, a given system might be in two different mixed states
from the viewpoints of two different observers. Thus, the notion of mixed states does not have an independent physical
meaning. Physically, any quantum system is in a (possibly unknown) pure state at any given time.

Unitary transformations operate componentwise on mixed states. Thus, the unitary transfoSnaé@s the
mixed state\; {u1} + ... + A {um P tod {Sur } + ...+ Ay {Sum }-

The collapse of a quantum bit takes pure states to mixed states. For instance, if we measure a quantum bit in state
a0 + (1, but ignore the outcome of the measurement, the system enters (from our point of view) the mixed state

o] {0} +[B]* {1}.

3.6 Density matrices

We now introduce a better notation for mixed quantum states, which is due to von Neumann. First, consider a pure
state, represented as usual by a unit column vecttr von Neumann’s notation, this quantum state is represented by

the matrixuu™*, called itsdensity matrix For example, the state of a quantumabit %0 — %1 is represented by

the density matrix
_1
uu® = < 1 2)
T2 2

Note that no information about a pure state is lost in this notation, because thewectmiquely determined, up to a
scalar multiple, by the matrixu*. There are several advantages to the density matrix notation. A mundane advantage
is that we do not have to write so many square roots. More importantly=fyv, for some complex scalay with

|v] = 1, thenuu* = vFvv* = vo*. Thus, the scalar factor disappears, and the normalized representation of each pure

N[

quantum state as a density matrix is unique. Also note thatt) = |u|?. In particular, ifu is a unit vector, then the
density matrix has track

But the real strength of density matrices lies in the fact that they also provide a very economical notation for mixed
states. A mixed stat®; {us} + ... + A\, {u,} is simply represented as a linear combination of the density matrices
of its pure components, i.e., as uu} + ... + A, u,ul,. For example, the mixed stafe{0} + 3 {1} is expressed as

the matrix
1/1 0 170 0 3 0
— —|—— = 1 .
200 0 200 1 5

Remark3.4. Some information about a mixed state is lost in the density matrix notation. For example et
-0+ Js1andv = -0 — —=1. Then the mixed statg {u} + 3 {v} gives rise to the following density matrix:

V2 V2 V2 V2
1 1 1
(1) 7)-(6 1)
2 2\ 72 2
which is the same as the density matrix for the mixed sjg@} + 1 {1} calculated above. But as we shall see in the
next section, there is no observable difference between two mixed states that share the same density matrix, and thus

there is no harm (and indeed, much benefit) in identifying such states.

We note that a matrid is of the formA; uiuj +. ..+ A, u,u}, for unit vectorsu; and non-negative coefficients
with >~. A; < 1, ifand only if A is positive hermitian and satisfies4r< 1. (The reason for allowind", A; < 1, rather
than)". \; = 1, will become apparent later). The left-to-right direction is trivial, and the right-to-left direction follows
because any such can be diagonalized a$ = SDS*, for someD =). \; e;e;. We then haved = >, \; uu,
whereu,; = Se;. This motivates the following definition:

o

NN
NEENIES
N= O

Definition. A density matrixs a positive hermitian matriX which satisfies tdl < 1. We write D,, C C™*™ for the
set of density matrices of dimensian

3.7 Quantum operations on density matrices

The two kinds of quantum operations, namely unitary transformation and measurement, can both be expressed with
respect to density matrices. A unitary transformatfomaps a pure quantum staieto Su. Thus, it maps a pure
density matrixuu* to Suu*S*. Moreover, a unitary transformation extends linearly to mixed states, and thus, it takes
any mixed density matrixl to SAS*.

Now consider the effect of a measurement on a density matrix. We begin by considering a pure*statesome

unit vectoru. Suppose that
u= (L> thereforeuu* = (UU* Uw* >
w wv ww

Assuming that the rows af are ordered according to Convention 3.1, then if we perform a measurement on the first
bit, the outcome will be(i

0 > with probability |v|2, and (%) with probability|w|?. Or in density matrix notation,
the outcome will be

vv*OorOO
0|0 0| ww*)’

where the first matrix occurs with probability|?, and the second matrix occurs with probability|>. Note that the
probability that each matrix occurs is equal to its tragé? = tr(vv*) and|w|? = tr(ww*). Thus, Convention 3.3
extends naturally to density matrices: the density matrix of a state is to be normalized in such a way that its trace
corresponds to the overall probability that this state is reached. Note that with this convention, each of the two
possible outcomes of a measurement is a linear function of the incoming state.

The measurement operation extends linearly from pure to mixed states. Thus, performing a measurement on a
mixed state of the form

results in one of the two states

where each of the two matrices occurs with probability equal to its trace. If one ignores the classical bit of information
that is observed from the measurement, then the resulting state is a mixed state

AlO
(515)
Thus, collapsing a quantum bit (measuring it while ignoring the result) corresponds to setting a certain region of the
density matrix to O.
We have seen that the effect of the two fundamental operations of quantum mechanics, unitary transformations
and measurements, can be described in terms of their action on density matrices. Since unitary transformations and

measurements are our only means of interacting with a quantum state, it follows that there is no observable difference
between mixed states which have the same density matrix representation.

3.8 The complete partial order of density matrices

Recall thatD,, is the set of density matrices of dimension
D,, = {A € C"*" | A positive hermitian and td < 1}.
Definition. For matricesA, B € C"*", we defined C B if the matrix B — A is positive.

It is immediately obvious thdt defines a partial order on the €&t*". When restricted to the s&,, of density
matrices, this partial order has the zero mafrias its least element. We also denote the zero matrix iy this
context.

Proposition 3.5. The posetD,,, C) is a complete partial order, i.e., it has least upper bounds of increasing sequences.

Proof. Consider the standard Euclidean topology@h*™, which is the one that is induced by the nofdj. By
Remark 2.1, everyA € D,, satisfies|A| < trA < 1. ThusD,, is a compact subset &"*™. Now suppose
Ag C A; C ... is anincreasing sequence in,. Leta; = tr A;, and note thaty < a; < ... < 1. Because the
sequencéa;);cn is real-valued, bounded, and increasing, it has a lintitR. Then for anyi < j, the matrix4; — A;
is positive, and thugd; — A;| < tr(4; — A;) = a; — a; by Remark 2.1. Thug4;);cn is a Cauchy sequence i,
and by compactness, it converges to sofne D,, in the standard topology.

It remains to be shown that is the least upper bound of the sequefdg);cn. First note that for any3 € D,
theset§ B={Ae D, | AC B}and|B ={A € D, | BC A} are closed in the standard topology. Now for every
i € N,sinceAd; 1, A;ya,... € TA;, itfollows that in the limit,A € TA;. Thus,A is an upper bound of the sequence.
If B is another upper bound, thehy € | B for all 4, hence in the limitA € | B, thusA is the least upper bound.

Remark3.6. The proof of Proposition 3.5 shows that, for any increasing sequenbg il is the least upper bound

if and only if A is the topological limit of the sequence. It follows, among other things, that a monotone function
f: D, — D,, is Scott continuous (i.e., preserves least upper bounds of increasing sequences) if it is topologically
continuous.

4 Quantum flow charts (QFC)

We now turn to the question of how to design a quantum programming language, and how to define its semantics. One
of the first issues that we are faced with is the choice of a convenient syntax. Out of the many possibilities, we choose
to represent programs filew charts also known asontrol flow diagramsHowever, unlike traditional flow charts for
imperative programming languages, our flow charts have a more “functional” flavor; in our setting, commands act by
transforming specific inputs to outputs, rather than by updating global variables. Thus, we combine the language of
control flow with some elements of data flow.

In this section and the next one, we describe the syntax of flow charts, and we introduce their semantics informally.
The formal semantics is given in Section 6. Some alternative language choices are discussed in Section 7.

input b, ¢ : bit

b, c : bit

outputb, ¢ : bit

Figure 1: A simple classical flow chart

4.1 Classical flow charts

The concept of a flow chart in “functional style” is best illustrated by giving some examples. Itis instructive to consider
the classical (i.e., not quantum) case first. Consider the simple flow chart shown in Figure 1.

Unless otherwise indicated by arrows, the flow of control is from top to bottom. Each edge is labeled with a
typing judgment, i.e., by a list of typed variables. These are the variables which are available at that given point in the
program. For simplicity, we consider only a single data type for now: thelyipef a classical bit (also known as the
type of booleans). In the example in Figure 1, no variables are created or disposed of, so each edge is labeled with the
same typing judgmerit ¢ : bit.

This program fragment inputs a pair of bits, performs a conditional branch and some updates, and then outputs the
pair (b, ¢). The semantics of this program can be described as a map from its inputs to its outputs. Specifically, the
map computed by this program is:

00 — 00
01 — 01
10 — 00
11 — 10

The stateof the program, between instructions, is given by a faip), wheree is an edge of the flow chart
(thought of as th@rogram countey, andp is an assignment of values to the variables with whiéhlabeled.

An important observation is that the two components of the state, instruction pointer and value assignment, are
fundamentally of the same nature. Thus, the instruction pointer could be thought of a variable (and indeed, in most
hardware implementations, it is represented by a machine register). Conversely, the content of a boolean variable
can be thought of as encoding a choice between two alternative control paths. For example, an edge labeled with a
boolean variablé can be equivalently replaced by two parallel (unlabeled) edges, corresponding to thé stales
andb = 1, respectively. Similarly, an edge labeled with two boolean variables can be replaced by four parallel edges,
corresponding to the four possible staf#s 01, 10, and11, and so on. In this way, each classical flow chart can be
transformed into an equivalent (though much larger) flow chart that uses no variables. After such a transformation,
each conditional branch has a predetermined outcome, and each assignment corresponds to a jump to the appropriate
parallel component. To illustrate this point, the expansion of the flow chart from Figure 1 is explicitly shown in
Figure 2. Here, the four entrance points of the expanded program correspond to the four possible pairs of boolean
inputs of the original program, and the four exit points correspond to the four potential pairs of boolean outputs.

It is this connection between control and classical state, namely, the fact that a control edge labeled with a tuple
of classical variables can be replaced by a number of parallel control edges, which we mean when we say “control
is classical”. We will see later that a similar observation does not apply to quantum data; quantum data is of a
fundamentally different nature.

10

input b, ¢ : bit 00 01 10 11

alBlc|p
5
// (* branchb x)
(e o o]
0 |0 |C|D
O
(xb:=cx)
o] o)
A |B |0 |0 0 |C |0 |D
o] [0)
(xc:=0x)
o] o
C |0 |D |0
o) O O o)
(x merge %)

ol 151570
outputb, ¢ : bit 00 01 10 11

Figure 2: Classical flow chart from Figure 1, with boolean variables expanded

4.2 Probabilistic view of classical flow charts

Consider again the flow chart from Figure 2. We will describe an alternative view of its semantics. This time, imagine
that one of the four possible entrance poid®s 01, 10, or 11 is selected randomly, with respective probabilities

B, C, andD. Then we can annotate, in a top-down fashion, each edge of the flow chart with the probability that this
edge will be reached. In particular, any edge that is unreachable will be annotated with “0”. The resulting annotation
is shown in Figure 2. We find that the probabilities of the final outcof®e91, 10, and11 areA + C, B, D, and

0, respectively. In this way, each program gives rise to a function from tuples of input probabilities to tuples of output
probabilities. In our example, this function’& A4, B, C, D) = (A + C, B, D, 0).

Note that our original reading of a flow chart, as a function from inputs to outputs, is completely subsumed by
this probabilistic view. For instance, the fact that the inputis mapped td 0 is easily recovered from the fact that
F(0,0,0,1) = (0,0,1,0).

In practice, it is usually preferable to think of a small number of variables rather than of a large number of control
paths. Therefore, we will of course continue to draw flow charts in the style of Figure 1, and not in that of Figure 2.
However, the preceding discussion of probabilities still applies, with one modification: each edge that is labeled with
n boolean variables should be annotated by a tupl¥ qirobabilities, and not just a single probability.

4.3 Summary of classical flow chart components

The basic operations for boolean flow charts are summarized in Figure 3.IH#gaptes an arbitrary typing context,
andA and B denote tuples of probabilities. and B are tuples of equal length, we use the notatidnB) to denote
the concatenation of andB.

We distinguish between tHabel of an edge and itannotation A labelis a typing context, and it is part of the
syntax of our flow chart language. Aamnotationis a tuple of probabilities, and it is part of the semantics. We use the
equality symbol =" to separate labels from annotations. Thus, Figure 3 defines both the syntax and the semantics of
the language. Note that the statement of the rules makes use of the indexing convention of Section 3.2, because the
order of the probabilities in each tuple is determined by the lexicographical ordering of the corresponding states.

11

Allocate bit: Discard bit:

r=A b:bit,I'=(A,B)
new bitb := 0 discardb |

b:bit,I = (4,0) r=A+B
Assignment: Branching:

b:bit,T = (A4, B) b:bit,T = (A4, B) b:bit,T' = (A, B)
=0 1]
b:bit,I' = (A+ B,0) b:bit,I' = (0,A + B) b:bit,T' = (A,0) b:bit,I' =(0,B)
Merge: Initial: Permutation:
'=A =B bl,...,bnZbit:Ao,...,Agn_l
? permute¢
FZAJ'_B F:O b¢(1),,b¢(n) . b|t :A2¢(O)""?A2¢(2”71)

Figure 3: Rules for classical flow charts

12

nputy b

= [=N

p, q : gbit p, q : gbit . gbi q : ghit = <DO>

P, q : gbit

NAN*+D |0
0 | 0

outputp, g : gbit

outputp, ¢ : gbit

Figure 4: A simple quantum flow chart

There are four rules in Figure 3 that have not been discussed so far: “new” allocates a new variable and initializes
it to 0, “discard” deallocates a variable, “initial” creates an unreachable control path (this was used e.g. in Figure 2),
and “permute” is a dummy operation which allows us to rearrange the variables in the current typing context. Note
that, although we have not imposed a block structure on the uses of “new” and “discard”, the typing rules nevertheless
ensure that every allocated variable is eventually deallocated, unless it appears in the output. Also note that the “initial”
node is essentially a 0-ary version of “merge”.

Naturally, we will allow various kinds of syntactic sugar in writing flow charts that are not directly covered by the
rules in Figure 3. For instance, an assignment of the fiorm ¢ can be regarded as an abbreviation for the following
conditional assignment:

b,c:bit,T'=(A,B,C,D)

< Francii>

b,c: bit,I' = (A4,0,C,0) "b, ¢ bit,I = (0,B,0,D)

b,c:bit,I'=(A+ C,0,0,0) b,c: bit,I' =(0,0,0,B + D)

b,c:bit,I' = (A4 C,0,0,B+ D)

<——0

4.4 Quantum flow charts

Quantum flow charts are similar to classical flow charts, except that we add a neghiypef quantum bits, and
two new operations: unitary transformations and measurements. A unitary transformation operates on one or more
guantum bits; we writg x= .S for the operation of applying a unary quantum géite the quantum big. Note that
this operation updateg the notation is analogous to the notattor= 1 for classical assignment. For the application
of a binary quantum gat& to a pairp, ¢ of quantum bits, we use the notatipng *= S, and so forth for gates of
higher arity. Sometimes we also use special notations sughdas 1 for ¢ x= N, andq &= p for p,q *= N,
whereN and N, are the not- and controlled not-gate, respectively. The second new operation, the measurement, is a
branching statement since it can have two possible outcomes.
As afirst example, consider the simple flow chart shown in Figure 4(a). This program fragment inputs two quantum

13

bits p andg, measureg, and then performs one of two possible unitary transformations depending on the outcome of
the measurement. The output is the modified pajt

The behavior of a quantum flow chart can be described as a function from inputs to outputs. For instance, in
the flow chart of Figure 4(a), the inp0D leads to the outpudl, and the input%OO + %01 leads to the output

%00 + %01. However, due to the probabilistic nature of measurement, the output is not always a pure state: for

example, the inpu%OO + %10 will lead to the output®0 or 01 with equal probability. We can represent this
outcome by the mixed state{00} + 5 {01}.

As the example shows, the output of a quantum flow chart is in general a mixed state. We may take the input to be
a mixed state as well. Thus, the semantics of a quantum flow chart is given as a function from mixed states to mixed
states. To calculate this function, let us use density matrix notation, and let us assume that the input to the program is

some mixed state A
B
= ()

where each o, B, C, D is a2 x 2-matrix. Recall that the indexing convention of Section 3.2 prescribes that the rows
and columns of\/ are indexed by the basic sta®@@, 01, 10, and11 in this respective order. We can now decorate

the flow chart in top-down fashion, by annotating each edge with the mixed state that the program is in when it reaches
that edge. The resulting annotation is shown in Figure 4(b). The semantics of the entire program fragment is thus
given by the following function of density matrices:

F<A|B>(NAN*+D|O>
c|D) 0 [0)

Note that we have followed our usual convention of normalizing all density matrices so that their trace equals the
probability that the corresponding edge is reached. This convention has several nice properties: First and foremost, it
ensures that the annotation of each edge is a linear function of the input. In particular, the merge operation (the joining
of two control edges) amounts to a simple matrix addition. The normalization convention also implies that the traces
of the matrices along any horizontal section of the flow chart add dp@assuming that the trace of the input matrix
is1).

Another interesting observation about the program in Figure 4 is that if the input is a pure state, then the states
along each of the two branches of the measurement continue to be pure. Unitary transformations also preserve pure
states. It is finally the merge operation, denoted by a small cirélenhich combines two pure states into an impure

state. Thus, the source of impure states in a quantum system is not the measurement operation (as one might have
thought), but rather the merge operation, i.e., the erasure of classical information.

4.5 Summary of quantum flow chart operations

The operations for basic quantum flow charts are summarized in Figure 5. As before, we distinguish between the
label of an edge and itannotation The label is a typing context, and it is part of the syntax of the language. The
annotation is a density matrix, and it is part of the semantics. Quantum bits can be allocated and discarded; here
it is understood that allocating a quantum bit means to request an unused quantum bit from the operating system.
Such newly allocated quantum bits are assumed to be initialize@dUWmitary transformations and measurement were
discussed in the previous section, and “merge”, “initial”’, and “permute” are as for classical flow charts. Note that in
the rule for unitary transformationg,stands for a list oflistinctvariables. The type system ensures that syntactically
distinct variables will refer to distinct objects at runtime. In particular, note that it is never possible to “copy” a
guantum bit.

4.6 Detour on implementation issues

We briefly interrupt our description of quantum flow charts to contemplate some possible implementation issues. It
is understood that no actual quantum hardware currently exists; thus any discussion of implementations is necessarily
speculative. But as outlined in the introduction, it is useful to keep in mind a hypothetical hardware device on which
the language can be implemented. Following [8], we imagine that practical quantum computing will take place on a

14

Allocate gbit:

new gbitq :=

Unitary transformation:

G:qgbit,T'=A

i

g:qoit,T = (S® A(S® I)*

Merge: Initial:

I=A+B I'=0

Discard gbit:

Measurement:

Permutation:

qis- -5 Qn - Obit = (as;);

@ut&b

Ao(1)s - -+ dp(n) © APIt = (a0 (3) 20 (j))i

i

Figure 5: Rules for quantum flow charts

15

QRAM machine, which consists of a general-purpose classical computer controlling a special quantum hardware de-
vice which provides a bank of individually addressable quantum bits. The classical computer determines the sequence
of elementary quantum operations (built-in unitary gates and measurements) to be performed by the quantum device.

To make the quantum device available to user programs, we further imagine that the operating system provides a
number of services. One of these services is access control. The operating system keeps a list of quantum bits that are
currently in use by each process. When a process requests a new quantum bit, the operating system finds a quantum
bit that is not currently in use, marks that bit as being in use by the process, initializes the coneatsttoeturns the
address of the newly allocated bit. The process can then manipulate the quantum bit, for instance via operating system
calls which take the bit's address as a parameter. The operating system ensures that processes cannot access quantum
bits that are not currently allocated to them — this is very similar to classical memory management. Finally, when a
process is finished using a certain quantum bit, it may deallocate it via another operating system call; the operating
system will then reset the bit @ and mark it as unused.

In practice, there are many ways of making this scheme more efficient, for instance by dividing the available
guantum bits into regions, and allocating and deallocating them in blocks, rather than individually. However, for the
purpose of this theoretical discussion, we are not too concerned with such implementation details. What is important
is the interface presented to user programs by the operating system. In particular, the above discussion is intended to
clarify the operations of “allocating” and “discarding” quantum bits; clearly, these concepts do not refer to physical
acts of creation and destruction of quantum bits, but rather to access control functions performed by the operating
system.

We have mentioned several instances in which the operating system resets or initializes a quant@nThists
indeed possible, and can be implemented by first measuring the quantum bit, and then performing a conditional “not”
operation dependent on the outcome of the measurement. The following program fragment illustrates how an arbitrary
guantum bitg can be reset to:

4.7 Combining classical data with quantum data

We observed in Section 4.1 that classical data can be equivalently viewed in terms of control paths. Since our quantum
flow charts from Section 4.4 already combine quantum data with control paths, there is nothing particularly surprising
in the way we are going to combine classical data with quantum data. The combined language has two data types,
bit andgbit. Typing contexts are defined as before. For the semantics, observe that an edge which is labeled with
bits andm gbits can be equivalently replaced By edges which are labeled with gbits only. Thus, astatefor a

typing contextl” containingn bits andm gbits is given by &"-tuple (Ao, ..., Asn_1) of density matrices, each of
dimensior2™ x 2™, We extend the notions of trace, adjoints, matrix multiplication, and norm to tuples of matrices as
follows:

tr(Ao,...,A2n,1) = thrAl,

(Ao,...7A2n,1)* = (A(";,...7A§n,1)7

S(Ao,...7A2n,1)S* = (SA()S*,...,SAgnfls*),

(Ao, Apen)]P = XA

16

We often denote tuples by letters suchAsB, C, and as before, we use the notatioh, B) for concatenation of
tuples, if A and B have the same number of componentsd |B, C, D are tuples of matrices of identical dimensions,

then we write
Al B
C|D

i | B
use componentwise notation both along the “tuple dimension” and along the “matrix dimension”.

Flow charts are acyclic graphs whose edges are labeled with typing contexts, and whose nodes are of the types
shown in Figures 3 and 5. A flow chart may have any number of global incoming (input) and outgoing (output) edges.

An annotationof a flow chart is an assignment of a matrix tuple to each edge, consistent with the rules of Figures 3
and 5. Here it is now understood that B, C, D denote matrix tuples of the correct dimensions determined by the
corresponding typing context. For reasons that will become clear in Section 5.3, we allow flow charts to be annotated
with arbitrary matrices, and not just density matrices.

The annotation of a flow chart is uniquely determined by the annotation of its input edges, and can be calculated
in a top-down fashion. The semantics of a flow chart is given by the function which maps each annotation of the input
edges to the resulting annotation of the output edges. By inspecting the rules in Figures 3 and 5, we observe that this
function is necessarily linear. Moreover, it takes adjoints to adjoints, and thus it preserves hermitian matrix tuples.
Moreover, this function preserves positivity, and it preserves trace, in the sense that the sum of the traces of the inputs
is equal to the sum of the traces of the outputs. Intuitively, the last property reflects the fact that the probability of
entering a program fragment is equal to the probability of leaving it. When we introduce loops into the flow chart
language in Section 5, we will see that the trace preservation property no longer holds: in the presence of loops, some
programs have a non-zero probability of non-termination. For such programs, the trace of the outputs will in general
be less than the trace of the inputs.

to denote the tuple whoséh component i , whereA; is theith component ofd etc. In this way, we

4.8 Examples

We give some examples of flow charts that can be built from the basic components.

Exampled.1 The first example shows how a probabilistic fair coin toss can be implemented, i.e., a branching statement
which selects one of two possible outcomes with equal probability.

Here, H is the Hadamard matrix introduced in Section 3.3. Coin tosses with probabilities othe} tizambe imple-
mented by replacing/ with some other appropriate unitary matrix.

17

Example4.2 The next example shows the correctness of a program transformation: a measurement followed by

deallocation is equivalent to a simple deallocation.

'=A+D

The correctness of this program transformation is of course due to the fact that the “discard” operation already has an

implicit measurement built into it.

Exampled.3. This example shows how to define a “rename” operation for renaming a variable aftiigpdhe given
implementation is not very efficient, because it involves the application of a quantum gate. In practice, a compiler
might be able to implement such renamings by a pointer operation with minimal runtime cost.

q:qgbit,T = A

renamep «— q ‘

p:gbit,T = A

is definable as

q:qgbit,T' = A
new gbitp := 0

discardg
p:gbit,'= A

Of course, variables of typat can be similarly renamed. We will from now on use the rename operation as if it were

part of the language.

Example4.4. This example formalizes a point that was made in Section 4.1: a control edge labeled with a classical
bit is equivalent to two parallel control edges. In other words, the following two constructions are mutually inverse:

[newbitb := 0| |new bith:=1|
b:bit,I' = (A,0) :bit,I' = (0, B)

O
|b :bit,I' = (A4, B)

b:bit,I = (A, B)

0

b bit,T = (4,0) b bit,T = (0, B)

| discardb |

r-a)

| discardb |

[

18

Exampled.5. This example shows that if a program fragméhhas an outgoing edge which is reached with probabil-
ity 0, then this edge can be eliminated. Here we have used an obvious abbreviation for multiple “discard” and “new”
nodes.

I'=A4

|r-a

Exampled.6. The next example shows something more interesting: it is possible to collapse a quantbyiiéans
of a coin toss, without actually measuripgThe coin toss can be implemented as in Example 4.1T" ety : gbit, I".

This example shows that it is possible for two programs to have the same observable behavior, despite the fact that
their physical behavior is obviously different. In particular, the correctness of the left program depends critically on
the fact that the outcome of the coin toss is “forgotten” when the two control paths are merged. Note that, if the
outcome of the coin toss is known to some outside observer (e.g., to someone who has been eavesdropping), then it is
possible, for this outside observer, to restore the initial state of the left program from its final state, simply by undoing
the conditional unitary operation. On the other hand, the initial state of the right program is irretrievably lost after the
measurement.

This apparent paradox is due to the fact, as discussed in Section 3.5, that a mixed state is a description of our
knowledgeof a physical state, rather than of a physical state itself. The two program fragments are equivalent in
the sense that they will behave in the same way as part of any larger program, not in the sense that they cannot be
distinguished by an outside observer with privileged knowledge.

It is precisely for this reason that the theorygfantum communication.e., of quantum programs which in-
teractive input and output, is much more complicated than the theory of closed-world programs considered in this
paper.

Exampled4.7. This example shows that the discarding of a quantum bit can always be postponed. Thus, the following

19

two flow charts are equivalent, provided thatis a flow chart not containing;

q : qbit, I’y q:qbit,T", q:qbit,I'y --- q: qbit,T",
Iy 1% q : gbit, A q : gbit, A,
] (e o (e

Ay Ay, Ay A,

This can be easily shown by induction on flow charts. Note that this observation implies that there is effectively no
difference between “discarding” a quantum bit and simply “forgetting” the quantum bit (by dropping any reference to

it). In particular, it is not observable whether a “forgotten” quantum bit has been collapsed or not. This is true even

if the quantum bit was entangled with other data in the computation — but only as long as no information about the
collapsed quantum bit is leaked back to the program, not even via a third party such as the operating system. Because
of the possibility of such unintended leaks, the discard operation should in practice always be implemented via an
explicit collapse of the kind discussed at the end of Section 4.6.

5 Loops, procedures, and recursion

5.1 Loops

A'loop in a flow chart is constructed as in the following illustration:

()]

(s5) | - - -

Here X stands for an arbitrary flow chart fragment with- 1 incoming andn + 1 outgoing edges. After adding
the loop, there ar@ incoming andm outgoing edges left. The semantics of loops is initially defined by “infinite
unwinding”. The above loop is unwound as follows:

(x) A 0

x|
(. Fy(A)
v
Fiu(A4) x|
. FyFo(A)
F11(A) + FiaF5(A) . ¥

_F22F22F21(A)

O

(+) G(A)

(@) Procl: [inputp,q : qbit (b)
p,q : gbit a:qk /
(0]

a : gbit
new gbitb := 0 ‘
a,b: gbit a - gbit
p,q : gbit input a, b
discardp | Procl
. q : gbit q : gbit outputle,d output2a
(outputlp, g : gbit | output2q : qbit lc, d : qbit

Figure 6: A procedure and a procedure call

Here, we have simplified the typesetting by representing potential multiple parallel control edges by a single
line. Thus,A = (A44,...,4,) denotes a tuple of input matrices. We can decorate the unwound diagram with
states in the usual top-down fashion. Specifically, suppose that the semaniics afiven by the linear function
F(Ay,...,A,,B)=(C,...,Cnp, D). We can split this function into four componerdts,, Fo, Fo1, andFs, such
that F'(A,0) = (F11(A), F»1(A)) and F(0, B) = (F12(B), Fo2(B)). Then we can label the states of the unwound
loop diagram as shown in the illustration above. We find that the state at the edge (or tuple of edges}+tabéded
given by the infinite sum

G(A) = Fii(A) + Y Fia(Fiy(Far(A))). 1)
=0

We will see in Section 6 that this sum indeed always converges. Furthermerés ipositive, then so i&7(A), and
trG(A) <trA.

An interesting point is that the inequality of traces may be strict, i.e., it is possible tH&f{r < tr A. This can
happen if there is a non-zero probability that the loop may not terminate. In this case, the probability that the program
reaches statéxx) is strictly less than the probability that it reaches state

Note that the formula (1) allows us to calculate the semantics of the loop directly from the semantjasitifout
the need to unwind the loop explicitly. This is an example of a compositional semantics, which we will explore in
more detail in Section 6.

5.2 Procedures

A procedureis a flow chart fragment with a name and a type. Consider for example the pro¢&defdedefined in

Figure 6(a). This procedure has one entrance and two possible exits. The input to the procedure is a pair of gbits. The
output is a pair of gbits when exiting through the first exit, or a single gbit when exiting through the second exit. The
type of the procedure captures this information, and it is

Procl: ghit x gbit — gbit x gbit; gbit.

Here, it is understood that” binds more tightly than . In general, the type of a procedure is of the fofm- I”,
wherel', " are lists of products of basic types. Most procedures have a single entrance and a single exit, but there is
no general reason why this should be so; we allow procedures with multiple entrances as well as multiple exits.

Figure 6(b) shows an example of a call to the proce@®uroeljust defined. The example illustrates several points.
The procedure call respects the type of the procedure, in the sense that it has as many incoming and outgoing edges
as the procedure, and the number and type of parameters matches that of the procedure. The actual parameters are
named inside the procedure call box. The order of the parameters is significant, and they are subject to one important
restriction: the parameters corresponding to any one procedure entrance or exit gigihbe Thus, we cannot for
instance invokéroc1with parametersa, a).

21

(a) (b) (c)
4 b:bit,T = (A, B) ¢ : gbit,T' = ("*é g)

X X, X

I'=F(4) b:bit, IV = (F(A), F(B)) ¢ qbit, IV — (?(é) F(B) >

Figure 7: Weakening

We do not require that the names of the actual parameters match those of the formal parameters. For instance,
in Figure 6, the actual parametersh correspond to the formal parametetg in the input of the procedure. We do
not even require that the actual parameters must match the formal parameters consistently: for instance, the formal
parameter; corresponds to the actual paramétar the input, but ta: in the second output. This is not important, as
the compiler can implicitly insert renaming operations as in Example 4.3.

In general, a procedure may be called in a context which contains other variables besides those that are parameters
to the procedure call. For instance, the procedure of Figure 6(a) can be invoked in the presence of an additional typing
contextl” as follows:

la,b:qbit,I‘

inputa,b
Procl
outputle, d output2a

qd:qbit,l—‘l J{a:qbit,F

Here, the sel’ of unused variables must be identical for all inputs and outputs of the procedure call. Intuitively, the
variables inl" are “not changed” by the procedure call; however, in reality, the behavior is more subtle because some of
the variables fromi* might be quantum entangled with the procedure parameters, and thus may be indirectly affected
by the procedure call. However, we will see that the semantics of procedure calls is nevertheless compositional; i.e.,
once the behavior of a procedure is known in the empty context, this uniquely determines the behavior in any other
context.

5.3 Weakening

Before we can fully describe the semantics of procedure calls, we first need to explore the concept of weakening, i.e.,
the effect of adding dummy variables to a flow chart. Recall that the semantics of a flowXcisgdiven by a linear
function F' from matrix tuples to matrix tuples, as discussed in Section 4.7. This situation is shown schematically in
Figure 7(a). In generalX may have several incoming and outgoing control edges, but for simplicity we consider the
case where there is only one of each.

Now suppose that we modify the flow chaftby picking a fresh boolean variableand adding it to the context of
all the edges oX. The result is a new flow cha’;,, which is schematically shown in Figure 7(b). We claim that the
semantics of the modified flow chaki, is given byG (A, B) = (F(A), F(B)). This is easily proved by induction on
flow charts: all the basic components have this property, and the property is preserved under horizontal and vertical
composition and under the introduction of loops. Intuitively, since the varialiees not occur inX, its value is
neither altered not does it affect the computatior'of

Analogously, we can modifiX by adding a fresh quantum variahjeo all its edges, as shown schematically in

22

Figure 7(c). Then the semantics of the modified ciyis given by the function

“(eto) - (Fertror)

This, too, is easily proved by induction.

g is a density matrix,
then so ared and D, but not necessarilyg andC'. In fact, up to a scalar multipld? may be completely arbitrary. If
the functionF’ was defined only on density matrices, thE(B) and F/(C) would be in general undefined, and thus,
G would be undefined. This is the reason why, in Section 4.7, we defined the semantics of a flow chart to be a function
on arbitrary matrices, and not just on density matrices, as one might have expected.

However, the remark of the previous paragraph is only of notational, not of fundamental, importance. By Re-
mark 2.2, the density matrices sp@8fi*™ as a complex vector space. SinEds a linear function, this implies that
F is already determined by its value on density matrices. Thus, the fack'tlsagiven as a function on all matrices
conveys no additional information.

At this point, we should make the following interesting observation. Note that;

5.4 Semantics of non-recursive procedure calls

The intended semantics of a non-recursive procedure call is that of “inlining”: a procedure call should behave exactly
as if the body of the procedure was inserted in its place. Before the procedure body can be inserted, it needs to be
transformed in two steps: first, appropriate renamings (as in Example 4.3) need to be inserted to match the formal
parameters with the actual ones. Second, the procedure body needs to be weakened in the sense of Section 5.3, i.e.,
all variables in the context of the procedure call that are not parameters must be added as dummy variables to the
procedure body. If necessary, the local variables of the procedure body must be renamed to avoid name clashes with
these dummy variables.

The semantics of a procedure call can be computed compositionally, i.e., without having to do the actual inlining.
Namely, the renaming step does not affect the semantics at all, and the semantics of the weakening step can be
computed as in Section 5.3.

5.5 Recursive procedures

A procedure is recursive if it invokes itself, either directly or indirectly. An example of a recursive procedure is shown
in Figure 8(a). Before reading on, the reader is invited to figure out what this procedure does.

The intended semantics of recursive procedures is given by infinite unwinding, similar to the way we treated
loops. Unwinding the proceducE from Figure 8(a) yields the infinite flow chart shown in Figure 8(b). This example
demonstrates that the unwinding of a recursive procedure may lead to a flow chart with an unbounded number of
variables, as new local variables are introduced at each level of nesting. The typing conventions enforce that such such
gbits will eventually be deallocated before the procedure returns.

To compute the semantics of a recursive procedure, we could, in principle, annotate its infinite unwinding with
states just as we did for loops. However, since the number of variables keeps increasing with each nesting level, this
would require writing an infinite number of larger and larger matrices, and the computation of the resulting limits
would be rather cumbersome. Therefore, we skip the explicit annotation and move on to a more denotational (and
more practical) approach to calculating the semantick of

To find a good description of the unwinding process, let us wkit&") for the flow chart which is the same a5
except that it has another flow chaftsubstituted in place of the recursive call. We can then defin&thenwinding
of X to be the flow char¥;, whereYj is a non-terminating program, aing,; = X (Y;).

Now let us writeF; for the semantics of the flow chéar just defined. By compositionality, the semantics\afY’)
is a function of the semantics &f. If ® denotes this function, then we can recursively comgytéor all i via the
clausedry = 0 andF; 1 = ®(F;). Finally, it is natural to define the semanticsXfto be the limit of this sequence,

G = lim F}. @)

11— 00

23

p,q,r : gbit
D, q,r : gbit
input ¢,
P, q : gbit X

outputgq, r
p,q,r : gbit
[o=1]

p,q,r : gbit
discardr
\ p.q: gbit
(@)
P, q : gbit

pq : gbit p,q,r : gbit

discardr |

D, q : gbit
p,q : gbit

outputp, g : gbit

Figure 8: A recursive procedure and its unwinding

24

b

Figure 9: Loops from recursion

The existence of this limit will be justified in Section 6. For now, let us demonstrate the use of this method by
computing the denotation of the sample flow chart from Figure & # (a;;);;, then we find

app apr 0 O apo apr 0 O agg apr O 0
| a0 an 0 O | aio a1 0 O | a0 ain O 0
BA)=| 5 o oo [[PRA=] o azy 0 EA) =1y aze 0 |
0 0 00 0 0 0 0 0 0 0 Zas
agop ap1 0 0 apo ap1 0 0
| aw a1 0 0 | aw an 0 0
Fa4) = 0 0 ax+gas O F5(4) = 0 0 ax+ jass 0 ’
0 0 0 Lass 0 0 0 3033 + §as3
apo o1 0 0
aip @11 0 0
F5(A) = ,
6() 0 0 Q22+%033+1—16033 0
0 0 0 3033 + §as3
and so forth. The limit is
ago ap1 0 0
| awp an 0 0
G(A) - 0 0 a22 + %033 0 ’
0 0 0 %G,gg

and this is the denotation of. Note that, in this example, &(A) = tr A, which means this particular procedure
terminates with probability 1. In general, it is possible th&ttd) < tr A.

5.6 Recursion vs. loops

It is possible to encode loops in terms of recursion. Namely, the loop in Figure 9(a) can be expressed as the procedure
call (b), whereA is defined recursively as in (c). On the other hand, recursion cannot in general be encoded in terms
of loops. This is because recursive procedures can allocate an unbounded number of variables.

6 Formal semantics
In this section, we give a more systematic and formal treatment of the semantics of quantum flow charts. We justify
the well-definedness of the various constructions that were introduced informally in Sections 4 and 5, and in particular

the existence of the limits in equations (1) and (2). We also consider a more abstract view of the semantics in terms of
CPO-enriched traced monoidal categories.

25

6.1 Signatures and matrix tuples

As outlined informally in Section 4.7, the denotation of a flow chart is given as a certain linear function from matrix
tuples to matrix tuples. We begin our formal semantics by defining the spaces of such matrix tuples.
A signatureis a list of non-zero natural numbers= ny, ..., n,. To each signature we associate a complex vector
space
Vo =C™MX™M x ... x CPeX™s,

The elements oV, are tuples of matrices of the forsh = (A44,..., A;), where the number and dimensions of the
matricesA; are determined by. As before, we often use the letteds B, . . . to denote elements &f,. The notions
of trace and norm are extended to matrix tuples as follows:

trA = > .trA,,
AP = T Al

We say that a matrix tupld € V, is hermitian(respectivelypositive if A; is hermitian (respectively, positive) for
all i. We define the seb, C V, of density matrix tupleso be the obvious generalization of the &t of density
matrices:

D, = {A €V, | Apositive hermitian and td < 1}.

We define a partial order on matrix tuples by lettiigE B if B — A is positive. This make®,, into a complete
partial order with least elemet Completeness follows from Proposition 3.5, together with the factfhats a
closed subsetab,,, x ... x D,_.

Definition (Special signatures). Several signatures have special names; we write

bit = 1,1
ghit = 2
I =1
0 = ¢ (the empty list)

We call a signatureimpleif it is a singleton list. Thus, for examplgbit andI are simple, wheredsit and0 are not.

6.2 The categoryV

Definition. The categoryV has as its objects signatur@s= ni, ...,ns. A morphism fromo to ¢’ is any complex
linear functionF : V,, — V..

Note thatV, as a category, is equivalent to the category of finite dimensional complex vector spaces. However,
we will later use the additional, non-categorical structure on objects to define an interesting subdtednich has
fewer isomorphic objects thavi.

Let o @ o’ denote concatenation of signatures. The® ¢’ is a product and coproduct W, with the obvious
injection and projection maps. The co-pairing MapG] : o © ¢’ — 7 is given by[F, G|(A, B) = F(A) + G(B),
and the pairing mapF, G) : 0 — 7 @ 7’ is given by(F, G)(A) = (A, A). The neutral object for this biproduct is the
empty signaturé®.

Tensor product. If o =ny,...,ns andr = my, ..., m, are signatures, thefensor product ® 7 is defined as
OQRQT =N1MYyee. yNIMty ooy Mgy, ...y, NgMy.

Note that the components 6f® T are ordered lexicographically. The operati®rextends to a symmetric monoidal
structure oriV with unit I = 1. The morphism part of the tensor product is defines as in the category of vector spaces;
thus, if F : 0 — 7andG : ¢/ — 7/, thenF ® G : ¢ ® ¢’ — 7 ® 7’ is defined on a basis elemeAt® B via
(F®G)(A® B) = F(A)®G(B), and extends to arbitrary elements by linearity. We note that this monoidal structure
is strict (i.e., the associativity and unit morphisms are identity maps, rather than just isomorphisms). We also have the
following strict distributivity law:

(cdd)@T=(c®7)® (0’ @7).

26

6.3 Superoperators

Definition (Completely positive operators, superoperators).Let F' : V, — V,. be a linear function. We say that

is positiveif F'(A) is positive for all positived € V,,. We say thaf" is completely positivé id . @ F : V.55 — Vrgor

is positive for all signatures. Finally, F' is called assuperoperatoif it is completely positive and satisfies the following
trace condition: tF'(A) < tr A, for all positiveA € V.

Remark6.1 In the physics literature, superoperators are usually assumed to be trace preserving, i.e., satisfying
tr F(A) = tr A for all A (see e.g. [10]). In our setting, it is appropriate to relax this condition in view of possi-
ble non-termination of programs.

Example6.2. To illustrate the concept of a completely positive operator, consider the following three linear maps
Fl‘ : ‘/2 — VQ.

Al a)=(a @) »loa)=(va) »(ia)=(0a)

All three maps are linear, and thus morphism¥inAlso, all three maps preserve trace and hermitian matrices
not positive, because it maps a positive matrix to a non-positive matrix:

a0 1)

F3 is positive, but not completely positive. While, maps positive matrices to positive matrices, the same is not true
foridy @ F», for instance,

100 1 100 0
. 000 0 0010
(de@F2)| 0 0 g0 [=] 010 0]

100 1 00 0 1

which is not positive. FinallyF; is completely positive.

As we will see in Section 6.9, superoperators are precisely the functions which arise as the denotations of quantum
programs.

Lemma 6.3. The following hold in the category':
(a) Identity morphisms are superoperators, and superoperators are closed under composition.

(b) The canonical injection®; : 0 — o ® ¢’ andin, : ¢/ — o ® ¢’ are superoperators, and f : ¢ — o’ and
G : T — o' are superoperators, then so[iB,G] : 0 &7 — ¢.

(c) fF:0— ¢ andG : 7 — 7’ are superoperators, thensoalfed G : c do’ - 7@ 7 andF QG : 0 Q0 —
TRT.

(d) A morphismi” : o — o’ is a superoperator if and only ifl, ® F' is positive, for allsimplesignaturesr.
(e) LetS be a unitaryn x n-matrix. Then the morphisth : n — n defined byF'(A) = SAS* is a superoperator.

(f) LetS; andS; ben x n-matrices such that;S; + 5552 = I. Then the morphisif’ : n — n,n defined by
F(A) = (S1AS5, S2AS3) is a superoperator.

Proof. (a) and (b) are trivial. The first part of (c) follows from (b). For the second part of (c), notefthatz =

(id,r ® G) o (F ®id;). The two component maps are completely positive by definition, and they clearly satisfy
the trace condition. For (d), only the right-to-left implication is interesting. Any objecan be written as a sum
T=1®...®7 of simple objects. Then by distributivity, j& F' = (id,, ® F) ® ... ® (id,, ® F'), which is positive

by assumption and (c). For (e), first note thatlifs positive, then so is' AS*, and trSAS* = tr A. ThusF is positive

and satisfies the trace condition. To see that it is completely positive, note that foraanayidentityn x n-matrix I,

(id, @ F)(A) = (I ®S)A(I ® S)*. ButI ® S is unitary, thus ig ® F is again of the same form @& hence positive.

By (d), it follows thatF' is a superoperator. For (f), note thatpreserves positivity and trace, thisis positive. The

fact that it is completely positive follows as in (e).

27

6.4 The categoryQ

Definition. The categoryQ is the subcategory & which has the same objects ¥f and whose morphisms are the
superoperators.

By Lemma 6.3(a)—(c)Q is indeed a subcategory &f, and it inherits coproducts and the symmetric monoidal
structure fromV. However, unlikeV, the categoryQ does not have finite products. This is because the diagonal
morphism(id, id] : 7 — 7 @ 7 does not respect trace, and hence it is not a superoperator. However, the two projections
m 0 ® o — oandm, : 0 @ o’ — o are present Q.

Also note that the categoi® distinguishes more objects than; for instance, the objectsit ® bit = 1,1,1,1
andgbit = 2 are isomorphic ifV, but not inQ.

CPO-enrichment. Recall thatD,, is the subset oF,, consisting of density matrix tuples, i.e., positive matrix tuples
A with tr A < 1. Every superoperatdr : V, — V. restricts to a functiod” : D, — D.. We note thatF' respects
the partial orde: if AC B € D,, thenB = A+ A’ for someA’ € D,,, and thusF'(B) = F(A) + F(A’), which
implies F(A) C F(B). Also, F : D, — D, preserves least upper bounds of increasing sequences. This follows
from Remark 3.6 and the fact that, as a linear function on a finite-dimensional vector space, it continuous with
respect to the usual Euclidean topology. Thus, we obtain a forgetful fubctad® — CPO, from Q to the category
of complete partial orders, which mapgo D, andF to itself.

If o ando’ are objects of), we can also define a partial order on the home¥et, o’), by letting F' C G if for all
Ae D,, F(A) C G(A).

Lemma 6.4. The posef)(c, ¢’) is a complete partial order.

Proof. Let F;, C F; C ... be an increasing sequence of morphism®ifr,c’). DefineF : D, — D, as the
pointwise limit: F'(A) = \/, F(A;). By Remark 3.6,F(A) is also the topological limit#'(A) = lim; .., F(4;),
and it follows by continuity that” is linear on the convex subsét, C V,. Since, by Remark 2.2), spansV,, F
can be extended to a unique linear functién V,, — V,, i.e., to a morphism oV. F satisfies the trace condition
and is positive by construction. To see that it is completely positive, note that for any oljedtanyB € D, g,
(1 ® F)(B) = lim; o (7 ® F;)(B), and hence ® F is positive for the same reason As Thus,F : ¢ — ¢’ is a
morphism ofQ, and hence the desired least upper boundof;.

Also, the categorical operations (composition, co-pairing, and tensor) are Scott-continuous, i.e., they preserve least
upper bounds of increasing sequences. This m@kedgo a CP O-enriched category.

Trace. A monoidal traceon a monoidal categoryQ, &) is a natural family of operations
Ty, : Qo @70 ©1) — Q(o,0'),

subject to a number of equations [7, 6, 12]. A monoidal category with a monoidal trace is caiedd monoidal
category A monoidal trace is usually just called “trace”, but we add the adjective “monoidal” here to to avoid
confusion with the trace of a matrix as in Section 2.2.

The categonQ is equipped with a monoidal trace for the monoid which is given by coprodudisot for the
tensor produck). In fact, the construction of this monoidal trace is an instance of a general construction which works
in any CPO-enriched category with coproducts.

To define the monoidal trace of a morphigt o ® 7 — ¢’ @7, we construct a family of morphisnig; : c &7 —

o' as follows. We letH, = 0, the constant zero function. For alwe defineH;,, = [id,’, H; oiny] o F. Then

Hy C Hy, becausdd is the least element in the given partial order. By monotonicity of the categorical operations (a
consequence dEPO-enrichment), it follows thatf; C H,., for all i. Hence(H;), is an increasing sequence. Let
H=\/,H;:0®T — o' be the least upper bound. Finally, defie}' = H oin; : ¢ — ¢’. Itis standard to check

that this construction indeed defines a monoidal trace, i.e., that it satisfies all the necessary equations [6].

In more concrete terms, suppose that 0 & 7 — o’ @ 7 has been decomposed into componénts: o — ¢,
Fio:0—71,Fy :7— 0 ,andFy, : 7 — 7 asin Section 5.1. Then we have

Ho(A,O) = 07
Hy(A,0) = F11(A),
HQ(A,O) = Fll(A) —+ F12F21(A), €tC,

28

so that

(Tr F)(A) = H(A,0) = Fii(4) + ZF12(F52(F21(A)))~
=0

Comparing this to equation (1) of Section 5.1, we find that the monoidal trace is precisely the construction we want
for the interpretation of loops. In particular, this justifies the convergence of the infinite sum in equation (1).

We also note that the monoidal trace is related to the terdwy the following property: iff' : c ® 7 — o’ ® T,
andp is any object, then

Tr(F ®p) = (Tr F) @ p.

Here it is understood that we identify the objetis® 7) ® p and(o ® p) @ (7 ® p) (which happen to be identical
anyway). We can summarize this property together with distributivity by saying that fqr,dhg functor—) ® pis a
traced monoidal functor. We call a traced monoidal category with this additional strud¢rad monoidal category
with weakening

6.5 The interpretation of flow charts

To each typed, we associate an objeftl] of the categoryQ. There are only two types, and their interpretations
are suggested by the names of the corresponding objfitd: = bit and[gbit] = gbit. To each typing context
I'=ux1:44,...,2,:4,, we associate an objefif] as follows:

[T =TA] .. [A)]
Further, ifl =T'y;...;T, is alist of typing contexts, we defif&] = [['1] @ ... ® [I',,]. Each quantum flow chart

I, Ty . T,
X
]_"/1]_"/2 . I‘;n

is interpreted as a morphism
[X]:[T1] @...@[Tn] — [Ti] @ ... @ [T%,]
in the categoryQ. The interpretation is defined by induction on the construction of the flow chart.

Atomic charts. The basic flow charts from Figures 3 and 5, with conféx@mpty, are interpreted as the following
morphisms.

[new bitb :=0] = newbit: I — bit : newbi{a) = (a,0)

[new gbitg := 0] = newqbit: I — gbit : newqbita) = 8 8)
[discardb] = discardbit: bit — I: discardbi{a,b) = a + b
[discardq] = discardgbit: gbit —1I: discardqbit< Z Z) =a+d
[6:= 0] = sep: bit — bit : seb(a,b) = (a +b,0)

[b:=1] = set: bit — bit : set(a,b) = (0,a+b)

[q %= S] = unitarys : gbit™ — gbit™ : unitaryg(A) = SAS*
[branchb] = branch: bit — bit @ bit : branch(a,b) = (a,0,0,b)
[measurg] = measure gbit — gbit @ gbit : measure{ CCL Z) = ((g 8), (8 2))
[mergd = merge: IeI—1: mergéa,b) =a+b

[initial] = initial : 0—1: initial (0) = 0

[permuteg] = permutg: A1 ®...0 A, = Aya) @ ... ® Ayy)

29

Figure 10: Some composite flow charts

Here,permutg is the natural permutation map based on the symmetric tens®here is also the trivial flow chart,
consisting of one edge only, which is naturally interpreted as the identity map, and the flow chart consisting of two
wires crossing each other, which is interpreted as the symmetry map for coprdhdcis; | : 0 &7 — 7 @ 0.

Composite charts. Complex flow charts are built by combining simpler ones in one of the following ways:

1. Adding variables (weakening): ¥ is obtained fromX by adding an additional contektto all the edges ok,
then
[Y] = [X] ® [I].

2. Vertical composition: IfA is the vertical composition ok andY’, as in Figure 10(a), then
[A] = [¥T] o [X].
3. Horizontal composition: IB3 is the horizontal composition of andY’, as in Figure 10(b), then
[B] = [x] @[]
4. Loops: IfC is obtained fromX by introducing a loop, as in Figure 10(c), then
[C] = Tx([XT)

Two important results from the theory of traced monoidal categories ensure that this interpretation is well-defined:
first, every possible flow chart (not containing procedure calls) can be build up from basic flow charts and the opera-
tions in Figure 10(a)-(c). Second, if there is more than one way of constructing a given flow chart from smaller pieces,
the equations of traced monoidal categories with weakening guarantee that the resulting interpretations coincide, i.e.,
the interpretation is independent of this choice.

Procedures and recursion. For dealing with procedures, we formally augment the flow chart language with a set

Yi,...,Y, of flow chart variables, each with a typé : A; — A’. If Y; is such a variable, then we allow the flow
chart
A o [A
Y;
Ay Ay
to be used as a basic component. We white= X (Y1,...,Y,,) for a flow chartX which depends of,...,Y,,

a situation which is shown schematically in Figure 10(d). The interpretation of such iangiven relative to an
environmenp, which is an assignment which maps each variable A; — A/ to a morphisnp(Y;) : o; — o of

the appropriate type i. The interpretatiorfX], of X with respect to an environmeptis given inductively, which
base casgY;], = p(Y;), and inductive cases as before. In this way, each flow chigrt, . .., Y,,) defines a function

Dx : Qo1,01) X ... x Q(on,0,) — Q(r,7'),

30

which maps an environmept= (fi, ..., f,) to [X],. An easy induction shows that this function is Scott-continuous;
in fact, it is given by a term in the language of traced monoidal categories with weakening.
The interpretation of recursive procedures is then given by the solution of fixpoint equations. In concrete terms, if
the procedures, . .., Y, are defined by mutual recursion by a set of equatigns X;(Y1,...,Y,),fori=1,... n,
then their joint interpretation is given as the least fixpoint of the Scott-continuous function

(Bx,,...,Px,):Qo1,07) X ... x Q(op,00,) = Qo1,07) X ... X Q(0y,00,).

As a special case, let us consider the case of a single recursive protedieéined byY = X (Y) for some flow
chartX. In this case X defines a Scott-continuous function

by : Q(o,0') — Q(o,0).

The interpretatiorfY] will be given as the least fixpoint 6bx. This fixpoint can be calculated as the limit of an
increasing sequend& C F; C ..., whereF, = 0, then constant zero function, afl,; = ¢ x (F;). We find that

Y] =\/F =limF;

Comparing this to equation (2) of Section 5.5, we find that this least fixpoint is precisely the required interpretation of
the recursively defined procedure = X (Y'). In particular, since least fixpoints of Scott-continuous endofunctions
on pointed complete partial orders always exist, this justifies the convergence of the limit in equation (2).

6.6 Structural and denotational equivalence

The interpretation of quantum flow charts can be generalized from the cat€ytwyany category which has the
requisite structure.

Definition. An elementary quantum flow chart categasya symmetric monoidal category with traced finite coprod-
ucts, such thatl ® (—) is a traced monoidal functor for every objetttogether with a distinguished objegtit and
morphisms. : I & I — gbit andp : gbit — I & I, such thap o . = id. Herel[is the unit of the symmetric monoidal
structure.

In an elementary quantum flow chart category, we define an object= I & I. Then the morphismeewbit
discardbit set, set, branch merge andinitial, needed in the interpretation of atomic quantum flow charts, are
definable from the finite coproduct structure. Furthermore, the morphismgbit discardgbit andmeasurecan be
defined in terms of andp. The only additional piece of information needed to interpret quantum flow charts in an
elementary quantum flow chart category is an interpretation of built-in unitary operators.

Consider a flow chart language with loops, no recursion, and a certain set of built-in unitary operator symbols. Let
C be an elementary quantum flow chart category, ang bet an assignment which maps each built-iary operator
symbol S to a morphismys : gbit™ — gbit™ in C. Then there is an evident interpretation of quantum flow charts,
which maps eaclX : I' — I to a morphisn{X], : [[] — [I'], defined inductively as in Section 6.5. Further, if the
categoryC is CPO-enriched, then we can also interpret recursively defined flow charts in it.

Definition (Structural equivalence, denotational equivalence).Two quantum flow chart&, Y : T’ — I are said
to bestructurally equivalenif for every elementary quantum flow chart categ@hand every interpretation of basic
operator symbols].X], = [Y],. Further, X andY are said to be&lenotationally equivalerif [X] = [Y7] for the
canonical interpretation in the catega@yof signatures and completely positive operators.

Clearly, structural equivalence implies denotational equivalence, and the converse is not true. Structural equiva-
lence is essentially a syntactic notion: if two flow charts are structurally equivalent, then one can be obtained from the
other by purely symbolic manipulations, without any assumptions about the behavior of the built-in unitary operators.
For instance, the two flow charts in Example 4.2 are structurally equivalent, as are those in Example 4.7. On the
other hand, the two flow charts in Example 4.6 are not structurally equivalent. Structural equivalence is probably the
minimal reasonable equivalence which one might want to consider on flow charts.

Denotational equivalence, on the other hand, is a semantic notion. It captures precisely our concept of “behavior”
of quantum programs, fully taking into account the meaning of the built-in operators. We should remark that, like

31

any denotational notion of “behavior”, denotational equivalence abstracts from some aspects of the actual physical
behavior of a system; for instance, issues like the running time or space usage of an algorithm are not modeled.
Denotational equivalence is only concerned with the probabilistic input-output relationship of programs. It is the
largestpossible equivalence on quantum flow charts in the following sens€; ¥f : T — I are not denotationally
equivalent, then there exists a contéXt-| (a flow chart with a “hole”) such that'[X] andC[Y] are of typel — bit,
andC[X] evaluates t® with a different probability thaiC'[Y].

In light of this result, the denotational semantics of flow charts can be provenftdiyoabstractwith respect to a
suitable operational semantics. Details will be given elsewhere.

6.7 Characterizations of completely positive operators and superoperators

We will now give some basic and well-known characterizations of superoperators. These results will be used in
Section 6.9 to prove that every superoperator arises as the denotation of a quantum flow chart.

As before, let; denote theth canonical unit column vector. The spafe*" of n x n-matrices has a canonical
basis (as a vector space), consisting of the matiitgs= e;e;. Any linear functionf” : C**" — C™*™ is uniquely
determined by its action on the basis elements.

Definition. Thecharacteristic matrixof a linear functionf’ : C**" — C™*™ is the matrixxp € C"™*"™ defined
by

F(Ey) |-+ | F(Ew)
Xp = : . :
More generally, let = nq,...,ns andr = mq,...,m; be signatures, and Iét : V, — V.. be a linear function. We

define theij-component off” to be the functior¥;; = 7; o F oiin, : C* <™ — C™*™i, Thecharacteristic matrix
tupleof F'is
Xp = (XFH,...,XFW ,Xpsl,...,XFM).

Note that if ' : V,, — V.. is a linear function, its characteristic matrix tuple is an elemént V, . Moreover,
F andXr determine each other uniquely.

One might ask whether it is possible to characterize the completely positive operators, or respectively the superop-
erators, in terms of a property of their characteristic matrices. This is indeed possible. In the following theorems, we
start by considering the simple case, i.e., the case of oper&toS”*" — C™*™. The general non-simple case is
treated afterwards.

Theorem 6.5. Let F' : C"*™ — C™*™ be a linear operator, and let p € C"™*"™ e its characteristic matrix.
(a) Fis of the formF'(A) = UAU*, for someU € C"**™, if and only ifXr is pure.
(b) The following are equivalent:

(i) F'is completely positive.
(i) Xp is positive.
(i) Fis of the formF'(A) = ", U; AU/, for some finite sequence of matridés ..., U, € C**™.

Proof. For part (a), observe that the maty is pure iff it is of the formXz = uu*, for someu € C*™. We can

write
(%1

’Uﬂ,

for some vectors; € C™, and letU = (v1]...[v,) € C**™. ThenF(E;;) = v,vj = UE;U*, for all i, j, and thus

F(A) =UAU* for all A. Conversely iff'(A) = UAU*, thenXr = uu* with « constructed fron¥/ as above.

32

For part (b), to show (i}= (ii), it suffices to observe that the matrix

By |- | B

Enl T Enn

is positive, and that r = (id,, ® F')(E). To prove that (ii)}= (iii), assume thak r is positive. ThenXz can be written
as a sum of pure matrices, sa&yy = By + ...+ B,. Foreachi = 1,... k, let F; be the linear operator whose
characteristic matrix i¥r, = B;. By part (a),F;(A) = U; AU/, henceF'(A) = >, U; AU; as desired. Finally, the
implication (iii) = (i) is trivial. O

Corollary 6.6. Two linear functiong”, G : C"*" — C™*™ satisfyF' C G if and only if X C Xg. Here F C G is
defined as in Section 6.1 to me&iA) C G(A) for all positive A. O

Next, we wish to characterize superoperators, i.e., completely positive operators which satisfy the trace condition.
We start with some preliminary observations. First, note that for any signattinetrace operatottr,, : V, — V; isa
superoperator. We also call it teeasuremap, as it corresponds to an erasure of (quantum and classical) information.

Definition. Thetrace characteristic matrix tuplef a linear functionF” : V,, — V; is defined to b&'l’ = Xy _or €

V., i.e., the characteristic matrix tuple of ts F'. Note thath;” is easily calculated from(r by taking a “componen-
twise trace”, i.e. X = (id, @ tr,)(Xr).

Theorem 6.7. Let F' : C"*™ — C™*™ be a completely positive operator. The following are equivalent:
(i) Fis asuperoperator.
(i) X};” C I,, wherel,, € C**" is the identity matrix.
(i) Fis of the formF'(A) = >, U; AU}, for matricesU, ..., Uy with). U*U; C I,,.

Proof. For the equivalence of (i) and (ii), note thatis a superoperator iff tF(A) < tr A, for all positive A. This
is the case iff tf, oF' C tr,,, and by Corollary 6.6, iffXy, o T Xy,. ButXy, = I,,, and thus this is equivalent to
Xj&” C I,.. For the equivalence of (i) and (iii), first note that by Theorem 6.8an be written ag'(A) = >, U; AU/,
for some matrice#/1, ..., U,. But then,Xj;r> = >, U:U;, the complex conjugate of, U;U;. Thus the equivalence
follows. O

The equivalence (ix= (iii) is known as theKraus Representation Theoreidote thatF' is trace preserving, i.e.,
tr F'(A) = tr A for all A, iff X;‘” = I, iff 3, U;U; = I,,. Theorems 6.5 and 6.7 can be straightforwardly generalized
to the non-simple case, as summarized in the next theorem.

Theorem 6.8. Leto = n4,...,ns andr = my, ..., m; be signatures, and Iet' : V, — V.. be a linear function.
(a) F'is completely positive iff is positive.
(b) F'is a superoperator iff is positive ancK(F") C I,, wherel, € V, is the tuple consisting of identity matrices.

(c) F'is a superoperator iff it can be written of the forR(A,, ..., A) = (O, Usu AU, -, >0 Un AUz,
for matricesU,;; € C™>*™i wherezjl Ui*;lUijl C I,, for all i. Here,l ranges over some finite index set.

Proof. All three parts follow from straightforward componentwise arguments.f.et= 7 0 Foin; : V,,, — Vi,

be theij-component of” as before, and lek; = F oin, : V,,, — V;. For (a), observe thdf is completely positive
iff each F;; is completely positive. For (b), note that satisfies the trace condition iff eadh) satisfies it. This is
the case iff tr oF; C tr,,, or equivalentlyxg? C I,,, forall i. The latter is equivalent tmg” C I,. For (c), first

note that by Theorem 6.5, eadfy; can be written agj;(A) = >, U;i ;U wherel = 1,... k;;. By setting

k = max;; k;; andU;;; = 01if [> k;;, we may assume tharanges uniformly ovet, . .., k. Thus,F’ can be written
in the desired form; further #;(A) = tr Zjl UiiAiU;;, and hence, by Theorem 6.7(iii}; is a superoperator iff
ij U Uiji E I, for all 4. O

33

Remark6.9 (Compact closed structureRecall thatV andQ are symmetric monoidal categories whose objects are
signatures, and whose morphisms are, respectively, linear functions, and superoperators. The characteristic matrix
determines a one-to-one correspondence between horiVéets o, 7) = V(p,o ® 7) (they both correspond to
matrix tuples inV,g,%,). Moreover, this one-to-one correspondence is natural amd 7. A category with this
property is calledompact closed

Let W be the category whose objects are signatures and whose morphisms are completely positive operators.
ThusQ € W C V. Theorem 6.8(a) implies thd¥ inherits the compact closed structure frdfn However, by
Theorem 6.8(b), the catego€y of superoperators isot compact closed; indeed, ¥ : V, — V.. is a superoperator,
then is characteristic matriXg is not in general a density matrix, because in generalptr> 1. However,\X g is
a density matrix for some scalarwith 0 < A < 1. In this sense, we may say th@t possesses a compact closed
structureup to scalar multiples

6.8 Normal form for superoperators

As a conseqguence of the in Theorems 6.5 and 6.7, we obtain a normal form for superoperators: any superoperator can
be expressed as a sub-unitary transformation, followed by an erasure and a measurement. This normal form is not
unique.

Definition. A matrix U € C"*™ is said to besub-unitaryif U is a submatrix of some unitary matri¥X, i.e., if there
exist matriced/;, Us, Uz (not necessarily of the same dimensiong/asuch that

1 U Ul

v= (Us | Us
is unitary. A linear functionf' : C**™ — C™*™ is called sub-unitary if it is of the fornk’(A) = UAU*, for some
sub-unitary matrixy € C**™. More generally, a linear functioR' : V, — V., is called sub-unitary if it is of the

form F(Aq,..., As) = (UL AL UT, ... ,Us A UY), for sub-unitary matrice§; € C"*™i, wheres = nq,...,ns and
T=MmM1,...,Mg.

Lemma 6.10. A matrixU € C™*™ is sub-unitary ifUU* C I,,, iff U*U C I,,.

Proof. Clearly, U is sub-unitary iff there exists a matriX; such that the rows ofU|U;) form an orthonormal set.
This is the case i U* + U, U = I, and by Remark 2.3, iff U* C I,,,. The second equivalence is similar. U

Definition. Leto = ng,...,n, be a signature, and lI6t= n, + ... + ng, an integer regarded as a simple signature.
Themeasurement operater, : V; — V, is defined as
All e Als
Mo :(A117A227"'7ASS)7
Agq |- | Ass

whereA,; € C™*". An erasure operatois any operator of the forrftr, ® id;) : Vog, — V.

Note that sub-unitary transformations, measurements and erasures are superoperators; the following theorem states
that any superoperator is a combination of these three basic ones.

Theorem 6.11. (a) Every superoperatof’ : C"*™ — C™*™ can be factored ag’ = E o G, whereG is sub-
unitary andE is an erasure operator.

(b) Every superoperataoF : V, — V, can be factored a’ = M o E o GG, whereG is sub-unitary,F is an erasure
operator, and)M is a measurement operator.

Proof. (a) By Theorem 6.7, there exist matridés, . .., U;, € C"*™ such thatF'(A) = >, U; AU; and)_, U;U; C
I,,. LetU be the vertical stacking of the matric€s, . .., U,
U,
U= : ,
Uk

34

and defineG : C"*" — Ckmxkm by G(A) = UAU*. SinceU*U = Y, U;U;, the matrixU is sub-unitary
by Lemma 6.10. Also, leff = (tr, ® id,,) : Ckmxkm . Ccmxm_ ThenE(G(A)) = (try ® id,,)(UAU*) =
> UiAU} = F(A), as claimed.

(b) Supposer = ny,...,ns andr = mq,...,m;. By Theorem 6.8(c)F’ can be written ag’(A,,..., As) =
Qo Ui AUy, -, 225 U AU, for matricesU;;; € CmeXmi wherezﬂ ULiUij © I, for all 4, and where
I ranges ovetl, ..., k, for somek. For eachi, let U; € Cmi*k(mit.+m:i) pe the vertical stacking of the matrices
Uity Uity Uitgy - ., Ui Leta” =k, ... k, alistof lengths. DefineG : V, — V,igz by G(A4, ..., Ag) =
(UL A UF, ... U AUY). Clearly, UrU; = ij UbsiUin T I, for all 4, and thusG is sub-unitary. LetEl =
(trpr ®idz) : Vorgs — Vz, and letM = u, : Vz — V.. An easy calculation shows thaf o £ o G(A) = F(A), as
desired. O

6.9 Fullness of the interpretation

We defined the interpretation of a quantum flow cBario be a morphisni.X] in the categor, i.e., a superoperator.

We now want to show that every superoperator is definable in this way. More precisely, we want to show that the
interpretation igull: wheneveil andT" are lists of typing contexts anfl : [T] — [I'] is a superoperator, then there
exists a quantum flow chai : I' — I’ such thaf X] = F.

For the purpose of this section, we consider the flow chart language which has loops, and which contains all unitary
operators as built-in operators. In a more realistic setting, one would only have a finite, but complete set of built-in
operators (in the sense of Proposition 3.2); in this case, fullness igprteeepsiloni.e., for everye > 0, one can find
X such thal|[X] — F|| <e.

Lemma6.12. (a) If T andI” are lists of typing contexts such thdt] = [I'] = o, then there exists a flow chart
X :T — I’ such tha X] = id,.

(b) Supposer = 2F, m = 2!, andF : C"*™ — C™*™ is sub-unitary. Then there exists a quantum flow chart
X : gbit" — gbit’ such thaff X] = F.

Proof. For part (a), first note that if neithér nor I'” contain the typeit, thenl' = I'" and there is nothing to show.

Further, all occurrences of the type can be removed by repeated application of the transformation from Example 4.4.
For (b), we haveF'(A) = UAU™* for some sub-unitary matri&’ € C™*™. Then there exist matricd$,, Us, Us,

not necessarily of the same dimensiong/asuch that

U’z(é.] gl)ECPXP
2 3

is unitary. Without loss of generality, we may assume that 2" is a power of two. TherF” = [X], whereX is the
flow chart shown in Figure 11. Here we have used obvious abbreviations for multiple “new”, “measure” and “discard”
operations. Note that all but one branch of the measurements lead into an infinite loop; this is due to the fact that

may not be trace preserving. O

Theorem 6.13 (Fullness).For given lists of typing contexts, I, if F : [[] — [[’] is a superoperator, then there
exists a quantum flow cha¥ : T' — I such thaf X] = F.

Proof. This is an almost trivial consequence of Theorem 6.11 and Lemma 6.12. First, by Lemma 6.12(a), it suffices to
consider the case wheFe= qbit"'; . .. ; gbit": andl’ = gbit’*;...; gbit'. Second, let > [, for all i, and let2” > t.

ThenF can be factored aB,o Fy, whereF : [I'] — [qbit' xbit"] is a superoperator arg : [gbit’ xbit"] — [I'] is

a canonical projectionf}, is clearly definable. Let = [I'] andr = [gbit’ x bit"]. Then7 = [gbit'*"]. By the proof

of Theorem 6.11F) can be factored al/ o EoG, whereG : ¢ — ¢’ ®7 is sub-unitaryE : ¢’®7 — 7 is the canonical

erasure operator, and : 7 — 7 is the canonical measurement operator. Moreaves: k, ..., k is a list of length
s, and without loss of generality, we may assume that 27 is a power of two, so that’ = [gbit?;...; gbit?].
Now M is definable by Lemma 6.12(b} is definable by a sequence of “discard” and “merge” operations, and
M : [gbit'™] — [qgbit’ x bit"] is definable by- measurements. O

35

qi,---,q5 : gbit = A

‘new abit g1, ..., qp = 0‘

. A0
qi,---,qr: gbit = (T’T)

— /
qi,---5,qr 1 Q - UQAU* | UQAU;
easurey41,...,49r
otherwise

discardgis 1, .-, qr

lql,...7ql:qbit =UAU*

Figure 11: Flow chart realizing a sub-unitary transformation

7 Towards a structured syntax

In previous sections, we have presented a view of quantum programming in terms of flow charts. The reasons were
partly pedagogical, because flow charts explicitly highlight the “atomic” concepts of control flow, which are often left
implicit in more structured programming languages. Particularly the “merge” operation, with its associated erasure of
classical information, is of fundamental importance to quantum computing because it causes the passage from pure to
impure states. Another reason for presenting the language in terms of flow charts was semantical: flow charts, because
of their close connection with traced monoidal categories, provide a convenient setting for describing the semantics of
guantum programs.

However, for actual programming, flow charts are generally too cumbersome as a notation. The reasons for this are
the same as in classical programming language theory: their graphical nature makes flow charts difficult to manipulate,
and they also discourage a structured approach to programming. We now present a more “textual” syntax for quantum
programs, which is also more “structured” in the sense of structured programming languages such as Pascal.

It is worth emphasizing, once again, that we are describifumetionalprogramming language, despite the fact
that its syntax superficially looks imperative. Each statement acts as a function from an explicitly identified set of
inputs to outputs, rather than operating on an implicitely defined global state.

7.1 The language QPL

We assume a countable setafriables denotedr, , b, q, We also assume a countable sepafcedure variables
X)Y,....

Types. A typet, s is eitherbit or gbit. A procedure typd’ is an expression of the form, ..., s, — t1,...,tm,
wheres; andt; are types. Atyping context is a finite list of pairs of a variable and a type, such that no variable
occurs more than once. Typing contexts are written in the usual way:&s. .., z,:t,. A procedure contextl is
defined similarly, except that it consists of procedure variables and procedure types. We use the notatiand

X T, 11 for extension of contexts, and in using this notation, we always implicitly assume that the resulting context is
well-defined, i.e., that does not already occur inand X does not already occur .

Terms. The set ofQPL termsis defined by the following abstract syntax:

QPL Terms P,Q == newbitb:=0 | new gbitq:= 0 | discardz
| b::0|b::1|q1,...,qn*:5
| skip | P;@Q

if b then P elseQ | measureq then P else@ | while b do P
proc X : T =T {P}inQ | y1,...,ym = X(21,...,7)

36

Here,S denotes a built-in unitary transformation of arityandI’, " denote typing contexts. The intended meaning
of the basic terms is the same as that of the corresponding atomic flow chart compdhgiptdenotes sequential
composition of terms, and thekip command does nothingiproc X : T' — IV { P } in @) defines a procedur&
with body P and scopé); " andI” are bindings of the formal parameters for input and output. The feemX (z)
denotes a procedure call. In writing programs, it is common to use certain derived terms, writing for ihstance
as an abbreviation fdiif c then b := 0 elseb := 1), or (if b then P) for (if b then P else skip.

Typing judgments. A typing judgments an expression of the form
ITH (') P(T),

wherell is a procedure context arid IV are typing contexts. The intended meaning is that under the procedure
bindingIl, P is a well-typed term which transforms a set of varialiléato a set of variableE’. The typing rules are
shown in Figure 12.

Note that the typing rules enforce thatinthe tdgm . . . , ¢, *= S), the variables, . . . , ¢, aredistinct Similarly,
in a procedure calj = X (z), each ofz andy is a list of distinct variables (although it is possible that= y;). Also
note that each term has explicit inputs and outputs; for instance, thejtermX (z) has inputsz and outputsy,
whereas the terrh := 0 has inputh and output. The latter term should be thought of as consuming a variable
then creating a new one with the same name. A more “functional” way of expressing this would be towit)
instead ob := 0.

Semantics. The language QPL can be immediately translated into the flow chart language of Section 4. The seman-
tics of a QPL term is simply the semantics of the corresponding flow chart. Alternatively, the semantics can be defined
directly by induction on typing judgments; the rules for doing so are obvious and we omit them here. It suffices to say
that each typing judgment

X1:51 = by, Xpi8y — b B (D) P(TY)

is interpreted as a Scott-continuous function

[P] - Q([5:], [E1]) x - - x Q([8a], [Ea]) — QT [T'D)-

The language QPL differs from the flow chart language in some minor ways. Specifically, QPL contains the
following restrictions:

e branchings and loops must be properly nested,
e merge operations can only occur in the context of a branching or loop,

e each program fragment has a unique incoming and a unique outgoing control path. In particular, procedures
have only one entry and exit.

Note that the typing rules for QPL allow procedure definitions to be recursive; however, we have omitted a facility
for defining two or moranutuallyrecursive procedures. However, this is not a genuine restriction, because mutually
recursive procedures can be easily expanded into simply recursive ones. Where desired, one can augment the syntax
in the standard way to allow mutual recursion to be expressed directly.

7.2 Block QPL

The language QPL imposes a block structure on control constructs sifchnalswvhile, but not on memory manage-
ment. Unlike in block-oriented languages such as Pascal, we have allowed variables to be allocated and deallocated
anywhere, subject only to the typing rules. This is not unsafe, because the type system is there to ensure that variables
are deallocated when they are no longer used. However, allowing non-nested allocations and deallocations carries an
implementation cost, because it means that variables must be allocated from a heap rather than a stack. It is there-
fore interesting to investigate an alternate version of QPL in which a stricter block structure is imposed. We call this
alternative language “Block QPL".

Thus, in Block QPL, we want to restrict allocations and deallocations to occur in properly nested pairs. Moreover,
this nesting should also respect the nesting of the control constfuateasure andwhile. We thus introduce the

37

(newbid

(newqgbi)

(discard

(assign)

(assign)

(unitary)

(skip

(composg

(if)

(measurg

(while)

(proo)

(call)

(permute

II+ (T') new bit b := 0 (b:bit, T")

IT - (T') new gbit ¢ := 0 (¢:qbit, T")

I+ (z:t,T) discard z (T")

IT = (b:bit,T") b := 0 (b:bit, T")

IT+ (b:bit,T) b := 1 (b:bit, T")

S'is of arityn

IT+ (g1:qbit, ..., g,:qbit,T') g x= S (q1:qbit, ..., ¢,:qbit,T")

I+ (T) skip (T

IF ()P I) I Q")
ITF () P;Q (I')

I+ (b:bit, Ty P (T") I F (b:bit, Ty @ (I7)
IT = (b:bit, T) if bthen P else@ (I')

I+ {¢g:qbit,T") P (I") ITF (g:gbit,T") @ (I")
IT - (¢:gbit,T") measureq then P else@ (I'")

IT+ (b:bit,T") P (b:bit,T')
IT - (b:bit, I") while b do P (b:bit,T')

Xt — 5,11+ (z:t) P (y:5) Xt — 511 (T Q(I)
M- (Typroc X : z:t —» 4:5{ P }in Q (T)

Xt — 5 IIF (z:4,T) y = X(z) (y:5,T)

IT - (T) P (A), I, T’ A’ permutations of[, T, A
I - (T") P (AY)

Figure 12: Typing rules for QPL

38

notion of ablock which is a program fragment enclosed in curly brackefs}. The convention is that the scope of
any variable declaration extends only to the end of the current block; moreover, the bodies of conditional statements,
loops, and procedures are implicitly regarded as blocks in this sense.
In the presence of such a block structure, the expfitsitard command is no longer needed, so we remove it
from the language. Also, we note that with these changes, the incoming and outgoing variables of any procedure must

necessarily be the same. Thus, we also modify the syntax of procedure calls, waitid(z1, .. ., z,) instead of
1,2y = X(x1,...,2,). This leaves us with the following syntax for Block QPL:
Block QPL Terms P,Q == newbith:=0 | newgbitq:=0

| b::0|b::1|q1,...,qn*:S

| sk | Q| {P)

| if bthen P elseQ | measureq then P elseQ | while b do P
| procX:T—T{P}inQ|calX(z1,...,2z,)

The typing rules remain unchanged, except for a new hlteck), and appropriate changes to the rules for branchings
and procedures.

IT+ (T) P (T)

(block TF () (P} ()
y ITF (b:bit,T) P () I+ (b:bit, T) Q (I”")
(if) TTF (b:bit, T if b then P elseQ (b:bit, T

ITF (g:qbit,T) P (I') T+ (g:qbit, I') Q (I"")
(measurg IT - (¢:gbit,T") measureq then P else@ (b:bit, T")

Xt — t, I+ (z:t) P (I) Xt —t, 11+ (T) Q(I')

(proc) TF (D) proc X : 74 — 2 {P1in Q (I
(call)

X:it — ¢, 11+ (z:t,T) call X(z) (z:¢,T)

Note that, for any valid typing judgmeit - (') P ("), we necessarily havE C I”; thus the rule lflock has a
similar effect as the QPL rulal{scard).

The advantage of having a strict block structure as in Block QPL is that allocation follows a stack discipline,
thus potentially simplifying implementations. However, there seems to be little added benefit for the programmer,
particularly since the QPL type system already prevents memory leaks. In fact, the restrictions of Block QPL seem to
encourage an unnatural programming style; on balance, it is probably not worth having these restrictions.

7.3 Extensions of the type system

So far, the only data types we have consideredb#trandgbit, because this is the bare minimum needed to discuss

the interaction of quantum data, classical data, and classical control. In practice, such a finitary type system is much
too restrictive; for instance, the full power of loops and recursion does not manifest itself unless programs can operate
on variable size data. In this section, we briefly discuss how the QPL type system can be extended with more complex
types, and particularly infinitary types. It is remarkable that these extensions work seamlessly, even when mixing
classical and quantum types in a data structure. In discussing possible extensions to the type system, we keep in mind
the semantic framework of Section 6, as well as the potential physical realizability of the resulting types.

39

Tuples. We extend the type system of QPL adding a new tpe ... ® t,, whenevert, ..., t, are types. We
introduce statements for constructing and deconstructing tuples:

(tuple) IME (zrit, .., zpitn, D e = (21,...,2,) (T 61 Q... Q ty, T)

(Untuple e <£IJ T ®... ®tn’r> (3?1,. . 7-7:71) =z <aj1:t17...,l’nifzn,r>

The semantics of such tuples can be given in the framework of Section 6 without any changes; one simply adds an

equation)t ® s] = [¢] ® [s], and interprets the basic tupling and untupling operations as the semantic identity map.
Tuples can be used to encode fixed-length classical or quantum integers. For instance, the-fyipelagsical

integers is defined dat, = bit ® bit ® bit ® bit. If desired, one may add appropriate built-in functions to facilitate

the manipulation of such integers.

Sums. We further extend the type system by introducing a sum type ... ® t,,, whenevet, ..., t, are types.

A sum type expresses a choice between several alternatives. Note that the selection of alterrddissisas for
instance, the type of classical booleans is definablbitas= I & I. Elements of sum types are constructed and
deconstructed via injection and case statements, much as in other functional programming languages:

(inj) IF (i, D)y =iz :t,®... 0k, (y:t1®... 0L, L)
(casd IF (z:t1, T PL(TYY ... TIF (zpite, D) P, (I)
Iy :t1®...®t,,) caseyofingey = P |...|In,z, = P, I')

Note that by adding sum types to the language QPL, it is possible to encode procedures with multiple points of entry
and exit.

Infinite types. The semantics of Section 6 cannot directly handle infinite types, since it is based on finite dimensional
vector spaces. However, it is not difficult to adapt the semantics to the infinite-dimensional case. This allows us, for
instance, to accommodate an infinite type of classical integers, which is defined as the countatie-slimI®. . ..
The semantics of infinite types is based on positive linear operators of bounded trace; details will be given elsewhere.
Perhaps more controversial than infinite sums are infinite tensor products. For instance, a naive implementation
of “arbitrary size quantum integers” would be as the infinite tergor @ gbit @ While infinite tensor products
create no particular problem from the point of view of denotational semantics, a sensible implementation can only use
finitely many quantum bits at any given time. This can be achieved by imposing a semantic “zero tail state” condition,
which means that only finitely many non-zero bits are allowed to occur at any given time in the computation. The
compiler or the operating system has to implement a mechanism by which the zero tail state condition is enforced.
This requires some overhead, but might be a useful abstraction for programmers.

Structured types. A particularly useful class of infinite sum types is the class of structured recursive types, such as
lists, trees, etc. For example, the type of lists of quantum bits can be defined recursively=ak & (gbit ® L).

Note that, because the use of theoperator implies a classical choice, quantum data occurs only “at the leaves” of a
structured type, while the structure itself is classical. Thus, the length of a list of quantum bits is a classically known
guantity. This view of structured quantum types fits well with our paradigm of “classical control”.

Lists of quantum bits are a good candidate for an implementation of a type of “variable-size quantum integers”.
With this implementation, each quantum integer has a classically determined size. One can thus write programs which
operate on quantum integers of arbitrary, but known, size. This seems to be precisely what is required by many
currently known number-theoretic quantum algorithms, such as Shor’s factoring algorithm or the Quantum Fourier
Transform. Moreover, representing quantum integers as lists, rather than as arrays as is usually done [9, 2], means
that no out-of-bounds checks or distinctness checks are necessary at run-time; the syntax automatically quarantees

40

QFT: rotate: [input h:qbit, ¢:qbit Iist,n:int]
[:qbit list h:qgbit, ¢:gbit list, n:int
b:gbit @ gbit list hegbit, nil:T, n:int h:qbit, c:gbit @ gbit list, n:int
— c’
h:qgbit, ¢:qbit list h, z:qbit, y:gbit list, n:int
E:E‘ z,h *m
h:gbit, ¢:gbit list h, z:gbit, y:qbit list , n:int
[new intn := 2| [discardn| |[ni=n+1]|
nil-T h:qgbit, ¢:gbit list , n:int h, z:qbit, y:gbit list, n:int
’ ‘ (h,t) = rotate(h, t, n) ‘ ‘ h:qbit, nil:I ‘ ‘ (h,y) = rotate(h, y,n) ‘ ‘
h:qbit, t:gbit list h, z:qbit, y:gbit list
[err]] [t=im(od)] [t =ina(ay)]
hiqbit, t:qbit list h:qbit, ¢:qbit list ﬁ gbit, ¢:gbit list
[1=iny(nil) | |[I=iny(h,1)]
lh:qblt, t:gbit list
l-qbitlist L-qbitlist (outputh:qbit, £:gbit list)
l:qbit list

output!:gbit list

Figure 13: The Quantum Fourier Transform

that distinct identifiers refer to distinct objects at run-time. An example of a quantum algorithm using lists is given in
Section 7.4.

On a more speculative note, one might ask whether it is possible to have structured types whose very structure
is “quantum” (for instance, a quantum superposition of a list of length 1 and a list of length 2). Such types do not
readily fit into our “classical control” paradigm. It is an interesting question whether there is a physically feasible
representation of such types, and whether they can be manipulated in an algorithmically useful way.

Higher-order types Unlike typical functional programming languages, the language QPL does not presently inco-
porate any higher-order features. There is currently no mechanism for abstracting procedures and considering them
as data to be manipulated. It is an interesting question whether it is possible to augment the language with functional
closures in the style of a typed linear lambda calculus. Possible semantic models of such a language might be drawn
from the recent work of Abramsky and Coecke [1], or from the theory of “quantum coherence spaces” recently defined
by Girard [4].

7.4 Example: The Quantum Fourier Transform.

We given an example of the use of recursive types. dbétlist be the type of lists of quantum bits, defined by the
recursive equatiogbit list := I & (gbit ® (gbit list)). Figure 13 shows an implementation of the Quantum Fourier
Transform (QFT) [13, 10], which is of typgbit list — gbitlist. The algorithm shown differs from the standard

41

Quantum Fourier Transform in that we have omitted the final step which reverses the order of the bits in the output.
Note that the procedu@FT uses recursion to traverse its input list; it also uses an auxiliary procestatewhich is
recursive in its own right. For simplicity, we have augmented the language by a classical integet tyjle built-in
addition, and we have added an obvi@asestatement of typel & B — A; B. We also use the Hadamard operator

H, as well as a parameterized family of unitary operafrswhich are defined by

1 0 0 0

01 0 0
Ba=119 0 1 0

00 0 e27ri/2"

References

[1] S. Abramsky and B. Coecke. Physical traces: Quantum vs. classical information processing. arXiv:cs.CG/
0207057 v1, July 2002.

[2] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum programming. arXiv:cs.PL/0103009
v2, Nov. 2001.

[3] R. Cleve. An introduction to quantum complexity theory. In C. Macchiavello, G. Palma, and A. Zeilinger,
editors,Collected Papers on Quantum Computation and Quantum Information Theaggs 103-127. World
Scientific, 2000.

[4] J.-Y. Girard. Entre logique et quantique. Manuscript, Institut de Mathtiques de Luminy, Marseille, Oct.
2002.

[5] J. Gruska.Quantum ComputingMcGraw Hill, 1999.

[6] M. HasegawaModels of Sharing Graphs: A Categorical Semantics of let and le®&® thesis, Department of
Computer Science, University of Edinburgh, July 1997.

[7] A. Joyal, R. Street, and D. Verity. Traced monoidal categoridathematical Proceedings of the Cambridge
Philosophical Society119:447-468, 1996.

[8] E. H. Knill. Conventions for quantum pseudocode. LANL report LAUR-96-2724, 1996.

[9] B. Omer. A procedural formalism for quantum computing. Master's thesis, Department of Theoretical Physics,
Technical University of Vienna, July 1998. http://tph.tuwien.ac.at/"oemer/gcl.html.

[10] J. Preskill. Quantum information and computation. Lecture Notes for Physics 229, California Institute of Tech-
nology, 1998.

[11] J. W. Sanders and P. Zuliani. Quantum programmingdd&thematics of Program Constructip8pringer LNCS
1837, pages 80-99. 2000.

[12] P. Selinger. Categorical structure of asynchronyPioceedings of MFPS 15, New Orleadectronic Notes in
Theoretical Computer Science 20, 1999.

[13] P. Shor. Algorithms for quantum computation: discrete log and factoringPrdeeedings of the 35th IEEE
FOCS pages 124-134, 1994.

42

