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Abstract— We describe FAST TCP, a new TCP congestion
control algorithm for high-speed long-latency networks, from
design to implementation. We highlight the approach taken by
FAST TCP to address the four difficulties, at both packet and
flow levels, which the current TCP implementation has at large
windows. We describe the architecture and summarize some of
the algorithms implemented in our prototype. We characterize
the equilibrium and stability properties of FAST TCP. We
provide experimental evaluation of our first prototype in terms
of throughput, fairness, stability, and responsiveness.

I. INTRODUCTION AND SUMMARY

Congestion control is a distributed algorithm to share
network resources among competing users. It is important
in situations where the availability of resources and the set
of competing users vary over time unpredictably, yet efficient
and fair sharing is desired. These constraints – unpredictable
supply and demand and the desire for efficient distributed
operation – necessarily lead to feedback control as the
preferred approach, where traffic sources dynamically adapt
their rates to congestion in their paths. On the Internet, this
is performed by the Transmission Control Protocol (TCP) in
source and destination computers involved in data transfers.

The congestion control algorithm in the current TCP,
which we refer to as Reno in this paper, was developed
in 1988 [20] and has gone through several enhancements
since, e.g., [21], [58], [47], [18], [1], [14]. It has performed
remarkably well and is generally believed to have prevented
severe congestion as the Internet scaled up by six orders
of magnitude in size, speed, load, and connectivity. It is
also well-known, however, that as bandwidth-delay product
continues to grow, TCP Reno will eventually become a
performance bottleneck itself. The following four difficulties
contribute to the poor performance of TCP Reno in networks
with large bandwidth-delay products:

1) At the packet level, linear increase by one packet per
Round-Trip Time (RTT) is too slow, and multiplicative
decrease per loss event is too drastic.

2) At the flow level, maintaining large average congestion
windows requires an extremely small equilibrium loss
probability.

3) At the packet level, oscillation in congestion window
is unavoidable because TCP uses a binary congestion
signal (packet loss).

4) At the flow level, the dynamics is unstable, leading
to severe oscillations that can only be reduced by the
accurate estimation of packet loss probability and a
stable design of the flow dynamics.

We explain these difficulties in detail in Section II, and moti-
vate a delay-based solution. Delay-based congestion control

To appear in IEEE/ACM Transactions on Networking, 2007. An
abridged version appears in [25] and an expanded version in [24].

has been proposed, e.g., in [23], [69], [3], [72], [12]. See
[5], [68], [28], [27], [56], [75], [36], [4] for other recent
proposals.

Using queueing delay as a congestion measure has two
advantages. First, queueing delay can be more accurately
estimated than loss probability both because packet losses
in networks with large bandwidth-delay product are rare
events under TCP Reno (e.g., probability on the order 10−7

or smaller), and because loss samples provide coarser in-
formation than queueing delay samples. Indeed, measure-
ments of delay are noisy, just as those of loss probability.
Each measurement of packet loss (whether a packet is lost)
provides one bit of information for the filtering of noise,
whereas each measurement of queueing delay provides multi-
bit information. This makes it easier for an equation-based
implementation to stabilize a network into a steady state
with a target fairness and high utilization. Second, based on
the commonly used ordinary differential equation model of
TCP/AQM, the dynamics of queueing delay has the right
scaling with respect to network capacity. This helps maintain
stability as a network scales up in capacity [51], [8], [53].

In Section III, we lay out an architecture to implement our
design, and present an overview of some of the algorithms
implemented in our current prototype. Even though the
discussion is in the context of FAST TCP, the architecture
can also serve as a general framework to guide the design of
other congestion control mechanisms, not necessarily limited
to TCP, for high-speed networks. The main components in
the architecture can be designed separately and upgraded
asynchronously.

We evaluate FAST TCP both analytically and experimen-
tally. In Section III-B, we present a mathematical model of
the window control algorithm. We prove that FAST TCP
has the same equilibrium properties as TCP Vegas [50],
[44]. In particular, it does not penalize flows with large
propagation delays and it achieves weighted proportional
fairness [31]. For the special case of single bottleneck link
with heterogeneous flows, we prove that the window control
algorithm of FAST is locally asymptotically stable, in the
absence of feedback delay.

In Section IV, we present both experimental and simu-
lation results to illustrate throughput, fairness, stability, and
responsiveness of FAST TCP, in the presence of delay and
in heterogeneous and dynamic environments where flows
of different delays join and depart asynchronously. It is
important to evaluate a congestion control algorithm not
only in terms of throughput achieved, but also what it does
to network queues and how that affects other applications
sharing the same queue. We compare the performance of
FAST TCP with Reno, HSTCP (HighSpeed TCP [15]), STCP
(Scalable TCP [32]), and BIC TCP [75], using their default
parameters.
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In Section V, we summarize open issues and provide
references for proposed solutions.

II. MOTIVATIONS

A congestion control algorithm can be designed at two
levels. The flow-level (macroscopic) design aims to achieve
high utilization, low queueing delay and loss, fairness, and
stability. The packet-level design implements these flow level
goals within the constraints imposed by end-to-end control.
Historically for TCP Reno, packet-level implementation was
introduced first. The resulting flow-level properties, such as
fairness, stability, and the relationship between equilibrium
window and loss probability, were then understood as an
afterthought. In contrast, the packet-level designs of HSTCP
[15], STCP [32], and FAST TCP are explicitly guided by
flow-level goals.

A. Packet and flow level modeling

The congestion avoidance algorithm of TCP Reno and its
variants have the form of AIMD [20]. The pseudo code for
window adjustment is:

Ack: w ←− w +
1

w

Loss: w ←− w − 1

2
w

This is a packet-level model, but it induces certain flow-level
properties such as throughput, fairness, and stability.

These properties can be understood with a flow-level
model of the AIMD algorithm, e.g., [29], [19], [39], [41].
The window wi(t) of source i increases by 1 packet per
RTT,1 and decreases per unit time by

xi(t)qi(t) ·
1

2
· 4
3
wi(t) packets

where xi(t) := wi(t)/Ti(t) pkts/sec. Ti(t) is the round-trip
time, and qi(t) is the (delayed) end-to-end loss probability, in
period t.2 Here, 4wi(t)/3 is the peak window size that gives
the “average” window of wi(t). Hence, a flow-level model
of AIMD is:

ẇi(t) =
1

Ti(t)
− 2

3
xi(t)qi(t)wi(t) (1)

Setting ẇi(t) = 0 in (1) yields the well-known 1/
√

q formula
for TCP Reno discovered in [48], [37], which relates loss
probability to window size in equilibrium:

q∗i =
3

2w∗2
i

(2)

In summary, (1) and (2) describe the flow-level dynamics and
equilibrium, respectively, for TCP Reno.

Even though Reno, HSTCP, STCP, and FAST look dif-
ferent at the packet level, they have similar equilibrium and
dynamic structures at the flow level; see [24] for detailed

1It should be (1 − qi(t)) packets, where qi(t) is the end-to-end loss
probability. This is roughly 1 when qi(t) is small.

2This model assumes that window is halved on each packet loss. It can
be modified to model the case, where window is halved at most once in
each RTT. This does not qualitatively change the following discussion.

derivations. The congestion windows in these algorithms all
evolve according to:

ẇi(t) = κi(t) ·
(

1− qi(t)

ui(t)

)

(3)

where κi(t) := κi(wi(t), Ti(t)) and ui(t) :=
ui(wi(t), Ti(t)). They differ only in the choice of the
gain function κi(wi, Ti), the marginal utility function
ui(wi, Ti), and the end-to-end congestion measure qi.
Within this structure, at the flow level, there are thus only
three design decisions:

• κi(wi, Ti): the choice of the gain function κi determines
the dynamic properties such as stability and responsive-
ness, but does not affect the equilibrium properties.

• ui(wi, Ti): the choice of the marginal utility function
ui determines equilibrium properties such as the equi-
librium rate allocation and its fairness.

• qi: in the absence of explicit feedback, the choice of
congestion measure qi is limited to loss probability or
queueing delay. The dynamics of qi(t) is determined
inside the network.

At the flow level, a goal is to design a class of function
pairs, ui(wi, Ti) and κi(wi, Ti), so that the feedback system
described by (3), together with link dynamics of qi(t) and the
interconnection, has an equilibrium that is fair and efficient,
and that the equilibrium is stable, in the presence of feedback
delay. The design choices in FAST, Reno, HSTCP, and STCP
are shown in Table I. These choices produce equilibrium

κi(wi, Ti) ui(wi, Ti) qi

FAST γαi/τ αi/xi queueing delay
Reno 1/Ti 1.5/w2

i
loss probability

HSTCP
0.16b(wi)w

0.80

i

(2−b(wi))Ti

0.08/w1.20
i loss probability

STCP awi/Ti ρ/wi loss probability

TABLE I
COMMON DYNAMIC STRUCTURE: wi IS SOURCE i’S WINDOW SIZE, Ti IS

ITS ROUND-TRIP TIME, qi IS CONGESTION MEASURE, xi = wi/Ti ;
a, b(wi), ρ, γ, αi, τ ARE PROTOCOL PARAMETERS; SEE [24].

characterizations shown in Table II.

FAST xi = αi

qi

Reno xi = 1
Ti

·
αi

q0.50

i

HSTCP xi = 1
Ti

·
αi

q0.84

i

STCP xi = 1
Ti

·
αi

qi

TABLE II
COMMON EQUILIBRIUM STRUCTURE: xi IS SOURCE i’S THROUGHPUT IN

PACKETS/SEC, Ti IS EQUILIBRIUM ROUND-TRIP TIME, qi IS END-TO-END

CONGESTION MEASURE IN EQUILIBRIUM. THE PARAMETERS ARE:
α = 1.225 FOR RENO, α = 0.120 FOR HSTCP, AND α = 0.075 FOR

STCP. FOR FAST, αi SHOULD VARY WITH LINK CAPACITY.

We next illustrate the equilibrium and dynamics prob-
lems of TCP Reno, at both the packet and flow levels, as
bandwidth-delay product increases.

B. Reno’s problems at large window

The equilibrium problem at the flow level is expressed
in (2): the end-to-end loss probability must be exceedingly
small to sustain a large window size, making the equilibrium
difficult to maintain in practice, as bandwidth-delay product
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increases. Indeed, from (2), q∗i w∗
i = 1.5/w∗

i , i.e., the av-
erage number of packet losses (or loss events) per window
decreases in inverse proportion to the equilibrium window
size for Reno. From Table II, this number for HSTCP is
q∗i w∗

i = 0.0789/w∗ 0.1976
i . Hence it also decreases with the

equilibrium window, but more slowly than for TCP Reno.
For STCP, this number is q∗i w∗

i = a(1 − b/2)/b, which is
independent of, and hence scalable with, the equilibrium win-
dow size. The recommended values in [32] for the constants
are a = 0.01 and b = 0.125, yielding an average loss of
0.075 per window. Even though equilibrium is a flow-level
notion, this problem with Reno manifests itself at the packet
level, where a source increases its window too slowly and
decreases it too drastically. In contrast, HSTCP and STCP
increase more aggressively and decrease less drastically.

The causes of the oscillatory behavior of TCP Reno lie in
its design at both the packet and flow levels. At the packet
level, the choice of binary congestion signal necessarily leads
to oscillation in congestion windows and bottleneck queues,
and the parameter setting in Reno worsens the situation as
bandwidth-delay product increases. At the flow level, the
system dynamics given by (1) is unstable at large bandwidth-
delay products [19], [39]. These must be addressed by
different means.

Congestion window can be stabilized only if multi-bit
feedback is used.3 This is the approach taken by the equation-
based algorithm in [13], where congestion window is adjusted
based on the estimated loss probability in an attempt to
stabilize around a target value given by (2). This approach
eliminates the oscillation due to packet-level AIMD, but two
difficulties remain at the flow level.

First, equation-based control requires the explicit estima-
tion of end-to-end loss probability. This is difficult when the
loss probability is small. Second, even if loss probability can
be perfectly estimated, Reno’s flow dynamics, described by
equation (1) leads to a feedback system that becomes unstable
as feedback delay increases, and more strikingly, as network
capacity increases [19], [39]. The instability at the flow level
can lead to severe oscillations that can be reduced only by
stabilizing the flow level dynamics. We present a delay-based
approach to address these problems.

C. Delay-based approach

The common model (3) can be interpreted as follows: the
goal at the flow level is to equalize marginal utility ui(t) with
the end-to-end measure of congestion qi(t). This interpre-
tation immediately suggests an equation-based packet-level
implementation where the window adjustment ẇi(t) depends
on not only the sign, but also the magnitude of the difference
between the ratio qi(t)/ui(t) and the target of 1. Unlike the
approach taken by Reno, HSTCP, and STCP, this approach
eliminates packet-level oscillations due to the binary nature of
congestion signal. It however requires the explicit estimation
of the end-to-end congestion measure qi(t).

Without explicit feedback, qi(t) can only be loss prob-
ability, as used in TFRC [13], or queueing delay, as used
in TCP Vegas [3] and FAST TCP. Queueing delay can be
more accurately estimated than loss probability both because
loss samples provide coarser information than queueing de-
lay samples, and because packet losses in networks with
large bandwidth-delay products tend to be rare events under

3See [70] for discussion on congestion signal and decision function.

schemes such as Reno. Indeed, each measurement of packet
loss (whether a packet is lost) provides one bit of information
for the filtering of noise, whereas each measurement of
queueing delay provides multi-bit information. This facili-
tates an equation-based implementation to stabilize a network
into a steady state with a target fairness and high utilization.

At the flow level, the dynamics of the feedback system
must be stable in the presence of delay, as the network capac-
ity increases. Here, again, queueing delay has an advantage
over loss probability as a congestion measure: the dynamics
of queueing delay have the right scaling with respect to
network capacity, according to the commonly used ordinary
differential equation model. This helps maintain stability as
network capacity grows [51], [8], [53], [52].

It has been found that delay and packet loss can have a
weak correlation, e.g., [45], especially when packet losses
can be caused by other reasons than buffer overflow. This
does not mean that it is futile to use delay as a measure of
congestion, but rather, that using delay to predict loss in the
hope of helping a loss-based algorithm adjust its window is
a wrong approach to address problems at large windows. A
different approach that fully exploits delay as a congestion
measure, augmented with loss information, is needed.

This motivates the following implementation strategy.
First, by explicitly estimating how far the current state
qi(t)/ui(t) is from the equilibrium value of 1, a delay-based
scheme can drive the system rapidly, yet in a fair and stable
manner, toward the equilibrium. The window adjustment is
small when the current state is close to equilibrium and large
otherwise, independent of where the equilibrium is. This is
in stark contrast to the approach taken by Reno, HSTCP, and
STCP, where window adjustment depends on just the current
window size and is independent of where the current state is
with respect to the target (compare Figures 1 (a) and (b) in
[24]). Like the equation-based scheme in [13], this approach
avoids the problem of slow increase and drastic decrease
in Reno, as the network scales up. Second, by choosing a
multi-bit congestion measure, this approach eliminates the
packet-level oscillation due to binary feedback, avoiding
Reno’s third problem. Third, using queueing delay as the
congestion measure qi(t) allows the network to stabilize in
the region below the overflowing point, when the buffer
size is sufficiently large. Stabilization at this operating point
eliminates large queueing delay and unnecessary packet loss.
More importantly, it makes room for buffering “mice” traffic.
To avoid the second problem in Reno, where the required
equilibrium congestion measure (loss probability for Reno,
and queueing delay here) is too small to practically estimate,
the algorithm must adapt its parameter αi to capacity to
maintain small but sufficient queueing delay. Finally, to avoid
the fourth problem of Reno, the window control algorithm
must be stable, in addition to being fair and efficient, at
the flow level. The emerging theory of large-scale networks
under end-to-end control, e.g., [31], [42], [35], [50], [46],
[76], [44], [41], [6], [51], [63], [34], [19], [39], [33], [64],
[53], [8], [52], [73], [11], [56] (see also, e.g., [43], [40],
[30], [57] for recent surveys), forms the foundation of the
flow-level design. The theory plays an important role by
providing a framework to understand issues, clarify ideas, and
suggest directions, leading to a robust and high performance
implementation.

In the next section, we lay out the architecture of FAST
TCP.
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III. ARCHITECTURE AND ALGORITHMS

A. Architecture

We separate the congestion control mechanism of TCP
into four components in Figure 1. These four components
are functionally independent so that they can be designed
separately and upgraded asynchronously.

Burstiness
  Control

  Window 
  Control

TCP Protocol Processing

 Data 
Control

Estimation

Fig. 1. FAST TCP architecture.

The data control component determines which packets to
transmit, window control determines how many packets to
transmit, and burstiness control determines when to transmit
these packets. These decisions are made based on information
provided by the estimation component.

More specifically, the estimation component computes two
pieces of feedback information for each data packet sent
– a multibit queueing delay and an one-bit loss-or-no-loss
indication – which are used by the other three components.
Data control selects the next packet to send from three
pools of candidates: new packets, packets that are deemed
lost (negatively acknowledged), and transmitted packets that
are not yet acknowledged. Window control regulates packet
transmission at the RTT timescale, while burstiness control
works at a smaller timescale. Burstiness control smoothes
out transmission of packets in a fluid-like manner to track
the available bandwidth. We employ two mechanisms, one to
supplement self-clocking in streaming out individual packets
and the other to increase window size smoothly in smaller
bursts. Burstiness reduction limits the number of packets that
can be sent when an ack advances congestion window by a
large amount. Window pacing determines how to increase
congestion window over the idle time of a connection to
the target determined by the window control component. It
reduces burstiness with a reasonable amount of scheduling
overhead. For details of these two mechanisms, see [71], [24].

An initial prototype that included some of these features
was demonstrated in November 2002 at the SuperComputing
Conference, and the experimental results were reported in
[26]. In the following, we explain in detail the design of the
window control component.

B. Window control algorithm

FAST reacts to both queueing delay and packet loss. Under
normal network conditions, FAST periodically updates the
congestion window based on the average RTT and average
queueing delay provided by the estimation component, ac-
cording to:

w ←− min {2w , (1− γ)w

+ γ

(

baseRTT

RTT
w + α

) }

where γ ∈ (0, 1], baseRTT is the minimum RTT observed
so far, and α is a positive protocol parameter that determines

the total number of packets queued in routers in equilibrium
along the flow’s path. The window update period is 20ms in
our prototype.

We now provide an analytical evaluation of FAST TCP.
We present a model of the window control algorithm for
a network of FAST flows. We show that, in equilibrium,
the vectors of source windows and link queueing delays are
the unique solutions of a pair of optimization problems (6)–
(7). This completely characterizes the network equilibrium
properties such as throughput, fairness, and delay. We also
present a preliminary stability analysis.

We model a network as a set of resources with finite
capacities cl, e.g., transmission links, processing units, mem-
ory, etc., to which we refer to as “links” in our model. The
network is shared by a set of unicast flows, identified by their
sources. Let di denote the round-trip propagation delay of
source i. Let R be the routing matrix where Rli = 1 if source
i uses link l, and 0 otherwise. Let pl(t) denote the queueing
delay at link l at time t. Let qi(t) =

∑

l Rlipl(t) be the round-
trip queueing delay, or in vector notation, q(t) = RT p(t).
Then the round trip time of source i is Ti(t) := di + qi(t).

Each source i adapts its window wi(t) periodically accord-
ing to: 4

wi(t + 1) = γ

(

diwi(t)

di + qi(t)
+ αi

)

+ (1− γ)wi(t) (4)

where γ ∈ (0, 1], at time t.
A key departure of our model from those in the literature is

that we assume that a source’s send rate, defined as xi(t) :=
wi(t)/Ti(t), cannot exceed the throughput it receives. This is
justified because of self-clocking: within one round-trip time
after a congestion window is increased, packet transmission
will be clocked at the same rate as the throughput the flow
receives. See [66] for detailed justification and validation
experiments. A consequence of this assumption is that the
link queueing delay vector, p(t), is determined implicitly
by the instantaneous window size in a static manner: given
wi(t) = wi for all i, the link queueing delays pl(t) = pl ≥ 0
for all l are given by:

∑

i

Rli

wi

di + qi(t)

{

= cl if pl(t) > 0
≤ cl if pl(t) = 0

(5)

where again qi(t) =
∑

l Rlipl(t).
The next result says that the queueing delay is indeed well

defined. All proofs are relegated to the Appendix and [24].
Lemma 1: Suppose the routing matrix R has full row rank.

Given w = (wi, ∀i), there exists a unique queueing delay
vector p = (pl, ∀l) that satisfies (5).

The equilibrium values of windows w∗ and delays p∗ of the
network defined by (4)–(5) can be characterized as follows.
Consider the utility maximization problem

max
x≥0

∑

i

αi log xi s.t. Rx ≤ c (6)

4Note that (4) can be rewritten as (when αi(wi, qi) = αi, constant)

wi(t + 1) = wi(t) + γi(αi − xi(t)qi(t))

From [44], TCP Vegas updates its window according to

wi(t + 1) = wi(t) +
1

Ti(t)
sgn(αi − xi(t)qi(t))

where sgn(z) = −1 if z < 0, 0 if z = 0, and 1 if z > 0. Hence FAST can
be thought of as a high-speed version of Vegas.
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and the following (dual) problem:

min
p≥0

∑

l

clpl −
∑

i

αi log
∑

l

Rlipl (7)

Theorem 2: Suppose R has full row rank. The unique
equilibrium point (w∗, p∗) of the network defined by (4)–
(5) exists and is such that x∗ = (x∗

i := wi/(di + q∗i ), ∀i) is
the unique maximizer of (6) and p∗ is the unique minimizer
of (7). This implies in particular that the equilibrium rate x∗

is αi-weighted proportionally fair.
Theorem 2 implies that FAST TCP has the same equi-

librium properties as TCP Vegas [50], [44]. Its equilibrium
throughput is given by

xi =
αi

qi

(8)

In particular, it does not penalize sources with large prop-
agation delays di. The relation (8) also implies that, in
equilibrium, source i maintains αi packets in the buffers
along its path [50], [44]. Hence, the total amount of buffering
in the network must be at least

∑

i αi packets in order to
reach the equilibrium.

We now turn to the stability of the algorithm.
Theorem 3 (Single-link heterogeneous-source): Suppose

there is only a single link with capacity c. Then the system
defined by (4)–(5) is locally asymptotically stable.

The basic idea of the proof is to show that the mapping
from (scaled) w(t) to w(t + 1) defined by (4)–(5) has
a Jacobian whose spectral radius is strictly less than 1,
uniformly in w; see Theorem 6 in the Appendix. Hence
w(t) converges locally to the unique equilibrium. The proof
technique seems to be different from those in the current
literature of TCP congestion control. It also reveals some
interesting global properties of FAST TCP at a single link.

Corollary 4: Suppose there is only a single link with
capacity c.

1) The equilibrium point (w∗, p∗) is given by

w∗
i = αi +

αic
∑

j αj

di, p =
1

c

∑

i

αi

with x∗
i = cαi/

∑

j αj .
2) Starting from any initial point (w(0), p(0)), the link is

fully utilized, i.e., equality holds in (5), after a finite
time.

3) The queue length is lower and upper bounded after a
finite time. If all sources have the same propagation
delay, di = d for all i, then the system converges in
finite time.

The stability result reported here is limited to local asymp-
totic stability at a single link with heterogeneous sources and
feedback delay is ignored. In [65], the local stability result is
extended to a multilink network in the absence of feedback
delay. With feedback delay, local stability can be maintained
for the case of a single link, provided the heterogeneity of
the delays is small. This delayed stability result is extended
in [66] to a multilink network; furthermore, global stability
at a single link is established in the absence of delay using
a Lyapunov argument. These results are summarized in [67].
In [9], a condition is derived under which a single-source
single-link network is globally aysmptotically stable under
FAST.

IV. PERFORMANCE

We have conducted experiments on our dummynet [55]
testbed comparing performance of various new TCP algo-
rithms as well as the Linux TCP implementation. For more
complex scenarios that are hard to reliably emulate with our
dummynet testbed, we report some simulation results on NS-
2 [77].

The experiment and simulation results reported aim to
zoom in on specific properties of FAST. These scenarios
may be incomplete or unrealistic. Experiments in production
networks can be found in [17], [26]. Other results not
presented in this paper due to space limitation are collected
in [70] and [79].

A. Testbed and kernel instrumentation
Our testbed consists of a sender and a receiver both

running Linux, that are connected through an emulated router
running dummynet under FreeBSD. Each testbed machine
has dual Xeon 2.66 GHz CPUs, 2 GB of main memory, and
dual on-board Intel PRO/1000 Gigabit Ethernet interfaces.
We have tested these machines to ensure each is able to
achieve a peak throughput of 940 Mbps with the standard
Linux TCP protocol using iperf . The testbed router sup-
ports paths of various delays and a single bottleneck capacity
with a fixed buffer size. It has monitoring capability at the
sender and the router. The receiver runs multiple iperf
sinks with different port numbers for connections with differ-
ent RTTs. We configured dummynet to create paths or pipes
of different RTTs, 50, 100, 150, and 200ms, using different
destination port numbers on the receiving machine. We then
created another pipe to emulate a bottleneck capacity of 800
Mbps and a buffer size of 2,000 packets, shared by all the
delay pipes. To reduce scheduling granularity, we recompiled
the FreeBSD kernel so the task scheduler runs every 1 ms. We
also increased the size of the IP layer interrupt queue to 3000
to accommodate large bursts of packets. For each connection
on the sending machine, the kernel monitor captures the
congestion window, the observed baseRTT, and the observed
queueing delay. On the dummynet router, the kernel monitor
captures the throughput at the bottleneck, the number of lost
packets, and the average queue size every two seconds.

We tested five TCP implementations: FAST, Reno (Linux),
HSTCP, STCP, and BIC-TCP using their default parameters
for all experiments. The FAST TCP is based on Linux 2.4.20
kernel (α is set to 200 packets), HSTCP, Scalable TCP and
Reno are based on Linux 2.4.19 kernel, BIC TCP was based
on 2.4.25 kernel. We ran tests and did not observe any
appreciable difference among the three plain Linux kernels,
and the TCP source codes of the three kernels are nearly
identical. Linux TCP implementation includes all of the latest
RFCs such as New Reno, SACK, D-SACK, and TCP high
performance extensions. There are two versions of HSTCP
[38], [10]. We present the results of the implementation in
[38], but our tests show that the implementation in [10] has
comparable performance.

In all of our experiments, the bottleneck capacity is 800
Mbps—roughly 67 packets/ms, and the maximum buffer size
is 2000 packets.

We now present our experimental results. We first look
at two cases in detail, comparing not only the throughput
behavior seen at the source, but also the queue behavior
inside the network, by examining trajectories of throughputs,
instantaneous queue, cumulative losses, and link utilization.
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We then summarize the overall performance in a diverse
set of experiments in terms of quantitative metrics, defined
below, on throughput, fairness, stability, and responsiveness.

B. Case study: dynamic scenario I

In the first dynamic test, the number of flows was small
so that throughput per flow, and hence the window size,
was large. There were three TCP flows, with propagation
delays of 100, 150, and 200ms, that started and terminated
at different times, as illustrated in Figure 2.

1 x 100 ms

1 x 150 ms

1 x 200 ms

3600 90000 time (sec)

Fig. 2. Dynamic scenario I (3 flows): active periods.

For each dynamic experiment, we generated two sets of
figures. From the sender monitor, we obtained the trajectory
of individual connection throughput (in Kbps) over time.
They are shown in Figure 3. As new flows joined or old flows
left, FAST TCP converged to the new equilibrium rate alloca-
tion rapidly and stably (left column). Reno’s throughput was
also relatively smooth because of the slow (linear) increase
between packet losses. It incurred inefficiency towards the
end of the experiment when it took 30 minutes for a flow to
consume the spare capacity made available by the departure
of another flow. HSTCP, STCP, and BIC-TCP responded
more quickly but also exhibited significant fluctuation in
throughput.

From the queue monitor, we obtained average queue size
(packets) shown in Figure 3 on the right column. The queue
under FAST TCP was quite small throughout the experiment
because the number of flows was small. HSTCP, STCP, and
BIC-TCP exhibited strong oscillations that filled the buffer.
Since BIC-TCP tried to maintain an aggregate window to be
just below the point where overflow occurs, it had the highest
average queue length.

From the throughput trajectories of each protocol, we cal-
culate Jain’s fairness indices (see Section IV-D for definition)
for the rate allocations for each time interval that contains
more than one flow (see Figure 2). The fairness indices are
shown in Table III. FAST TCP obtained the best intra-

Time (se #Sources FAST Reno HSTCP STCP BIC
1800 – 3600 2 .967 .684 .927 .573 0.683
3600 – 5400 3 .970 .900 .831 .793 0.687
5400 – 7200 2 .967 .718 .873 .877 0.704

TABLE III
DYNAMIC SCENARIO I: INTRA-PROTOCOL FAIRNESS (JAIN’S INDEX).

protocol fairness, very close to 1, followed by HSTCP, Reno,
BIC-TCP, and then STCP. It confirms that FAST TCP does
not penalize flows with large propagation delays.

For FAST TCP, each source tries to maintain the same
number of packets in the queue in equilibrium, and thus, in
theory, each competing source should get an equal share of
the bottleneck bandwidth. Even though FAST TCP achieved
the best fairness index, we did not observe the expected
equal sharing of bandwidth (see Figure 3). Our sender
monitor showed that all the flows measured their propagation
delays correctly. We found that connections with longer RTTs
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Fig. 3. Dynamic scenario I: Throughput trajectory (left column) and
Dummynet queue trajectory (right column).

consistently observed higher queueing delays than those with
shorter RTTs. For example, the connection on the path of
100 ms saw an average queueing delay of 6 ms, while the
connection on the path of 200 ms saw an average queueing
delay of 9 ms. This caused the connection with longer RTTs
to maintain fewer packets in the queue in equilibrium, thus
getting a smaller share of the bandwidth. We conjecture that
a larger window size (due to longer RTT) produces a more
bursty traffic. With bursty traffic arriving at a queue, each
packet would see a delay that includes the transmission times
of all preceding packets in the burst, leading to a larger
average queueing delay and a smaller throughput.
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C. Case study: dynamic scenario II

This experiment was similar to dynamic scenario I, except
that there were a larger number (8) of flows, with different
propagation delays, which joined and departed according
to the schedule in Figure 4. The qualitative behavior in
throughput, fairness, stability, and responsiveness for each
of the protocols is similar in this case as in scenario I, and
in fact is amplified as the number of flows increases.

2 x 50 ms

2 x 100 ms 2 x 100 ms

2 x 150 ms 2 x 150 ms

2 x 200 ms 2 x 200 ms

3600 2160010800 time (sec)

Fig. 4. Dynamic scenario II (8 flows): active periods.

Specifically, as the number of competing sources increases,
stability became worse for the loss-based protocols. As
shown in Figure 5, oscillations in both throughput and queue
size are more severe for loss-base protocols. Packet loss was
more severe. The performance of FAST TCP did not degrade
in any significant way. Connections sharing the link achieved
very similar rates. There was a reasonably stable queue at all
times, with little packet loss and high link utilization. Intra-
protocol fairness is shown in Table IV, with no significant
variation in the fairness of FAST TCP.

Time (sec) Sources FAST Reno HSTCP STCP BIC
0 – 1800 2 1.000 .711 .806 .999 .979

1800 – 3600 4 .987 .979 .940 .721 .971
3600 – 5400 6 .976 .978 .808 .631 .876
5400 – 7200 8 .977 .830 .747 .566 .858
7200 – 9000 6 .970 .845 .800 .613 .856

9000 – 10800 4 .989 .885 .906 .636 .973
10800 – 12600 2 .998 .993 .996 .643 1.000
12600 – 14400 4 .989 .782 .843 .780 .936
14400 – 16200 6 .944 .880 .769 .613 .905
16200 – 18000 8 .973 .787 .816 .547 .779
18000 – 19800 6 .982 .892 .899 .563 .894
19800 – 21600 4 .995 .896 .948 .668 .948
21600 – 23400 2 1.000 1.000 .920 .994 .998

TABLE IV
DYNAMIC SCENARIO II: INTRA-PROTOCOL FAIRNESS (JAIN’S INDEX).

D. Overall evaluation

We have conducted several other experiments, with differ-
ent delays, number of flows, and their arrival and departure
patterns. In all these experiments, the bottleneck link capacity
was 800Mbps and buffer size 2000 packets. We present
here a summary of protocol performance in terms of some
quantitative measures on throughput, fairness, stability, and
responsiveness.

We use the output of iperf for our quantitative eval-
uation. Each iperf session in our experiments produced
five-second averages of its throughput. This is the data rate
(i.e., goodput) applications such as iperf receives, and is
slightly less than the bottleneck bandwidth due to packet
header overheads.

Let xi(k) be the average throughput of flow i in the
five-second period k. Most tests involved dynamic scenarios
where flows joined and departed. For the definitions below,
suppose the composition of flows changes in period k = 1,
remains fixed over period k = 1, . . . , m, and changes again
in period k = m + 1, so that [1, m] is the maximum-length
interval over which the same equilibrium holds. Suppose
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Fig. 5. Dynamic scenario II: Throughput trajectory (left column) and
Dummynet queue trajectory (right column).

there are n active flows in this interval, indexed by i =
1, . . . , n. Let

xi :=
1

m

m
∑

k=1

xi(k)

be the average throughput of flow i over this interval. We
now define our performance metrics for this interval [1, m]
using these throughput measurements.

1) Throughput: The average aggregate throughput for the
interval [1, m] is defined as E :=

∑n

i=1
xi.

2) Intra-protocol fairness: Jain’s fairness index for
the interval [1, m] is defined as [22] F :=
(
∑n

i=1
xi)

2/(n
∑n

i=1
x2

i ). F ∈ (0, 1] and F = 1 is
ideal (equal sharing).
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3) Stability: The stability index of flow i is the sample
standard deviation normalized by the average through-
put:

Si :=
1

xi

√

√

√

√

1

m− 1

m
∑

k=1

(xi(k)− xi)
2

The smaller the stability index, the less oscillation
a source experiences. The stability index for interval
[1, m] is the average over the n active sources S :=
∑n

i=1
Si/n.

4) Responsiveness: The responsiveness index measures
the speed of convergence when network equilibrium
changes at k = 1, i.e., when flows join or depart.
Let xi(k) :=

∑k

t=1
xi(t)/k be the running average by

period k ≤ m. Then xi(m) = xi is the average over
the entire interval [1, m].
Responsiveness index R1 measures how fast the run-
ning average xi(k) of the slowest source converges to
xi:5

R1 := max
i

max

{

k :

∣

∣

∣

∣

xi(k)− xi

xi

∣

∣

∣

∣

> 0.1

}

Responsiveness index R2 measures how fast the aggre-
gate throughput converges to

∑

i xi:

R2 := max

{

k :

∣

∣

∣

∣

∑

i (xi(k)− xi)
∑

i xi

∣

∣

∣

∣

> 0.1

}

For each TCP protocol, we obtain one set of computed
values for each evaluation criterion for all of our experiments.
We plot the CDF (cumulative distribution function) of each
set of values. These are shown in Figures 6 – 9.

From Figures 6–9, FAST has the best performance among
all protocols for three evaluation criteria, fairness, stability
and responsiveness index R1. It has the second best overall
throughput. More importantly, the variation in each of the
distributions is smaller under FAST than under the other
protocols, suggesting that FAST had fairly consistent per-
formance in our test scenarios. We also observed that both
HSTCP and STCP achieved higher throughput and improved
responsiveness compared with TCP Reno. STCP had worse
intra-protocol fairness compared with TCP Reno, while both
BIC-TCP and HSTCP achieved comparable intra-protocol
fairness to Reno. HSTCP, BIC-TCP, and STCP showed
increased oscillations compared with Reno (Figures 8, 3),
and the oscillations became worse as the number of sources
increased (Figure 5).

From Figure 9, FAST TCP achieved a much better respon-
siveness index R1 (which is based on worst case individual
throughput) than the other schemes. We caution however that
it can be hard to quantify “responsiveness” for protocols that
do not stabilize into an equilibrium point or a periodic limit
cycle, and hence the unresponsiveness of Reno, HSTCP, and
STCP, as measured by index R1, should be interpreted with
care. Indeed, from Figure 10, all protocols except TCP Reno
perform well on the responsiveness index R2 which is based

5The natural definition of responsiveness index as the earliest period after
which the throughput xi(k) (as opposed to the running average xi(k) of
the throughput) stays within 10% of its equilibrium value is unsuitable for
TCP protocols that do not stabilize into an equilibrium value. Hence we
define it in terms of xi(k) which, by definition, always converges to xi by
the end of the interval k = m. This definition captures the intuitive notion
of responsiveness if xi(k) settles into a periodic limit cycle.

on aggregate throughput. This apparent discrepancy reflects
the fact that link utilization traces converge more quickly than
individual throughput traces. It also serves as a justification
for the link model (5): the aggregate input rate to a link
converges more rapidly than individual rates, and hence the
queue stabilizes quickly to its new level that tracks changes
in windows.

E. NS-2 simulations

Our dummynet testbed is limited to experiments with
single-bottleneck networks and identical protocol. We con-
ducted NS-2 simulation to study the performance of FAST
in more complex environments. The FAST implementation
in NS-2 is from CUBIN Lab [78]. We set up the param-
eters so that only the original FAST algorithm as used in
the dummynet experiments reported above was enabled. To
eliminate possible simulation artifacts, such as phase effect,
we introduced two-way noise traffic in the simulation, where
a certain number of Pareto on-off flows with shape parameter
1.5 were introduced in each direction.6 When a noise flow
is “on”, it transmits at a constant rate of 4Mbps. Each noise
flow has an average burst time of 100ms and an average idle
time of 100ms. Hence the average length of a flow is 50KB,
similar to web traffic. We repeated each scenario 20 times
and report both the average rate and the standard deviation
(error bars in the figures).

Three sets of simulations were conducted: FAST with
different noise levels, FAST with Reno traffic, and FAST on
a multilink network. Due to space limitation, we only present
a few examples from each set of simulations. See [79] for
complete details.

1) FAST with noise traffic: This set of simulations re-
peated the scenario in Section IV-B, with different levels of
noise traffic. The noise traffic was in the form of multiple
Pareto on-off flows as described above. We varied the number
of noise flows from 0 to 200, corresponding to an aggregate
noise traffic of 0% to 50% of the bottleneck capacity. Figures
11 – 13 show the throughput trajectory of three cases: 0%,
10% (40 noise flows) and 30% (120 noise flows). Each point
in the figures represents the average rate over a 60 second
interval.

The NS-2 simulation with 0% Noise (Figure 11) should
be compared with dummynet experiment in Section IV-B.
Different from dummynet experiments, the NS-2 simulation
was clean, and new flows mistook queueing delay due to
existing flows as part of their propagation delays, leading
to unfair throughputs. However, when the noise was 10%
of the capacity, such unfairness was eliminated. The queue
was frequently emptied and new flows observed the correct
propagation delays and converged to the correct equilibrium
rates, as shown in Figure 12. Figure 13 shows the throughput
when the noise was 30% of the capacity. FAST throughputs
oscillated, adapting to mice that joined and left frequently. In
the period of 720 to 1080 second, the mice traffic generated
so much packet loss that the three FAST flows could not
keep α packets in the queue and they behaved like an AIMD
algorithm. Such AIMD behavior led to discrimination against
long RTT flows (flow 1 and flow 3).

6We also conducted simulations with exponential on-off traffic. The results
are similar.
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Fig. 6. Overall evaluation: throughput.
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Fig. 9. Overall evaluation: responsiveness index R1.
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Fig. 11. FAST with 0% mice traffic.
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Fig. 12. FAST with 10% mice traffic.
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Fig. 13. FAST with 30% mice traffic.
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Fig. 14. 3 FAST flows vs 1 Reno flow.
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Fig. 15. 2 FAST flows vs 2 Reno flows.
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Fig. 16. 1 FAST flow vs 3 Reno flows.

2) Interaction between FAST and Reno: In this set of
simulations, we used the same set of paths as in Section
IV-B, but we reduced the delay on each path to one-fifth of
the original value since Reno took a very long time to reach
congestion avoidance with the delays in the original setup.
On each path, we used 4 parallel flows instead of a single
flow. We varied the number Reno flows on each path from
zero to four (and the number of FAST flows was hence varied
from four to zero) to examine FAST’s interaction with Reno.
The equilibrium rates of FAST and Reno sharing a single
bottleneck link are predictable; see [79] for details. Figures
14 – 16 show the aggregate throughputs of FAST flows and
Reno flows when the number of Reno flows on each path
is 1, 2, and 3. We also present the theoretic predictions
on Reno’s throughputs on the same figures for comparison.
The aggregate throughputs in simulations match the model
predictions reasonably well. Reno’s throughput is slightly
lower than prediction since the model does not captures
Reno’s timeout behavior. The simulation results also show
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capacity = 1Gbps for all links on the edge


Fig. 17. Topology with multiple bottlenecks

that FAST may be more aggressive, or less aggressive than
Reno, depending on the network setup.

Indeed, the behavior of a general multilink network share
by heterogeneous protocols that use different congestion
signals, such as FAST (which uses delay) and Reno (which
uses loss), can be very intricate. See [61], [60] for details
and more comments in Section V.

3) FAST in a network with multiple bottlenecks: We
simulated a network with two LANs connected by a WAN.
The topology is shown in Figure 17. Three pairs of flows ran
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Fig. 18. FAST with multiple bottlenecks

simultaneously on three different paths. The first pair of flows
(WAN flows) ran on the path 1→ A→ B → 4. The second
pair (LAN flows) ran on 1 → A → 2. The third pair (LAN
flows) ran on 3 → B → 4. All links except A → B had a
capacity of 1Gbps. The capacity of A→ B was varied from
10Mbps to 1Gbps. The noise traffic introduced in each link
has an average rate of 5% of the link capacity. Link 1→ A
and link B → 4 were bottlenecks. Link A→ B also became
a bottleneck when its capacity was less than 333Mbps. In all
scenarios, FAST converged stably to its equilibrium value,
fully utilizing 1 → A and B → 4. Figure 18 shows the
throughput of the WAN flow 1→ A→ B → 4 with various
capacities on A → B, both measured from simulations and
calculated by solving the utility maximization problem in (6).
The measured throughputs match the theoretical predictions
very well, validating the theoretical model and Theorem 2
on the equilibrium behavior of FAST.

V. OPEN ISSUES AND PROPOSED SOLUTIONS

FAST is a new delay-based congestion control algorithm.
We motivate our design carefully and support it with tentative
analysis and experiments. We now summarize some open
problems and potential solutions. More practical experience
is needed to assess conclusively the seriousness of these
problems and the effectiveness of proposed solutions in real
networks and applications.

A. Propagation delay measurement

Propagation delay (baseRTT ) is used in the FAST win-
dow control algorithm (4). In a clean network, the queueing
delay maintained by existing FAST flows may be mistaken
as part of the propagation delay by new flows that join later,
as shown in NS-2 simulations in [59]. The effect of this
estimation error is equivalent to modifying the underlying
utility functions to favor new flows over existing flows; see
[44], [59]. Methods to eliminate this error are suggested in
[49], [44], [59]. Our experience with high speed networks and
dummynet, however, has been that this error is negligible in
practice because noise or overshoot in the network is often
sufficient to occasionally clear the queue, allowing new flows
to observe the true propagation delay.

Propagation delay measurement can also be affected by
route change from a shorter path to a longer path during
the lifetime of a connection. Though route change at the
timescale of TCP connections may be uncommon, mistaking
an increase in propagation delay as congestion will reduce
the connection’s throughput. A solution is proposed in [49]
where the propagation delay is estimated by the minimum
RTT observed in a certain preceding period, not since the
beginning of the connection, so that the estimate tracks route
changes.

B. Queueing delay measurement
Queueing delay measurement may be affected by the

burstiness of the FAST flows themselves, leading to slight
unfairness among flows with different RTTs, as shown in
IV-B. Such error can be greatly reduced by deploying a
burstiness control algorithm in the sender, as shown in [71].

Like Vegas, FAST is affected by queueing delay in reverse
path, as shown in [4]. There are a number of ways that have
been proposed to eliminate the effect of reverse queueing
delay for Vegas without the need for additional supports from
receivers, that are applicable to FAST. The method in [36]
utilizes the TCP timestamp option that is widely implemented
in today’s TCP stacks. If the sender and receiver have the
same clock resolutions on their timestamps, the difference
between the sender timestamp for a data packet, and the
receiver timestamp for the corresponding ack is the one-
way delay measurement in the forward direction. Thus, the
difference between each one-way delay measurement and the
minimum one-way delay measurement would be the forward
queueing delay. Note that this calculation is correct even
when the sender and receiver’s clocks are not synchronized.
As long as the clock drift is not significant in the life of
a TCP flow, the clock offset will be eliminated through
subtraction since both the one-way delay measurement and
minimum one-way delay measurement has the same offset.
If the clock drift is significant, [54], [62] provide techniques
to accurately synchronize the clocks without GPS (global
positioning system). If the sender and receiver have different
clock resolutions, the sender can estimate the receiver clock
period by observing the number of ticks of receiver’s clock
during a fixed time interval. A different method is proposed
in [16] that does not directly measure the queueing delay.
Instead, they measure that actual throughput in the forward
direction, and use this measurement in place of W

d+q
.

C. α tuning
The parameter α in window control equation (4) controls

the number of packets that each flow maintains in the
bottleneck links. If the number of “elephant” flows sharing a
bottleneck link is large and the buffer capacity is small, these
flows may not be able to reach their equilibria before they
observe packet loss. In this case, the FAST window control
algorithm oscillates like a loss-based AIMD algorithm does.7

D. Heterogeneous protocols
Congestion control algorithms that use the same con-

gestion signal can be interpreted as distributed algorithms
for network utility maximization; see e.g., [31], [42], [50],
[76], [35], [41]. The underlying utility maximization problem
implies e.g. that there exists a unique equilibrium (operating)
point for general networks under mild conditions. It turns
out that a network with heterogeneous protocols that react
to different congestion signals can behave in a much more
intricate way. In particular, we prove theoretically in [61] that
there are networks that have multiple equilibrium points, and
demonstrate experimentally in [60] this phenomenon using
TCP Reno and Vegas/FAST. We also prove in [61] conditions

7Alternatively, a version of the FAST implementation deals with the
problem of insufficient buffering by choosing α among a small set of pre-
determined values based on achieved throughput. This can sometimes lead
to unfair throughput allocation as reported in some of the literature. This
version was used around early 2004, but discontinued since.
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on network parameters that guarantee (global) uniqueness of
equilibrium points for general networks.

We show in [60] that any desired inter-protocol fairness are
in principle achievable by an appropriate choice of FAST pa-
rameter, and that intra-protocol fairness among flows within
each protocol is unaffected by the presence of the other
protocol except for a reduction in effective link capacities.
How to design practical distributed algorithms that use only
local information to achieve a desired inter-protocol fairness
is however an open problem.

Acknowledgments: We gratefully acknowledge the contri-
butions of the FAST project team and our collaborators, at
http://netlab.caltech.edu/FAST/ , in particular,
G. Almes, J. Bunn, D. H. Choe, R. L. A. Cottrell, V.
Doraiswami, J. C. Doyle, W. Feng, O. Martin, H. Newman, F.
Paganini, S. Ravot, S. Shalunov, S. Singh, J. Wang, Z. Wang,
S. Yip. We thank J. Wang for pointing out several errors
in an earlier version. This work is funded by NSF (grants
ANI-0113425 and ANI-0230967), Caltech Lee Center for
Advanced Networking, ARO (grant DAAD19-02-1-0283),
AFOSR (grant F49620-03-1-0119), DARPA, and Cisco.

VI. APPENDIX: PROOFS

A. Proof of Lemma 1
Fix w.8 Define Ui(xi) = wi log xi−dixi and consider the

following optimization problem:

max
x≥0

∑

i

Ui(xi) subject to Rx ≤ c (9)

Since the objective function is strictly concave and the
feasible set is compact, there exists a unique optimal solution
x∗. Moreover, since R has full row rank, there exists a unique
Lagrange multiplier p∗ for the dual problem. See, e.g., [42]
for details. We claim that p∗ is the unique solution of (5)
and, for all i,

x∗
i = wi/(di + q∗i ) (10)

Now, (10) can be rewritten as, for all i,
∑

l

Rlip
∗
l = q∗i =

wi

x∗
i

− di = U ′
i(x

∗
i )

which is the Karush-Kuhn-Tucker condition for (9). Hence
(10) holds. Then (5) becomes

∑

i Rlix
∗
i ≤ cl, with equality

if p∗l > 0. But this is just the complementary slackness
condition for (9).

B. Proof of Theorem 2
Clearly unique solution x∗ for (6) and unique solution

p∗ for its dual exist, since the utility functions αi log xi are
strictly concave and R is full rank (see e.g. [42]). We need
to show that the dual problem of (6) is indeed given by (7).
Now the dual objective function is given by [2]

D(p) :=
∑

i

max
xi≥0

(

αi log xi − xi

∑

l

Rlipl

)

+
∑

l

clpl

=
∑

l

clpl −
∑

i

αi log
∑

i

Rlipl

+
∑

i

αi(log αi − 1)

8cf. the proof of a similar result in [50].

Since the last term is independent of p, minimizing D(p)
over p ≥ 0 is the same as minimizing (7) over p ≥ 0. Hence
there exists a unique solution (x∗, p∗) for (6)–(7).

We now show that (x∗, p∗) is the equilibrium point of (4)–
(5). In equilibrium, we have wi(t + 1) = wi(t) =: wi. From
(4), the corresponding queueing delays pl uniquely defined
by (5) must be such that the end-to-end queueing delays are
strictly positive, i.e., qi =

∑

l Rlipl > 0 for all i even though
some pl can be zero. Then αi(wi, qi) = αi in equilibrium,
and, from (4), we have qi =

∑

l Rlipl = αi/xi, where
xi := wi/(di +qi). But this is the Karush-Kuhn-Tucker con-
dition for (6). Moreover, (5) is the complementary slackness
condition. Hence the equilibrium of (4)–(5) coincides with
the optimal solution of (6)–(7), i.e. w = w∗ and p = p∗.

C. Proof of Theorem 3
Let N be the number of sources. Let q(t) = p(t) denote

the queueing delay at the single link (omitting the subscripts).
It is more convenient to work with normalized window

yi(t) :=
wi(t)

di

(11)

Let Y (t) :=
∑

i yi(t) be the aggregate normalized window.
Then q(t) > 0 if and only if Y (t) > c.

The window control algorithm (4) can be expressed in
terms of updates on y(t):

yi(t + 1) =

(

1− γq(t)

di + q(t)

)

yi(t) + γα̂i (12)

where α̂i := αi/di. Let α̂ :=
∑

i α̂i.
We first prove that the queue is lower bounded by a positive

constant after a finite time.
Theorem 5: 1) For all t > c/γα̂, we have q(t) > 0.
2) Moreover, given any ε > 0 we have

α̂

c
·min

i
di − ε < q(t) <

α̂

c
·max

i
di + ε

for all sufficiently large t.
Proof (Theorem 5). For the first claim, we will prove that
the queue will be nonzero at some t > c/γα̂, and that once
it is nonzero, it stays nonzero.

Suppose q(t) = 0. Summing (12) over i, we have Y (t +
1) = Y (t) + γα̂, i.e., Y (t) grows linearly in time by γα̂ in
each period. Since Y (0) ≥ 0, Y (t) > c after at most c/γα̂
periods. Hence there is some t > c/γα̂ such that q(t) > 0.
We now show that q(t) > 0 implies q(t + 1) > 0.

Since γ < 1, we have from (12)

yi(t + 1) ≥
(

1− q(t)

di + q(t)

)

yi(t) + γα̂i

=
di(t)

di + q(t)
yi(t) + γα̂i

Summing over i gives

Y (t + 1) ≥
∑

i

di(t)

di + q(t)
yi(t) + γα̂

But q(t) > 0 if and only if

∑

i

di(t)

di + q(t)
yi(t) = c (13)
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Hence

Y (t + 1) ≥ c + γα̂ > c

i.e., q(t + 1) > 0. This proves the first claim.
For the second claim, we first prove that Y (t) converges to

its limit point Y ∗ := c+α̂ geometrically (and monotonically):

Y (t) = Y ∗ + (Y (0)− Y ∗)(1− γ)t (14)

To prove (14), rewrite (12) as

yi(t + 1) = (1− γ)yi(t) + γ

(

diyi(t)

di + q(t)
+ α̂i

)

Summing over i and using (13), we have

Y (t + 1) = (1− γ)Y (t) + γ(c + α̂)

from which (14) follows.
Noting that d/(d + q) is a strictly increasing function of

d, we have from (13)

mini di(t)

mini di + q(t)
· Y (t) ≤

∑

i

di(t)

di + q(t)
yi(t) = c

≤ maxi di(t)

maxi di + q(t)
· Y (t)

Hence

1 +
q(t)

mini di

≥ Y (t)

c
≥ 1 +

q(t)

maxi di

(15)

From (14), we have

Y (t)

c
= 1 +

α̂

c
+

(

Y (0)− Y ∗

c

)

(1− γ)t

Hence, (15) becomes:

q(t)

mini di

≥ α̂

c
+

[(

Y (0)− Y ∗

c

)

(1− γ)t

]

≥ q(t)

maxi di

Since γ ∈ (0, 1], the absolute value of the term in the square
bracket can be made arbitrarily small by taking sufficiently
large t. Hence, given any ε′ > 0,

q(t)

mini di

≥ α̂

c
− ε′

and

q(t)

maxi di

≤ α̂

c
+ ε′

for all sufficiently large t. This proves the second claim.9

Hence without loss of generality, we will assume

q(t) >
α̂

2c
·min

i
di for all t ≥ 0

This implies that, for all t ≥ 0, equality holds in (5), or
equivalently, (13) holds.

9When γ = 1, then the proof shows that we can set ε = 0 in the statement
of Theorem 5 after at most c/α̂ periods. Moreover, Y (t) = c + α̂ for all
t ≥ 1. It also implies that, if di = d for all i, then q(t) = α̂d/c for all
t ≥ c/α̂, i.e., the system converges in finite time.

More generally, for all y ∈ <N
+ and q ∈ <+, let

G(y, q) :=
∑

i

diyi

di + q
− c = 0 (16)

Lemma 1 guarantees that given any y ∈ <N
+ , there is a unique

q ∈ <+ that satisfies (16).
An important implication of Theorem 5(2) is that we can

restrict our space of y to a subset of <N
+ :

Y := { y ∈ <N
+ | the unique q(y) defined implicitly

by (16) is greater than α̂ ·min
i

di/(2c) }(17)

The key feature of Y we will need in Lemma 9 is that, for
all y ∈ Y , q(y) is lower bounded uniformly in y. Define
F : Y −→ Y by

Fi(y) :=

(

1− γq(y)

di + q(y)

)

yi + γα̂i (18)

where q(y) is implicitly defined by (16). Then the evolution
(12) of the normalized window is y(t + 1) = F (y(t)).
Our main result is to show that the iteration F is locally
asymptotically stable by proving that the spectral radius of
∂F/∂y is strictly less than 1 on Y .

Theorem 6: Fix any γ ∈ (0, 1]. For all y ∈ Y , the spectral
radius of ∂F/∂y is strictly less than 1.

Theorem 6 implies a neighborhood of the unique fixed
point y∗ defined by y∗ = F (y∗) such that given any initial
normalized window y(0) in this neighborhood, y(t + 1) =
F (y(t)) converges to y∗. This implies Theorem 3.

Sketch of proof (Theorem 6). We will show through
Lemmas 7–9 that the spectral radius ρ(∂F/∂y) is uniformly
bounded away from 1, i.e., given γ ∈ (0, 1], there exists
η′ > 0 such that for all y ∈ Y ,

ρ

(

∂F

∂y

)

< η′ < 1 (19)

Let q(y) denote the unique solution of (16). Let

βi :=
diyi

(di + q(y))2





∑

j

djyj

(dj + q(y))2





−1

(20)

µi :=
di

di + q(y)
(21)

By Theorem 5(2), we have

0 < βi, µi < 1 and
∑

i

βi = 1

Let M :=diag(µi) be the diagonal matrix with µi as its
nonzero entries. Let β := (βi, for all i)T and µ := (βi,
for all i)T be column vectors.

The proof of the following lemma is straightforward and
can be found in [24].

Lemma 7: For γ ∈ (0, 1],

∂F

∂y
= γ

(

M − βµT
)

+ (1− γ)I

where I is the N ×N identity matrix.
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Let the eigenvalues of ∂F/∂y be denoted by λi(γ), i =
1, . . . , N , as a function of γ ∈ (0, 1]. We will show in the
next two lemmas that when γ = 1,

0 ≤ λi(1) < 1 for all i (22)

Then Lemma 7 implies that, for all γ ∈ (0, 1],

0 ≤ λi(γ) = γλi(1) + (1− γ) < 1 for all i

and hence (19) holds for any given γ ∈ (0, 1].
The key observation to proving (22) is that we can ex-

plicitly characterize all the eigenvalues of ∂F/∂y. These
eigenvalues are functions of y even though this is not explicit
from the notation. Fix γ = 1 and fix any y. Suppose the
set {µ1, . . . , µN} takes k ≤ N distinct values. Without
loss of generality suppose µ1, . . . , µj1 take the value µ̃1,
µj1+1, . . . , µj2 take the value µ̃2, ..., µjk−1+1, . . . , µjk

take
the value µ̃k, such that

∑k

i=1
ji = N . The following lemma

characterizes completely the eigenvalues and eigenvectors of
the Jacobian, and is proved in [24].

Lemma 8: Suppose γ = 1 and fix any y. Then
1) λ1 = 0 is an eigenvalue of ∂F/∂y with corresponding

eigenvector v1 = M−1β.
2) For i = 1, . . . , k, if ji > 1 then µ̃i is an eigenvalue

with algebraic and geometric multiplicity ji−1. There
are N − k such distinct eigenvalues.

3) The remaining k − 1 eigenvalues are the solutions of

k
∑

i=1

β̃i

µ̃i − λ
= 0 (23)

counting (algebraic) multiplicity, where β̃i :=
∑ji

j=1
βj . The eigenvectors corresponding to these

eigenvalues λi, i = 2, . . . , k, are

vi = (M − λiI)−1βi (24)

The following lemma proves the assertion and is proved
in [24].

Lemma 9: Suppose γ = 1. Then

ρ

(

∂F

∂y

)

≤ maxi µi < max
i

di

di + q
< 1

where q := α̂ mini di/2c > 0.

This completes the proof of Theorem 6, from which
Theorem 3 follows.

D. Proof of Corollary 4

From (12) and (13), the equilibrium windows w∗
i = y∗

i di

and delay q∗ = p∗ satisfy

p∗w∗
i

di + p∗
= αi for all i (25)

∑

i

w∗
i

di + p∗
= c (26)

Summing (25) over i and substituting in (26), we have p∗ =
α/c, where α :=

∑

i αi. Substituting into (25), we have

w∗
i = αi

(

1 +
di

p∗

)

= αi +
αic

α
di

Hence

x∗
i =

w∗
i

di + p∗
=

αi

α
c

The second and third claims follow from Theorem 5 and
footnote 10 at the end of the proof of Theorem 5.
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