
Chapter 1

Second Quantization

1.1 Creation and Annihilation Operators in Quan-

tum Mechanics

We will begin with a quick review of creation and annihilation operators in the
non-relativistic linear harmonic oscillator. Let a and a† be two operators acting
on an abstract Hilbert space of states, and satisfying the commutation relation

[
a, a†

]
= 1 (1.1)

where by “1” we mean the identity operator of this Hilbert space. The operators
a and a† are not self-adjoint but are the adjoint of each other.

Let |α〉 be a state which we will take to be an eigenvector of the Hermitian
operators a†a with eigenvalue α which is a real number,

a†a |α〉 = α|α〉 (1.2)

Hence,

α = 〈α|a†a|α〉 = ‖a|α〉‖2 ≥ 0 (1.3)

where we used the fundamental axiom of Quantum Mechanics that the norm of
all states in the physical Hilbert space is positive. As a result, the eigenvalues
α of the eigenstates of a†a must be non-negative real numbers.

Furthermore, since for all operators A, B and C

[AB, C] = A [B, C] + [A, C] B (1.4)

we get

[
a†a, a

]
= −a (1.5)

[
a†a, a†

]
= a† (1.6)
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i.e., a and a† are “eigen-operators” of a†a. Hence,

(
a†a

)
a = a

(
a†a − 1

)
(1.7)

(
a†a

)
a† = a†

(
a†a + 1

)
(1.8)

Consequently we find

(
a†a

)
a|α〉 = a

(
a†a − 1

)
|α〉 = (α − 1) a|α〉 (1.9)

Hence the state a|α〉 is an eigenstate of a†a with eigenvalue α − 1, provided
a|α〉 �= 0. Similarly, a†|α〉 is an eigenstate of a†a with eigenvalue α+1, provided
a†|α〉 �= 0. This also implies that

|α − 1〉 =
1√
α

a|α〉 (1.10)

|α + 1〉 =
1√

α + 1
a†|α〉 (1.11)

Let us assume that

an |α〉 �= 0, ∀n ∈ Z
+ (1.12)

Hence, an|α〉 is an eigenstate of a†a with eigenvalue α− n. However, α− n < 0
if α < n, which contradicts our earlier result that all these eigenvalues must be
non-negative real numbers. Hence, for a given α there must exist an integer n
such that an|α〉 �= 0 but an+1|α〉 = 0, where n ∈ Z

+. Let

|α − n〉 =
1

‖an|α〉‖ an|α〉 ⇒ a†a |α − n〉 = (α − n) |α − n〉 (1.13)

where

‖an|α − n〉‖ =
√

α − n (1.14)

But

a|α − n〉 = − 1

‖an|α〉‖ an+1|α〉 = 0 ⇒ α = n (1.15)

In other words the allowed eigenvalues of a†a are the non-negative integers.
Let us now define the ground state |0〉, as the state annihilated by a,

a|0〉 = 0 (1.16)

Then, an arbitrary state |n〉 is

|n〉 =
1√
n!

(a†)n|0〉 (1.17)

which has the inner product

〈n|m〉 = δn,m n! (1.18)
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In summary, we found that creation and annihilation operators obey

a†|n〉 =
√

n + 1 |n + 1〉 (1.19)

a |n〉 =
√

n |n − 1〉 (1.20)

a†a |n〉 = n |n〉 (1.21)

(1.22)

and thus their matrix elements are

〈m|a†|n〉 =
√

n + 1 δm,n+1 〈m|a|n〉 =
√

n δm,n−1 (1.23)

1.1.1 The Linear harmonic Oscillator

The Hamiltonian of the Linear Harmonic Oscillator is

H =
P 2

2m
+

1

2
mω2X2 (1.24)

where X and P , the coordinate and momentum Hermitian operators satisfy
canonical commutation relations,

[X, P ] = i� (1.25)

We now define the creation and annihilation operators a† and a as

a =
1√
2

[√
mω

�
X + i

P√
mω�

]
(1.26)

a† =
1√
2

[√
mω

�
X − i

P√
mω�

]
(1.27)

which satisfy [
a, a†

]
= 1 (1.28)

Since

X =

√
�

2mω

(
a + a†

)
(1.29)

P =

√
mω�

2

(
a − a†

)

i
(1.30)

the Hamiltonian takes the simple form

H = �ω

(
a†a +

1

2

)
(1.31)

The eigenstates of the Hamiltonian are constructed easily using our results since
all eigenstates of a†a are eigenstates of H . Thus, the eigenstates of H are the
eigenstates of a†a,

H |n〉 = �ω

(
n +

1

2

)
(1.32)
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with eigenvalues

En = �ω

(
n +

1

2

)
(1.33)

where n = 0, 1, . . ..
The ground state |0〉 is the state annihilated by a,

a|0〉 ≡ 1

2

[√
mω

�
X + i

P√
mω�

]
|0〉 = 0 (1.34)

Since

〈x|P |φ〉 = −i�
d

dx
〈x|φ〉 (1.35)

we find that ψ0(x) = 〈x|0〉 satisfies

(
x +

�

mω

d

dx

)
ψ0(x) = 0 (1.36)

whose (normalized) solution is

ψ0(x) =
(mω

π�

)1/4

e
−mω

2�
x2

(1.37)

The wave functions ψn(x) of the excited states |n〉 are

ψn(x) = 〈x|n〉 =
1√
n!

〈x|(a†)n|0〉

=
1√
n!

(mω

2�

)n/2
(

x − �

mω

d

dx

)n

ψ0(x) (1.38)

Creation and annihilation operators are very useful. Let us consider for
instance the anharmonic oscillator whose Hamiltonian is

H =
P 2

2m
+

1

2
mω2X2 + λX4 (1.39)

Let us compute the eigenvalues En to lowest order in perturbation theory in
powers of λ. The first order shift ∆En is

∆En = λ 〈n|X4|n〉 + O(λ2)

= λ

(
�

2mω

)2

〈n|(a + a†)4|n〉 + . . .

= λ

(
�

2mω

)2 {
〈n|a†a†aa|n〉 + other terms with two a′s and two a†′s

}
+ . . .

= λ

(
�

2mω

)2 (
6n2 + 6n + 3

)
+ . . . (1.40)
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1.1.2 Many Harmonic Oscillators

It is trivial to extend these ideas to the case of many harmonic oscillators, which
is a crude model of an elastic solid. Consider a system of N identical linear
harmonic oscillators of mass M and frequency ω, with coordinates {Qi} and
momenta {Pi}, where i = 1, . . . , N . These operators satisfy the commutation
relations

[Qj, Qk] = [Pj , Pk] = 0, [Qj , Pk] = i�δjk (1.41)

where j, k = 1, . . . , N . The Hamiltonian is

H =

N∑

i=1

P 2
i

2Mi
+

1

2

N∑

i,j=1

Vij QiQj (1.42)

where Vij is a symmetric positive definite matrix, Vij = Vji.
We will find the spectrum (and eigenstates) of this system by changing vari-

ables to normal modes and using creation and annihilation operators for the
normal modes. To this end we will first rescale coordinates and momenta so as
to absorb the particle mass M :

xi =
√

MiQi (1.43)

pi =
Pi√
Mi

(1.44)

Uij =
1√

MiMj

Vij (1.45)

which also satisfy
[xj , pj] = i�δjk (1.46)

and

H =

N∑

i=1

p2
i

2
+

1

2

N∑

i,j=1

Uijxixj (1.47)

We now got to normal mode variables by means of an orthogonal transformation
Cjk, i.e. [C−1]jk = Ckj ,

x̃k =

N∑

j=1

Ckjxj , p̃k =

N∑

j=1

Ckjpj

N∑

i=1

CkiCji = δkj ,

N∑

i=1

CikCij = δkj (1.48)

Sine the matrix Uij is real symmetric and positive definite, its eigenvalues, which
we will denote by ω2

k (with k = 1, . . . , N), are all non-negative, ω2
k ≥ 0. The

eigenvalue equation is

N∑

i,j=1

CkiC�jUij = ω2
kδk�, (no sum over k) (1.49)
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Since the transformation is orthogonal, it preserves the commutation relations

[x̃j , x̃k] = [p̃j , p̃k] = 0, [x̃j , p̃k] = i�δjk (1.50)

and the Hamiltonian is now diagonal

H =
1

2

N∑

i=1

(
p̃2

j + ω2
j x̃2

j

)
(1.51)

We now define creation and annihilation operators for the normal modes

aj =
1√
2�

(
√

ωj x̃j +
i

√
ωj

p̃j

)

a†
j =

1√
2�

(
√

ωj x̃j −
i

√
ωj

p̃j

)

x̃j =

√
�

2ωj

(
aj + a†

j

)

p̃j = −i

√
�ωj

2

(
aj − a†

j

)
(1.52)

where, once again,

[aj, ak]
[
a†

j , a
†
k

]
= 0,

[
aj , a

†
k

]
= δjk (1.53)

and the normal mode Hamiltonian takes the standard form

H =

N∑

j=1

�ωj

(
a†

jaj +
1

2

)
(1.54)

The eigenstates of the Hamiltonian are labelled by the eigenvalues of a†
jaj

for each normal mode j, |n1, . . . , nN 〉 ≡ |{nj}〉. Hence,

H |n1, . . . , nN 〉 =

N∑

j=1

�ωj

(
nj +

1

2

)
|n1, . . . , nN 〉 (1.55)

where

|n1, . . . , nN 〉 =




N∏

j=1

(a†
j)

nj

√
nj !


 |0, . . . , 0〉 (1.56)

The ground state of the system, which we will denote by |0〉, is the state in
which all normal modes are in their ground state,

|0〉 ≡ |0, . . . , 0〉 (1.57)
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Thus, the ground state |0〉 is annihilated by the annihilation operators of all
normal modes,

aj |0〉 = 0, ∀j (1.58)

and the ground state energy of the system Egnd is

Egnd =

N∑

j=1

1

2
�ωj (1.59)

The energy of the excited states is

E(n1, . . . , nN ) =

N∑

j=1

�ωjnj + Egnd (1.60)

We can now regard the state |0〉 as the vacuum state and the excited states
|n1, . . . , nN 〉 as a state with nj excitations (or particles) of type j. In this
context, the excitations are called phonons. A single-phonon state of type j will
be denoted by |j〉, is

|j〉 = a†
j |0〉 = |0, . . . , 0, 1j, 0, . . . , 0〉 (1.61)

This state is an eigenstate of H ,

H |j〉 = Ha†
j |0〉 = (�ωj + Egnd) a†

j |0〉 = (�ωj + Egnd) |j〉 (1.62)

with excitation energy �ωj . Hence, an arbitrary state |n1, . . . , nN〉 can also
be regarded as a collection of non-interacting particles (or excitations), each
carrying an energy equal to the excitation energy (relative to the ground state
energy). The total number of phonons in a given state is measured by the
number operator

N̂ =

N∑

j=1

a†
jaj (1.63)

Notice that although the number of oscillators is fixed (and equal to N) the
number of excitations may differ greatly from one state to another.

We now note that the state |n1, . . . , nN〉 can also be represented as

|n1, . . . , nk, . . .〉 ≡ 1√
n1!n2! . . .

|
n1︷ ︸︸ ︷

1 . . . 1,

n2︷ ︸︸ ︷
2 . . . 2 . . .〉 (1.64)

We will see below that this form appears naturally in the quantization of systems
of identical particles. Eq.(1.64) is symmetric under the exchange of labels of the
phonons. Thus, phonons are bosons.
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1.2 The Quantized Elastic Solid

We will now consider the problem of an elastic solid in the approximation of
continuum elasticity, i.e. we will be interested in vibrations on wavelengths
long compared to the inter-atomic spacing. At the classical level, the physi-
cal state of this system is determined by specifying the local three-component
vector displacement field �u(�r, t), which describes the local displacement of the
atoms away from their equilibrium positions, and by the velocities of the atoms,
∂�u
∂t (�r, t). The classical Lagrangian L for an isotropic solid is

L =

∫
d3r

ρ

2

(
∂u

∂t

)2

− 1

2

∫
d3r [K∇iuj∇iuj + Γ∇iui∇juj ] (1.65)

where ρ is the mass density, K and Γ are two elastic moduli.
The classical equations of motion are

δL

δui
=

∂

∂t

(
δL

δu̇i

)
(1.66)

which have the explicit form of a wave equation

ρ
∂2ui

∂t2
− K∇2ui − Γ∇i

�∇ · �u = 0 (1.67)

We now define the canonical momentum Πi(�r, t)

Πi(�r, t) =
δL

δu̇i
= ρu̇i (1.68)

which in this case coincides with the linear momentum density of the particles.
The classical Hamiltonian H is

H =

∫
d3rΠi(�r, t)

∂�u

∂t
(�r, t) − L =

∫
d3r

[
�Π2

2ρ
+

K

2
(∇i�u)

2
+

Γ

2

(
�∇ · �u

)2
]

(1.69)
In the quantum theory, the displacement field �u(�r) and the canonical momen-

tum �Π(�r) become operators acting on a Hilbert space, obeying the equal-time
commutation relations

[
ui(�r), uj(�R)

]
=
[
Πi(�r), Πj(�R)

]
= 0,

[
ui(�r), Πj(�R)

]
= i�δ(�r − �R)δij

(1.70)
Due to the translational invariance of the continuum solid, the canonical

transformation to normal modes is found essentially by Fourier transforms.
Thus we write

ũi(�p) =

∫
d3r e−i�p·�r ui(�r) (1.71)

Π̃i(�p) =

∫
d3r e−i�p·�r Πi(�r) (1.72)
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Using the representations of the Dirac δ-function

δ3(�r − �R) =

∫
d3p

(2π)3
ei�p·(�r−�R) (1.73)

(2π)3δ3(�p − �q) =

∫
d3r e−i(�p−�q)·�r (1.74)

we can write

ui(�r) =
1√
ρ

∫
d3p

(2π)3
ei�p·�r ũi(�p) (1.75)

Πi(�r) =
√

ρ

∫
d3p

(2π)3
ei�p·�r Π̃i(�p) (1.76)

where we have scaled out the density for future convenience. On the other hand,
since ui(�r) and Πi(�r) are real (and Hermitian)

ui(�r) = u†
i (�r), Πi(�r) = Π†

i (�r) (1.77)

their Fourier transformed fields ũi(�p) and Π̃i(�p) obey

ũ†
i (�p) = ũi(−�p), Π̃†

i (�p) = Π̃i(−�p) (1.78)

with equal-time commutation relations

[ũj(�p), ũk(�q)] =
[
Π̃j(�p), Π̃k(�q)

]
= 0,

[
ũj(�p), Π̃k(�q)

]
= i�(2π)3δ3(�p + �q)δjk

(1.79)
In terms of the Fourier transformed fields the Hamiltonian has the form

H =

∫
d3p

(2π)3

(
1

2
Π̃i(−�p)Π̃i(�p) +

1

2
ω2

ij(�p)ũi(−�p)ũj(�p)

)
(1.80)

where

ω2
ij(�p) =

K

ρ
�p 2δij +

Γ

ρ
pipj (1.81)

The 3 × 3 matrix ω2
ij has two eigenvalues:

1.

ω2
L(�p) =

(
K + Γ

ρ

)
�p 2 (1.82)

with eigenvector parallel to the unit vector �p/|�p |

2.

ω2
T (�p) =

(
K

ρ

)
�p 2 (1.83)

with a two-dimensional degenerate space spanned by the mutually orthog-
onal unit vectors �e1(�p) and �e2(�p), both orthogonal to �p:

�eα(�p) · �p = 0, (α = 1, 2), �e1(�p) · �e2(�p) = 0 (1.84)
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We can now expand the displacement field ũ(�p) into a longitudinal component

ũL
i (�p) = ũL(�p)

pi

|�p | (1.85)

and two transverse components

ũT
i (�p) =

∑

α=1,2

ũT
α(�p)eα

i (�p) (1.86)

The canonical momenta Π̃i(�p) can also be expanded into one longitudinal com-

ponent Π̃L(�p) and two transverse components Π̃T
α(�p). As a result the Hamilto-

nian can be decomposed into a sum of two terms,

H = HL + HT (1.87)

• HL involves only the longitudinal component of the field and momenta

HL =
1

2

∫
d3p

(2π)3

{
Π̃L(−�p)Π̃L(�p) + ω2

L(�p) ũL(−�p)ũL(�p)
}

(1.88)

• HT involves only the transverse components of the field and momenta

HT =
1

2

∫
d3p

(2π)3

∑

α=1,2

{
Π̃T

α(−�p)Π̃T
α (�p) + ω2

T (�p) ũT
α(−�p)ũT

α(�p)
}

(1.89)

We can now define creation and annihilation operators for both longitudinal
and transverse components

aL(�p) =
1√
2�

(
√

ωL(�p) ũL(�p) +
i√

ωL(�p)
Π̃L(�p)

)

aL(�p)† =
1√
2�

(
√

ωL(�p) ũL(−�p) − i√
ωL(�p)

Π̃L(−�p)

)

aα
T (�p) =

1√
2�

(
√

ωT (�p) ũα
T (�p) +

i√
ωT (�p)

Π̃α
T (�p)

)

aα
T (�p)† =

1√
2�

(
√

ωT (�p) ũα
T (−�p) − i√

ωT (�p)
Π̃α

T (−�p)

)

(1.90)

which obey standard commutation relations:

[aL(�p), aL(�q)] =
[
aL(�p)†, aL(�q)†)

]
= 0

[
aL(�p), aL(�q)†

]
= (2π)3δ3(�p − �q)

[
aα

T (�p), aβ
T (�q)

]
=

[
aα

T (�p)†, aβ
T (�q)†)

]
= 0

[
aα

T (�p), aβ
T (�q)†

]
= (2π)3δ3(�p − �q)δαβ

[aL(�p), aα
T (�q)] =

[
aL(�p), aα

T (�q)†)
]

= 0

(1.91)
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where α, β = 1, 2.
Conversely we also have

ũL(�p) =

√
�

2ωL(�p)

(
aL(�p) + aL(−�p)†

)

Π̃L(�p) = −i

√
�ωL(�p)

2

(
aL(�p) − aL(−�p)†

)

ũα
T (�p) =

√
�

2ωT (�p)

(
aα

T (�p) + aα
T (−�p)†

)

Π̃α
T (�p) = −i

√
�ωT (�p)

2

(
aα

T (�p) − aα
T (−�p)†

)

(1.92)

The Hamiltonian now reads

H =
1

2

∫
d3p

(2π)3
�ωL(�p)

(
aL(�p)†aL(�p) + aL(�p)aL(�p)†

)

+
1

2

∫
d3p

(2π)3
�ωT (�p)

∑

α=1,2

(
aα

T (�p)†aα
T (�p) + aα

T (�p)aα
T (�p)†

)

= Egnd +

∫
d3p

(2π)3

(
�ωL(�p) aL(�p)†aL(�p) +

∑

α=1,2

�ωT (�p) aα
T (�p)†aα

T (�p)

)

(1.93)

The ground state |0〉 has energy Egnd,

Egnd = V

∫
d3p

(2π)3
1

2
(�ωL(�p) + 2�ωT (�p)) (1.94)

where we have used that

lim
�p→0

δ3(�p) =
V

(2π)3
(1.95)

As before the ground state is annihilated by all annihilation operators

aL(�p)|0〉 = 0, aα
T (�p)|0〉 = 0 (1.96)

and it will be regarded as the state without phonons.
There are three one-phonon states with wave vector �p:

• One longitudinal phonon state

|L, �p〉 = aL(�p)†|0〉 (1.97)

with energy EL(�p)
EL(�p) = �ωL(�p) = vL �|�p| (1.98)
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where

vL =

√
K + Γ

ρ
(1.99)

is the speed of the longitudinal phonon,

• Two transverse phonon states

|T, α, �p〉 = aα
T (�p)†|0〉 (1.100)

one for each polarization, with energy ET (�p)

ET (�p) = �ωT (�p) = vT �|�p| (1.101)

where

vT =

√
K

ρ
(1.102)

is the speed of the transverse phonons.

The energies of the longitudinal and transverse phonon we found vanish as
�p → 0. These are acoustic phonons and the speeds vL and vT are speeds
of sound. Notice that if the elastic modulus Γ = 0 all three states become
degenerate. If in addition we were to have considered the effects of lattice
anisotropies, the two transverse branches may no longer be degenerate as in
this case.

Similarly we can define multi-phonon states, with either polarization. For
instance a state with two longitudinal phonons with momenta �p and �q is

|L, �p, �q〉 = aL(�p)†aL(�q)†|0〉 (1.103)

This state has energy �ωL(�p) + �ωL(�q) above the ground state.

Finally, let us define the linear momentum operator �P , for phonons of either
longitudinal or transverse polarization,

�P =

∫
d3p

(2π)3
��p

(
aL(�p)†aL(�p) +

∑

α=1,2

aα
T (�p)†aα

T (�p)

)
(1.104)

This operator obeys the commutation relations

[
�P , aL(�k)†

]
= ��kaL(�k)†

[
�P , aα

T (�k)†
]

= ��kaα
T (�k)†

[
�P , aL(�k)

]
= −��kaL(�k)

[
�P , aα

T (�k)
]

= −��kaα
T (�k) (1.105)
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and commutes with the Hamiltonian

[
�P , H

]
= 0 (1.106)

Hence �P is a conserved quantity. Moreover, using the commutation relations
and the expressions for the displacement fields it is easy to show that

[
�P , ui(�x)

]
= i��∇ui(�x) (1.107)

which implies that �P is the generator of infinitesimal displacements. Hence, it
is the linear momentum operator.

It is easy to see that �P annihilates the ground state

�P |0〉 = 0 (1.108)

which means that the ground state has zero momentum. In other terms, the
ground state is translationally invariant (as it should).

Using the commutation relations it is easy to show that

�P |L,�k〉 = ��k |L,�k〉, �P |T, α,�k〉 = ��k |T, α,�k〉 (1.109)

which allows us to identify the momentum carried by a phonon with ��k where
�k is the label of the Fourier transform.

Finally, we notice that we can easily write down an expression for the dis-
placement field ui(�r) and the canonical momentum Πi(�r) in terms of creation
and annihilation operators for longitudinal and transverse phonons:

ui(�r) =
1√
ρ

∫
d3p

(2π)3

√
�

2ωL(p)

pi

|�p|
(
aL(�p)ei�p·�r − aL(�p)†e−i�p·�r

)

+
1√
ρ

∫
d3p

(2π)3

√
�

2ωT (p)

∑

α=1,2

eα
i (�p)

(
aα

T (�p)ei�p·�r − aα
T (�p)†e−i�p·�r

)

(1.110)

which is known as a mode expansion. There is a similar expression for the
canonical momentum Πi(�r).

In summary, after quantizing the elastic solid we found that the quantum
states of this system can be classified in terms if a set of excitations, the longi-
tudinal and transverse phonons. These states carry energy and momentum (as
well as polarization) and hence behave as particles. For these reason we will
regard these excitations as the quasi-particles of this system. We will see that
quasi-particles arise generically in interacting many-body system. One problem
we will be interested in is in understanding the relation between the properties
of the ground state and the quantum numbers of the quasiparticles.
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1.3 Indistinguishable Particles

Let us consider now the problem of a system of N identical non-relativistic
particles. For the sake of simplicity I will assume that the physical state of each
particle j is described by its position �xj relative to some reference frame. This
case is easy to generalize.

The wave function for this system is Ψ(x1, . . . , xN ). If the particles are
identical then the probability density, |Ψ(x1, . . . , xN )|2, must be invariant (i.e.,
unchanged) under arbitrary exchanges of the labels that we use to identify (or
designate) the particles. In quantum mechanics, the particles do not have well
defined trajectories. Only the states of a physical system are well defined. Thus,
even though at some initial time t0 the N particles may be localized at a set
of well defined positions x1, . . . , xN , they will become delocalized as the system
evolves. Furthermore the Hamiltonian itself is invariant under a permutation
of the particle labels. Hence, permutations constitute a symmetry of a many-
particle quantum mechanical system. In other terms, identical particles are
indistinguishable in quantum mechanics. In particular, the probability density
of any eigenstate must remain invariant if the labels of any pair of particles
are exchanged. If we denote by Pjk the operator that exchanges the labels
of particles j and k, the wave functions must change under the action of this
operator at most by a phase factor. Hence, we must require that

PjkΨ(x1, . . . , xj , . . . , xk, . . . , xN ) = eiφΨ(x1, . . . , xj , . . . , xk, . . . , xN ) (1.111)

Under a further exchange operation, the particles return to their initial labels
and we recover the original state. This sample argument then requires that
φ = 0, π since 2φ must not be an observable phase. We then conclude that
there are two possibilities: either Ψ is even under permutation and PΨ = Ψ, or
Ψ is odd under permutation and PΨ = −Ψ. Systems of identical particles which
have wave functions which are even under a pairwise permutation of the particle
labels are called bosons. In the other case, Ψ odd under pairwise permutation,
they are Fermions. It must be stressed that these arguments only show that
the requirement that the state Ψ be either even or odd is only a sufficient
condition. It turns out that under special circumstances (e.g in one and two-
dimensional systems) other options become available and the phase factor φ
may take values different from 0 or π. These particles are called anyons. For
the moment the only cases in which they may exist appears to be in situations
in which the particles are restricted to move on a line or on a plane. In the case
of relativistic quantum field theories, the requirement that the states have well
defined statistics (or symmetry) is demanded by a very deep and fundamental
theorem which links the statistics of the states of the spin of the field. This is
known as the spin-statistics theorem and it is actually an axiom of relativistic
quantum mechanics (and field theory).
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1.4 Fock Space

We will now discuss a procedure, known as Second Quantization, which will
enable us to keep track of the symmetry of the states of systems of many identical
particles in a simple way. Let us consider a system of N identical non-relativistic
particles. The wave functions in the coordinate representation are Ψ(x1, . . . , xN )
where the labels x1, . . . , xN denote both the coordinates and the spin states of
the particles in the state |Ψ〉. For the sake of definiteness we will discuss physical
systems describable by Hamiltonians Ĥ of the form

Ĥ = − �
2

2m

N∑

j=1

2
j +

N∑

j=1

V (xj) +
∑

j,k

U(xj − xk) + . . . (1.112)

Let {φn(x)} be the wave functions for a complete set of one-particle states.
Then an arbitrary N -particle state can be expanded in a basis which is the
tensor product of the one-particle states, namely

Ψ(x1, . . . , xN ) =
∑

{nj}

C(n1, . . . nN )φn1(x1) . . . φnN (xN ) (1.113)

Thus, if Ψ is symmetric (antisymmetric) under an arbitrary exchange xj ↔ xk,
the coefficients C(n1, . . . , nN ) must be symmetric (antisymmetric) under the
exchange nj ↔ nk.

A set of N -particle basis states with well defined permutation symmetry is
the properly symmetrized or antisymmetrized tensor product

|Ψ1, . . . ΨN〉 ≡ |Ψ1〉 × |Ψ2〉 × · · · × |ΨN〉 =
1√
N !

∑

P

ξP |ΨP (1)〉 × · · · × |ΨP (N)〉

(1.114)
where the sum runs over the set of all possible permutation P . The weight
factor ξ is +1 for bosons and −1 for fermions. Notice that, for fermions, the
N -particle state vanishes if two particles are in the same one-particle state. This
is the Pauli Exclusion Principle.

The inner product of two N -particle states is

〈χ1, . . . χN |ψ1, . . . , ψN 〉 =
1

N !

∑

P,Q

ξP+Q〈χQ(1)|ψP (1)〉 · · · 〈χQ(N)|ψP (1)〉 =

=
∑

P ′

ξP ′〈χ1|ψP (1)〉 · · · 〈χN |ψP (N)〉

(1.115)

where P ′ = P + Q denotes the permutation resulting from the composition of
the permutations P and Q. Since P and Q are arbitrary permutations, P ′ spans
the space of all possible permutations as well.
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It is easy to see that Eq.(1.115) is nothing but the permanent (determinant)
of the matrix 〈χj |ψk〉 for symmetric (antisymmetric) states, i.e.,

〈χ1, . . . χN |ψ1, . . . ψN 〉 =

∣∣∣∣∣∣∣

〈χ1|ψ1〉 . . . 〈χ1|ψN 〉
...

...
〈χN |ψ1〉 . . . 〈χN |ψN 〉

∣∣∣∣∣∣∣
ξ

(1.116)

In the case of antisymmetric states, the inner product is the familiar Slater
determinant.

Let us denote by {|α〉} a complete set of orthonormal one-particle states.
They satisfy

〈α|β〉 = δαβ

∑

α

|α〉〈α| = 1 (1.117)

The N -particle states are {|α1, . . . αN 〉}. Because of the symmetry requirements,
the labels αj can be arranged in the form of a monotonic sequence α1 ≤ α2 ≤
· · · ≤ αN for bosons, or in the form of a strict monotonic sequence α1 < α2 <
· · · < αN for fermions. Let nj be an integer which counts how many particles are
in the j-th one-particle state. The boson states |α1, . . . αN 〉 must be normalized
by a factor of the form

1√
n1! . . . nN !

|α1, . . . , αN 〉 (α1 ≤ α2 ≤ · · · ≤ αN ) (1.118)

and nj are non-negative integers. For fermions the states are

|α1, . . . , αN 〉 (α1 < α2 < · · · < αN ) (1.119)

and nj = 0 > 1. These N -particle states are complete and orthonormal

1

N !

∑

α1,...,αN

|α1, . . . , αN 〉〈α1, . . . , αN | = Î (1.120)

where the sum over the α’s is unrestricted and the operator Î is the identity
operator in the space of N -particle states.

We will now consider the more general problem in which the number of
particles N is not fixed a-priori. Rather, we will consider an enlarged space of
states in which the number of particles is allowed to fluctuate. In the language
of Statistical Physics what we are doing is to go from the Canonical Ensemble
to the Grand Canonical Ensemble. Thus, let us denote by H0 the Hilbert space
with no particles, H1 the Hilbert space with only one particle and, in general,
HN the Hilbert space for N -particles. The direct sum of these spaces H

H = H0 ⊕H1 ⊕ · · · ⊕ HN ⊕ · · · (1.121)

is usually called Fock space.
An arbitrary state |ψ〉 in Fock space is the sum over the subspaces HN ,

|ψ〉 = |ψ(0)〉 + |ψ(1)〉 + · · · + |ψ(N)〉 + · · · (1.122)
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The subspace with no particles is a one-dimensional space spanned by the vector
|0〉 which we will call the vacuum. The subspaces with well defined number of
particles are defined to be orthogonal to each other in the sense that the inner
product in Fock space

〈χ|ψ〉 ≡
∞∑

j=0

〈χ(j)|ψ(j)〉 (1.123)

vanishes if |χ〉 and |ψ〉 belong to different subspaces.

1.5 Creation and Annihilation Operators

Let |φ〉 be an arbitrary one-particle state, i.e. |φ〉 ∈ H1. Let us define the
creation operator â†(φ) by its action on an arbitrary state in Fock space

â†(φ)|ψ1, . . . , ψN 〉 = |φ, ψ1, . . . , ψN 〉 (1.124)

Clearly, â†(φ) maps the N -particle state with proper symmetry |ψ1, . . . , ψN 〉
to the N + 1-particle state |φ, ψ, . . . , ψN 〉, also with proper symmetry . The
destruction or annihilation operator â(φ) is then defined as the adjoint of â†(φ)
,

〈χ1, . . . , χN−1|â(φ)|ψ1, . . . , ψN 〉 = 〈ψ1, . . . , ψN |â†(φ)|χ1, . . . , χN−1〉
∗

(1.125)

Hence

〈χ1, . . . , χN−1|â(φ)|ψ1, . . . , ψN 〉 = 〈ψ1, . . . , ψN |φ, χ1, . . . , χN−1〉∗ =

=

∣∣∣∣∣∣∣

〈ψ1|φ〉 〈ψ1|χ1〉 · · · 〈ψ1|χN−1〉
...

...
...

〈ψN |φ〉 〈ψN |χ1〉 · · · 〈ψN |χN−1〉

∣∣∣∣∣∣∣

∗

ξ

(1.126)

We can now expand the permanent (or determinant) to get

〈χ1, . . . , χN−1|â(φ)|ψ1, . . . , ψN 〉 =

=

N∑

k=1

ξk−1〈ψk|φ〉

∣∣∣∣∣∣∣∣∣

〈ψ1|χ1〉 . . . 〈ψ1|χN−1〉
...

...
. . . (no ψk) . . .

〈ψN |χ1〉 . . . 〈ψN |χN−1〉

∣∣∣∣∣∣∣∣∣

∗

ξ

=

N∑

k=1

ξk−1〈ψk|φ〉 〈χ1, . . . , χN−1|ψ1, . . . ψ̂k . . . , ψN 〉

(1.127)

where ψ̂k indicates that ψk is absent.
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Thus, the destruction operator is given by

â(φ)|ψ1, . . . , ψN 〉 =

N∑

k=1

ξk−1〈φ|ψk〉|ψ1, . . . , ψ̂k, . . . , ψN 〉 (1.128)

With these definitions, we can easily see that the operators â†(φ) and â(φ)
obey the commutation relations

â†(φ1)â
†(φ2) = ξ â†(φ2)â

†(φ1) (1.129)

Let us introduce the notation
[
Â, B̂

]
−ξ

≡ ÂB̂ − ξ B̂Â (1.130)

where Â and B̂ are two arbitrary operators. For ξ = +1 (bosons) we have the
commutator [

â†(φ1), â
†(φ2)

]
+1

≡
[
â†(φ1), â

†(φ2)
]

= 0 (1.131)

while for ξ = −1 it is the anticommutator

[
â†(φ1), â

†(φ2)
]
−1

≡
{
â†(φ1), â

†(φ2)
}

= 0 (1.132)

Similarly for any pair of arbitrary one-particle states |φ1〉 and |φ2〉 we get

[â(φ1), â(φ2)]−ξ = 0 (1.133)

It is also easy to check that the following identity holds

[
â(φ1), â

†(φ2)
]
−ξ

= 〈φ1|φ2〉 (1.134)

So far we have not picked any particular representation. Let us consider the
occupation number representation in which the states are labelled by the number
of particles nk in the single-particle state k. In this case, we have

|n1, . . . , nk, . . .〉 ≡ 1√
n1!n2! . . .

|
n1︷ ︸︸ ︷

1 . . . 1,

n2︷ ︸︸ ︷
2 . . . 2 . . .〉 (1.135)

In the case of bosons, the nj ’s can be any non-negative integer, while for fermions
they can only be equal to zero or one. In general we have that if |α〉 is the αth
single-particle state, then

â†
α|n1, . . . , nα, . . .〉 =

√
nα + 1 |n1, . . . , nα + 1, . . .〉

âα|n1, . . . , nα, . . .〉 =
√

nα |n1, . . . , nα − 1, . . .〉
(1.136)

Thus for both fermions and bosons, âα annihilates all states with nα = 0, while
for fermions â†

α annihilates all states with nα = 1.
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The commutation relations

[âα, âβ ] =
[
â†

α, â†
β

]
= 0

[
âα, â†

β

]
= δαβ (1.137)

apply for bosons, while the anticommutation relations

{âαâβ} =
{
â†

β , â†
β

}
= 0

{
âαâ†

β

}
= δαβ (1.138)

apply for fermions. Here,
{

Â, B̂
}

is the anticommutator of the operators Â and

B̂ {
Â, B̂

}
≡ ÂB̂ + B̂Â (1.139)

If a unitary transformation is performed in the space of one-particle state
vectors, then a unitary transformation is induced in the space of the operators
themselves, i.e., if |χ〉 = α|ψ〉 + β|φ〉, then

â(χ) = α∗â(ψ) + β∗â(φ)

â†(χ) = αâ†(ψ) + βâ†(φ)

(1.140)

and we say that â†(χ) transforms like the ket |χ〉 while â(χ) transforms like the
bra 〈χ|.

For example, we can pick as the complete set of one-particle states the
momentum states {|�p〉}. This is “momentum space”. With this choice the
commutation relations are

[
â†(�p), â†(�q)

]
−ξ

= [â(�p), â(�q)]−ξ = 0
[
â(�p), â†(�q)

]
−ξ

= (2π)dδd(�p − �q)

(1.141)

where d is the dimensionality of space. In this representation, an N -particle
state is

|�p1, . . . , �pN〉 = â†(�p1) . . . â†(�pN )|0〉 (1.142)

On the other hand, we can also pick the one-particle states to be eigenstates of
the position operators, i.e.,

|�x1, . . . �xN 〉 = â†(�x1) . . . â†(�xN )|0〉 (1.143)

In position space, the operators satisfy

[
â†(�x1), â

†(�x2)
]
−ξ

= [â(�x1), â(�x2)]−ξ = 0
[
â(�x1), â

†(�x2)
]
−ξ

= δd(�x1 − �x2)

(1.144)
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This is the position space or coordinate representation. A transformation from
position space to momentum space is the Fourier transform

|�p〉 =

∫
ddx |�x〉〈�x|�p〉 =

∫
ddx |�x〉ei�p·�x (1.145)

and, conversely

|�x〉 =

∫
ddp

(2π)d
|�p〉e−i�p·�x (1.146)

Then, the operators themselves obey

â†(�p) =

∫
ddx â†(�x)ei�p·�x

â†(�x) =

∫
ddp

(2π)d
â†(�p)e−i�p·�x

(1.147)

1.6 General Operators in Fock Space

Let A(1) be an operator acting on one-particle states. We can always define an
extension Â of A(1) acting on any arbitrary state |ψ〉 of the N -particle Hilbert
space HN as follows:

Â|ψ〉 ≡
N∑

j=1

|ψ1〉 × . . . × A(1)|ψj〉 × . . . × |ψN 〉 (1.148)

For instance, if the one-particle basis states {|ψj〉} are eigenstates of Â with
eigenvalues {aj} we get

Â|ψ〉 =




N∑

j=1

aj


 |ψ〉 (1.149)

We wish to find an expression for an arbitrary operator Â in terms of creation

and annihilation operators. Let us first consider the operator A
(1)
αβ = |α〉〈β|

which acts on one-particle states. The operators A
(1)
αβ form a basis of the space

of operators acting on one-particle states. Then, the N -particle extension of

A
(1)
αβ is

Âαβ |ψ〉 =

N∑

j=1

|ψ1〉 × · · · × |α〉 × · · · × |ψN 〉〈β|ψj〉 (1.150)

Thus

Âαβ |ψ〉 =
N∑

j=1

|ψ1, . . . ,

j︷︸︸︷
α , . . . , ψN 〉 〈β|ψj〉 (1.151)
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In other words, we can replace the one-particle state |ψj〉 from the basis with
the state |α〉 at the price of a weight factor, the overlap 〈β|ψj〉. This operator
has a very simple expression in terms of creation and annihilation operators.
Indeed,

â†(α)â(β)|ψ〉 =

N∑

k=1

ξk−1〈β|ψk〉 |α, ψ1, . . . , ψk−1, ψk+1, . . . , ψN 〉 (1.152)

We can now use the symmetry of the state to write

ξk−1|α, ψ1, . . . , ψk−1, ψk+1, . . . , ψN 〉 = |ψ1, . . . ,

k︷︸︸︷
α , . . . , ψN 〉 (1.153)

Thus the operator Âαβ , the extension of |α〉〈β| to the N -particle space, coincides
with â†(α)â(β)

Âαβ ≡ â†(α)â(β) (1.154)

We can use this result to find the extension for an arbitrary operator A(1) of
the form

A(1) =
∑

α,β

|α〉〈α|A(1)|β〉 〈β| (1.155)

we find
Â =

∑

α,β

â†(α)â(β)〈α|A(1)|β〉 (1.156)

Hence the coefficients of the expansion are the matrix elements of A(1) between
arbitrary one-particle states. We now discuss a few operators of interest.

1. The Identity Operator:
The Identity Operator 1̂ of the one-particle Hilbert space

1̂ =
∑

α

|α〉〈α| (1.157)

becomes the number operator N̂

N̂ =
∑

α

â†(α)â(α) (1.158)

In position and in momentum space we find

N̂ =

∫
ddp

(2π)d
â†(�p)â(�p) =

∫
ddx â†(�x)â(�x) =

∫
ddx ρ̂(�x) (1.159)

where ρ̂(x) = â†(�x)â(�x) is the particle density operator.

2. The Linear Momentum Operator:
In the space H1, the linear momentum operator is

p̂
(1)
j =

∫
ddp

(2π)d
pj |�p〉〈�p| =

∫
ddx |�x〉 �

i
∂j 〈�x| (1.160)
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Thus, we get that the total linear momentum operator P̂j is

P̂j =

∫
ddp

(2π)d
pj â

†(�p)â(�p) =

∫
ddx â†(�x)

�

i
∂j â(�x) (1.161)

3. Hamiltonian:
The one-particle Hamiltonian H(1)

H(1) =
�p 2

2m
+ V (�x) (1.162)

has the matrix elements

〈�x|H(1)|�y〉 = − �
2

2m
2 δd(�x − �y) + V (�x)δd(�x − �y) (1.163)

Thus, in Fock space we get

Ĥ =

∫
ddx â†(�x)[− �

2

2m
2 +V (�x)]â(�x) (1.164)

in position space. In momentum space we can define

Ṽ (�q) =

∫
ddx V (�x)e−i�q·�x (1.165)

the Fourier transform of the potential V (x), and get

Ĥ =

∫
ddp

(2π)d

�p 2

2m
â†(�p)â(�p) +

∫
ddp

(2π)d

∫
ddq

(2π)d
Ṽ (�q)â†(�p + �q)â(�p)

(1.166)
The last term has a very simple physical interpretation. When acting on
a one-particle state with well-defined momentum, say |�p〉, the potential
term yields another one-particle state with momentum �p + �q, where �q is
the momentum transfer, with amplitude Ṽ (�q). This process is usually
depicted by the diagram of Fig.1.1.

4. Two-Body Interactions:
A two-particle interaction is an operator V̂ (2) which acts on the space of
two-particle states H2, which has the form

V (2) =
1

2

∑

α,β

|α, β〉V (2)(α, β)〈α, β| (1.167)

The methods developed above yield an extension of V (2) to Fock space of
the form

V̂ =
1

2

∑

α,β

â†(α)â†(β)â(β)â(α) V (2)(α, β) (1.168)
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�p

�p + �q

�q
Ṽ (�q)

â(�p)

â†(�p + �q)

Figure 1.1: One-body scattering.

In position space, ignoring spin, we get

V̂ =
1

2

∫
ddx

∫
ddy â†(�x) â†(�y) â(�y) â(�x) V (2)(�x, �y)

≡ 1

2

∫
ddx

∫
ddy ρ̂(�x)V (2) (�x, �y)ρ̂(�y) +

1

2

∫
ddx V (2)(�x, �x) ρ̂(�x)

(1.169)

where we have used the commutation relations. In momentum space we
find instead

V̂ =
1

2

∫
ddp

(2π)d

∫
ddq

(2π)d

∫
ddk

(2π)d
Ṽ (�k) â†(�p + �k)â†(�q − �k)â(�q)â(�p)

(1.170)

where Ṽ (�k) is only a function of the momentum transfer �k. This is a
consequence of translation invariance. In particular for a Coulomb inter-
action,

V (2)(�x, �y) =
e2

|�x − �y| (1.171)

for which

Ṽ (�k) =
4πe2

�k 2
(1.172)
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â†(�p + �k)

�p + �k �q − �k
â†(�q − �k)

�k

Ṽ (�k)

�p
â(�p) �q â(�q)

Figure 1.2: Two-body interaction.

1.7 Non-Relativistic Field Theory and Second

Quantization

We can now reformulate the problem of an N -particle system as a non-relativistic
field theory. The procedure described in the previous section is commonly
known as Second Quantization. If the (identical) particles are bosons, the op-
erators â(φ) obey canonical commutation relations. If the (identical) particles
are Fermions, the operators â(φ) obey canonical anticommutation relations. In

position space, it is customary to represent â†(φ) by the operator ψ̂(�x) which
obeys the equal-time algebra

[
ψ̂(�x), ψ̂†(�y)

]
−ξ

= δd(�x − �y)

[
ψ̂(�x), ψ̂(�y)

]
−ξ

=
[
ψ̂†(�x), ψ̂†(�y)

]
−ξ

= 0

(1.173)

In this framework, the one-particle Schrödinger equation becomes the clas-
sical field equation [

i�
∂

∂t
+

�
2

2m
2 −V (�x)

]
ψ = 0 (1.174)

Can we find a Lagrangian density L from which the one-particle Schrödinger
equation follows as its classical equation of motion? The answer is yes and L is
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given by

L = i�ψ†∂t

↔

−810ψ − �
2

2m
�ψ† · ψ − V (�x)ψ†ψ (1.175)

Its Euler-Lagrange equations are

∂t
δL

δ∂tψ†
= −� · δL

δ �ψ†
+

δL
δψ†

(1.176)

which are equivalent to the field Equation Eq. 1.174. The canonical momenta
π(x) and π†(y) are

πψ =
δL

δ∂tψ†
= −i�ψ (1.177)

and

π†
ψ =

δL
δ∂tψ

= i�ψ† (1.178)

Thus, the (equal-time) canonical commutation relations are

[
ψ̂(�x), π̂(�y)

]
−ξ

= i�δ(�x − �y) (1.179)

which require that [
ψ̂(�x), ψ̂†(�y)

]
−ξ

= δd(�x − �y) (1.180)

1.8 Non-Relativistic Fermions at Zero Temper-

ature

The results of the previous sections tell us that the action for non-relativistic
fermions (with two-body interactions) is (in D = d + 1 space-time dimensions)

S =

∫
dDx

[
ψ̂†i�∂tψ̂ − �

2

2m
�ψ̂† · �ψ̂ − V (�x)ψ̂†(x)ψ̂(x)

]

− 1

2

∫
dDx

∫
dDx′ψ̂†(x)ψ̂†(x′)U(x − x′)ψ̂(x′)ψ̂†(x)ψ̂(x)]

(1.181)

where U(x − x′) represents instantaneous pair-interactions,

U(x − x′) ≡ U(�x − �x′)δ(x0 − x′
0) (1.182)

The Hamiltonian Ĥ for this system is

Ĥ =

∫
ddx [

�
2

2m
�ψ̂† · �ψ̂ + V (�x)ψ̂†(�x)ψ(�x)]

+
1

2

∫
ddx

∫
ddx′ψ̂†(x)ψ̂†(x′)U(x − x′)ψ̂(x′)ψ̂(x)

(1.183)
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For Fermions the fields ψ̂ and ψ̂† satisfy equal-time canonical anticommutation
relations

{ψ̂(�x), ψ̂†(�x)} = δ(�x − �x′) (1.184)

while for Bosons they satisfy

[ψ̂(�x), ψ̂†(�x′)] = δ(�x − �x′) (1.185)

In both cases, the Hamiltonian Ĥ commutes with the total number operator
N̂ =

∫
ddxψ̂†(x)ψ̂(x) since Ĥ conserves the total number of particles. The Fock

space picture of the many-body problem is equivalent to the Grand Canoni-
cal Ensemble of Statistical Mechanics. Thus, instead of fixing the number of
particles we can introduce a Lagrange multiplier µ, the chemical potential, to
weigh contributions from different parts of the Fock space. Thus, we define the
operator H̃ .

H̃ ≡ Ĥ − µN̂ (1.186)

In a Hilbert space with fixed N̂ this amounts to a shift of the energy by µN .
We will now allow the system to choose the sector of the Fock space but with
the requirement that the average number of particles 〈N̂〉 is fixed to be some
number N̄ . In the thermodynamic limit (N → ∞), µ represents the difference
of the ground state energies between two sectors with N + 1 and N particles
respectively. The modified Hamiltonian H̃ is (for spinless fermions)

H̃ =

∫
ddx ψ̂†(�x)[− �

2

2m
2 +V (�x) − µ]ψ̂(�x)

+
1

2

∫
ddx

∫
ddy ψ̂†(�x)ψ̂†(�y)U(�x − �y)ψ̂(�y)ψ̂(�x)

(1.187)

1.9 The Ground State of a System of Free Fermions

Let us discuss now the very simple problem of finding the ground state for a
system of N spinless free fermions. In this case, the pair-potential vanishes and,
if the system is isolated, so does the potential V (�x). In general there will be a
complete set of one-particle states {|α〉} and, in this basis, Ĥ is

Ĥ =
∑

α

Eαâ†
αaα (1.188)

where the index α labels the one-particle states by increasing order of their
single-particle energies

E1 ≤ E2 ≤ · · · ≤ En ≤ · · · (1.189)

Since were are dealing with fermions, we cannot put more than one particle in
each state. Thus the state the lowest energy is obtained by filling up all the first
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Figure 1.3: The Fermi Sea.

N single particle states. Let |gnd〉 denote this ground state

|gnd〉 =

N∏

α=1

â†
α|0〉 ≡ â†

1 · · · â†
N |0〉 = |

N︷ ︸︸ ︷
1 . . . 1, 00 . . .〉 (1.190)

The energy of this state is Egnd with

Egnd = E1 + · · · + EN (1.191)

The energy of the top-most occupied single particle state, EN , is called the
Fermi energy of the system and the set of occupied states is called the filled
Fermi sea.

1.10 Excited States

A state like |ψ〉

|ψ〉 = |
N−1︷ ︸︸ ︷

1 . . . 1 010 . . .〉 (1.192)
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Figure 1.4: An excited (particle-hole) state.

is an excited state. It is obtained by removing one particle from the single
particle state N (thus leaving a hole behind) and putting the particle in the
unoccupied single particle state N + 1. This is a state with one particle-hole
pair, and it has the form

|1 . . . 1010 . . .〉 = â†
N+1âN |gnd〉 (1.193)

The energy of this state is

Eψ = E1 + · · · + EN−1 + EN+1 (1.194)

Hence

Eψ = Egnd + EN+1 − EN (1.195)

and, since EN+1 ≥ EN , Eψ ≥ Egnd. The excitation energy εψ = Eψ − Egnd is

εψ = EN+1 − EN ≥ 0 (1.196)

1.11 Construction of the Physical Hilbert Space

It is apparent that, instead of using the empty state |0〉 for reference state, it
is physically more reasonable to use instead the filled Fermi sea |gnd〉 as the
physical reference state or vacuum state. Thus this state is a vacuum in the
sense of absence of excitations. These arguments motivate the introduction of
the particle-hole transformation.

Let us introduce the fermion operators bα such that

b̂α = â†
α for α ≤ N (1.197)
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Since â†
α|gnd〉 = 0 (for α ≤ N) the operators b̂α annihilate the ground state

|gnd〉, i.e.,

b̂α|gnd〉 = 0 (1.198)

The following anticommutation relations hold

{âα, â′
α} =

{
âα, b̂β

}
=

{
b̂β, b̂′β

}
=
{
âα, b̂†β

}
= 0

{
âα, â†

α′

}
= δαα′

{
b̂β, b̂†β′

}
= δββ′

(1.199)

where α, α′ > N and β, β′ ≤ N . Thus, relative to the state |gnd〉, â†
α and b̂†β

behave like creation operators. An arbitrary excited state has the form

|α1 . . . αm, β1 . . . βn; gnd〉 ≡ â†
α1

. . . â†
αm

b̂†β1
. . . b̂†βn

|gnd〉 (1.200)

This state has m particles (in the single-particle states α1, . . . , αm) and n holes
(in the single-particle states β1, . . . , βn). The ground state is annihilated by the

operators âα and b̂β

âα|gnd〉 = b̂β|gnd〉 = 0 (α > N β ≤ N) (1.201)

The Hamiltonian Ĥ is normal ordered relative to the empty state |0〉, i. e.
Ĥ|0〉 = 0, but is not normal ordered relative to the actual ground state |gnd〉.
The particle-hole transformation enables us to normal order Ĥ relative to |gnd〉.

Ĥ =
∑

α

Eαâ†
αâα =

∑

α≤N

Eα +
∑

α>N

Eαâ†
αâα −

∑

β≤N

Eβ b̂†β b̂β (1.202)

Thus
Ĥ = Egnd+ :Ĥ : (1.203)

where

Egnd =

N∑

α=1

Eα (1.204)

is the ground state energy, and the normal ordered Hamiltonian is

:Ĥ :=
∑

α>N

Eαâ†
aâα −

∑

β≤N

b̂†β b̂βEβ (1.205)

The number operator N̂ is not normal-ordered relative to |gnd〉 either. Thus,
we write

N̂ =
∑

α

â†
αâα = N +

∑

α>N

â†
αaα −

∑

β≤N

b̂†β b̂β (1.206)

We see that particles raise the energy while holes reduce it. However, if we deal
with Hamiltonians which conserve the particle number N̂ (i.e., [N̂ , Ĥ] = 0) for
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every particle that is removed a hole must be created. Hence particles and holes
can only be created in pairs. A particle-hole state |α, β gnd〉 is

|α, β gnd〉 ≡ â†
αb̂†β |gnd〉 (1.207)

It is an eigenstate with an energy

Ĥ |α, β gnd〉 =
(
Egnd+ :Ĥ :

)
â†

αb̂†β |gnd〉
= (Egnd + Eα − Eβ) |α, β gnd〉

(1.208)

This state has exactly N particles since

N̂ |α, β gnd〉 = (N + 1 − 1)|α, β gnd〉 = N |α, β gnd〉 (1.209)

Let us finally notice that the field operator ψ̂†(x) in position space is

ψ̂†(�x) =
∑

α

〈�x|α〉â†
α =

∑

α>N

φα(�x)â†
α +

∑

β≤N

φβ(�x)b̂β (1.210)

where {φα(�x)} are the single particle wave functions.
The procedure of normal ordering allows us to define the physical Hilbert

space. The physical meaning of this approach becomes more transparent in
the thermodynamic limit N → ∞ and V → ∞ at constant density ρ. In this
limit, the space of Hilbert space is the set of states which is obtained by act-
ing with creation and annihilation operators finitely on the ground state. The
spectrum of states that results from this approach consists on the set of states
with finite excitation energy. Hilbert spaces which are built on reference states
with macroscopically different number of particles are effectively disconnected
from each other. Thus, the normal ordering of a Hamiltonian of a system with
an infinite number of degrees of freedom amounts to a choice of the Hilbert
space. This restriction becomes of fundamental importance when interactions
are taken into account.

1.12 The Free Fermi Gas

Let us consider the case of free spin one-half electrons moving in free space. The
Hamiltonian for this system is

H̃ =

∫
ddx

∑

σ=↑,↓

ψ̂†
σ(�x)[− �

2

2m
2 −µ]ψ̂σ(�x) (1.211)

where the label σ =↑, ↓ indicates the z-projection of the spin of the electron.
The value of the chemical potential µ will be determined once we satisfy that
the electron density is equal to some fixed value ρ̄.
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In momentum space, we get

ψ̂σ(�x) =

∫
ddp

(2π�)d
ψ̂σ(�p) e−i �p·�x

� (1.212)

where the operators ψ̂σ(�p) and ψ̂†
σ(�p) satisfy

{
ψ̂σ(�p), ψ̂†

σ′ (�p)
}

= (2π�)dδσσ′δd(�p − �p′)
{
ψ̂†

σ(�p), ψ̂†
σ′ (�p)

}
= {ψ̂(�p), ψ̂σ′(�p′)} = 0

(1.213)

The Hamiltonian has the very simple form

H̃ =

∫
ddp

(2π�)d

∑

σ=î,↓

(ε(�p) − µ) ψ̂†
σ(�p)ψ̂σ(�p) (1.214)

where ε(�p) is given by

ε(�p) =
�p2

2m
(1.215)

For this simple case, ε(�p) is independent of the spin orientation.
It is convenient to measure the energy relative to the chemical potential (or

Fermi energy) µ = EF . The relative energy E(�p) is

E(�p) = ε(�p) − µ (1.216)

i. e. E(�p) is the excitation energy measured from the Fermi energy EF = µ.
The energy E(�p) does not have a definite sign since there are states with ε(�p) > µ
as well as states with ε(�p) < µ. Let us define by pF the value of |�p| for which

E(pF ) = ε(pF ) − µ = 0 (1.217)

This is the Fermi momentum. Thus, for |�p| < pF , E(�p) is negative while for
|�p| > pF , E(�p) is positive.

We can construct the ground state of the system by finding the state with
lowest energy at fixed µ. Since E(�p) is negative for |�p| ≤ pF , we see that by
filling up all of those states we get the lowest possible energy. It is then natural
to normal order the system relative to a state in which all one-particle states
with |�p| ≤ pF are occupied. Hence we make the particle- hole transformation

b̂σ(�p) = ψ̂†
σ(�p) for |�p| ≤ pF

âσ(�p) = ψ̂σ(�p) for |�p| > pF
(1.218)

In terms of the operators âσ and b̂σ, the Hamiltonian is

H̃ =
∑

σ=↑,↓

∫
ddp

(2π�)d
[E(�p)θ(|�p| − pF )â†

σ(�p)âσ(�p) + θ(pF − |�p|)E(�p)b̂σ(�p)b̂†σ(�p)]

(1.219)
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where θ(x) is the step function

θ(x) =

{
1 x > 0
0 x ≤ 0

(1.220)

Using the anticommutation relations in the last term we get

H̃ =
∑

σ=↑,↓

∫
ddp

(2π�)d
E(�p)[θ(|�p| − pF )â†

σ(�p)âσ(�p)− θ(pF − |�p|)b̂†σ(�p)b̂σ(�p)] + Ẽgnd

(1.221)
where Ẽgnd, the ground state energy measured from the chemical potential µ,
is given by

Ẽgnd =
∑

σ=↑,↓

∫
ddp

(2π�)d
θ(pF − |�p|)E(�p)(2π)dδd(0) = Egnd − µN (1.222)

Recall that (2π�)dδ(0) is equal to

(2π�)dδd(0) = lim
�p→0

(2π�)dδ(d)(�p) = lim
�p→0

∫
ddx ei�p·�x/� = V (1.223)

where V is the volume of the system. Thus, Ẽgnd is extensive

Ẽgnd = V ε̃gnd (1.224)

and the ground state energy density ε̃gnd is

ε̃gnd = 2

∫

|�p|≤pF

ddp

(2π�)d
E(�p) = εgnd − µρ̄ (1.225)

where the factor of 2 comes from the two spin orientations. Putting everything
together we get

ε̃gnd = 2

∫

|�p|≤pF

ddp

(2π�)d

(
�p2

2m
− µ

)
= 2

∫ pF

0

dp pd−1 Sd

(2π�)d

(
p2

2m
− µ

)

(1.226)
where Sd is the area of the d-dimensional hypersphere. Our definitions tell us

that the chemical potential is µ =
p2

F

2m ≡ EF where EF , is the Fermi energy.
Thus the ground state energy density εgnd ( measured from the empty state) is
equal to

Egnd =
1

m

Sd

(2π�)d

∫ pF

0

dp pd+1 =
pd+2

F

m(d + 2)

Sd

(2π�)d
= 2EF

pd
F Sd

(d + 2)(2π�)d

(1.227)
How many particles does this state have? To find that out we need to look at
the number operator. The number operator can also be normal-ordered with
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respect to this state

N̂ =

∫
ddp

(2π�)d

∑

σ=↑,↓

ψ̂†
σ(�p)ψ̂σ(�p) =

=

∫
ddp

(2π�)d

∑

σ=↑,↓

{θ(|�p| − pF )â†
σ(�p)âσ(�p) + θ(pF − |�p|)b̂σ(�p)b̂†σ(�p)}

(1.228)

Hence, N̂ can also be written in the form

N̂ =:N̂ : +N (1.229)

where the normal-ordered number operator :N̂ : is

:N̂ :=

∫
ddp

(2π�)d

∑

σ=↑,↓

[θ(|�p| − pF )â†
σ(�p)âσ(�p) − θ(pF − |�p|)b̂†σ(�p)b̂σ(�p)] (1.230)

and N , the number of particles in the reference state |gnd〉, is

N =

∫
ddp

(2π�)d

∑

σ=↑,↓

θ(pF − |�p|)(2π�)dδd(0) =
2

d
pd

F

Sd

(2π�)d
V (1.231)

Therefore, the particle density ρ̄ = N
V is

ρ̄ =
2

d

Sd

(2π�)d
pd

F (1.232)

This equation determines the Fermi momentum pF in terms of the density ρ̄.
Similarly we find that the ground state energy per particle is

Egnd

N = d
d+2EF .

The Excited states can be constructed in a similar fashion. The state |+, σ, �p〉
|+, σ, �p〉 = â†

α(�p)|gnd〉 (1.233)

is a state which represents an electron with spin σ and momentum �p while the
state |−, σ, �p〉

|−, σ, �p〉 = b̂†σ(�p)|gnd〉 (1.234)

represents a hole with spin σ and momentum �p. From our previous discussion we
see that electrons have momentum �p with |�p| > pF while holes have momentum
�p with |�p| < pF . The excitation energy of a one-electron state is E(�p) ≥ 0(for
|�p| > pF ), while the excitation energy of a one-hole state is −E(�p) ≥ 0 (for
|�p| < pF ).

Similarly, an electron-hole pair is a state of the form

|σ�p, σ′�p′〉 = â†
σ(�p)b̂†σ′(�p

′)|gnd〉 (1.235)

with |�p| > pF and |�p′| < pF . This state has excitation energy E(�p)−E(�p′), which
is positive. Hence, states which are obtained from the ground state without
changing the density, can only increase the energy. This proves that |gnd〉 is
indeed the ground state. However, if the density is allowed to change, we can
always construct states with energy less than Egnd by creating a number of holes
without creating an equal number of particles.
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1.13 Free Bose and Fermi Gases at T > 0

We will now quickly review the properties of free Fermi and Bose gases and Bose
condensation, and their thermodynamic properties. We’ll work in the Grand
Canonical Ensemble in which particle number is not exactly conserved, i.e. we
couple the system to a bath at temperature T and fixed chemical potential µ.
The Grand Partition Function at fixed T and µ is

ZG = e−βΩ = tr eβ(Ĥ−µN̂) (1.236)

where Ĥ is the Hamiltonian, N̂ is the total particle number operator, β =
(kT )−1, where T is the temperature and k is the Boltzmann constant, and Ω is
the thermodynamic potential Ω = Ω(T, V, µ).

For a free particle system the total Hamiltonian H is a sum of one-particle
Hamiltonians,

H =
∑

�

ε� â†
� â� (1.237)

where � = 0, 1, . . . labels the states of the complete set of single-particle states
{|�〉}, and {ε�} are the eigenvalues of the single-particle Hamiltonian.

The Grand Partition Function ZG can be computed easily in the occupation
number representation of the eigenstates of H :

ZG =
∑

n1...nk...

〈n1 . . . nk . . . |eβ
∑

�(µ − ε�)n� |n1 . . . nk . . .〉 (1.238)

where n� is the occupation number of the �-th single particle state. The allowed
values of the occupation numbers n� for fermions and bosons is

n� = 0, 1 fermions
n� = 0, 1, . . . bosons

(1.239)

Thus, the Grand Partition Function is

ZG =

∞∏

�=0

∑

n�

〈n�|eβ(µ−ε�)n� |n�〉 (1.240)

For fermions we get

ZF
G = e−βΩF

G =
∞∏

�=0

∑

n�=0,1

eβ(µ−ε�) =
∞∏

�=0

[
1 + eβ(µ−ε�)

]
(1.241)

or, what is the same, the thermodynamic potential for a system of free fermions
ΩF

G at fixed T and µ is given by an expression of the form

ΩF
G = −kT

∞∑

�=0

ln
[
1 + eβ(µ−ε�)

]
Fermions (1.242)
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For bosons we find instead,

ZB
G = e−βΩB

G =

∞∏

�=0

∞∑

n�=0

eβ(µ−ε�) =

∞∏

�=0

1

1 − eβ(µ−ε�)
(1.243)

Hence, the thermodynamic potential ΩB
G for a system of free bosons at fixed T

and µ is

ΩB
G = kT

∞∑

�=0

ln
[
1 − eβ(µ−ε�)

]
Bosons (1.244)

The average number of particles 〈N〉 is

〈N〉 =
trN̂e−β(Ĥ−µN̂)

tre−β(Ĥ−µN̂)
=

1

β

1

ZG

∂ZG

∂µ
=

1

β

∂

∂µ
ln ZG (1.245)

〈N〉 = ρV =
1

β

∂

∂µ
[−βΩG] = − ∂ΩG

∂µ
(1.246)

where ρ is the particle density and V is the volume.
For bosons 〈N〉 is

〈N〉 =
1

β

∞∑

�=0

1

1 − eβ(µ−ε�)
(−1) eβ(µ−ε�) β (1.247)

Hence,

〈N〉 =

∞∑

�=0

1

eβ(ε�−µ) − 1
Bosons (1.248)

Whereas for fermions we find,

〈N〉 =

∞∑

�=0

1

eβ(ε�−µ) + 1
Fermions (1.249)

In general the average number of particles 〈N〉 is

〈N〉 =
∞∑

�=0

〈n�〉 =
∞∑

�=0

1

eβ(ε�−µ) ± 1
(1.250)

where + holds for fermions and − holds for bosons.
The internal energy U of the system is

U = 〈H〉 = 〈H − µN〉 + µ〈N〉 (1.251)

where

〈H − µN〉 = − 1

ZG

∂ZG

∂β
= − ∂ ln ZG

∂β
=

∂

∂β
(βΩG) (1.252)
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Hence,

U =
∂

∂β
(βΩG) + µ〈N〉 (1.253)

As usual, we will need to find the value of the chemical potential µ in terms
of the average number of particles 〈N〉 (or in terms of the average density ρ)
at fixed temperature T and volume V . Once this is done we can compute the
thermodynamic variables of the systems, such as the pressure P and the entropy
S by using standard thermodynamic relations, e.g.
Pressure: P = −∂ΩG

∂V

∣∣
µ,T

Entropy: S = − ∂ΩG

∂T

∣∣
µ,V

The following integrals will be helpful below

I(a, b) =

∫ +∞

−∞

e−
a
2

x2−bx dx√
2π

=
1√
a

e
b2

2a (1.254)

and

In(a) =





n!

(n/2)! 2n/2
a−(n+1)/2 for n even

0 for n odd
(1.255)

1.13.1 Bose Case

Let ε0 = 0, ε� ≥ 0, and µ ≤ 0. The thermodynamic potential for bosons ΩB
G is

ΩB
G = kT

∞∑

�=0

ln
[
1 − eβ(µ−ε�)

]
(1.256)

The number of modes in the box of volume V with momenta in the infinitesimal
region d3p is sV d3k

(2π�)3 , and for bosons of spin S we have set s = 2S + 1. Thus

for spin-1 bosons there are 3 states. (However, in the case of photons S = 1 but
have only 2 polarization states and hence s = 2.)

The single-particle energies ε(�p) are

ε(�p) =
p2

2m
(1.257)

where we have approximated the discrete levels by a continuum. In these terms,
ΩB

G becomes

ΩB
G = kTsV

∫
d3p

(2π�)3
ln

[
1 − eβ(µ− p2

2m )

]
(1.258)

and ρ = 〈N〉/V is given by

ρ =
〈N〉
V

= − 1

V

∂Ω

∂µ
= s

∫
e−

βp2

2m eβµ

1 − e−
βp2

2m +βµ

d3p

(2π�)3
(1.259)
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It is convenient to introduce the fugacity z and the variable x

z = eβµ x2 =
βp2

2m
(1.260)

in terms of which the volume element of momentum space becomes

d3p

(2π�)3
→ 4πp2

(2π�)3
dp =

x2

2π2�3

(
2m

β

)3/2

dx (1.261)

where we have carried out the angular integration. The density ρ is

ρ = s

∫ ∞

o

ze−x2

1 − ze−x2

[
x2

2π2�3

(
2m

β

)3/2
]

dx

=
s

4π2�3

(
2m

β

)3/2 ∫ +∞

−∞

dx

∞∑

n=0

zn+1 e−(n+1)x2

x2

=
s

4π2�3

(
2m

β

)3/2 ∞∑

n=1

∫ +∞

−∞

dx znx2e−nx2

=

=
s

4π2�3

(
2m

β

)3/2 ∞∑

n=1

zn

n3/2

∫ +∞

−∞

dy y2e−y2

=
s

4π2�3

(
2m

β

)3/2 ∞∑

n=1

zn

n3/2

√
π

2
(1.262)

We now introduce the (generalized) Riemann ζ-function, ζr(z)

ζr(z) =

∞∑

n=1

zn

nr
(1.263)

(which is well defined for r > 0 and Re z > 0) in terms of which the expression
for the density takes the more compact form

ρ = s

(
mkT

2π�2

)3/2

ζ3/2(z), where z = eβµ (1.264)

This equation must inverted to determine µ(ρ).
Likewise, the internal energy U can also be written in terms of a Riemann

ζ-function:

U =
∂

∂β
(βΩG) + µV ρ = s

3

2
kT

(
mkT

2π�2

)3/2

V ζ5/2(z) (1.265)

If ρ is low and T high (or ρ
T 3/2 low) ⇒ ζ3/2(z) is small and can be approximated

by a few terms of its power series expansion

ζ3/2(z) =
z

1
+

z2

23/2
+ . . . ⇒ z small (i.e. µ large) (1.266)



38 CHAPTER 1. SECOND QUANTIZATION

Hence, in the low density (or high temperature) limit we can approximate

ζ3/2(z) ≈ z and ζ5/2(z) ≈ z (1.267)

and, in this limit, the internal energy density is

U

V
= ε � 3

2
kTρ, (1.268)

which is the classical result.
Conversely if ρ

T 3/2 is large, i.e. large ρ and low T , the fugacity z is no longer

small. Furthermore the function ζr(z) has a singularity at |z| = 1. For r = 3
2 , 5

2
the ζr(1)-function takes the finite values

ζ3/2(1) = 2.612 . . .

ζ5/2(1) = 1.341 . . . (1.269)

although the derivatives ζ′3/2(1) and ζ′′5/2(1) diverge.
Let us define the critical temperature Tc as the temperature at which the

fugacity takes the value 1
z(Tc) = 1 (1.270)

In other terms, at T = Tc the expressions are at the radius of convergence of
the ζ-function. Since

ρ = s

(
mkTc

2π�2

)3/2

ζ3/2(1) (1.271)

we find the Tc is given by

Tc =
2π�

2

mk

(
ρ/s

ζ3/2(1)

)2/3

Critical Temperature (1.272)

Our results work only for T ≥ Tc.
Why do we have a problem for T < Tc? Let’s reexamine the sum

ρ = −∂Ω

∂µ
=

∞∑

�=0

1

e−β(µ−ε�) − 1
(1.273)

For small z, e−βµ = e+β|µ| is large, and each term has a small contribution.
But for |z| → 1 the first few terms may have a large contribution. In particular

〈n1〉 =
1

eβ(ε1−µ) − 1
� 1

eβ(ε0−µ) − 1
= 〈n0〉 (1.274)

If we now set ε0 = 0, we find that

〈n0〉 =
1

e−βµ − 1
⇒ µ = −kT ln

[
1 +

1

〈n0〉

]
≈ −kT

〈n0〉
(1.275)
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µ

TTc

Figure 1.5: The chemical potential as a function of temperature in a free Bose
gas. Here Tc is the Bose-Einstein condensation temperature.

for 〈n0〉 � 1. For low T , µ approaches zero as N → ∞ (at fixed ρ), and

ε� − µ ≈ ε�, for � > 0. Hence, the number of particles Ñ which are not in the
lowest energy state ε0 = 0 is

Ñ = 〈N − n0〉 =

∞∑

�=1

1

eβεi − 1

� sV

∫
d3p

(2π�)3
1

eβp2/2m − 1

= sV

(
mkT

2π�2

)3/2

ζ3/2(1) (1.276)

Hence,

Ñ = 〈N〉
(

T

Tc

)3/2

(1.277)

and

〈n0〉 = 〈N〉 − Ñ = 〈N〉
[
1 −

(
T

Tc

)3/2
]

(1.278)

Then, the average number of particles in the “single-particle ground state” |0〉
is

〈n0(T )〉 = 〈N〉
[
1 −

(
T

Tc

)3/2
]

(1.279)

and their density (the “condensate fraction”) is

ρ0(T ) =





ρ

[
1 −

(
T
Tc

)3/2
]

T < Tc

0 T � Tc

(1.280)
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z

TTc

T−3/2

Figure 1.6: The fugacity as a function of temperature in a free Bose gas. Tc is
the Bose-Einstein condensation temperature.

〈n0〉
V

ρ

TTc

Figure 1.7: The condensate fraction 〈n0〉/V a function of temperature in a free
Bose gas.

This is a phase transition known as Bose Condensation. Thus, for T < Tc,
the lowest energy state is macroscopically occupied, which is why this phe-
nomenon is called Bose-condensation. It simply means that for a Bose system
the ground state has finite fraction bosons in the same single-particle ground
state.

Let us examine the behavior of the thermodynamic quantities near and below
the phase transition.The total energy is

U =
3

2
kTs

(
mkT

2π�2

)3/2

V ζ5/2(1) =
3

2
kT Ñ

ζ5/2(1)

ζ3/2(1)
(1.281)
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Hence,

U =
3

2
kT

ζ5/2(1)

ρ3/2(1)
〈N〉

(
T

Tc

)3/2

∝ T 5/2 (1.282)

The specific heat at constant volume (and particle number) Cv is

Cv =

(
∂U

∂T

)

V,N

∝
(

T

Tc

)3/2

, for T < Tc (1.283)

On the other hand, since for T > Tc

〈N〉 =

(
mkT

2π�2

)3/2

ζ3/2 (z)sV (1.284)

we find that the internal energy above Tc is

U =
3

2
kT 〈N〉 ζ5/2(z)

ζ3/2(z)
(1.285)

To use this expression we must determine first z = z(T ) at fixed density ρ.
How do the thermodynamic quantities of a Bose system behave near Tc?

From the above discussion we see that at Tc there must be a singularity in
most thermodynamic quantities. However it turns out that while the free Bose
gas does have a phase transition at Tc, the behavior near Tc is dominated by
critical fluctuations which are governed by inter-particle interactions which are
not included in a system of free bosons. Thus, while the specific heat Cv of a
real system of bosons has a divergence as T → Tc (both from above and from
below), a system of free bosons has a mild singularity in the form of a jump in
the slope of Cv(T ) at Tc. The study of the behavior of singularities at critical
points is the subject of the theory of Critical Phenomena.

The free Bose gas is also pathological in other ways. Below Tc a free Bose
gas exhibits Bose condensation but it is not a superfluid. We will discuss this
issue later on this semester. For now we note that there are no true free Bose
gases in nature since all atoms interact with each other however weakly. These
interactions govern the superfluid properties of the Bose fluid.

1.13.2 Fermi Case

In the case of fermions, due to the Pauli Principle there is no condensation in a
single-particle state. In the presence of interactions the ground state of a system
of fermions may be in a highly non-trivial phase including superconductivity,
charge density waves and other more exotic possibilities. Contrary to the case
of a free Bose system, a system of free fermions does not have a phase transition
at any temperature.

The thermodynamic potential for free fermions ΩF
G(T, V, µ) is

ΩF
G(T, V, µ) = −kT

∞∑

�=0

ln
(
1 + e−β(ε�−µ)

)
(1.286)
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〈n�〉
1

µ0 ε

(a) Occupancy n� at T = 0

〈n�〉

1

µ0 ε

(b) Occupancy n� for T > 0

Figure 1.8: The occupation number of eigenstate |�〉 in a free Fermi gas, (a) at
T = 0 and (b) for T > 0. Here, µ0 = EF is the Fermi energy.

where, once again, the integers � = 0, 1, . . . label a complete set of one-particle
states. No restriction on the sign of µ is now necessary since the argument
of the logarithm is now positive as all terms are manifestly positive. Thus
there are no vanishing denominators in the expressions for the thermodynamic
quantities as in the Bose case. Thus, in the case of (free) fermions we can take
the thermodynamic limit without difficulty, and use the integral expressions
right away.

For spin S fermions, s = 2S + 1, the thermodynamic potential is

ΩF
G = −kT s V

∫
d3p

(2π�)3
ln

[
1 + e

−β
“

p2

2m−µ
”
]

(1.287)

and the density ρ is given by

ρ =
〈N〉
V

= − 1

V

∂Ω

∂µ
= s

∫
d3p

(2π�)3
e−

βp2

2m eβµ

1 + e−
βp2

2m eβµ
(1.288)

The average occupation number of a general one-particle state |�〉 is

〈n�〉 =
∂Ω

∂ε�
=

e−β(ε�−µ)

1 + e−β(ε�−µ)
=

1

eβ(ε�−µ) + 1
(1.289)

which is the Fermi-Dirac distribution function.
Most of the expressions of interest for fermions involve the the Fermi function

f(x)

f(x) =
1

ex + 1
(1.290)

In particular, if we introduce the one-particle density of states N0(ε),

N0(ε) = s
2π(2m)3/2

(2π�)3
√

ε (1.291)
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the expression for the particle density ρ can be written in the more compact
form

ρ = s

∫ ∞

0

dε N0(ε) f(β(ε − µ)) (1.292)

where we have assumed that the one-particle spectrum begins at ε0 = 0.

Similarly, the internal energy density for a system of free fermions of spin S
is

u =
U

V
=

1

V

(
∂βΩF

G

∂β
+ µN

)
= s

∫
d3p

(2π�)3
p2

2m

e−β( p2

2m−µ)

1 + e−β( p2

2m −µ)

≡ s

∫ ∞

0

dε ε N0(ε) f(β(ε − µ)) (1.293)

In particular, at T = 0 we get

u(0) =
3

5
EF ρ (1.294)

The pressure P at temperature T is obtained from the thermodynamic re-
lation

P = −
(

∂ΩF
G

∂V

)

T,µ

(1.295)

For a free Fermi system we obtain

P = kTs

∫ ∞

0

dε N0(ε) ln
(
1 + e−β(ε − µ)

)
(1.296)

This result implies that there is a non-zero pressure P0 in a Fermi gas at T = 0
even in the absence of interactions:

P0 = lim
T→0

P (T, µ, V ) =

∫ µ0

0

dε N0(ε)(µ0−ε) = µ0ρ−u(0) =
2

5
EF ρ > 0 (1.297)

which is known as the Fermi pressure. Thus, the pressure of a system of free
fermions is non-zero (and positive) even at T = 0 due to the effects of the Pauli
Principle which keeps fermions from occupying the same single-particle state.

For a free Fermi gas at T = 0, µ0 = EF . Hence, at T = 0 all states with ε� <
µ0 are occupied and all other states are empty. At low temperatures kT � EF ,
most of the states below EF will remain occupied while most of the states above
EF will remain empty, and only a small fraction of states with single particle
energies close to the Fermi energy will be affected by thermal fluctuations. This
observation motivates the Sommerfeld expansion which is useful to determine
the low temperature behavior of a free Fermi system. Consider an expression
of the form

I =

∫ ∞

0

dε f(β(ε − µ)) g(ε) (1.298)
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where g(ε) is a smooth function of the energy. Eq.(1.298) can be written in the
equivalent form

I =

∫ ∞

µ

dε
g(ε)

eβ(ε − µ) + 1
−
∫ µ

0

dε
g(ε)

e−β(ε − µ) + 1
+

∫ µ

0

dε g(ε) (1.299)

If we now make the change of variables x = β(ε − µ) in the first integral of
eq.(1.299) and x = −β(ε − µ) in the second integral of Eq.(1.299), we get

I =

∫ µ

0

dε g(ε) + kT

∫ ∞

0

dx
g(µ + x/β)

ex + 1
− kT

∫ βµ

0

dx
g(µ − x/β)

ex + 1
(1.300)

Since the function g(x) is a smooth differentiable function of its argument we
can approximate

g(µ ± x

β
) = g(µ) ± g′(µ)

x

β
+ . . . (1.301)

At low temperatures βµ � 1, or kT � µ, with exponential precision we can
extend the upper end of the integral in the last term of Eq.(1.300) to infinity,
and obtain the asymptotic result

I =

∫ µ

0

dε g(ε)+
2

β2
g′(µ)

∫ ∞

0

x

ex + 1
dx+. . . =

∫ µ

0

dε g(ε)+
π2

6
(kT )2 g′(µ)+. . .

(1.302)
where we have neglected terms O(e−βµ) and O((kT )4), and used the integral:

∫ ∞

0

dx
x

ex + 1
=

π2

12
(1.303)

Using these results we can now determine the low temperature behavior of
all thermodynamic quantities of interest. Thus we obtain

µ(T ) = µ0

(
1 − π2

12

(
kT

µ0

)2

+ . . .

)
(1.304)

u(T ) = u(0) + γ T 2 + . . . (1.305)

where

γ =
2π(2m)3/2

(2π�)3
s

π2

6

√
µ0 k2 (1.306)

from where we find that the low-temperature specific heat Cv for free fermions
is

Cv = 2γT + . . . (1.307)

A similar line of argument shows that the thermodynamic potential ΩF
G at low

temperatures, kT � µ, is

ΩF
G

V
= u(0) − µρ − s

π2

6
N0(EF )(kT )2 + . . .

=
ΩF

G(0)

V
− π2

6
(kT )

2 ρ

EF
+ O((kT )4) (1.308)
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There is a simple and intuitive way to understand the T 2 dependence (or scaling)
of the thermodynamic potential. First we note that the thermal fluctuations
only affect a small number of single particle states all contained within a range of
the order of kT around the Fermi energy, EF , multiplied by the density of single
particle states, N0(EF ). This number is thus kTN0(EF ). On the other hand,
the temperature dependent part of the thermodynamic potential has a factor of
kT in front. Thus, we obtain the scaling N0(EF )(kT )2. Similar considerations
apply to all other quantities.


