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Some relations between maximum likelihood factor analysis and factor
indeterminacy are discussed. Bounds are derived for the minimum average
correlation between equivalent sets of correlated factors which depend on the
latent roots of the factor intercorrelation matrix ¥, Empirieal examples are
presented to illustrate some of the theory and indicate the extent to which it
can be expected to be relevant in practice.

1. Introduction

The issue of factor indeterminacy is an issue of long standing [Wilson,
1928] but it was relatively dormant for several decades, with the notable
exception of the important contributions by L. Guttman in the fifties (espe-
cially Guttman, [1955]). Only recently have several authors drawn attention
to it again, among them Heermann [1964, 1966] and Schénemann [1971].
The latter presented a considerably simplified statement of some of the
mathematical aspects of this issue which to some extent parallels, but in
others is quite distinct from, the development given by Guttman. Historically
these two approaches go back to E. B. Wilson [1928] and Thomson [1935],
on the one hand, and to Piaggio [1933], on the other.

One way of approaching this issue is to state the factor model for a given
set of factor variables and to inquire what class of transformations exists
which carry the given random variables into another, equivalent set of
random variables. This “transformation approach” is especially simple if the
common factors are uncorrelated. It was used by Wilson [1928] and later
elaborated upon by Thomson [1935] for the single common factor case and
by Ledermann [1938] for the multiple common factor case. The advantage
of this approach is that the geometry is intuitively straightforward. For a
more recent statement of this geometry see Heermann [1964] and Schénemann
[1971].

Another way of approaching this issue is by way of construction of the
factor variables as sums of determinate and indeterminate parts. This
“construction approach” has been used by Piaggio [1933] and later by
Kestelman [1952] for the uncorrelated case and by Guttman [1955] for the
correlated case. A more recent statement of this approach can also be found
in Heermann [1966].
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Quite recently Schénemann [1971] used the transformation approach to
establish the simple but somewhat surprising fact that the minimum average
correlation between equivalent, uncorrelated factors is a constant which
depends on p, the number of observed variables, and on m, the number of
common factors, but not on the pattern (4, U). That is to say, this average
can be computed, on the assumption of a fit of the factor model, “without
looking at the data,” once m and p are known. While this result should be of
some theoretical interest, its practical impact is limited because (i) the result
was established only for the case of uncorrelated common factors and (ii) the
minimum average correlation includes both common and unique factors.

In the present paper we examine, among other things, the effect of
removing either one of these restrictions. In addition, we shall employ the
“construction approach” of Piaggio and Guttman to investigate the factor
indeterminacy issue in the fallible case, i.e., when the model does not fit
exactly. In order to communicate effectively, we need a working definition
of the term “factor scores.” This poses some semantical problems which we
will discuss in more detail in Sec. 5. As a preliminary definition for the purposes
of this paper we shall mean by “factor scores” two sets of numbers which
satisfy all the strictures of the factor model in the sample once C, the co-
variance matrix estimate, satisfies them. We shall say ‘“‘the factor model fits
in the sample exactly” when C, the observed covariance matrix can be written

(1.1) C =44+ 0°

for some p X m (m < p — 1) matrix A and some positive definite (p.d.)
diagonal matrix 0. We shall call an m X N matrix X of numbers “(uncorre-
lated) common factor scores” and a p X N matrix Z of numbers “(standard-
ized) unique factor scores” if they jointly satisfy, for a given (deviation) score
matrix Y (p X N) and two matrices A (p X m), 0* (p X p, p.d.; diagonal):

(1.2) Y=AX+02Z

s (D, = 1w, (3)7 = 6.

(where J is a vector of N ones and ¢ a vector of p + m zeros),
(1.4) YX'/N = A4, YZ'/N = U.

An essential ingredient of such a definition is the requirement that the factor
model “fit in the sample exactly,” i.e., that YY'/N = (C = AA' + U7,
exactly. Only if this is the case will “factor scores” X, Z, computed by the
formulae in Kestelman [1952] and Guttman [1955] reproduce all the observable
information (1.2), (1.4) and the stipulated covariance matrix (1.3) exactly.
But in practice the observed covariance matrix ¢ = YY’/N will almost
always be different from £ = A4’ + U°, We are usually satisfied if the factor
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model “fits statistically” in the sample in the sense that we cannot reject the
hypothesis of a fit in the population although there are some discrepancies
in the sample.

In this paper we address ourselves to the problem of factor indeterminacy
when the model fits only statistically. We are interested in measures of
factor indeterminacy when A, U” have been obtained by the method of
maximum likelihood. We shall find that this particular estimation method
permits us to calculate measures of factor indeterminacy separately for each
factor which are meaningful for the common factors even if the model does
not fit in the sample exactly. We shall also find that these measures can be
written down at once as simple functions of the latent roots of an eigenproblem
which occurs in maximum likelihood factor analysis (MLFA). Moreover, it
will be shown that a particular identifiability constraint which is often used
in MLFA leads to a set of common factors which contains the most deter-
minate and the least determinate of all factors obtainable upon orthogonal
and oblique rotation. We shall also develop weak bounds for the minimum
average correlation of equivalent factors when some of the common factors
are correlated. Finally, a number of empirical analyses will be presented to
illustrate the theory and to indicate the extent to which it may be expected
to be relevant in practice.

2. Factor Indeterminacy and Maximum Likelthood Factor Analysis

Detailed accounts of the method of maximum likelihood factor analysis
can be found in Anderson and Rubin [1956], Bargmann [1957],  Browne
(1968, 1969], Howe [1955], Joéreskog [1963, 1967], Lawley (1940, 1942], Lawley
and Maxwell [1963], Rao [1955], and elsewhere. Here we simply state some
of the results which are relevant for our discussion of the relations between
factor indeterminacy and the method of maximum likelihood factor analysis
(MLFA). .

The conditional equations one obtains upon setting the derivative of
the (log-) likelihéod function (or, equivalently, of the determinant
|0~ (C — A4")07"|) equal to zero are

2.1) SME~-0)E A = ¢
(2.2) diag $7HE — )27 = diag ¢
where

(2.3) $ =44+ 0

is the maximum likelihood estimate (MLE) of T under the hypothesis that
the factor model holds for exactly m common factors, and where

2.4 C=() ¢ci= ; Wa — §)Yn — 9:)/N
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is the biased maximum likelihood estimate of £ in the unconstrained parameter
space. These equations define A up to a rotation (provided certain additional
mild constraints are met which are discussed in Anderson and Rubin [1956].
For eonvenience we shall assume here they are met.) To remove the rotational
indeterminacy one sometimes imposes the “identifiability constraint”

(2.5) A'U7?4 = D? = diagonal

on A. For convenience we shall assume the diagonal elements ¢? in D? are
ordered so that ¢ > ¢ >, -+, > ¢2 . This constraint can be imposed

without loss of generality since a (‘“orthogonal”) rotation does not affect
(2.6) U* = diag (C — 44").

Thus, if A* does not satisfy the constraint (2.5), so that A¥U°A* = M =
LDIL/ is a symmetric but non-diagonal matrix M with orthogonal eigen-
vectors L, then A = A*L will satisfy the diagonality constraint (2.5) for
a suitable ordering of the columns in L.

This particular constraint is convenient because it can be used to express
(2.1) in the form of an eigenproblem. If

@7 0-'c0 = (v, Vz)I:D:‘ ][Vf] - VDIV

2 rd 4
b2 I/2

is the eigendecomposition of the (unknown) matrix U7*CU™" (so that V =
2

V., V,) is orthonormal and D} = |: b 2 ] is a diagonal matrix which
52

contains the latent roots of U'CU™" in descending order), then the first

m (“retained”) roots in DI, and their associated eigenvectors in V, define

the solution matrix 4 as
2.8) A =0V, - I)"

while the last p — m (“rejected”) roots in D}, can be used in a likelihood
ratio test - ’

T(X) = —Fk In |E|

@.9) -k 3 e
where o

E = () = U7'(C — AAN0™" = (V1 V2>[I“D:2][V§]
and h

k=N-—(2p+5)/6—2m/3 -1
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to assess the fit of the model statistically, if one is willing to assume an
underlying multivariate normal distribution. (2.1), (2.2) can be arrived at
without this assumption either within the context of a canonical correlation
paradigm [Rao, 1955] or within the context of a partial correlation paradigm
[Bargmann, 1957; Howe, 1955].

For our present purposes it is important to note that the conditional
equations (2.1), (2.2) and the identifiability constraint (2.5) are independent,
of each other. Certain computer programs for MLFA, e.g., M. Browne’s [1968]
which is based on a Gauss-Seidel iteration for a solution of (2.1), (2.2), do not
employ the identifiability constraint (2.5). Conversely, the constraint (2.5)
can be imposed on any factor pattern A for a set of uncorrelated common
factors, whether A was obtained by the method of MLFA or not.

Now suppose we have drawn an N-fold sample on p tests and we have
computed a p X N matrix of deviation scores Y = (y.;) and the associated
sample covariance matrix ¢ = YY’/N. We have obtained a matrix (p X m)
A and a p.d. diagonal matrix 0 which jointly satisfy (2.1), (2.2). We have
found that the factor model fits statistically, but not exactly, 4.e., £ in (2.3)
is not identical to C in (2.4). We now proceed to calculate an m X N matrix
of deviation scores X = (z,;) and a p X N matrix of deviation scores Z = (2.;)
in accordance with the formulae in Kestelman [1952] or Guttman {1955}

Given 4, £ = AA' + 0’ we compute an arbitrary Gram factor P
(m X m) of

(2.10) I — 4’874 = PP
and a matrix of deviation scores S (m X N) which satisfies
(2.11) SJ = ¢, SS8'/N = I, SY'/N = ¢.

The matrix S can be constructed in various ways, for example by orthogon-
alizing the rows of a row centered matrix of random numbers S* relative to
the rows of Y and relative to each other. These two matrices P, S, we use,
in conjunction with ¥, A, U® (and £ = A4’ + 0% to compute

(2.12) X =A'S'Y + PS
and
(2.13) 7 = 0%y — O'APS.

We now wish to check the properties of these two matrices under three
different conditions:

(i) whenAthe model does not fit exactly in the sample, i.e., when C' h>
and A, U* do not satisfy (2.1), (2.2),
(ii) when the model does not fit exactly in the sample, i.e., when C = £,
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but A, U? have been obtained by the method of MLFA, so that
(2.1), (2.2) are satisfied, and

(iii) when the model fits in the sample exactly, 4.e., when C = 2, regardless
of the method of estimation used.

The last condition is assumed in the articles by Kestelman [1952] and Gutt-
man [1955]. They show that in this case all observable score and covariance
‘information (i.e., ¥, C, A, U®) and all strictures of the factor model are
reproduced precisely by X, Z in the sample, although evidently neither
X nor Z are unique, since P, for example, is determined only up to anm X m
rotation @ (GG = I) by (2.10).

The other two conditions are less obvious, although one may anticipate
that under (i) none of the reproduced matrices will be exact. To appreciate
the derivations under (ii) it will be helpful to note in advance that (2.1)
implies
(2.14) C'A = £7'4,

which leads to considerable simplifications. R
We first check the reproduced score matrix ¥, given 4, 0% X and Z:

(2.15 Y= AX+ 0z
= AA'S7'Y + APS + 0*37'Y — APS
=Y )

under (i), (i), and (iii). I.e., 4, U, and X, Z will always reproduce the observed
scores exactly. We now check the properties of X:

(2.16) XX'/N =1+ A’$7'(C — £)27'4A # I,  under (i)

=1, under (ii) and (iii).
(2.17) XY'/N = A'27C = A’ under (i)

=4 - . under (ii) and (iii)
(2.18) XZ'/N = A'37Y(C — 270 = ¢ under (i)

= ¢ under (ii) and (iii).

Thus, the score matrix X has all the properties of a matrix of “(uncorrelated)
common factor scores,” once A, U® are MLE’s, whether C fits the model
exactly or not. On the other hand, we find for

(2.19) ZZ'/N = I, + 057Y(C — £)27'0U # I,  under (i) and (ii)
=1, under (iii),

and
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(2.20) ZY'/N=02'C=0 under (i) and (ii)
=0 under (iii),

i.e., the score matrix Z has the properties of a matrix of “(standardized)
unique scores” only if the model fits exactly, whether A, U* are MLE’s or not.
These results further strengthen the already strong case [Browne, 1969] for
MLFA as a method for obtaining A, U”. They also provide a strong case for
calling the elements z,; in X “(common) factor scores”: these numbers behave
precisely the way “(common) factor scores” should behave, according to the
model, and they do so regardless whether the model fits in the sample exactly
or not, as long as MLFA was employed. The only thing “wrong’ is the fact
that these scores are not unique, which, perhaps, should not be faulted to
the z;; but rather to the model. If one dislikes score indeterminacies, one
should probably look for other models which do not contain any, e.g., models
which define the latent variables as linear combinations of the (possibly
rescaled) observed variables (‘‘Component analysis,” which contains ‘Prin-
cipal component analysis” as a special case). Once one embarks on the factor
model, one has to live with this indeterminacy. To call another set of numbers
which satisfies none of the strictures of the model (e.g., the so-called “‘regres-
sion estimates’”) “factor scores” in preference to X, which satisfies ther all,
does not strike us as very rational.

Our present interest is in the factor model. We now inquire to which
extent X is indeterminate, referring to earlier work by Kestelman [1952],
Guttman [1955], and others. These results can, of course, also be interpreted
along more traditional lines by considering the factor indeterminacy measures
in the sample estimates (in fact, MLE’s, since we now assume A, U” are
MLE’s, ¢f. Anderson [1958, p. 47]) of the population parameters which indicate
the extent of the indeterminacy of the latent random variables in the popula-
tion.

In the sample we consider the correlations between corresponding rows
in X and another séore matrix X* which also has been constructed in’ accord-
ance with (2.12) for the same matrix S but a different Gram factor P* = PG,
where G is an m X m rotation. We choose G so as to minimize the sum of all
diagonal elements in XX*/N. As Guttman [1955] has shown, this happens
when G = —I. We therefore obtain

(2.21) R... = XX¥/N =24'$7'4 - 1,,

for the correlations between minimally correlated equivalent ‘“factor scores”
X, X* The diagonal elements of this matrix

(2.22)  Pupp =26127'4; — 1 =28/C""6; — 1 =poepp  J=1,--,m

(where 4} denotes the j’th row of A’) give the sample correlations between
two equivalent columns of factor scores for the same factor z; .
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On the other hand, the elements in (2.21), (2.22) could also be interpreted
as MLE’s of the corresponding population parameters, ¢.e., the population
correlations between minimally correlated equivalent common factors, under
the hypothesis that the factor model fits in the population. The latter inter-
pretation also applies to

(2.23) Paiogr = 20027, — 1 i=1---,p

(where 4/ is the ¢’th row of U). The former, score interpretation, does not
apply to the unique variables because Z, as we saw, does not qualify as a
matrix of “unique scores” except when the model fits exactly.

In practice, however, our main interest revolves around the common
factors. We will now show that the elements in (2.22) can be written down
at once as simple functions of the “retained roots” in D}, once A, U have
been estimated by the method of MLFA if A has been identified as in (2.5).

We find

(2.29) Boizge = (6 — D/ + 1) = 1 — 2/b]
where ¢} are the diagonal elements in (2.5) and b} are the elements in 2.7):
From

A = 454 = AL + 094
= A0 — 0PAQ0A + DA0 A =D — DI+ D)7

it is seen that (2.1), (2.2), and (2.5) imply that A’C™*'4 is diagonal. The
minimum correlation between equivalent common factors is given by (2.22)
which thus reduces to (¢; — 1)/(c} + 1). From the definition of A in (2.8) one
further concludes that 4’07 %4 = D? = D? — I, , which gives (2.24).

It thus turns out that both sets of roots in Dj carry relevant information:
the rejected roots reflect the fit of the model through the (likelihood ratio)
test (2.9) and the retained roots reflect the degree of determinateness of the
common factors, both in the sample and in the population. The identifiability
constraint (2.5) has an-even stronger consequence:

Theorem: If A, U are obtained by the method of MLFA and the identifi-
ability conmstraint (2.5) is employed, then the (uncorrelated)
common factors associated with A are ordered from most to least
determinate among all common factors with unit variance obtain-
able by orthogonal or oblique rotation. In particular, the least
determinate factor has minimum correlation 3,,.... = 1 — 2/b3
and the most determinate common factor has minimum correlation
Pone = 1 — 2/B% .

This follows from the fact that the minimum correlations between equivalent
common factors relate monotonically to the eigenvalues ¢} of M = A¥ 0%4%,
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where A* is any factor pattern (structure) obtained by rotation through L,
A* = AL. It is well known that the eigenvalues of M are the extreme values
of all quadratic forms ¢ = MM\, under choice of unit length vectors X, , and
under the side condition that MX; = 0 for 7  j (Bellman, 1960, p. 111).
In particular, ¢ = maxy,., MM\, and ¢, = miny.,., NM\. If the roots ¢} are
all distinet, all A; will be mutually orthogonal, so that L = (A, -+ A,) is a
rotation. If not all ¢} are distinct, then L can be chosen orthogonal, as is well
known.

Thus, inspection of the latent roots ¢? of the matrix M = A¥ D *4*if
'A* does not satisfy the constraint (2.5), or of M = D? = A’U*4 if it does
shows at once the range of all minimum correlations between equivalent
common factors obtainable by orthogonal or “oblique’” rotation.

Harris [1962, p. 259] suggests one retain only those factors which corre-
spond to b} > 1. If one were to insist on factors which are better determined
than a set of standardized random numbers are (in the sense that the scores
on factor z; can be predicted better from scores on its equivalent twin 2%
than from a set of random numbers), then one would have to raise that
standard to retaining only factors for which b} > 2.*

One might say that the identifiability constraint (2.5) rotates the common
factors into a “canonical position” relative to the measures of factor indeter-
minaey p,,.;» in much the same sense (and, basically for the same reasons
[Anderson, 1958, p. 274]) as a set of principal components can be understood
as a new set of variables obtained from a set of given variables upon rotation
into a ““canonical position’” relative to the variances. Once the indeterminacy
measures 3,,.,» are known for the m factors z; implied by (2.5), we can com-
pute the indeterminacy measures ,,,;» for any new set of common factors
v, * -+ , v, obtained by orthogonal or “oblique’ rotation as weighted averages
of the indeterminacy measures 3, ;¢ :

Corollary: If a set of factors v, , - - - , v, is obtained by orthogonal or “oblique’’
rotation from a set of uncorrelated factors ; , --+ , . whose
pattern A satisfies (2.5), then the minimum correlation between
equivalent common factors v; , v* is given by the Welghted average

(2'25) . ﬁn-;' = Z tupnzi‘

where the #; in 7/ = (t;; , *++ , {.;) are the elements in the j'th
column 7; of the transformation matrix T' which carries the factor
structure of the z; into the factor structure of the v; .

This follows from the definition of the minimum correlation between equl-
valent oblique common factors v; , v%
* Note that a negative correlation does not, of course, mean that the factors are

better determined than if it were zero but rather that the range of correlations among all.
equivalent factors extends below and, thus, includes zero.
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(2.26) Bopepe = 280,00 ey, — 1 = 28127, — 1

where ¢; is the 7’th column of the (oblique) factor structure of the v’s [Gutt-
man, 1955] and the fact that A’27'4 is diagonal if A satisfies (2.5) as was
shown earlier:

2.27) B = 28187, — 1 = 20)(A' S D)7, — 1 = X Liibesers -

The practical significance of this result is that knowledge of the ¢; in (2.5)
(or, equivalently, knowledge of D}, in (2.7)) together with knowledge of the
transformation T relating the two factor structures suffices to compute the
minimum correlations 3,,,,. for any other set of factors v, , -+ -, ¥ obtained
by orthogonal or “oblique” rotation without need to use (2.22) again. Inspec-
tion of T will also explain why oblique rotation sometimes improves the
average indeterminacy of the common factors: new factors »; which have
relatively large weights for well determined z; will be better determined
than v, , which are largely composed of poorly determined z; . In the case of
orthogonal rotation the sum of the minimum correlations of the v; (and
hence their average) is the same as the sum of the minimum correlations for
the z; (since D_; Di tiiheapr = D Peieie Di By = Y B i i By = 1,
ag it is if 7'is orthogonal). In the case of “oblique rotation,” on the other hand,
3. &, = 1does not imply 2_; #;, = 1, so that now a new set of factors v; can
be constructed whose average minimum correlation exceeds that of the z;
by repeatedly weighing in the more determinate factors among the z; . ‘

If a method for “oblique rotation” to simple structure is employed, a rise
in the minimum average correlation among the common factors can be
expected to oceur if all factors are at acute angles to each other (disregarding
orientation), i.e., if they are all highly correlated. From (2.8) it is apparent
that in this case the most determinate common factor z, of the uncorrelated
set whose pattern A satisfies (2.5) is in the vicinity of the centroid of the
tests. Upon “oblique rotation” to simple structure all other common fagtors
v, would be inclined towards z; so that the weights £, (the cosines of the
angle of 2, with ;) are likely to be larger in magnitude than the remaining
weights t;, for j # 1. Thus, all new factors v, contain a relatively large share
of the most determinate factor z; and the sum of their minimum correlations
Buys,s will exceed that of the z; or any other set of orthogonal factors.

8. Factor Indeterminacy and “Oblique Rotation”

We have seen that in theory, at least, “oblique rotation’ ean increase
or decrease the minimum average correlation of the common factors. In
Schonemann [1971] it was shown that the average minimum correlation
between equivalent sets of uncorrelated factors is a constant independent of '
the data. Since “oblique rotation” only affects the minimum correlations
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of the common factors, it follows that this simple result cannot be generalized
directly to the oblique case. But it is possible to state somewhat weaker
results for the minimum average correlation of oblique factors in the form of
bounds which, as will be shown, depend on the latent roots of the correlation
matrix for the common factors. For notational convenience we shall treat
the population case. The derivations for the exact sample case are analogous.

In the oblique case the matrix of correlations between two sets of mini-

mally correlated factors (f_) and (;:) is given by

6 o= A s v - (%))

where n = At + U¢; var (n) = Z, var (§) = ¢, var () = I, cov (£ ¢) = ¢.
This matrix has been discussed in some detail by Guttman [1955], while
Heermann [1966] considered the special case for ¢y = I, .

Note that in the oblique case the diagonal elements are still the squared
multiple correlations g,.,,..,, and g,.,....,. as they were in the orthogonal
case. But, in contrast to the orthogonal case, this covariance matrix no longer
coincides with the transformation matrix T,;, which carries one set of factors

(§) into another, equivalent set (g:) = T’(f_) which is pairwise minimally

correlated with the first. Rather, if the common factors z, are correlated,
one has »

00 cum (9. () - el (0 - [

ie.,

-1 ,
3.3) T = c,,,i.,(‘” ) = o(¥4 )E“(A, Uy = 1I,..#T.

I, \ U
This transformation matrix is no longer svmmetric, as it was in the orthogonal
case. And while the matrix

(3.4) N = ( [‘}1 )2“(A, Uy = N* = N’

is idempotent, so that its trace equals its rank (which is p), 2N — I = T"is
no longer orthogonal.

For this reason the fairly straightforward argument which Schénemann
[1971] used to evaluate the minimum average correlation between equi-
valent sets of uncorrelated factors can no longer be employed in the corre-
lated case. However, a somewhat different argument can be used to obtain
bounds for the minimum correlation between equivalent sets of correlated
factors. Let
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(3.5) WW' = 3, W nonsingular
be any complete factorization of £ and ¥/ a symmetric factor of ¥, so that
(3.6) #]1/2 — ¢ll'2l 5&1/2\(/”2' — (¢1/2)2 = \b
Then from
. 1/2A
(8.7 T =WW = (Ay'"”, U)( )

one knows that a (p 4 m) X (p + m) orthogonal matrix @ exists so that
(3.8) (W, $)Q = (4¢'*, U)

since the rows of both (W, ¢) and (4y¢'* U) give rise to the same scalar
products in Z. Therefore,

(3.9  Cuiw = 2(”')2“(1‘1% v - (wz)

- oM v o)) - ( )
A el ad)- ()
- o e () - (%)
(3.10) tr Coe = 21r Q(‘blﬂ)Q’(I’ ¢) — @+ m).

The diagonal matrix (I’¢) simply suppresses the last m diagonal elements in

(3.11) B = Q('I’I’)Q'

wa(*Jol",) - Lo

can be called a “partial trace.”

That such partial traces are maximized under choice of orthogonal
matrices Q if the first p rows of Q are the eigenvectors corresponding to the
p largest roots of B, and are minimized if the first p rows of @ are the eigen=
vectors corresponding to the p smallest roots of B again follows from the

so that
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well-known variational properties of eigendecompositions [e.g., Bellman, 1960,
p. 111, or Householder, 1963, p. 76f]. Thus, if
3.12) ¥ = KD:K' KK' = K'K = 1,,, Dj = diagonal
has eigenvalues

3.13) & zdy > 2dy

so that (IPI ) has eigenvalues

(3'14) df2d§2_>_df>1,-,1,2d§”d,ﬁ
k largest roots of ¢ m — k smallest roots of ¢
which exceed unity which are less or equal unity
then
&
(3.15) p—k+ 2di  Wdi>1

will be the maximum of the partial trace of (3.11) and

m

816 p—(m=-k+ > di=p+k— 2d, @ <DE >

F=k+1

will be its minimum. If we now define

) k
(3.17) /2= 2@ -1, @ >0, = }r — tr Case

and

I

®—-m)/@+ m),

,
then we obtain
(3.18) r—8/(p+m) < <7+ 8/ (p + m).

These bounds are weak (i.e., the interval 2 5°/(p -+ m) is wider than
necessary) because we assumed for their derivation that we are free to choose
among all orthogonal matrices @ of order (p + m) X (p + m). In faet,
however, @ is a function of 4 and ¢ (and thus U and Z):

o L, \(W! (Av[/“ 2 U )
(3.19) A Q = ( S)( P[) w"l/? __AIU—I
where P is defined by S
(3.20) : PP = PSS'P! = y — yA'S"'Ay

and 8 is an arbitrary orthogonal matrix of order m X m. (3.19), (3.20) are
straightforward generalizations of Heermann'’s [1966] explicit representation
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of Q to the oblique case. It is easily verified that (W, $)Q = (4¢' U). To see
that @ is also orthogonal it is convenient to use (PP')™ = y™' — A'U™’A
[Guttman, 1955].

Since “oblique rotation” does not affect the unique factors at all, (3.18)
can be transformed into a set of bounds for the minimum average correlation
between equivalent correlated common factors, say 7% , in terms of the
minimum average correlation between equivalent uncorrelated common
factors, say m,(= 1 — 2 D_" b;?/m, from (2.24), where the sum extends over
the retained latent roots of U™'CU™" in (2.7)):

(3.21) 1. — 8/m < ™ <1, + 8/m.

But since these bounds differ from those in (3.18) only in the smaller denom-
inator m (in place of p + m), they are much wider and, therefore, as our
experience showed, in practice rather useless. For that reason we shall not
discuss them any further.

4. Some Empirical Illustrations

Although the basic facts about factor indeterminacy are as old as factor
analysis itself [Wilson, 1928, Camp, 1932, Piaggio 1933] one rarely finds an
empirical study which actually reports the indeterminacy measures for each
common factor.! In an attempt to gain some perspective about the practical
relevance of this issue we thought it worthwhile to reanalyze a number of
studies with the method of maximum likelihood and compute some of the
indeterminacy measures both before and after rotation.

We reanalyzed 13 different studies, the first 11 of which are the same and
in the same order as in a paper by Jéreskog [1967] who used them to illustrate
the efficiency of his MLFA algorithm. We are indebted to Dr. M. Browne for
a very efficient MLFA algorithm which utilizes the Gauss—Seidel method
[Browne, 1968]. This particular algorithm does not employ the identifiability
constraint (2.5) which therefore had to be imposed upon convergenee. At
this stage we also computed all latent roots b? , rather than just the “retained
roots” which could have been obtained dire¢tly from (2.5). Our results are
presented in Tables 1, 2, and 3.

For each data set we computed the “exact” likelihood ratio test 7'(X)
in (2.9) as well as an “approximate” test T’(X) which is given by

i=m+i

@)  T@=kX Td=—k 5 (01— D~ ¢~ 172

(with k, ¢, , b? defined as in (2.9)).

t A notable exception, according to one of our reviewers, is a recent Ph.D, thesis by
E. P. Meyer, “Some Results Concerning Choice of Uniqueness Estimates, Number of
Factors, and  Determinacy of Factor Score: Matrices,”” University of Wisconsin, 1969,
which contains “extensive empirical results.” .
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This test can be obtained from (2.9) by replacing each In b% by the first
two terms of its Taylor expansion. Since 7”(z) is manifestly much easier
to compute than T'(z) we were interested to see how both tests compare in
practice. In Table 1 the values for both tests together with the degrees of
freedom (df) and the associated (upper tail) probabilities (r) are given. It
appears that the “approximate test” performs in nearly all cases as well as
its supposedly more accurate rival. It is clear, of course, that strictly speaking
both tests are “approximate’ so far as the (chi-square) sampling distribution
is concerned. 7T'(z) is the more appropriate test in the context of MLFA
because the likelihood ratio involves determinants. In passing we note
that 7"(z), on the other hand, would be the more appropriate test if one were
to obtain a weighted least squares solution. Such an alternative was indeed
proposed and programmed by M. Browne [1969]. It could be interpreted
statistically as being based on the minimum chi square principle, instead of
maximum likelihood.

Most data sets were analyzed more than once, partly to replicate the
analyses in Joreskog [1967] and partly because in most instances the more
conservative m (number of common factors) was not supported statistically.
For reasons to be given shortly we did not use Joreskog’s [1967] deviee to
partial out variables when their unique variance converged on the boundary
(u* = 0). Instead we eliminated such variables from the battery entirely
before reanalyzing the remaining variables. In those cases, which are identified
in Table 1, the values for the chi-square test and the associated degrees of
freedom are different from Joreskog’s (7"/(x)). Upon assessing the factorial
1ndeterm1nacy, factor by factor, for the “canonical position” (Table 2),
i.e. for A identified by (2.5) using (2.24), we proceeded to rotate A to simple
structure using varimax (Table 2). As was pointed out in Schonemann
[1971] such orthogonal rotation does not affect the average indeterminacy
of the common factors (7,), it simply redistributes the total in accordance
with (2.25). We then employed a rather crude imitation of the “Promax”
algorithm proposed by -Hendriksen and White [1964] which performed
remarkably well as judged by intuitive standards. This we did in order to
assess the change in factor indeterminacy upon “oblique rotation” (Table 2).
The cols. labelled 7 and . in Table 1 give the minimum average correlation
for equivalent factors for all factors (v) and for the uncorrelated common
factors (r.), respectively. The cols. 7* and 7* give the corresponding measures
for the oblique solutions. One notes a slight increase in the averages in almost
all cases. We tried to explain this fact on a somewhat intuitive basis in Sec. 3.
Finally, in cols. 7, , 7y we present the bounds for the average minimum
correlation in the oblique case which we computed according to (3.18). It is
evident that most of the intervals are fairly wide so that this particular
theoretical result is not likely to be very useful in practice. In the last line
in Table 1 (min p,,.;») we finally present the minimum correlation of the
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least determined common factor (eq. (2.24)). One finds that this correlation
is often negative which means concretely that a given column of “factor
scores” can be predicted with more success from a set of random numbers
than from an equivalent column of “factor scores’.

Our general conclusion is that the factor model has serious limitations.
If the sample size is large, which, in principle, it always should be, one finds
that the model does not fit very well for only a small number of factors.
If one then raises m in order to achieve a better fit, one is left with more and
more poorly determined common factors. This dilemma is very acute in the
Maxwell [1961] study and the Lord [1956] study which were the only two
studies with respectable sample sizes. The same effect emerges, to a lesser
extent, in the Emmett [1949] study, the Bechtoldt S2-study [1961], the
Harman study with 8 physical variables [1960], and his classic 24 variable
study. The only two instances where the minimum correlations were accept-
able when the model fits are the studies by Bechtoldt [S1, 1961] and M.
Browne [1968]. The latter uses artificial data.

An incidental finding of these reanalyses was the discovery that oblique
rotation often produced doublets in the factor patterns, once m was raised
to improve the fit. Such doublets, as is well known [Anderson and Rubin,
1956), correspond to unidentifiable factor patterns, in the sense that the
communalities between the two variables which load nonzero on the doublet
are arbitrary within certain limits. This is clearly an undesirable situation
and it appears to arise with greater frequency than might have been suspected
once m is raised so as to satisfy statistical standards. Some instances of such
doublets (or sometimes, “specifics’) are reproduced in Table 3.

The frequency of their occurrence rose markedly once we reanalyzed
some of the studies containing “boundary cases” (i.e., unique variances
converging on zero) with the device described in Jéreskog [1967]. To obtain
a solution for such boundary cases, he partials out a variable with zero
uniqueness after having rotated one of the “common factors” (actually, now,
components) into collinearity with that variable. We are skeptical about the
utility of this procedure for two reasons: (i) if A is unidentifiable, as we often
found it to be (Table 3), then the selection of the variable to be partialled
out is essentially arbitrary, because its communality can be traded off against
that of the other variable on the doublet, and (ii) it strikes us as inconsistent.
If one entertains the factor model, which is erected on the theory that all
error is uncorrelated, then one is driven to conclude that any variable with
zero unique variance is perfectly reliable. In psychology such variables are
very rare indeed. To switch boats in midstream, so to speak, simply because
one encounters computational difficulties, has the effect of mixing two logi-
cally incompatible models, one with correlated and one with uncorrelated
error. If one is willing to accept the notion of correlated error, one is probably
better off with component analysis from the start. Not only is such an ap-
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proach technically simpler and computationally more expedient, it also
dispenses with all the mathematical and semantical problems which ac-
company the built-in indeterminacies of the factor model. Component models
which may serve as suitable alternatives are discussed in Guttman [1953]
and Harris [1962].

5. Discussion

The issue of factor indeterminacy [Wilson, 1928; Guttman, 1955} is not
only a mathematical but also a semantical problem. Consider, for example,
the widely held belief that “factor scores cannot be computed directly, they
can only be estimated” (verbatim in Pawlik, [1968, p. 163]). Remarks to the
same effect in Horst, [1969, p. 7-8]; Kaiser, [1963]; MacDonald and Burr, [1967,
p. 382]; and elsewhere). What do such statements mean?

They evidently mean hardly anything as long as we are not told in clear
and unambiguous terms what is meant by “factor scores” (as distinet from
“factor score estimates’). Upon checking, one finds that the exact meaning
of this term is a closely guarded secret. There are good reasons for not defining
it: if by “factor scores” one means, as one sometimes does by implication,
observations on random variables, then “factor scores” cannot be defined
uniquely- for the simple reason that the underlying random variables, the
“factors,” cannot be defined uniquely. This is quite different from saying
that they cannot be “calculated uniquely”’ [Horst, 1969, p. 7-8], which is a
minor matter, by comparison.

This, in turn, raises the questicn what, exactly, it is that is being esti-
mated when “factor scores” are “estimated by the regression method”
le.g., Lawley and Maxwell, 1963, p. 89]. Among the more recent authors only
L. Guttman appears to have appreciated the full implications of the factor
indeterminacy issue for the problems of “estimating factor scores”: ““- - - it
raises the question what is being estimated in the first place; instead of only
one primary trait there are many widely different variables associated with
a given profile of loadings [Guttman, 1955].”” In the thirties several other
authors thought about this question, among them Thomson [1935], who
devoted a paper to ‘“‘a comparison between Spearman’s ¢ technique and the
ordinary method of the regression equation.” He concluded that “Spearman’s
case is exactly the same as (the regression case) except for the important fact
that he has no ‘criterion,” no measure of g except through the team of tests
themselves (p. 94).” “This distinction between the two cases may appear to
be subtle, but it seems a proper distinetion to draw (p. 97).”” From his point
of view “factor scores” and “factor score estimates’” are one and the same
thing. If one adopts it, there is no need to speak of “least squares estimates.”
It is well known, however, that “factor scores,” so defined, would satisfy
none of the strictures of the factor model. For example, they would be corre-
lated for factors which, according to the model, should be uncorrelated.
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If, on the other hand, by “factor scores’”” one means a set of numbers
which have all the properties the factor model prescribes once the observed
covariance matrix permits an exact resolution into ¢ = A4’ + U7, then one
will find, upon reading Kestelman [1952] or Guttman [1955], that such numbers
always exist. Indeed, infinitely many different sets of such numbers can be
computed, which therefore need not be estimated, by the “regression method”
or any other method. Other definitions of “factor scores” may be possible.
But as long as they have not been made explicit the sentence “factor scores
cannot be computed, but only estimated” remains perfectly vacuous.

One of our reviewers pointed out quite correctly that whatever is obseure
about the concept of factor scores should be equally osbcure about the concept
of true scores in classical test theory. This follows simply from the fact that
classical true score theory is a special case of two-factor theory. This is no
coincidence since both go back to the same man, C. Spearman.

The point can be made that none of these problems bear on the practical
utility of factor analysis as a research tool as long as it is used to study the
structure of variables without attempting to estimate a person’s factor
scores. The factor model could be stated and studied solely at the covariance
level as a model which stipulates a particular form for the observed covari-
ance matrix. This is a perfectly legitimate interpretation of the factor model,
and many statisticians seem to view it this way. But to be consistent with
this interpretation one would, of course, have to refrain from recommending
how to “estimate factor scores.” It is a fact that most texts on factor analysis
do include discussions and recommendations on this subject, as do, surpris-
ingly, some papers and books by statisticians. We feel it betrays an incon-
sistency to treat the factor model in this ambiguous way. Once the factor
variables are introduced as part of the model, the issue of factor indeterminacy
has to be faced and resolved in some manner, however arbitrarily, and the
exact meaning of the term ‘““factor scores,” as distinet from “factor score
estimates,” has to be specified. Thought-provoking, and sometimes amusing,
discussions of these matters can be found in some of the older literature,
which may well merit re-reading by today’s students of factor analysis.
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