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1. INTRODUCTION. In the preamble to his fourth problem (presented
at the International Mathematical Congress in Paris in 1900) Hilbert sug-
gested a thorough examination of geometries that “stand next to Euclidean
geometry” in the sense that they satisfy all the axioms of Euclidean ge-
ometry except one. In non-Euclidean geometries the axiom that is usually
taken to fail is the famous parallel postulate. This leads to the relatively
well-known hyperbolic and elliptic geometries. The significance of these is
that, like Euclidean geometry, they are homogeneous (all points have the
same status) and isotropic (all directions have the same status).

Another type of geometry that “stands next to Euclidean geometry” is
the geometry of normed spaces. Here translating a line segment does not
change its length, but the axiom that states that two triangles with equal
corresponding sides are congruent no longer holds. These geometries are
homogeneous but not isotropic.

In this article we survey some of the most basic results on the geometry of
unit discs in two-dimensional normed spaces, while adding a few results and
some new proofs of our own. These results answer simple questions about
the perimeter of the unit disc, its area, and the relationships between these
two quantities.

2. MINKOWSKI PLANES AND DUALITY. A normed plane is a
pair (R2, ‖ · ‖), where the function q 7→ ‖q‖ is a norm:

• ‖q‖ ≥ 0 with equality if and only if q is the zero vector;
• ‖tq‖ = |t|‖q‖;
• ‖q + x‖ ≤ ‖q‖+ ‖x‖.

If we change viewpoint and consider a normed plane as a metric space
(R2, d) with distance function d(q, x) = ‖q−x‖, then we call it a Minkowski
plane, or a Minkowski geometry.

Some classical examples of normed and Minkowski planes are provided
by p-norms ‖q‖p := (|q1|p + |q2|p)1/p (1 ≤ p < ∞) and the maximum (or
supremum) norm ‖q‖∞ := max{|q1|, |q2|}.

Exercise 1. Consider the 1-norm (or taxicab norm) on the plane (i.e.,
‖q‖ := |q1|+ |q2|) and its corresponding distance function d(q, x) = ‖q−x‖.
Construct two noncongruent, nondegenerate triangles with corresponding
sides of length 1, 1, and 2.

In his pioneering work on the geometry of numbers, Minkowski realized
that it is often better to consider the unit disc

D := {q : ‖q‖ ≤ 1}
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as the starting point for the investigation of normed planes and Minkowski
geometries. The definition of a norm implies that the unit disc

(1) is a closed, bounded set with 0 in its interior;
(2) is symmetric with respect to 0 (i.e., if q belongs to D, then so does

−q); and
(3) is convex.

Conversely, if K is a set satisfying the properties (1), (2), and (3), then the
function

‖q‖K := inf{t > 0 : q/t ∈ K}

is a norm on R2 for which K is the unit disc.
Condition (3) is crucial for the triangle inequality and this is why we

cannot allow p < 1 in the definition of ‖q‖p. Figure 1 shows, in increasing
order, the nonconvex curve we get for p = 1/2 and the unit discs for the
p-norms on the plane for p = 1, 2, 4, and ∞.

Figure 1.

By considering symmetric convex bodies and the norms that they gener-
ate, we obtain a great variety of norms on the plane. The invariance un-
der translations of Minkowski geometries makes them homogeneous—every
point behaves like every other point. However, these geometries are not
isotropic except in the case where the norm comes from an inner product
(i.e., the unit disc is an ellipse).

Isometries of normed planes. The study of isometries, or distance-
preserving maps, between Minkowski planes is greatly simplified by a cele-
brated theorem of Mazur and Ulam (see [23, p. 76]) that states that if the
isometry is surjective, then it is the composition of an invertible linear map
and a translation. Such transformations are called affine transformations,
and the group they form underlies the study of Minkowski geometry.

A ready consequence of the Mazur-Ulam theorem is that two Minkowski
planes are isometric if and only if their unit discs are linearly equivalent:
there exists an invertible linear transformation from R2 to itself that takes
the unit disc of one Minkowski space to the unit disc of the other. This
implies that, apart from translations, a general Minkowski plane does not
admit many isometries onto itself.



3

Exercise 2. Translations, the identity map I, and the symmetry −I are
isometries for any Minkowski plane. Show that in general these are the only
ones by constructing a convex set K such that the normed space (R2, ‖ · ‖K)
has this minimal set of isometries.

Duality in normed planes. A major feature of Minkowski geometry is
the notion of duality. The dual space of R2, denoted by R2∗ := (R2)∗, is the
space of all linear functionals from R2 to R. If p belongs to R2∗ and q to
R2, we denote the pairing of p and q by p · q. A norm ‖ · ‖ on R2 induces
a dual norm ‖ · ‖∗ on R2∗ by the formula

‖p‖∗ := sup{|p · q| : ‖q‖ ≤ 1} .

If K is the unit disc in (R2, ‖ · ‖), the unit disc of (R2∗, ‖ · ‖∗) is the polar of
K and is denoted by K◦. It is not hard to show that (K◦)◦ = K.

In practice, to draw the polar of a unit disc K we identify R2 and R2∗ by
using the standard basis, and plot all the points p of R2∗ for which the line
in R2 with equation p · q = 1 supports K (i.e., intersects the boundary of
K, but not its interior).

K

p · q = 1

K◦

p

1/2 1/2

Figure 2. Construction of polars.

Exercise 3. Show that the taxi cab and maximum norms are dual to each
other. In general, a celebrated theorem of Minkowski states that the p-norm
and the q-norm are dual to each other if and only if p−1 + q−1 = 1. Figure 2
illustrates Minkowski’s theorem for p = 5/2 and q = 5/3.

A more complete account of Minkowski planes can be found in Thomp-
son’s book [23] and in the survey [13] by Martini, Swanepoel, and Weiss.
Section 7.4 of this last paper served as a motivation for the present, more
leisurely, account of the geometry of unit discs in Minkowski planes.

3. BASIC GEOMETRY OF MINKOWSKI PLANES. Having dealt
with the fundamental ideas, in this section we look at three topics from
Minkowski geometry. These are (i) the perimeter of the unit disc, (ii) the
notion of normality (perpendicularity), and (iii) the area of the unit disc.
Perimeter of the disc. On any metric space (X, d) it is possible to define
the length of a curve as the supremum over all partitions {x0, x1, . . . , xn}
of the curve of the quantity

∑n
i=1 d(xi, xi−1). On a Minkowski plane, we
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may also compute the length of a differentiable parameterized curve γ(t)
(a ≤ t ≤ b) as the integral ∫ b

a
‖γ̇(t)‖dt.

The curve γ is said to be parameterized by Minkowski arclength if ‖γ̇(t)‖
is constantly equal to one. In the sequel, it will be useful to define a regular
curve in a Minkowski plane as a curve that admits a twice-differentiable
parameterization by Minkowski arclength.

If K is a convex body in a Minkowski plane, let ∂K denote its boundary
and `(∂K) its Minkowski length. The most obvious curve to consider is the
boundary of the unit disc, or unit circle, of the Minkowski plane. We stress
that the length of the unit circle is measured relative to its defining norm.

Exercise 4. Show that if the unit disc is a parallelogram, its perimeter is
eight. If the unit disc is a regular hexagon, its perimeter is six. Construct
a family of hexagons Ht (0 ≤ t ≤ 1) such that when considered as unit
discs the perimeter of Ht is 6 + 2t (when t = 1 the hexagon becomes a
parallelogram).

A key remark is that the perimeter of the unit disc is a linear invariant.
By this we mean that if two symmetric convex bodies D1 and D2 are linearly
equivalent and we consider each to be the unit disc of a Minkowski plane,
then `(D1) = `(D2).

There are two basic theorems about the perimeter of the unit disc in a
Minkowski plane. The first theorem, due to Go la̧b [7], is relatively well
known:

Theorem 1 (Go la̧b). If D is the unit disc of a Minkowski plane, then 6 ≤
`(∂D) ≤ 8. Equality holds on the left if and only if D is linearly equivalent
to a regular hexagon and on the right if and only if D is a parallelogram.

y
x

z

∂D

x + ∂D

Figure 3. Proof of Go la̧b’s theorem.

Sketch of the proof. To verify the lower bound one inscribes in D a hexagon
by the construction illustrated in Figure 3. Translate a copy of the unit
circle ∂D by a generic unit vector x and mark the two points y and z at
which ∂D and its translate intersect. The hexagon is given by the convex
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hull of ±x, ±y, and ±z. Each side of this hexagon is a translate of a unit
vector (illustrated by the dashed lines) and, therefore, the length of each
side is equal to one.

To establish the upper bound one circumscribes about D a parallelogram
P in such a way that the points of tangency bisect its sides. One way of
doing this is to take P to be a circumscribing parallelogram of minimal area.
In this case the sides of the parallelogram are easily seen to have length two
(Figure 3).

The hard part of the proof is to show that the bounds are attained only
for the affine regular hexagon and the parallelogram. References for this
part are Schäffer [20], Petty [16], and Thompson [23]. �

The second basic fact about the perimeter of the unit circle in a Minkowski
plane to which we alluded is a result of Schäffer [21] (see section 6 for a
proof).

Theorem 2 (Schäffer). If D is the unit disc for a Minkowski plane and if
D◦ is the unit disc in the dual plane, then `(∂D) = `(∂D◦).

Normality in normed planes. One of the ideas that plays a fundamental
role in Euclidean geometry is that of orthogonality. Not only does this
concept occur in Euclid’s axioms themselves, but also in many of the basic
theorems (for example, in that staple of high school geometry, Pythagoras’s
theorem). One of the underlying themes in Minkowski geometry is to look
for suitable substitutes for this notion. In what follows we shall be concerned
with one of these in particular.

In Euclidean geometry a tangent to a circle is perpendicular to the radius
that joins the center to the point of tangency. Equivalently, the shortest
segment joining a line L to a point not on L is perpendicular to L. We make
this into a definition. The idea goes back at least to Carathèodory, but it is
hard to give a precise reference. The most frequently cited reference for the
definition is Birkhoff [5].

Definition 1. If (R2, ‖ · ‖) is a normed plane with unit disc D, we say that
a unit vector q is normal to a unit vector x if the line joining the origin to
x is parallel to a line supporting D at q (Figure 4).

q

x

Figure 4. The vector q is normal to x.
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This definition can be extended in an obvious way to the case where q
and x are arbitrary nonzero vectors. Notice that if ∂D is a regular curve
with (Minkowski) arclength parameterization γ(s), then γ(s) is normal to
γ̇(s).

If q is normal to x, it does not follow that x is normal to q. In fact, for
dimensions three and above the only normed spaces for which normality is
symmetric are the Euclidean spaces. In dimension two, however, normality
is symmetric for a wide class of normed planes studied by Radon in [17] and,
thus, known as Radon planes.

Definition 2. A Radon plane is a normed plane for which normality is
symmetric. A curve in R2 is said to be a Radon curve if it is the unit circle
of a Radon plane.

Geometrically, if q and x are unit vectors in a normed plane, then q and
x are normal to each other if and only if the line containing q and the origin
is parallel to a line supporting the unit disc at x, and the line containing
x and the origin is parallel to a line supporting the unit disc at q. Thus,
it is easy to see that ellipses and regular hexagons are Radon curves, while
squares and regular octagons are not (Figure 5).

q
x

q
x

Figure 5. The regular hexagon is a Radon curve, but the regular octagon is not.

In order to complete Figure 5 into a proof that regular hexagons are
Radon curves, we just need to remark that

(1) a line that passes through the origin and is parallel to a side of the
hexagon intersects it in two of its vertices; and

(2) all the lines supporting the hexagon at a fixed vertex intersect the
hexagon in the same two sides.

The following simple theorems present everything the reader has to know
about Radon curves in order to understand the theorems and proofs in the
rest of the paper. For all the details see [13] and the references therein.

Theorem 3. The image of a Radon curve by an invertible linear transfor-
mation and the polar of a Radon curve are also Radon curves.
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Theorem 4. Let D be the unit disc of a normed plane such that ∂D is a
regular curve and, hence, admits a twice-differentiable parameterization γ(s)
by Minkowski arclength. The curve ∂D is a Radon curve if and only if the
Wronskian s 7→ det(γ(s), γ̇(s)) is constant.

An interesting generalization of Radon curves that comes up in the theory
of area in Minkowski planes has been studied by Martini, Swanepoel, and
Weiss (see [13], [14]).

Definition 3. A symmetric, convex curve is equiframed if every one of
its points is a point of tangency for some circumscribing parallelogram of
minimal area.

It is not hard to show that every Radon curve is equiframed, and that ev-
ery regular equiframed curve is a Radon curve. However, parallelograms
and regular octagons are also equiframed. A comprehensive account of
equiframed curves that includes their general construction is given by Mar-
tini and Swanepoel [14].

For the final part of this discussion of normality we will work with normed
planes for which the unit circle ∂D and its polar ∂D◦ are regular curves.

Definition 4. If q lies on the unit circle ∂D of a normed plane, then the
Legendre transform of q is the unique point L(q) of ∂D◦ such that the line
with equation L(q) · x = 1 is tangent to ∂D at q (Figure 6).

Note that if q is a unit vector, then L(q) ·y = 0 if and only if q is normal
to y. In particular, if γ(t) is an any differentiable parameterization of the
unit circle, then L(γ(t)) · γ̇(t) = 0 for all values of the parameter t.

D

q

L(q) · x = 1

D◦

L(q)

Figure 6. The Legendre transform.

It is easy to see that composing the Legendre transform in a normed
plane with the Legendre transform in its dual plane results in the identity
transformation. Another property of the Legendre transform is established
by the following proposition:

Proposition 1. If v and w are unit vectors in a normed plane (R2, ‖ · ‖)
that form a positively-oriented basis for R2, then L(v) and L(w) form a
positively-oriented basis for R2∗.

Proof. Let us first verify that if the unit vectors v1 and v2 form a basis
for R2, then L(v1) and L(v2) form a basis for R2∗. If this were not the
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case, then L(v1) would have to equal ±L(v2). However, since the Legendre
transform is injective and odd (i.e., L(−q) = −L(q)), this would imply that
v1 = ±v2 and contradict the fact that v1 and v2 form a basis.

Now we make use of a continuity argument. The set of bases for R2 and
R2∗ can be considered as open subsets of R2×R2 and R2∗×R2∗, respectively.
Each of these sets is composed of two connected components, the positively
and the negatively-oriented bases. Since (v1, v2) 7→ (L(v1),L(v2)) is a
continuous map that sends bases to bases, we may prove the proposition by
showing that the Legendre transform sends some positively-oriented basis
of R2 into a positively-oriented basis of R2∗.

To construct such a basis, let γ(s) be a twice-differentiable parameteriza-
tion of the unit circle ∂D in (R2, ‖·‖) by Minkowski arclength that describes
∂D in a counterclockwise fashion. Let t be a value of the parameter s for
which the Wronskian ∆(s) = det(γ(s), γ̇(s)) attains its maximum, and set
v1 = γ(t) and v2 = γ̇(t). The counterclockwise orientation of the param-
eterization implies that v1 and v2 form a positively-oriented basis for R2.
Moreover, since 0 = ∆

′
(t) = det(γ(t), γ̈(t)), the vectors v1 and v2 are normal

to each other. This, together with the definition of the Legendre transform,
implies that L(vi) ·vj = δij . In other words, the basis formed by L(v1) and
L(v2) is dual to the one formed by v1 and v2, hence has the same (positive)
orientation.

�

To end this section we exhibit a simple relationship between normality
and the Legendre transform that will play a crucial role in our proof of
Schäffer’s theorem.

Given a unit vector q in a normed plane, let q̇ denote the unique unit
vector such that q is normal to q̇ and {q, q̇} is a positively-oriented basis
for R2.

Proposition 2. If q is a unit vector in a normed plane and p = L(q̇), then
L(ṗ) = −q.

Proof. By the definition of the Legendre transform, we have

L(p) · ṗ = 0, L(q) · q̇ = 0 . (1)

Applying L to both sides of the equality p = L(q̇), we obtain L(p) = q̇. So
the equation on the left in (1) becomes ṗ · q̇ = 0. Comparing this with the
equation on the right we see that L(q) = ±ṗ, hence q = ±L(ṗ). Finally,
since both (q, q̇) and (L(p),L(ṗ)) = (q̇,L(ṗ)) are positively-oriented bases,
we must have L(ṗ) = −q. �

Areas in Minkowski planes. In contrast to the measurement of lengths,
there is nothing in the definition of a Minkowski plane that fixes a canonical
and incontestable way of measuring areas. Nevertheless, a growing body
of work in convex, integral, and Finsler geometry demonstrates not only
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that a theory of areas and volumes in finite-dimensional normed spaces is
possible, but also that it provides a common framework for some of the
deepest theorems and problems in those fields (see the book [23], the recent
survey [2], and the references therein).

The key remark in approaching the problem of measuring areas in a
Minkowski plane is that isometries should preserve areas. In particular, the
area of a region should be invariant under translation. If we also require—as
it is natural to do—that the area of a compact set be finite and that the
area of an open set be positive, then a deep theorem of Haar (see [23, p.
37]) implies that area is a Lebesgue measure. By this we mean that for some
(linear) system of coordinates (x, y) on the plane the Minkowski area of any
open set U equals ∫∫

U
dx dy.

Since two Lebesgue measures associated with different linear coordinate sys-
tems may differ by a multiplicative constant, this still leaves us with the
problem of finding a suitable normalization. This normalization cannot be
arbitrary. For example, if our unit disc D is an ellipse, then our space is
isometric to the Euclidean plane, and we must assign to the ellipse the area
π. It doesn’t matter how large or small we draw D on the page, its area is
π. Thus, “suitable normalization” requires that the area of the unit disc D
in our Minkowski plane be a linear invariant of D that takes the value π on
ellipses. While there are infinitely many ways of doing this, we shall con-
centrate on four normalizations that have appeared, sometimes implicitly,
in different contexts in convex and differential geometry.

The first normalization, investigated extensively by Busemann, assigns
the area π to the unit disc D of any Minkowski plane. It follows that if U
is an open set of the normed plane with unit disc D and λ is any Lebesgue
measure on the plane, then the Busemann area of U , denoted by µb(U),
equals πλ(U)/λ(D).

In the second normalization, introduced by Holmes and Thompson [9],
the area of the unit disc is equal to its volume product divided by π. We
recall the definition of this important invariant.

If λ is a Lebesgue measure on R2 and the vectors e1 and e2 form a basis
such that the parallelogram they generate has measure one, we define the
dual measure λ∗ on R2∗ as the Lebesgue measure for which the parallelogram
generated by the basis dual to {e1, e2} has measure one. It is easily verified
that the product measure λ×λ∗ on R2×R2∗ does not depend on the choice
of the Lebesgue measure λ, hence defines a canonical volume on R2 × R2∗.

Definition 5. The volume product of a symmetric convex body D on the
plane, denoted by vp(D), is the canonical volume of the body D × D◦ in
R2 × R2∗.
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From the definition it follows that if U is an open set of the normed plane
with unit disc D and λ is any Lebesgue measure on the plane, then the
Holmes-Thompson area of U , denoted by µht(U), equals λ(U)λ∗(D◦)/π.

The third normalization we consider is obtained by setting the area of
the unit disc to be twice the minimum of the quantities λ(D)/λ(P ), where
P ranges over all parallelograms contained in D. A parallelogram on which
this minimum is attained is called a maximal inscribed parallelogram in D.
We may also characterize this normalization by saying that it assigns area
2 to any maximal inscribed parallelogram in the unit disc.

If we set the area of the unit disc to be four times the maximum of the
quantities λ(D)/λ(P ), where P ranges over all parallelograms containing D,
we obtain a fourth possible normalization. A parallelogram on which this
maximum is attained is called a minimal circumscribing parallelogram of D.
This normalization is characterized by the fact that it assigns area 4 to any
minimal circumscribing parallelogram of the unit disc.

These third and fourth notions of area were introduced by Gromov as
mass and mass∗, respectively, in his landmark paper [8]. Convex geometers
will recognize mass∗ as the Benson definition of area (see [3], [4], and [24]).
In what follows we denote mass by µm and mass∗ by µm∗.

As the definitions of mass and mass∗ suggest, definitions of areas on
Minkowski planes come in dual pairs.

Definition 6. Two definitions of area µ and µ∗ on Minkowski planes are
said to be dual if µ(D)µ∗(D◦) equals the volume product of D whenever D
is the unit disc of a Minkowski plane.

It is easy to verify that the area definitions of Busemann and Holmes-
Thompson, as well as mass and mass*, are dual to each other. It is not yet
clear what role duality plays in the study of volumes and areas in normed
spaces, but the following simple proposition will be useful in the sequel.

Proposition 3. If µ, µ∗, ν, and ν∗ are two dual pairs of area definitions
for Minkowski planes, then µ ≥ ν if and only if µ∗ ≤ ν∗.

Proof. Observe that µ ≥ ν if and only if µ(D) ≥ ν(D) whenever D is the
unit disc of a Minkowski plane. Using the definition of duality we have

µ∗(D) =
vp(D)
µ(D◦)

≤ vp(D)
ν(D◦)

= ν∗(D)

and, therefore, µ∗ ≤ ν∗. �

4. BOUNDING THE AREA OF THE UNIT DISC. Go la̧b’s theorem
gives precise bounds for the perimeter of the unit disc. In this section we
begin the investigation of bounds for its area using the Holmes-Thompson,
mass, and mass∗ definitions. Note that, since µb is constant for all unit
discs, the question of bounds for the Busemann definition is trivial.
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For the Holmes-Thompson definition the question of bounds is equivalent
to the following two famous inequalities:

Theorem 5 (Mahler, Blaschke). If K is a symmetric convex body in the
plane, then

8 ≤ λ(K)λ∗(K◦) ≤ π2 .

Equality holds on the left if and only if K is a parallelogram and on the right
if and only if K is an ellipse.

The inequality on the left is due to Mahler [12]. Its conjectured gener-
alization to higher dimensions is a famous open problem of Mahler. The
inequality on the right is due to Blaschke [6]. Its higher-dimensional gener-
alization is due to Santaló [18].

From the previous theorem, we immediately obtain the following inequal-
ities:

Corollary 1. If D is the unit disc of a Minkowski plane, then

8/π ≤ µht(D) ≤ π .

Equality holds on the left if and only if D is a parallelogram and on the right
if and only if D is an ellipse.

The analogous inequalities for mass and mass* are given in the next two
theorems.

Theorem 6. If D is the unit disc of a Minkowski plane, then

2 ≤ µm(D) ≤ π .

Equality holds on the left if and only if D is a parallelogram and on the right
if and only if D is an ellipse.

The right-hand inequality is due to Sás [19], but another reference is
Macbeath [11].

Theorem 7. If D is the unit disc of a Minkowski plane, then

3 ≤ µm∗(D) ≤ 4 .

Equality holds on the left if and only if D is linearly equivalent to a regular
hexagon and on the right if and only if D is a parallelogram.

The inequality on the left was proved by Petty [16]. These results will be
established in the next section, but two of the inequalities are quite simple.

Exercise 5. Show that if D is the unit disc of a Minkowski plane, then
2 ≤ µm(D) and that µm∗(D) ≤ 4. Equality holds in either case if and only
if D is a parallelogram.

5. AREA VERSUS PERIMETER. The main theorem in this section
relates the perimeter of the unit disc D of a Minkowski plane to the areas
of D given by µm and µm∗.
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Theorem 8. If D is the unit disc of a Minkowski plane, then

2µm(D) ≤ `(∂D) ≤ 2µm∗(D).

When ∂D is a regular curve, equality holds on either side if and only if it is
a Radon curve.

Proof. We make the simplifying assumption that ∂D is a regular curve.
Since any convex body can be approximated in the Hausdorff topology by
convex bodies with regular boundaries (see [23, p. 64]) and since the quanti-
ties investigated are continuous in that topology, the proof in this particular
case and an approximation argument yield the proof in the general case.

Let γ : [0, `] 7→ R2 be a positively-oriented parameterization of ∂D by
Minkowski arclength (i.e., for every value of the parameter the vector γ̇(s)
has magnitude one and the pair of vectors (γ(s), γ̇(s)) is a positively-oriented
basis of R2). By Green’s theorem

λ(D) =
∫

D
dx dy =

1
2

∫
γ
x dy − y dx =

1
2

∫ `

0
det(γ(s), γ̇(s)) ds.

To prove the inequality 2µm(D) ≤ `(∂D) we argue as follows. Since γ̇(s)
is a Minkowski unit vector, the parallelogram Ps with vertices γ(s), γ̇(s),
−γ(s), and −γ̇(s) is inscribed in D, so its area is no larger than that of a
maximal inscribed parallelogram Pi. Moreover, det(γ(s), γ̇(s)) = λ(Ps)/2.
Thus we have

λ(D) =
1
4

∫ `

0
λ(Ps)ds ≤ 1

4

∫ `

0
λ(Pi)ds = λ(Pi)`(∂D)/4.

Since µm(D) = 2λ(D)/λ(Pi), we get the desired inequality.
To prove the inequality `(∂D) ≤ 2µm∗(D) notice that if the Wronskian

∆(s) = det(γ(s), γ̇(s)) reaches a minimum at t, then γ(t) is parallel to γ̈(t).
Indeed, 0 = ∆

′
(t) = det(γ(t), γ̈(t)). In other words, the tangent to ∂D

at γ̇(t) is parallel to γ(t). Thus the tangents to ∂D at ±γ(t) and ±γ̇(t)
form a circumscribing parallelogram to D. The area of this parallelogram
is 4 det(γ(t), γ̇(t)) and cannot be less than that of a minimal circumscribing
parallelogram Pc. Therefore, we have 4 det(γ(s), γ̇(s)) ≥ λ(Pc) for all s.
This gives,

8λ(D) ≥
∫ `

0
λ(Pc) ds = `(∂D)λ(Pc),

from which it follows that `(∂D) ≤ 2µm∗(D).
From the proofs of both inequalities we see that equality holds in either

case if and only if det(γ(s), γ̇(s)) is constant. Theorem 4 tells us that this
is the case if and only if ∂D is a Radon curve. �

Martini, Swanepoel, and Weiss show in [13] that the unit disc D of a
Minkowski plane satisfies the equality 2µm(D) ≤ `(∂D) if and only if ∂D is



13

a Radon curve and that, on the other hand, it satisfies the equality `(∂D) =
2µm∗(D) if and only if ∂D is an equiframed curve.

Exercise 6. Show that if the unit circle is a regular octagon (an equiframed
curve), then both the perimeter and twice the mass* of the unit disc equal
16 tan(π/8).

We are now in a position to finish the proof of Theorem 7.

Corollary 2. If D is the unit disc of a Minkowski plane, then µm∗(D) ≥ 3.
Equality holds if and only if D is a regular hexagon.

Proof. By the previous theorem, 2µm∗(D) ≥ `(∂D), with equality if ∂D is
a Radon curve. On the other hand, Go la̧b’s theorem states that `(∂D) ≥ 6,
with equality if and only if ∂D is a regular hexagon. Using both inequalities,
together with the fact that the regular hexagon is a Radon curve, proves the
corollary. �

To end this section we state without proof a result of Moustafaev [15] and
use it, in conjunction with Theorem 8, to establish order relations among
the four definitions of area. The second of these relations completes the
proof of Theorem 6.

Theorem 9 (Moustafaev). If D is the unit disc of a Minkowski plane,
then 2µht(D) ≤ `(∂D). Equality holds if and only if D is an ellipse.

Moustafaev’s proof requires more machinery than the proofs in this paper.
It makes use of the solution of the isoperimetric problem in Minkowski planes
and the Blaschke-Santaló inequality.

Corollary 3. If D is the unit disc of a Minkowski plane, then

µht(D) ≤ µm∗(D) and µm(D) ≤ µb(D) = π .

Equality holds in either case if and only if D is an ellipse.

Proof. By Theorem 8 and Moustafaev’s result, we have

2µht(D) ≤ `(∂D) ≤ 2µm∗(D).

Referring to Proposition 3 and exploiting the information that µb, µht, and
µm, µm∗ are dual pairs of area definitions, we see that µm(D) ≤ µb(D) =
π. �

Exercise 7. Show that µm(D) ≤ µm∗(D) and µht(D) ≤ µb(D), and inves-
tigate the cases of equality.

6. PROPERTIES OF RADON CURVES. In this section we sharpen
the bounds on the perimeter and area of the unit disc in the case where
the unit circle is a Radon curve (see Definition 2) . We begin by putting
together several of the results in the previous section.

Theorem 10. If D is the unit disc of a Radon plane, then (`(∂D))2 =
4vp(D).
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Proof. By duality,
4vp(D) = 4µm(D)µm∗(D◦),

while Theorem 8 tells us that 2µm(D) = `(∂D) and that 2µm∗(D◦) =
`(∂D◦). We now apply Schäffer’s theorem, which asserts that `(∂D◦) =
`(∂D), to obtain the desired result. �

As a corollary, we have the following result of Lenz [10], which was redis-
covered by Yaglom [25].

Corollary 4. If D is the unit disc of a Radon plane, then 6 ≤ `(∂D) ≤ 2π.

Proof. The first inequality follows from Go la̧b’s theorem. Equality is at-
tained if and only if ∂D is linearly equivalent to a regular hexagon (which
is a Radon curve). For the second inequality we have

(`(∂D))2 = 4vp(D) ≤ 4π2

from Theorem 10 and the Blaschke inequality in Theorem 5. Here equality
holds if and only if D is an ellipse. �

Corollary 5. If D is the unit disc of a Radon plane, then

3 ≤ µm(D) ≤ π, 3 ≤ µm∗(D) ≤ π, 9/π ≤ µht(D) ≤ π .

In each case equality holds on the left if and only if D is linearly equivalent
to a regular hexagon and on the right if and only if D is an ellipse.

Proof. The first two inequalities are evident from Corollary 4 and the case
of equality in Theorem 8. For the third inequality note that according to
Corollary 4

36 ≤ (`(∂D))2 = 4vp(D) ≤ 4π2.

In view of Corollary 4 if we now divide this equation by 4π and use the
definition of µht(D), we obtain the result. �

7. PROOF OF SCHÄFFER’S THEOREM. We end the paper by giv-
ing a “book proof” of Schäffer’s theorem inspired by the symplectic proof of
the girth conjecture given in [1].

Theorem 11. If D is the unit disc for a Minkowski plane and if D◦ is the
unit disc in the dual plane, then `(∂D) = `(∂D◦).

Proof. Consider the closed curve Γ in R2 × R2∗ defined by

Γ = {(q, p) : q ∈ ∂D} ,

where as in Proposition 2 we set p = L(q̇). Then

0 =
∫

Γ
d(p · q) =

∫
Γ

p · dq + q · dp =
∫

Γ
p · dq +

∫
Γ

q · dp.
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If we first parameterize ∂D by Minkowski arclength s, then Γ acquires a
parameterization α(s) = (q(s),L(q̇(s))). Accordingly,∫

Γ
p · dq =

∫ `1

0
L(q̇(s)) · q̇(s) ds =

∫ `1

0
ds = `1 ,

where `1 = `(∂D).
On the other hand, we can parameterize ∂D◦ by its Minkowski arclength

t, in which case by Proposition 2, Γ can be described by a different param-
eterization, namely, β(t) = (−L(ṗ(t)), p(t)). Then∫

Γ
q · dp = −

∫ `2

0
L(ṗ(t)) · ṗ(t) dt = −

∫ `2

0
ds = −`2,

where `2 = `(∂D◦). The upshot: 0 = `(∂D)− `(∂D◦). �
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