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Agenda
• Questions?

• Vote on topics for next week’s class

• Intro. To Structured Analysis and Design

• Lab
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Other Requirements Templates
• Besides use cases, use case models, and non-functional specifications, 

there are more traditional requirements templates available:
– Industry standard, I.e. IEEE std. 830-1993 (proprietary)
– Volere, (presented later) 
– Home grown

• Most of the better templates capture the same types of information 
(functional, non-functional, etc.).

• IEEE and Volere tend to be monolithic, which can lead to problems 
such as ????
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Volere
• Developed by noted industry practitioners Suzanne and James 

Robertson.

• Available at www.systemsguild.com

• For more information, see “Mastering the Requirements Process”, 
Robertson & Robertson, 1999, Addison Wesley.
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Volere (cont’d)
• Comparison to RUP:

– Project Drivers Vision Document
– Project Constraints Non-Functional Specification
– Functional Requirements Use Case Model, Use Cases
– Non-Functional Reqmt’s Non-Functional Specification
– Other Actor Report, Data Definition,

Domain Model, Project Plan

• Personal opinion: very comprehensive, but too monolithic. 
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History of Structured Methods
• Structured methods represent a collection of analysis, design, and 

programming techniques that were developed in response to the 
problems facing the software world, circa 1960’s to 1980’s. In this 
timeframe:

– Most commercial programming was done in Cobol and Fortran, then C and 
BASIC. 

– There was little guidance on “good” design and programming techniques.

– There were no standard techniques for documenting requirements and 
designs. 

• Of course, while it was (and is still) possible to develop world-class 
software, it becomes harder and harder to do so as systems get larger 
and  more complex.
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History of Structured Methods 
(cont’d)

• Structured Methods emerged as a way to help manage 
large and complex software: 
– Structured Programming – circa 1967

• Go To Statement Considered Harmful, Edgar Dykstra

– Structured Design – circa 1975
• Larry Constantine, Ed Yourdon

– Structured Analysis – circa 1978
• Tom DeMarco, Yourdon, Gane & Sarson, McMenamin & Palmer

– Information Engineering – circa 1990 (James Martin)
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Structured Analysis
• Primary artifacts are a data flow diagram (with data dictionary and 

mini-spec’s), and entity relationship diagram

• A data flow diagram:
– Shows processes and flow of data in and out of these processes.
– Does not show control structures (loops, etc.)
– Contains 5 graphic symbols (shown later)
– Uses layers to decompose complex systems (show later) 
– Can be used to show logical and physical 
– Were a quantum leap forward to other techniques at the time, I.e. 

monolithic descriptions with globs of text!
– Still used today to document business and/or other processes.
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Structured Analysis (cont’d)
Symbol: Meaning: Description:

Process A series of one or more steps that converts 
inputs to outputs. Each process is followed by a 
mini-spec (shown later)

Data Flow Shows a data path (flow of data)

External Agent A source or sink of data. Lies outside the 
system

Data Store
Data at rest, usually a file or database 
table

Real-time link
A communication link. This symbol 
added later. When ???
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Structured Analysis (con’t)
• To manage complexity, data flow diagrams are done in layers:

– The uppermost layer is a context diagram. 
• Shows system boundary, I.e. the system, external agents, and data to/from the 

agents. Does this sound familiar?

– The next layer is a level zero. 
• Shows primitive processes, data stores and data flows, and of course   their 

relation to external agents,

– The next layer level(s) is a level 1 through level ‘n’
• Decomposes one of the processes from a level zero diagram.
• If a level one diagram is overly complex (more than 7 +- 2 processes, it can be 

further be decomposed to a level 2-n, and so on.

– Each lower layer “traces” to its higher layer (shown later).
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Intermezzo #1

Student

Enroll Classes

Schedule 
Classes

Produce Class 
List

Registrar

Course Registration System This use case model 
describes a simple course 
registration system. 

We will soon see this 
same system represented 
by a set of data flow 
diagrams. 
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Structured Analysis (con’t)
Context Diagram – Course Reservation System

Course 
Registration 
System

Academic 
Department

Schedule data

Faculty Member
Class list

StudentEnrollment 
Request

Schedule

Source: “Systems Analysis and Design in a Changing World”, Satzinger, Course Technology, 2002

Faculty member does not appear on 
the use case model. Why?
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Structured Analysis (con’t)
Level 0 Diagram – Course Reservation System

Academic 
Department

Faculty 
Member

Student

1

Schedule 
Course

Schedule 
data

2

Enroll 
Student

Enrollment 
Request

Schedule

3

Produce 
Class List

Class list

Course Enrollment

Offered Course

Student

Source: “Systems Analysis and Design in a Changing World”, Satzinger, Course Technology, 2002
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Structured Analysis (con’t)
Level 1 Diagram – Course Reservation System

Academic 
Department

Offered Course

1.1

Choose 
Days & 
Times

1.2

Assign 
Faculty

1.3

Assign 
Rooms

Course

Available 
Faculty

Source: “Systems Analysis and Design in a Changing World”, Satzinger, Course Technology, 2002
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Structured Analysis (cont’d)
• Observations about each diagram:

– The context diagram partitions the entire system. It has only one process 
(the system), and from it, the data flows to/from the external agents.

– The level 0 diagram decomposes the system into 3 processes: Schedule 
Courses, Enroll Student, and Product Class List. Notice that the 4 data 
flows represented in the context diagram are preserved in the level 1. This 
is required.

– The level 1 diagram decomposes the Schedule Course process into 3 sub-
process. 

• Note that the data flow Schedule Data from level 0 is broken into 2 sub data 
flows in the level 1: Course and Available Faculty. Also note that the Offered 
Course file is still preserved.
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Structured Analysis (cont’d)
• Additional:

– Create lower layer diagrams when the diagram is getting too complex. 
General rule is 7 +- 2 processes. Sound familiar 

– For each sub-process, a mini-spec will be written (shown later). 

– Note that a data flow diagram is concerned about data flow and functional 
decomposition. By contrast, a use case model (and use cases) are
described in terms of actor’s goals. More on this later.
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Structured Analysis (cont’d)
• Rules for Data Flow Diagramming:

– Process:
• No process can have only outputs
• No process can have only outputs.
• A process has a verb-phrase label (sound familiar)

– Data Store:
• Data cannot move directly from one data store to another. It must flow through a process.
• Data cannot be moved directly from an outside data source or sink to a data store. It must 

first go through a process.
• A data store has a noun-phrase label. Hmmm, perhaps like a class name?

– Source / Sink:
• Data cannot move directly from a source to a sink. It must be moved by a process.
• A source/sink has a noun-phrase label.

Adapted from Modern Systems Analysis and Design, 3rd edition, Hoffer, Prentice Hall, 2002.
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Structured Analysis (cont’d)

• Rules for Data Flow Diagramming (cont’d):
– Data Flow:

• A data flow has only one direction of flows between symbols. This is called a net flow: 
Example: a read before an update will show one arrow for the update only.

• A fork in a data flow (not shown here) means a copy of the data is going to more than one 
location.

• A join in a data flow (not shown) means data is being received from more than one 
process, data store and/or data sink/source.

• A data flow cannot loop back to itself. If it does need to loop back, it must flow through a 
process.

• A data flow to a data store means an update (delete or change).
• A data flow from a data store implies a read.
• A data flow has a noun-phrase label.

Adapted from Modern Systems Analysis and Design, 3rd edition, Hoffer, Prentice Hall, 2002.
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Structured Analysis (con’t)
• Sample mini-spec for Choose Days and Times:

– Begin:
• Present a list of available days and times. Order the list in ascending order by day, then is 

ascending order by time.
• Ask the user to select the desired day and time.
• Update the offered course file.

– End

Additional information:
Valid days are Monday through Saturday.
Valid times are 8:00 AM to 6 PM, in 3 hour increments. Example: 8:00, 11:00, etc.
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Intermezzo # 2
• Looking at diagram 1, there is an implication that these steps are done in this 

order. This is an example of functional decomposition. 
– Is this presumed order realistic from an end-users perspective? For example, 

would it be possible to assign a room, then go back and change a day and time? 
How would you handle this in in a data flow diagram? Perhaps another process is 
missing: Validate Course? 

– In use case driven model, which is goal oriented from the actor’s perspective, this 
is not an issue. Why? Because there would be only one use case: Schedule 
Courses, and it would handle the validation, basic, and alternative flows in one 
neat package – the use case!

• If I were to write a use case for Enroll Student or Schedule Course, I might 
have a precondition like “Actor is authenticated”. Whoops, is authentication 
missing from both models? Note how the concept of thinking about a 
precondition is a use case quickly exposes flaws in the model!

– From an end-user perspective, which approach might you prefer: a use case 
driven approach or a structured analysis approach? How about from an analyst's 
perspective? 
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Structured Analysis (con’t)
• An entity-relationship (ER) diagram, at the analysis level is much like a 

domain model, except:
– An ER diagram is on database entities, a Domain Model is based on abstractions 

(conceptual classes).
– The notation is slightly different:

ER Symbol UML Notation Meaning

1 1:1

1..* 1 to many

0..* 0 to many

n 1..n 1 to some maximum, example: 1..40

Note: There is no counterpart to UML for ER diagrams, just accepted convention
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Structured Analysis (con’t)

Course Enrollment

Grade

Course Section

Section Number*

Start Time

Room Number

Course

Course Number*

Title

Credit Hours

Student

Student ID*

Name

Major

Sample ER Diagram for Course Registration System

Note: a ‘*’ next to a field denotes 
uniqueness, a.k.a. Primary Key

Source: “Systems Analysis and Design in a Changing World”, Satzinger, Course Technology, 2002
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Structured Design
• Fact: It is not possible to design a system without knowing something 

about how it will be implemented. Why? Because design is a blueprint 
for implementation. 

– Structured Design views the word as a collection of modules with
functions, that share data with other (sub) modules. Example: structure 
chart (shown later)

– OO Design views the world as a collection of cooperating objects sending 
messages to one another. Examples: class diagram, sequence diagram.

– Structured Design, like OO Design is also based on design heuristics, such 
as coupling, cohesion, encapsulation, modularity, etc., 
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Structured Design (con’t)
Course Selection 
Program

Display Course 
Information

Add Course Update Course Display Course 
Information

Verify Schedule Display Schedule

Note: data and control flow not shown – for 
simplicity sake

Sample Structure Chart –
Select Courses
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Concluding Remarks 
(a personal perspective)

• Use Cases and Non-Functional specifications are a preferred way to 
capture requirements over a monolithic requirements document.

• Use Case Modeling an entities and Domain Modeling are preferred to 
Structured Analysis because it focus on user’s goals and abstractions, 
not data entities and functional decomposition.

• OO Design makes more sense for OO languages.

• Systems development using a use case driven, architecture centric, and 
iterative development is (can be) more effective than waterfall methods 
based on structured techniques.
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Concluding Remarks – (con’t)
(a personal perspective)

• Despite the advantages of OO and iterative development, they are not a 
panacea. 

– Remember: a fool with a tool is still a fool with a tool!
– And of course, the three most important ingredients to a 

successful software project are ??????

You’ve learned a lot this semester 
– Congratulations !!!!
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