
Introduction to Structured
Analysis and Design

Dave Levitt
CS 2000: Systems Analysis & Design

Week 13 2

Agenda
• Questions?

• Vote on topics for next week’s class

• Intro. To Structured Analysis and Design

• Lab

Week 13 3

Other Requirements Templates
• Besides use cases, use case models, and non-functional specifications,

there are more traditional requirements templates available:
– Industry standard, I.e. IEEE std. 830-1993 (proprietary)
– Volere, (presented later)
– Home grown

• Most of the better templates capture the same types of information
(functional, non-functional, etc.).

• IEEE and Volere tend to be monolithic, which can lead to problems
such as ????

Week 13 4

Volere
• Developed by noted industry practitioners Suzanne and James

Robertson.

• Available at www.systemsguild.com

• For more information, see “Mastering the Requirements Process”,
Robertson & Robertson, 1999, Addison Wesley.

Week 13 5

Volere (cont’d)
• Comparison to RUP:

– Project Drivers Vision Document
– Project Constraints Non-Functional Specification
– Functional Requirements Use Case Model, Use Cases
– Non-Functional Reqmt’s Non-Functional Specification
– Other Actor Report, Data Definition,

Domain Model, Project Plan

• Personal opinion: very comprehensive, but too monolithic.

Week 13 6

History of Structured Methods
• Structured methods represent a collection of analysis, design, and

programming techniques that were developed in response to the
problems facing the software world, circa 1960’s to 1980’s. In this
timeframe:

– Most commercial programming was done in Cobol and Fortran, then C and
BASIC.

– There was little guidance on “good” design and programming techniques.

– There were no standard techniques for documenting requirements and
designs.

• Of course, while it was (and is still) possible to develop world-class
software, it becomes harder and harder to do so as systems get larger
and more complex.

Week 13 7

History of Structured Methods
(cont’d)

• Structured Methods emerged as a way to help manage
large and complex software:
– Structured Programming – circa 1967

• Go To Statement Considered Harmful, Edgar Dykstra

– Structured Design – circa 1975
• Larry Constantine, Ed Yourdon

– Structured Analysis – circa 1978
• Tom DeMarco, Yourdon, Gane & Sarson, McMenamin & Palmer

– Information Engineering – circa 1990 (James Martin)

Week 13 8

Structured Analysis
• Primary artifacts are a data flow diagram (with data dictionary and

mini-spec’s), and entity relationship diagram

• A data flow diagram:
– Shows processes and flow of data in and out of these processes.
– Does not show control structures (loops, etc.)
– Contains 5 graphic symbols (shown later)
– Uses layers to decompose complex systems (show later)
– Can be used to show logical and physical
– Were a quantum leap forward to other techniques at the time, I.e.

monolithic descriptions with globs of text!
– Still used today to document business and/or other processes.

Week 13 9

Structured Analysis (cont’d)
Symbol: Meaning: Description:

Process A series of one or more steps that converts
inputs to outputs. Each process is followed by a
mini-spec (shown later)

Data Flow Shows a data path (flow of data)

External Agent A source or sink of data. Lies outside the
system

Data Store
Data at rest, usually a file or database
table

Real-time link
A communication link. This symbol
added later. When ???

Week 13 10

Structured Analysis (con’t)
• To manage complexity, data flow diagrams are done in layers:

– The uppermost layer is a context diagram.
• Shows system boundary, I.e. the system, external agents, and data to/from the

agents. Does this sound familiar?

– The next layer is a level zero.
• Shows primitive processes, data stores and data flows, and of course their

relation to external agents,

– The next layer level(s) is a level 1 through level ‘n’
• Decomposes one of the processes from a level zero diagram.
• If a level one diagram is overly complex (more than 7 +- 2 processes, it can be

further be decomposed to a level 2-n, and so on.

– Each lower layer “traces” to its higher layer (shown later).

Week 13 11

Intermezzo #1

Student

Enroll Classes

Schedule
Classes

Produce Class
List

Registrar

Course Registration System This use case model
describes a simple course
registration system.

We will soon see this
same system represented
by a set of data flow
diagrams.

Week 13 12

Structured Analysis (con’t)
Context Diagram – Course Reservation System

Course
Registration
System

Academic
Department

Schedule data

Faculty Member
Class list

StudentEnrollment
Request

Schedule

Source: “Systems Analysis and Design in a Changing World”, Satzinger, Course Technology, 2002

Faculty member does not appear on
the use case model. Why?

Week 13 13

Structured Analysis (con’t)
Level 0 Diagram – Course Reservation System

Academic
Department

Faculty
Member

Student

1

Schedule
Course

Schedule
data

2

Enroll
Student

Enrollment
Request

Schedule

3

Produce
Class List

Class list

Course Enrollment

Offered Course

Student

Source: “Systems Analysis and Design in a Changing World”, Satzinger, Course Technology, 2002

Week 13 14

Structured Analysis (con’t)
Level 1 Diagram – Course Reservation System

Academic
Department

Offered Course

1.1

Choose
Days &
Times

1.2

Assign
Faculty

1.3

Assign
Rooms

Course

Available
Faculty

Source: “Systems Analysis and Design in a Changing World”, Satzinger, Course Technology, 2002

Week 13 15

Structured Analysis (cont’d)
• Observations about each diagram:

– The context diagram partitions the entire system. It has only one process
(the system), and from it, the data flows to/from the external agents.

– The level 0 diagram decomposes the system into 3 processes: Schedule
Courses, Enroll Student, and Product Class List. Notice that the 4 data
flows represented in the context diagram are preserved in the level 1. This
is required.

– The level 1 diagram decomposes the Schedule Course process into 3 sub-
process.

• Note that the data flow Schedule Data from level 0 is broken into 2 sub data
flows in the level 1: Course and Available Faculty. Also note that the Offered
Course file is still preserved.

Week 13 16

Structured Analysis (cont’d)
• Additional:

– Create lower layer diagrams when the diagram is getting too complex.
General rule is 7 +- 2 processes. Sound familiar

– For each sub-process, a mini-spec will be written (shown later).

– Note that a data flow diagram is concerned about data flow and functional
decomposition. By contrast, a use case model (and use cases) are
described in terms of actor’s goals. More on this later.

Week 13 17

Structured Analysis (cont’d)
• Rules for Data Flow Diagramming:

– Process:
• No process can have only outputs
• No process can have only outputs.
• A process has a verb-phrase label (sound familiar)

– Data Store:
• Data cannot move directly from one data store to another. It must flow through a process.
• Data cannot be moved directly from an outside data source or sink to a data store. It must

first go through a process.
• A data store has a noun-phrase label. Hmmm, perhaps like a class name?

– Source / Sink:
• Data cannot move directly from a source to a sink. It must be moved by a process.
• A source/sink has a noun-phrase label.

Adapted from Modern Systems Analysis and Design, 3rd edition, Hoffer, Prentice Hall, 2002.

Week 13 18

Structured Analysis (cont’d)

• Rules for Data Flow Diagramming (cont’d):
– Data Flow:

• A data flow has only one direction of flows between symbols. This is called a net flow:
Example: a read before an update will show one arrow for the update only.

• A fork in a data flow (not shown here) means a copy of the data is going to more than one
location.

• A join in a data flow (not shown) means data is being received from more than one
process, data store and/or data sink/source.

• A data flow cannot loop back to itself. If it does need to loop back, it must flow through a
process.

• A data flow to a data store means an update (delete or change).
• A data flow from a data store implies a read.
• A data flow has a noun-phrase label.

Adapted from Modern Systems Analysis and Design, 3rd edition, Hoffer, Prentice Hall, 2002.

Week 13 19

Structured Analysis (con’t)
• Sample mini-spec for Choose Days and Times:

– Begin:
• Present a list of available days and times. Order the list in ascending order by day, then is

ascending order by time.
• Ask the user to select the desired day and time.
• Update the offered course file.

– End

Additional information:
Valid days are Monday through Saturday.
Valid times are 8:00 AM to 6 PM, in 3 hour increments. Example: 8:00, 11:00, etc.

Week 13 20

Intermezzo # 2
• Looking at diagram 1, there is an implication that these steps are done in this

order. This is an example of functional decomposition.
– Is this presumed order realistic from an end-users perspective? For example,

would it be possible to assign a room, then go back and change a day and time?
How would you handle this in in a data flow diagram? Perhaps another process is
missing: Validate Course?

– In use case driven model, which is goal oriented from the actor’s perspective, this
is not an issue. Why? Because there would be only one use case: Schedule
Courses, and it would handle the validation, basic, and alternative flows in one
neat package – the use case!

• If I were to write a use case for Enroll Student or Schedule Course, I might
have a precondition like “Actor is authenticated”. Whoops, is authentication
missing from both models? Note how the concept of thinking about a
precondition is a use case quickly exposes flaws in the model!

– From an end-user perspective, which approach might you prefer: a use case
driven approach or a structured analysis approach? How about from an analyst's
perspective?

Week 13 21

Structured Analysis (con’t)
• An entity-relationship (ER) diagram, at the analysis level is much like a

domain model, except:
– An ER diagram is on database entities, a Domain Model is based on abstractions

(conceptual classes).
– The notation is slightly different:

ER Symbol UML Notation Meaning

1 1:1

1..* 1 to many

0..* 0 to many

n 1..n 1 to some maximum, example: 1..40

Note: There is no counterpart to UML for ER diagrams, just accepted convention

Week 13 22

Structured Analysis (con’t)

Course Enrollment

Grade

Course Section

Section Number*

Start Time

Room Number

Course

Course Number*

Title

Credit Hours

Student

Student ID*

Name

Major

Sample ER Diagram for Course Registration System

Note: a ‘*’ next to a field denotes
uniqueness, a.k.a. Primary Key

Source: “Systems Analysis and Design in a Changing World”, Satzinger, Course Technology, 2002

Week 13 23

Structured Design
• Fact: It is not possible to design a system without knowing something

about how it will be implemented. Why? Because design is a blueprint
for implementation.

– Structured Design views the word as a collection of modules with
functions, that share data with other (sub) modules. Example: structure
chart (shown later)

– OO Design views the world as a collection of cooperating objects sending
messages to one another. Examples: class diagram, sequence diagram.

– Structured Design, like OO Design is also based on design heuristics, such
as coupling, cohesion, encapsulation, modularity, etc.,

Week 13 24

Structured Design (con’t)
Course Selection
Program

Display Course
Information

Add Course Update Course Display Course
Information

Verify Schedule Display Schedule

Note: data and control flow not shown – for
simplicity sake

Sample Structure Chart –
Select Courses

Week 13 25

Concluding Remarks
(a personal perspective)

• Use Cases and Non-Functional specifications are a preferred way to
capture requirements over a monolithic requirements document.

• Use Case Modeling an entities and Domain Modeling are preferred to
Structured Analysis because it focus on user’s goals and abstractions,
not data entities and functional decomposition.

• OO Design makes more sense for OO languages.

• Systems development using a use case driven, architecture centric, and
iterative development is (can be) more effective than waterfall methods
based on structured techniques.

Week 13 26

Concluding Remarks – (con’t)
(a personal perspective)

• Despite the advantages of OO and iterative development, they are not a
panacea.

– Remember: a fool with a tool is still a fool with a tool!
– And of course, the three most important ingredients to a

successful software project are ??????

You’ve learned a lot this semester
– Congratulations !!!!

	Introduction to Structured Analysis and Design
	Agenda
	Other Requirements Templates
	Volere
	Volere (cont’d)
	History of Structured Methods
	History of Structured Methods (cont’d)
	Structured Analysis
	Structured Analysis (cont’d)
	Structured Analysis (con’t)
	Intermezzo #1
	Structured Analysis (con’t)
	Structured Analysis (con’t)
	Structured Analysis (con’t)
	Structured Analysis (cont’d)
	Structured Analysis (cont’d)
	Structured Analysis (cont’d)
	Structured Analysis (cont’d)
	Structured Analysis (con’t)
	Intermezzo # 2
	Structured Analysis (con’t)
	Structured Analysis (con’t)
	Structured Design
	Structured Design (con’t)
	Concluding Remarks �(a personal perspective)
	Concluding Remarks – (con’t)�(a personal perspective)

