Distributing Security-Mediated PKI

Gabriel Vanrenen, Sean Smith, John Marchesini Presented by: Qingzhao Tan

Outline

- Introduction
- SEM
- Tools
- Design
- Prototype
- Conclusions and future work

Introduction

- Security-mediated approach to PKI trust and scalability disadvantages
 - Each user depends on a mediator that may go down or become compromised
- Distributing security-mediated PKI
 - Trusted computing platforms / peer-to-peer networks: to create a network of trustworthy mediators and improve availability
 - Threshold cryptography: to build a back-up and migration technique which allows recovery from a mediator crashing while also avoiding having all mediators share all secrets
 - Strong forward secrecy: to mitigate the damage if a crashed mediator actually be compromised

SEM Approach to PKI

- Motivation: fast and scalable certificate revocation
 - PKI: to create and distribute certificates to relying parties
 - Revoke certificate when certificate is ceased
 - revocation information needs to propagate to relying parties
- SEM: A system that revokes the ability of the keyholder to use a private key, instead of revoking the certificate attesting to the corresponding public key

mRSA – a Variant of RSA

- Standard RSA: for each user
 - A public key (n_u, e_u)
 - n_u: product of two large primes
 - gcd $(e_u, \phi(n_u))=1$
 - A private key d_u
 - $d_{u^*} e_u = 1 \pmod{\phi(n_u)}$
- Mediated RSA: for each user
 - \Box A public key (n_u , e_u) the same as standard RSA
 - A private key split into two parts
 - $d_{sem,u}$ and $d_{user,u}$ where $d_u = d_{sem,u} + d_{user,u}$ (mod $\phi(n_u)$)

mRSA – a Variant of RSA

- Key setup
 - d_{sem.u} is chosen as a random integer in [0, n_u-1]
 - \Box $d_{user,u}$ is calculated as $d_u = d_{sem,u} + d_{user,u}$
- Private key operations require the participation of both the user and the SEM

SEM Approach to PKI

Advantages:

- Compatibility
- No useful information could be gained by a malicious SEM
- The compromise of a single SEM does not compromise the secret keys of any users

Disadvantages:

- Scalability disadvantages
- □ If a user's d_{sem.u} lives on exactly one SEM
 - Temporary denial of service if the network is partitioned
 - Permanent denial of service if the SEM suffers a serious failure
 - Inability to revoke the key pair if an adversary compromises a SEM and learns its secretes

Tools

- Trusted computing platforms
- P2P networking
- Threshold cryptography
- Strong forward security

Trusted Computing Platforms

- Goal: to trust a SEM to use and delete each user's d_{sem.u} when appropriate, and not transmit it further
- Basic requirements:
 - A general-purpose computing environment
 - Cryptographic protections
 - High-assurance protection against physical attacks
 - An outbound authentication scheme
- Trusted Computing Platforms: Gives a safe and confidential environment in remote environments

P2P networking

- Goal: to make it easy for users to find SEMs and this functionality is persisted despite failures and malicious attacks
- P2P networking: decentralization
 - Communication does not rely on a central entity
 - Each entity either tries to satisfy a request itself or forwards it to its neighbors.

Threshold Cryptography

- Goal: to distribute critical secrets across multiple SEMs
- Threshold cryptography:
 - Given a secret y and parameters t < k
 - Construct a degree t polynomial that goes through the point (0,y)
 - Choose k points on this polynomial as shares of y
 - Any t shares suffices to reconstruct the polynomial and hence y
 - Few than t shares give no information

Strong Forward Security

- Goal: to mitigate the damage of potential exposure
- Strong forward security
 - Divide time into a sequence of clock periods
 - Use a cryptographic system such that even if the private key for a given period is exposed, use of the private key in previous or future sessions is still secure

Design – Architecture

Architecture:

- Network of server nodes
- Software to allow for the distribution of SEM approach

Network:

- SEMs distributed trustworthy islands
- Each island can house resources that enable it carry out services
- Users can authenticate islands; islands can authenticate each other
- Use P2P technique to route the request and responds

Design – Migration

Aims:

- A secure way to avoid replication
- To update the secret held by an island and migrate it to another one
- Secret initialization:
 - Create a secret x and transmit it to an island L
 - Split x into k shares
 - Transmit each share of x to a different island
- When L is unavailable redirect the requester to another island M

Design – Migration

- General migration scheme
 - Connects to L but fails
 - Connects to M
 - Shareholders of secret x are contacted and this x is updated
 - Strong forward security results in M storing the updated secret
 - Migration is complete and M can fulfill the request
- Benefits
 - Uninterrupted service
 - Secure service after Node Compromise
 - Rare use of distributed computation
- Other caveats
 - If L is compromised
 - If M is compromised
 - If shareholders of x are compromised

SEM Operations

- Key generation:
 - Split into two parts: d_{sem,u} and d_{user,u}
 - Share d_{sem.u} to k islands

SEM Operations

Revocation

- If the island that holds d_{sem,u} and revocation information for a user u goes down
- During revocation, have the shareholders, original island update the revocation status for that key pair

SEM migration

- L is not available for the request
 - Contacts the SEM network and selected M
 - Using a CA / no CA

SEM migration

- Renewing user key pairs
 - Regenerate user's private key during regeneration of d_{sem,u}
- Recovery: when an island goes down
 - Delete all of the key halves
 - Poll the other islands to determine which d_{sem,u} halves have migrated away from it

Network Trust Model

Island

- The primary parties requiring use of the network
- Join the network normally and become full members of it

Certificate authorities

- Connect to an island server that provides an interface to the rest of the network
- Connect directly to the P2P network but with limited capabilities

Users

- Do not connect directly to the P2P network
- Communicate with an island that provides indirect access to the services available on the network

Prototype

Conclusions and future work

- Summary: to distribute SEM by using a network that combines the benefits of trusted computing platforms and peer-to-peer networking, and provides efficient and uninterrupted access to private data stored on a trusted third party, even in the event of occasional server compromise
- Future work
 - Further performance testing and tuning
 - To explore other applications