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1. INTRODUCTION

1.1 Heaviside and the Operator Calculus

In analyzing different electromagnetic problems, Oliver Heaviside
(1850–1925) was led to a simple way of solving differential equations
through what he called algebration. He treated basic differential oper-
ators like d/dz as algebraic quantities and simplified his expressions
by applying known algebraic methods. To interprete the results he ap-
plied ingenious techniques which involved such unorthodox concepts as
divergent series. Being simple and straightforward without the ballast
of full mathematical rigor, the solutions thus obtained were, however,
checked through other analytical means. To make his method known,
Heaviside submitted a three-part manuscript to the Proceedings of the
Royal Society. After the publication of two parts with no refereeing 1

[3, 4], the third part [5] was given to a referee who rejected it because
of lack of rigor in the analysis. The essence of the third part can now
only be found in condensed form in his book [6].

Heaviside considered his operator method effective when applied
properly. He checked numerically his steps of analysis by summing up
series (in making repetitious multi-digit additions and multiplications
Heaviside would probably have appreciated even the simplest modern
hand-held calculator). Because of checking the results through other
analytic means, his papers were full of alternative methods. Heaviside
was aware of the incompleteness of his arguments and he often invited
mathematicians to study the basics in a more rigorous manner. Let us
quote [3]

It proved itself to be a powerful (if somewhat uncertain) kind of
mathematical machinery. We may, for example, do in a line or two,
work whose verification by ordinary methods may be very lengthy.
On the other hand, the very reverse may be the case. I have, how-
ever, convinced myself that the subject is one that deserves to be
thoroughly examined and elaborated by mathematicians, so that
the method brought into general use in mathematical physics, not
to supplant ordinary methods, but to supplement them; in short to
be used when it is found to be useful.

1 At that time no paper of a Fellow of Royal Society was refereed for the

Proceedings though all Transactions papers were refereed [1, 2].
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After some hesitation, the elaboration by mathematicians eventually
led to the branch of Laplace transforms 2 [7] and, later, to other oper-
ator methods [8–11]. Also, the Heaviside operator method in its orig-
inal form has found supporters after adding more rigorous arguments
[12–18]. However, even without the complete rigor, the Heaviside op-
erational calculus has proven to be a helpful tool for finding the first
results to new problems, difficult to tackle otherwise [19, 20].

The idea behind the operator calculus was not originated by Heav-
iside [21–24]. Actually, already G. A. Leibnitz noticed the similarity
between Taylor series and algebraic power expansions 3 . The concept
of the differential operator was born when the nth derivative of a
function, dnf/dzn, was written in the form (d/dz)nf (in the sequel
we write ∂z in short for d/dz ). In the early 1800’s when rewriting
expressions like

α
dmf

dzm
+ β

dnf

dzn
= (α∂m

z + β∂n
z )f, (1)

it was realized that linear differential operators with constant coeffi-
cients obeyed the commutative and distributive laws of algebra and
that explained their close relation. Negative powers of the differential
operator ∂z were introduced already by Leibnitz. Fractional powers
came into picture through the work of Liouville in the 1830’s. From
1830’s to the 1860’s English mathematicians, most of all R. Murphy,
D. F. Gregory and G. Boole, finally developed the symbolic operator
method. After this there was little progress before the topic was taken
up by Heaviside in the late 1880’s and operators of the form F (∂z),
where F (x) can be any function, were considered by him. Heaviside, a
self-taught scientist, got his background in differential operators most
probably from Boole’s book Treatise on differential equations of 1865.

1.2 Operator Formulation

To demonstrate Heaviside’s operator approach associated with
transmission lines in the time domain, let us use modern notation.

2 Heaviside knew about the basic form of the Laplace transform [6], Vol. 3,

p.236, but he did not make use of it.
3 “Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione

potentiarum et differentiarum,” published in 1710.
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The transmission-line equation for the voltage U(z, t) on a conven-
tional transmission line with line parameters R, L,G, C reads

∂2
zU(z, t) − (R + L∂t)(G + C∂t)U(z, t) = ∂zu(z, t). (2)

Assuming a concentrated series voltage source u(z, t) = Uo(t)δ(z) with
time-harmonic excitation Uo(t) = Uoe

jωt, the solution in the region
z > 0 is of the form U(z, t) = U(z)ejωt and the equation is simplified
to

∂2
zU(z) − γ2U(z) = Uoδ

′(z), γ =
√

(R + jωL)(G + jωC). (3)

The solution for z > 0 in this case can be simply found by ordinary
techniques as

U(z, t) = −1
2
e−γzUoe

jωt = −1
2
e−γzUo(t). (4)

Now Heaviside went forward to write the solution of (2) in a simi-
lar form but replacing jω by ∂t which makes the coefficient γ an
operator γ(∂t)

U(z, t) = −1
2
e−zγ(∂t)Uo(t), γ(∂t) =

√
(R + L∂t)(G + C∂t). (5)

The solution is now in the typical Heavisidean form F (∂t)Uo(t). There
is an operator F (∂t), a function of ∂t, operating on Uo(t), a function
of time. For the basic solution, one can take the impulse function,
whence the problem lies in finding an interpretation to the strange
mathematical quantity F (∂t)δ(t). The operator here appears quite
complicated: an exponential function of a square-root of a quotient
of linear functions of ∂t, nowadays labeled as a pseudo-differential
operator. To interprete this in a computational form, Heaviside used
various methods, most often series expansions.

1.3 Series Expansion

To demonstrate Heaviside’s series approach to handling operator
expressions let us consider a simpler operator from his own introduc-
tory example in [3], which in modern notation (adding the unit step
function θ(z) always omitted by Heaviside) reads

F (z) =

√
∂z

∂z + β
θ(z). (6)
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Expanding the operator in inverse powers of ∂z as

F (z) =
(

1 − 1
2

β

∂z
+

1 · 3
22 · 2!

β2

∂2
z

− 1 · 3 · 5
233!

β3

∂3
z

+ · · ·
)

θ(z), (7)

and applying an operational rule (n-fold integration, derived else-
where) for each term,

1
∂n

z

θ(z) =
zn

n!
θ(z), (8)

Heaviside arrives at the series

F (z) =
(

1 − 1
2

βz

1!
+

1 · 3
22 · 2!

β2z2

2!
− 1 · 3 · 5

233!
β3z3

3!
+ · · ·

)
θ(z). (9)

After some ingenious reasoning Heaviside identifies the series with the
Taylor expansion of a known function and finally writes the solution
in analytic form as

F (z) = e−βz/2I0(βz/2)θ(z), (10)

where I0(x) is the modified Bessel function. After finding the solution
for an operator expression like (6) he finally proceeds to prove that
it satisfies the original equation where the operator expression came
from. Thus, the operator formalism can be at best defined as a method
helping one to find solutions to equations.

The step from the operator formulation to its interpretation is a
crucial one and requires some operational rules which are the topic of
the present paper. In this form, the Heaviside operational calculus has
been used to finding solutions for some electromagnetic problems for
which other methods have failed [20].

2. OPERATIONAL RULES

Rules like (8) needed in the operator analysis can be found by differ-
ent means. First of all, connection to Laplace transforms gives the
possibility to make use of existing tables of Laplace transforms, e.g.,
[25–28]. Other rules can be found from tables of integrals, e.g., [29–
32]. The Fourier transform pair gives a method to transform a given
operational rule to another. Most of the present rules are considered
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through the mathematically rigorous two-sided Laplace transform in
[8], a widely ignored source of information. Here we consider mainly
one-dimensional rules with z as the variable, but also some multi-
dimensional rules with ρ (2D) and r (3D) as the vector variable are
briefly discussed in a special section.

2.1 Rules from Laplace Transforms

Although the present form of Laplace transform technique was de-
veloped after the Heaviside operator method, it serves as a convenient
means to introduce the operational formulas. The definition of the
Laplace transform f(p) → F (q) reads

F (q) =

∞∫

0

f(p)e−pqdp. (11)

Writing q = ∂z and operating on a function g(z) defines an operator
F (∂z) as

F (∂z)g(z) =

∞∫

0

f(p)e−p∂zg(z)dp. (12)

Applying the Taylor expansion of an exponential function,

e−pq =
∞∑

n=0

(−p)n

n!
qn, (13)

the Taylor expansion for the function g(z) can be expressed in the
operational form

g(z − p) =
∞∑

n=0

(−p)n

n!
∂n

z g(z) = e−p∂zg(z). (14)

Applying this, the function f(p) has the connection to the operator
F (∂z) as

F (∂z)g(z) =

∞∫

0

f(p)g(z−p)dp =

∞∫

−∞

f(p)θ(p)g(z−p)dp = [f(z)θ(z)]∗g(z),

(15)
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i.e., through the convolution of the functions f(z)θ(z) and g(z). Here,
θ(z) denotes the Heaviside unit step function

θ(z) = 0, z < 0, θ(0) = 1/2, θ(z) = 1, z > 0 (16)

and differentiation of the step function gives the Dirac delta function,

∂zθ(z) = δ(z). (17)

Because the operators considered here only depend on ∂z and not on
the variable z, two operators F1(∂z), F2(∂z) always commute,

F1(∂z)F2(∂z) = F2(∂z)F1(∂z). (18)

This can be well understood when the operators are expressed through
their Taylor expansions

F (∂z) =
∞∑

n=0

Fn∂n
z , (19)

because any two terms of such expansions commute.
Taking the function g(z) as a sequence approaching the delta func-

tion δ(z − zo), the relation (15) becomes

F (∂z)δ(z − zo) = f(z − zo)θ(z − zo). (20)

This and its special case

F (∂z)δ(z) = f(z)θ(z) (21)

form the basis of the Heaviside operator method. Typically, a field
from a point source can be expressed in the form of a pseudo-differential
operator F (∂z) operating on the delta function. The task is to find the
function f(z), which defines the response for z > 0. Applying tables of
Laplace transforms, e.g., in [27], we can write rules for different pseudo-
differential operators operating on the delta function. A collection of
such rules is included in the Appendix.

From (15) we can also obtain the convolution rule

F1(∂z)F2(∂z)δ(z)=[F1(∂z)δ(z)]∗[F2(∂z)δ(z)]=[f1(z)θ(z)]∗[f2(z)θ(z)]
(22)
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for two operators satisfying

F1(∂z)δ(z) = f1(z)θ(z), F2(∂z)δ(z) = f2(z)θ(z). (23)

The rules derived through Laplace transform give functions which van-
ish for z < 0. They can be modified by changing the sign of z to give
a function vanishing in z > 0 (note that δ(−z) = δ(z)) :

F (−∂z)δ(z) = f(−z)θ(−z). (24)

For example, taking the simple case

1
∂z + B

δ(z) = e−Bzθ(z), (25)

and, by changing the signs of both z and B, we have a second choice

1
∂z + B

δ(z) = −e−Bzθ(−z). (26)

Summing these gives

1
∂z + B

δ(z) =
1
2
e−Bzsgn(z), (27)

while the difference leads to vanishing of the left side, or, more exactly,
to

0
∂z + B

= e−Bz [θ(z) + θ(−z)] = e−Bz, ⇒ (∂z + B)e−Bz = 0,

(28)
which is also true but does not help much. The other three results
give different representations of the Heaviside operator expression cor-
responding to three different solutions for the differential equation,

(∂z + B)f(z) = δ(z). (29)

They satisfy different conditions in infinity but have the same unit step
discontinuity at z = 0. This example shows us that the operator for-
mulation may have different interpretations due to different additional
conditions.
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If the function f(z) in (21) is even, i.e., if f(−z) = f(z), we can
combine (21) and (24) to give the rule

1
2

[F (∂z) + F (−∂z)] δ(z) = f(z), (30)

where the step function has disappeared from the right-hand side. Sim-
ilarly, if the function f(z) is odd, we can combine

1
2

[F (∂z) − F (−∂z)] δ(z) = f(z). (31)

In both cases it is assumed that the left-hand side is not zero.

2.2 Rules from Integral Identities

Other operational rules not based on the Laplace transform can be
found from integral tables. Basically, any integral identity of the form

∞∫

−∞

f(z)e−qzdz = F (q) (32)

can be transformed to an operational rule of the form

F (∂z)δ(z) = f(z). (33)

The main difference to rules obtained from the Laplace transforms
is that functions on the right side are not limited by the unit step
function θ(z) but may extend from −∞ to +∞. This is one point
which makes the Heaviside operator approach more general than the
Laplace transform approach.

As an example let us consider the following integral identity involv-
ing the Gaussian function, [31] 2. 3. 15. 11,

∞∫

−∞

e−pz2
e−qzdz =

√
π

p
eq2/4p. (34)

As before, replacing q by ∂z and operating on δ(z) we have the rule

e∂2
z/4pδ(z) =

√
p

π
e−pz2

. (35)
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Integrating the right-hand side from −∞ to ∞ gives unity for all
values of p. The function is a delta sequence which approaches the
delta function for p → ∞. The operator on the left can be called a
broadening operator since it broadens the delta function to a Gaussian
function [33]. For p → ∞ the operator approaches unity and, thus,
the right-hand side has the delta-function limit.

Another operational rule is obtained from the identity [8]

∞∫

−∞

e−qz

1 + e−αz
dz =

π/α

sin(πq/α)
, (36)

which gives us
π/α

sin(π∂z/α)
δ(z) =

1
1 + e−αz

. (37)

The function on the right is a rounded step function because it has the
values 0, 1 for z → −∞,+∞, respectively. Its derivative is a delta
sequence for α → ∞, whence the derivative of the operator is another
broadening operator.

Further, from the integral identity [31], (2. 3. 11. 9)

∞∫

−∞

(z +
√

z2 − a2)ν + (z −
√

z2 − a2)ν

√
z2 − a2

e−qzdz = 2aνKν(qa), (38)

by defining

τ = cos−1(z/a), ⇒ z ±
√

z2 − a2 = e±jτ , (39)

we have

∞∫

−∞

2aν cos(ντ)√
z2 − a2

e−qzdz =

∞∫

−∞

2aνTν(z/a)√
z2 − a2

e−qzdz = 2aνKν(qa), (40)

where Tν(ξ) is the generalization of the Chebyshev polynomial Tn(ξ).
The arising operational rule can be expressed as

Kν(a∂z)δ(z) =
Tν(z/a)√
z2 − a2

. (41)
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Making a = −jb imaginary gives us

H(1)
ν (b∂z)δ(z) =

2
πjν+1

Tν(jz/b)√
z2 + b2

. (42)

Taking the real part of this leads to

Jν(b∂z)δ(z) =
j−ν−1Tν(jz/b) + jν+1Tν(−jz/b)

π
√

z2 + b2
. (43)

As a last example we take an identity from [32], p.453 (2. 18. 1. 10)

a∫

−a

e−qx

√
a2 − x2

Tn(x/a)dx = (−1)nπIn(aq), (44)

where In(ξ) denotes the modified Bessel function. This gives rise to
the rule

In(a∂z)δ(z) =
(−1)n

π

Tn(z/a)√
a2 − z2

θ(a2 − z2). (45)

Since the right side is a function vanishing for |z| > a, this rule can
also be obtained through Laplace transform tables.

2.3 Rules from Fourier Transforms

Fourier transforms can also be applied to find operational rules. The
transform pair has the symmetric form

F (k) =
1√
2π

∞∫

−∞

f(z)ejkzdz, (46)

f(z) =
1√
2π

∞∫

−∞

F (k)e−jkzdk. (47)

Replacing k by j∂z in (46) and z by −j∂k in (47) and operating on
the respective delta functions δ(z), δ(k), we have

F (j∂z)δ(z) =
1√
2π

f(z), f(−j∂k)δ(k) =
1√
2π

F (k). (48)
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These expressions show the reciprocity between the two functions F
and f and that they can be used for transforming one operational rule
to another one.

The relations (48) give a possibility to invert given operator rela-
tions. For example, if the former of (48) has the form (37), we can
identify the two functions as

F (z) =
π

α sin(−jπz/α)
, f(z) =

√
2π

1 + e−αz
. (49)

Thus, the inverse operational rule can be written as

f(−j∂z)δ(z) =
1√
2π

F (z), ⇒
√

2π

1 + ejα∂z
δ(z) =

π

α
√

2π sin(−jπz/α)
.

(50)
Another form for this is

1
cos(α∂z/2)

δ(z) = ejα∂z/2 1
α sin(−jπz/α)

=
1

α cosh(πz/α)
. (51)

Thus, a new operational rule was quite easily obtained. Because the
integral from −∞ to ∞ of the right-hand side equals 1, this again
is an example of a broadened delta function. The delta function is
obtained as the limit α → 0.

An operator O(∂z) broadening the delta function can be formed
from many functions O(z) which are even in z, grow as |z| → ∞,
and whose power expansion starts with 1 [33]. For example, in terms
of the modified Bessel function we write

Oa(∂z) =
2

a∂z
I1(a∂z). (52)

Applying (45), the broadened delta function in this case can be ob-
tained by integrating the Chebyshev function T1(x) = x

δa(z) =Oa(∂z)δ(z)=
1

a∂z
I1(a∂z)δ(z)=−

z∫

−∞

2T1(z′/a)
πa

√
a2 − z′2

θ(a2−z′2)dz′

=
2

πa2

√
a2 − z2θ

(
a2 − z2

)
. (53)
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The broadened delta has the form one half of an ellipse between −a
and +a.

Because all operator expressions containing constants and the oper-
ator ∂z commute, all formulas in Appendix, written for discontinuous
delta and step functions, can be transformed to involve the broadened
delta function in convolutionary form. For example, operating with
any broadening operator Oα(∂z) giving the broadened delta function
δα(z) = Oα(∂z)δ(z), because of (22) we can transform the rule

1
√

∂2
z + B2

δ(z) = J0(Bz)θ(z) (54)

to the rule

1
√

∂2
z + B2

δα(z) =
1

√
∂2

z + B2
Oα(∂z)δ(z) = [J0(Bz)θ(z)] ∗ δα(z)

=

z∫

0

J0(Bz′)δα(z − z′)dz′. (55)

Some more exotic rules can be found as follows. Identifying the func-
tions from

∂−1
z δ(z) = θ(z), ⇒ F (z) =

j

z
, f(z) =

√
2πθ(z), (56)

leads to the inverse operational rule

θ(−j∂z)δ(z) =
j

2πz
. (57)

This can be understood as a definition of the step-function operator.
To check the result, we can start from the rule (37), whose Fourier
complement is

1
1 + ejα∂z

δ(z) =
j

2α sinh(πz/α)
. (58)

For α → ∞ the operator on the left-hand side is seen to approach
θ(−j∂z) and the right-hand side becomes j/2πz.

Another exotic operational rule is obtained as the Fourier comple-
ment of the triviality

δ(z) = δ(z), ⇒ F (z) = 1, f(z) =
√

2πδ(z), (59)
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in the form
δ(−j∂z)δ(z) = δ(j∂z)δ(z) =

1
2π

, (60)

which defines the delta-function operator. This rule can also be ob-
tained as a limit from (35), which defines the Gaussian broadened
version and reduces to (60) for p → ∞. In fact, denoting 1/4p = P,
(35) can be expressed as

√
P

π
e−P (j∂z)2δ(z) = δp(j∂z)δ(z) =

1
2π

e−z2/4P . (61)

Here we denote the gaussian delta function by δp(j∂z). For P → ∞
the broadening operator becomes unity, δp(j∂z) → δ(j∂z) and the rule
(60) results as the limit. In the other limit P → 0 (61) becomes the
triviality δ(z) = δ(z).

2.4 Multidimensional Rules

In some cases the previous one-dimensional operational rules can be
combined to make multidimensional rules. For example, the Gaussian
operator rule (35) directly generates the following three-dimensional
rule:

e∇
2/4pδ(r) = e∂2

x/4pδ(x)e∂2
y/4pδ(y)e∂2

z/4pδ(z)

=
√

p

π
e−px2

√
p

π
e−py2

√
p

π
e−pz2

=
( p

π

)3/2
e−pr2

. (62)

However, in general the rules in spaces of larger dimensions must be
generated independently.

Laplace transform is rarely considered in a multidimensional form.
In contrast, the Fourier transform pair is frequently applied in three
dimensions as

F (k) =
1

(2π)3/2

∫
f(r)ejk·rdVr, (63)

f(r) =
1

(2π)3/2

∫
F (k)e−jk·rdVk. (64)

Again, this gives us a method to transform one operational rule to
another in three dimensions, whence (48) becomes

F (j∇)δ(r) =
1

(2π)3/2
f(r), f(−j∇)δ(r) =

1
(2π)3/2

F (r). (65)
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In two dimensions the corresponding formulas are

F (j∇t)δ(ρ) =
1
2π

f(ρ), f(−j∇t)δ(ρ) =
1
2π

F (ρ). (66)

The two-dimensional differential operator is defined by

∇t = ux∂x + uy∂y = ∇− uz∂z. (67)

Integral identities written in two or three dimensions can be applied
to find operational rules.

2.4.1 Two-dimensional Rules

As an example of an operational rule in two dimensions let us con-
sider the following two-dimensional integral identity in polar coordi-
nates [32] (2. 12. 8. 3)

∞∫

0

2π∫

0

1
2πρ

e−Bρe−jKρ cos ϕρdρdϕ =

∞∫

0

e−BρJ0(Kρ)dρ =
1√

K2 + B2
.

(68)
Denoting B = jk and K2 = K · K, with K · ρ = Kρ cos ϕ, this can
be written in the form of a two-dimensional Fourier integral over the
whole ρ plane Sρ :

1√
K · K − k2

=
∫

e−jkρ

2πρ
e−jK·ρdSρ. (69)

Replacing K by −j∇t, we can write the operational rule from the
integral over the xy plane as

1
√

−(∇2
t + k2)

δ(ρ) =
∫

e−jkρ′

2πρ′
e−ρ′·∇tδ(ρ)dSρ′

=
∫

e−jkρ′

2πρ′
δ(ρ − ρ′)dSρ′ =

e−jkρ

2πρ
. (70)

The sign in the exponent e−jkρ corresponds to the outgoing-wave con-
dition.

The special case k = 0 gives the rule

1
√

−∇2
t

δ(ρ) =
1

2πρ
. (71)
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Making the affine transformation [34]

ρ → A−1/2 · ρ, ∇t → A1/2 · ∇t, δ(ρ) → δ(ρ)
√

detA
, (72)

where A is a symmetric and positive-definite two-dimensional dyadic
and the inverse and determinant 4 must be understood in two-
dimensional sense. Because the inverse in this case has the form [34]

A
−1

=
1

detA
A×
× uzuz, (73)

we obtain the generalized rule

1
√

−A : ∇t∇t

δ(ρ) =
1

2π

√
A : (uz × ρ)(uz × ρ)

. (74)

More rules can be formed from [8], p.407:

1
∇2

t − (∂t/v)2
δ(ρ)δ(vt) = − 1

2π
√

(vt)2 − ρ2
θ(vt − ρ), (75)

1
∇2

t − (∂t/v)2 + γ2
δ(ρ)δ(vt) = −cosh(γ

√
(vt)2 − ρ2)

2π
√

(vt)2 − ρ2
θ(vt − ρ), (76)

1
∇2

t + k2



 ∂x√
∂2

x + k2
+

∂y√
∂2

y + k2



 δ(ρ) = J0(kρ)θ(x)θ(y). (77)

The Green-function rules are

1
∇2

t

δ(ρ) =
1
2π

ln ρ, (78)

1
∇2

t + k2
δ(ρ) =

−1
4j

H
(2)
0 (kρ). (79)

The Fourier complement rules of these are obtained easily as

ln
√

−∇2
t δ(ρ) = − 1

2πρ2
, (80)

H
(2)
0

(
a
√
∇2

t

)
δ(ρ) =

j

π2

1
ρ2 + a2

. (81)

4 Two-dimensional determinant was denoted by spmA in [34].
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2.4.2 Three-dimensional Rules

Let us start from the integral formula ([31], p.387, (2. 5. 3. 12))

∞∫

0

sinKr

Kr
dr =

π

2K
. (82)

Substituting

sinKr

Kr
=

1
4π

2π∫

0

π∫

0

e−jKr cos θ sin θdθdϕ =
1
4π

∫

4π

e−jK·rdΩ, (83)

where θ is the angle between K and r vectors, we can expand

1√
K · K

=

2π∫

0

π∫

0

∞∫

0

1
2π2r′2

e−jK·r′r′2 sin θdr′dθdϕ=
∫

e−jK·r′

2π2r′2
dV ′. (84)

This defines the following three-dimensional operational rule:

1√
−∇2

δ(r) =
1

2π2r2
. (85)

The same can also be derived by starting from the well-known Green-
function equation

(
∇2 + k2

) e−jkr

4πr
= −δ(r),

1
− (∇2 + k2)

δ(r) =
e−jkr

4πr
. (86)

and finding the reciprocal rule by the Fourier transform method.
Changing k → ja and identifying the functions as

F (j∇) =
1

(j∇)2 + a2
, ⇒ F (r) =

1
r2 + a2

, (87)

f(r) = (2π)3/2 ear

4πr
⇒ f(−j∇) = (2π)3/2 ea

√
−∇2

4π
√
−∇2

, (88)

we arrive at the rule

ea
√
−∇2

√
−∇2

δ(r) =
1

2π2(r2 + a2)
, (89)
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which is a generalization of (85).
As another example, the Fourier complement of the trivial rule

δ(r) = δ(r) can be written as

δ(j∇)δ(r) =
1

(2π)3
, (90)

which is also obtained as the product of three rules of the form (60),
if we define

δ(j∇) = δ(j∂x)δ(j∂y)δ(j∂z). (91)

2.4.3 Extension of Operators

Multidimensional rules can also be derived by extending one-
dimensional rules so that constants are replaced by operators. For
example, let us take the following operational rule from the Appendix,

e−
√

∂2
z−B2a

√
∂2

z − B2

(
∂z−

√
∂2

z − B2

∂z+
√

∂2
z − B2

)ν

δ(z)=
(

z−a

z+a

)ν

I2ν

(
B

√
z2−a2

)
θ(z−a).

(92)
Now we replace the parameter B by the operator ∂t/v and operate
on δ(t) :

e−
√

∂2
z−(∂t/v)2a

√
∂2

z − (∂t/v)2

(
∂z −

√
∂2

z − (∂t/v)2

∂z +
√

∂2
z − (∂t/v)2

)n

δ(z)δ(t)

=
(

z − a

z + a

)n

I2n

(√
z2 − a2∂t/v

)
δ(t)θ(z − a). (93)

The last expression can be written in terms of another rule and we
obtain

e−
√

∂2
z−(∂t/v)2a

√
∂2

z − (∂t/v)2

(
∂z −

√
∂2

z − (∂t/v)2

∂z +
√

∂2
z − (∂t/v)2

)n

δ(z)δ(t)

=
(

z−a

z+a

)n v

π
√

z2−a2
T2n

(
vt√

z2−a2

)
θ
(
z2−a2−(vt)2

)
θ(z−a). (94)

In spite of their importance, we do not continue with the multidimen-
sional rules but leave them to the topic of another paper.
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3. OTHER METHODS

There are other methods to find new operational rules from old ones.
This section considers some of them.

3.1 Heaviside Shifting

The method called Heaviside shifting ([6] Vol. 2, p.294) is a comple-
ment to the position shifting operator ea∂z introduced in Section 2.1
through the Taylor expansion. Making partial differentiations we can
take the exponential function eαz through the operator as

∂z [eαzf(z)] = eαz [αf(z) + ∂zf(z)] = eαz(∂z + α)f(z), (95)

which can be interpreted as shifting the operator ∂z by α. This can
be easily generalized for n = 0, 1, 2, · · · as

∂n
z [eαzf(z)] = eαz(∂z + α)nf(z). (96)

This formula works also for negative integers, because substituting
f(z) = (∂z + α)−ng(z) in the above and operating by ∂−n

z we have

∂−n
z [eαzg(z)] = eαz(∂z + α)−ng(z). (97)

Applying the Taylor expansion, this can be generalized to any operator
F (∂z) in the form

F (∂z)eαzf(z) = eαzF (∂z + α)f(z). (98)

Operating on a delta function this can also be written as

F (∂z + α)δ(z) = e−αzF (∂z)δ(z), (99)

which is a convenient tool for working with operator expressions.
For example, the rule for n > 0

1
(∂z + α)n

δ(z) = e−αz 1
∂n

z

δ(z) = e−αz zn−1

(n − 1)!
θ(z) (100)

is straightforwardly obtained from that with α = 0. As another ex-
ample, let us first derive the following rule through convolution:

1√
∂z + β1

√
∂z + β2

δ(z) =
(

1√
∂z + β1

δ(z)
)
∗

(
1√

∂z + β2
δ(z)

)
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=
(

e−β1z

√
πz

θ(z)
)
∗

(
e−β2z

√
πz

θ(z)
)

=
e−β2z

π

z∫

0

e−(β1−β2)z′

√
z′(z − z′)

dz′

=
e−β2z

π

2∫

0

e−(β1−β2)zx/2

√
x(2 − x)

dx, (101)

and substitute the last integral from ([30], (3.364)) to arrive at the rule

1
√

(∂z + β1)(∂z + β2)
δ(z) = e−(β1+β2)z/2I0

(
(β1 − β2)z

2

)
θ(z). (102)

The same formula can be obtained by denoting β1 = α+β, β2 = α−β
and applying Heaviside shifting and an operational rule valid for α =
0 :

1
√

(∂z + α)2 − β2
δ(z) = e−αz 1

√
∂2

z − β2
δ(z) = e−αzJ0(jβz)θ(z)

= e−αzI0(βz)θ(z). (103)

Shifting by an imaginary parameter α = jβ can also be applied with
the variants

F (∂z + jβ)δ(z) = e−jβzF (∂z)δ(z), (104)
[F (∂z + jβ) + F (∂z − jβ)]δ(z) = 2 cos(βz)F (∂z)δ(z), (105)
[F (∂z + jβ) − F (∂z − jβ)]δ(z) = − 2j sin(βz)F (∂z)δ(z). (106)

The shifting rule can be compared to that of the Taylor expansion,

f(z +z′) = ez′∂zf(z), ↔ F (∂z +α)δ(z) = e−αzF (∂z)δ(z). (107)

Actually, denoting ∂z = q and z = −∂q, the shifting rule equals the
Taylor expansion:

e−αzF (∂z)δ(z) = eα∂qF (q)δ(z) = F (q + α)δ(z). (108)
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3.2 Generalized Heaviside Shifting

An important consequence of the Heaviside shifting rule (99) can be
obtained by differentiating or integrating the operator with respect to
the parameter α :

(∂α)±1F (∂z + α)δ(z) = (−z)±1e−αzF (∂z)δ(z). (109)

Letting now α → 0, we have the rule for the derivative or the integral
of the operator F (∂z) :

∂±1
∂z

F (∂z)δ(z) = (−z)±1F (∂z)δ(z) = (−z)±1f(z). (110)

As an exotic example, starting from the rule

θ(j∂z)δ(z) =
1

2jπz
, (111)

by differentiating we obtain

δ(j∂z)δ(z) = ∂j∂z
θ(j∂z)δ(z) = −j(−z)

1
2jπz

=
1
2π

. (112)

(110) with the plus sign can be further generalized to higher-order
derivatives and their linear combinations:

∞∑

n=0

An∂n
∂z

F (∂z)δ(z)=
∞∑

n=0

(−z)nAnF (∂z)δ(z)=
∞∑

n=0

(−z)nAnf(z). (113)

If the infinite sum represents the Taylor expansion of a function g(∂∂z
),

we can compactly write

g(∂∂z
)F (∂z)δ(z) = g(−z)F (∂z)δ(z) = g(−z)f(z), (114)

which gives us an additional method to generate new rules out of a
given operational rule F (∂z)δ(z) = f(z). Because the exponential
function g(x) = eαx brings us back to the Heaviside shifting method
(99):

eα∂∂z F (∂z)δ(z) = F (∂z + α)δ(z) = e−αzF (∂z)δ(z), (115)

(114) appears to be a generalization of (99).
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3.3 Quadratic Shifting Rule

A quadratic shifting rule can be obtained from [25], p.228, eq. (12)
and it can be used to transform the rule F (∂z)δ(z) = f(z)θ(z) to

F
(√

∂2
z + β2

)
δ(z) = f(z)θ(z) − β

z∫

0

f
(√

z2 − z′2
)

J1(βz′)dz′ θ(z),

(116)
This can also be written as

[F
(√

∂2
z +β2

)
−F (∂z)]δ(z)=

z∫

0

f
(√

z2−z′2
)
∂z′J0(βz′)dz′ θ(z)

=−
z∫

0

f(z′)∂z′J0

(
β
√

z2−z′2
)
dz′ θ(z). (117)

To test the quadratic rule, we start from (∂z)−1δ(z) = θ(z) and trans-
form it to

1
√

∂2
z + β2

δ(z) = θ(z) − β

z∫

0

J1(βz′)dz′ θ(z) = J0(βz)θ(z), (118)

a well-known result.

3.4 Convolutions

Some integral identities involving convolutions are obtained easily
through operational analysis. For example, take the rule

(√
∂2

z + β2 − ∂z

)m
δ(z) = βm m

z
Jm(βz)θ(z), (119)

and apply it on both sides of the identity
(√

∂2
z + β2 − ∂z

)m (√
∂2

z + β2 − ∂z

)n
δ(z)

=
(√

∂2
z + β2 − ∂z

)m+n
δ(z). (120)

Writing the left-hand side as a convolution, we obtain the integral
identity

z∫

0

mn

z′(z − z′)
Jm(βz′)Jn

(
β(z − z′)

)
dz′ =

m + n

z
Jm+n(βz), (121)
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given in [32], p.214 (2. 1. 33. 8).
Another similar-looking identity is obtained applying the opera-

tional rule
(√

∂2
z + β2 − ∂z

)m

√
∂2

z + β2
δ(z) = βmJm(βz)θ(z) (122)

and (119) to both sides of

(√
∂2

z + β2 − ∂z

)m (√
∂2

z + β2 − ∂z

)n

√
∂2

z + β2
δ(z)

=

(√
∂2

z + β2 − ∂z

)m+n

√
∂2

z + β2
δ(z) (123)

whence we have

z∫

0

Jm

(
β(z − z′)

)
Jn(βz′)

n

z′
dz′ = Jm+n(βz), (124)

another well-known integral identity.

4. MULTIPOLE FIELDS AND SOURCES

As a simple application of the operator technique in electromagnetics,
let us consider two-dimensional multipole sources (sources located at a
point on the xy plane) and their representation in terms of operators
operating on the monopole, a delta-function source. The same can
be extended to three dimensions at the expense of a somewhat more
complicated notation.

4.1 Operator Representation of Multipoles

The two-dimensional electromagnetic TM field has an axial electric
field E(ρ) = uzE(ρ) which is generated by an axial current distribu-
tion J(ρ) = uzJ(ρ). It satisfies the Helmholtz equation

(
∇2

t + k2
)
E(ρ) = jkηJ(ρ), k = ω

√
µε, η =

√
µ/ε. (125)
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The field can be expressed in terms of the two-dimensional basis func-
tions 5 wn(ρ) as [35]

E(ρ) = E

∞∑

n=−∞
αnwn(ρ), wn(ρ) = jnH(2)

n (kρ)ejnϕ. (126)

Let us define two circularly polarized complex vectors

a± = ux ± juy = e±jϕ(uρ ± juϕ) (127)

with the properties

a± · a± = 0, a± · a∓ = 2, (128)
a± · uρ = e±jϕ, a± · uϕ = ±je±jϕ. (129)

With the help of these, the basis functions are seen to satisfy

a± · ∇wn(ρ) = jna± ·
[
uρkH(2)′

n (kρ) +
jn

ρ
uϕH(2)

n (kρ)
]

ejnϕ

=
jn

ρ

[
kρH(2)′

n (kρ) ∓ nH(2)
n (kρ)

]
ej(n±1)ϕ, (130)

where prime denotes the derivative with respect to the argument. Ap-
plying recursion formulas of the Hankel function we arrive at the simple
relation

a± · ∇wn(ρ) = jkwn±1(ρ). (131)

Thus, the basis functions of different orders can be expressed in terms
of that of order zero through powers of certain operators:

w±n(ρ) = Qn
±(∇t)w0(ρ), Q±(∇t) =

a± · ∇
jk

. (132)

Physically, this corresponds to expressing multipoles through differen-
tiations of the monopole, which was shown already by Maxwell for the
electrostatic case [36].

5 It is not proper to call the functions wn(ρ) eigenfunctions of the Helmholtz

operator ∇2
t + k2 because they have a source at the z axis. The functions

Jn(kρ) cosnϕ are true eigenfunctions of the Helmholtz operator.
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In terms of the inverse mapping we can write the relation

w∓n(ρ) = Q−n
± (∇t)w0(ρ), ⇒ Q±(∇t) = Q−1

∓ (∇t). (133)

This would imply Q+(∇t)Q−(∇t) = 1, but actually we have

Q+(∇t)Q−(∇t) = − 1
k2

(a+ · ∇)(a− · ∇) = −∇2
t

k2
. (134)

However, when operating on functions wn and using the two-
dimensional Green function equation [35]

(
∇2

t + k2
)
w0(ρ) =

(
∇2

t + k2
)
H

(2)
0 (kρ) = −4jδ(ρ), (135)

we obtain

Q+(∇t)Q−(∇t)wn(ρ)= − Qn
+(∇t)

∇2
t

k2
w0(ρ)=Qn

+(∇t)
[
w0(ρ)+

4j

k2
δ(ρ)

]

=wn(ρ) +
4j

k2
Qn

+(∇t)δ(ρ), (136)

which means that, indeed, for ρ 	= 0 we can replace ∇2
t by −k2 and

Q+(∇t) = Q−1
− (∇t). The difference in fields only at ρ = 0 is of no

concern for us. The source of such a difference field is what has been
called a nonradiating source [34] and can be omitted in the following.

Thus, we have arrived at the following recursion relation for the
basis functions

H(2)
n (kρ)e±jnϕ = j−n(a± · ∇/jk)nH

(2)
0 (kρ)

= j−n(a∓ · ∇/jk)−nH
(2)
0 (kρ), (137)

which also works when H(2) is replaced by H(1), J or Y functions
on both sides of the equation. Taking the average of the two relations
(137) we can further write

H(2)
n (kρ) cos nϕ = jn 1

2
[
(a± · ∇/jk)n + (a± · ∇/jk)−n

]
H

(2)
0 (kρ)

= jnTn(∂x/jk)H0(kρ), (138)

by applying the definition of the Chebyshev polynomial:

Tn(x) =
1
2

[(
x + j

√
1 − x2

)n
+

(
x − j

√
1 − x2

)n]
. (139)
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(137) is a generalization of

Jn(kρ) cos nϕ = j−nTn(∂x/jk)J0(kρ), (140)

given originally by van der Pol [37]. Similar operator relations in three
dimensions have also been discussed in [38–40].

Now the field in terms of the basis functions, also called the multi-
pole field, can be expressed in operator form in terms of the function
w0(ρ) as

E(ρ) = EQ(∇t)w0(ρ), (141)

with the multipole operator defined by

Q(∇t) =α0 +
∞∑

n=1

[
αnQn

+(∇t) + α−nQn
−(∇t)

]

= α0 +
∞∑

n=1

[αn(a+ · ∇/jk)n + α−n(a− · ∇/jk)n]

=
∞∑

n=−∞
αnQn

+(∇t). (142)

Its source, the multipole source, is defined by

J(ρ) =
1

jkη

(
∇2

t + k2
)
E(ρ) =

E

jkη
Q(∇t)

(
∇2

t + k2
)
w0(ρ)

= − 4E

kη
Q(∇t)δ(ρ). (143)

Obviously, since only delta function and its derivatives are involved,
J(ρ) is a collection of multipole sources. However, in some cases it
may be possible to express the infinite sum of operators as a function
of ∇t which can be interpreted as a continuous source.

4.2 Synthesis of Radiation Patterns

The previous operator expressions can be applied, for example, if
we wish to find the source giving rise to a certain radiation pattern.
Starting from the far-field approximation ρ → ∞ of (141), allowing
us to set ∇t → −jkuρ, we have [35]

E(ρ, ϕ) ≈ EQ(−jkuρ)

√
2j

πkρ
e−jkρ, Q±(−jkuρ) = −e±jϕ. (144)
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Q(−jkuρ) is a function of the radial unit vector uρ and it determines
the radiation pattern. Since its expression is of the form of the Fourier-
series,

Q(−jkuρ) =
∞∑

n=−∞
(−1)nαnejnϕ, (145)

when inserted in (144), the coefficients αn can be determined from a
given far field pattern through a well-known procedure. This leads to
the possibility to determine, in multipole expansion, a source radiating
the desired pattern.

As a simplifying restriction, let us assume that the radiation pattern
is symmetric in the ϕ coordinate. In this case we have αn = α−n and,
consequently, Jn = J−n. The far-field approximation (144) is, then, of
the Fourier cosine-series form

E(ρ, ϕ) ≈E

√
2j

πkρ
e−jkρF (ϕ), (146)

F (ϕ) =Q(−jkuρ) = α0 + 2
∞∑

n=1

(−1)nαn cos nϕ. (147)

If the radiation-pattern function F (ϕ) is given, the coefficients are
obtained from orthogonality as

αn =
(−1)n

2π

∞∫

−π

F (ϕ) cos nϕdϕ. (148)

After finding the coefficients, the multipole operator defining the field
with the given radiation pattern (141) and the corresponding source
(143) can be expressed as

Q(∇t) = α0 +
∞∑

n=1

αn

[
Qn

+(∇t) + Q−n
+ (∇t)

]
= α0 + 2

∞∑

n=1

αnTn(∂x/jk).

(149)
In this symmetric case it is seen to contain only the differential operator
∂x.

Simple Pattern

As a simple example, let us find a source with the radiation pattern
F (ϕ) = cos2(ϕ/2), possessing a null in the direction ϕ = ±π and
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Figure 1. Polar plots of the radiation pattern cos2(ϕ/2) and the
normalized Gaussian radiation pattern exp[−2κ sin2(ϕ/2)] for three
parameter values κ = 1, 10 and 100.

maximum at ϕ = 0, see Figure 1. Because F (ϕ) = (1 + cos ϕ)/2, we
can easily find from (148)

α0 = 1/2, α1 = −1
4
, αn>1 = 0. (150)

In this special case the multipole operator has only two terms,

Q(∇t) =
1
2
− ∂x

2jk
, (151)

and the multipole source has the form

J(ρ) = −2E

kη

[
δ(x) − 1

jk
δ′(x)

]
δ(y), (152)

i.e., consisting of a monopole and a dipole source.
Let us check this result by inserting the source in the field expression

E(ρ) = −jkη

∫
1
4j

H(2)
o (kD)J(ρ′)dx′dy′. (153)

Inserting the far-field approximation to the distance function

D =
√

(ρ − ρ′)2 ≈ ρ

√

1 − 2
ρ · ρ′

ρ2
≈ ρ − ρ′ · uρ (154)



Heaviside operational rules for electromagnetics 321

we have

H
(2)
0 (kD) ≈

√
2j

πD
e−jkD ≈

√
2j

πρ
e−jkρejkρ′·uρ . (155)

The field integral in the far region then becomes

E(ρ) ≈ −kη

4

√
2j

πρ
e−jkρ

∫
ejkρ′·uρJ(ρ′)dx′dy′. (156)

Inserting (152) we obtain

E(ρ) ≈E

√
2j

πρ
e−jkρ

∫
1
2
ejkx′ cos ϕ

[
δ(x′) − 1

jk
δ′(x′)

]
δ(y)dx′

= E

√
2j

πρ
e−jkρ 1

2
(1 + cos ϕ), (157)

which is the far field with the correct radiation pattern.

Gaussian Pattern

As a second example let us consider a radiation pattern of Gaussian
type:

F (ϕ) = Q(−jkuρ) = A exp
[
−2κ sin2(ϕ/2)

]
= Ae−κeκ cos ϕ, (158)

where A is chosen so that the integral from −π to π gives unity.
Large κ makes the beamwidth small, see Figure 1, in which case the
function can be approximated by A exp[−κϕ2/2]. Equating (147) with
F (ϕ) we can solve

α0 =
A

2π
e−κ

π∫

−π

eκ cos ϕdϕ=Ae−κI0(κ)=
1
2π

, ⇒ A=
eκ

2πI0(κ)
. (159)

The expression for the general coefficient is

αn = α−n =
A

2π
(−1)ne−κ

π∫

−π

eκ cos ϕ cos nϕdϕ = (−1)n In(κ)
2πI0(κ)

. (160)
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For κ → ∞ the coefficients are finite: αn → (−1)n/2π. From (143)
the multipole source can now be expressed in the operational form

J(ρ)=− 4E

2πkηI0(κ)

[

I0(κ)+2
∞∑

n=1

(−1)nIn(κ)Tn(∂x/jk)

]

δ(ρ). (161)

However, this can be drastically simplified by expanding the multipole
operator as

Q(∇t) =
∞∑

n=−∞
αn

[
Qn

+(∇t) + Qn
−(∇t)

]

=
1

2πI0(κ)

∞∑

n=−∞
(−1)n

[
Qn

+(∇t) + Qn
−(∇t)

]
In(κ)

=
1

2πI0(κ)
exp

{
−κ

2
[Q+(∇t) + Q−1

+ (∇t)]
}

exp
{
−κ

2
[Q−(∇t) + Q−1

− (∇t)]
}

. (162)

The last form comes from the summing formula [32] (5. 8. 3. 2)

∞∑

n=−∞
tnIn(κ) = exp

{κ

2
(t + t−1)

}
. (163)

Because of Q±(∇t) = Q−1
∓ (∇t), we end up in the simple result

Q(∇t) =
e−κ∂x/jk

2πI0(κ)
. (164)

Thus, the multipole source with the Gaussian radiation field can be
written simply as

J(ρ) = − 4E

kη
Q(∇t)δ(ρ) = −4Ee−κ∂x/jk

2πkηI0(κ)
δ(ρ)

= − 4E

2πkηI0(κ)
δ

(
x − κ

jk

)
δ(y). (165)

This means that we have found a source giving the Gaussian beam
of radiation as a point source in complex space. This idea was first
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expressed by Deschamps [41]. By adding nonradiating sources we can
find an infinity of other such sources.

Again it is a simple thing to check the result by inserting (165) in
the far-field formula (156)

E(ρ) ≈ − kη

4

√
2j

πρ
e−jkρ

∫
ejkρ′·uρ

(
− 4E

2πkηI0(κ)
δ

(
x′− κ

jk

)
δ(y′)

)
dx′dy′

=
E

2πI0(κ)

√
2j

πρ
e−jkρeκ cos ϕ = E

√
2j

πρ
e−jkρAe−κeκ cos ϕ, (166)

which is seen to reproduce the original radiation pattern (158).

5 CONCLUSION

Heaviside operator formalism was reviewed and different methods for
expressing the operational form F (∂z)δ(z), F (∇t)δ(ρ) or F (∇)δ(r)
in terms of computable functions were presented. Such expressions
often occur in electromagnetic problems when studying the response
of a impulse input through a linear system. For future convenience, a
table of operational rules was compiled for one-dimensional operators
in the form F (∂z)δ(z) = f(z). As an application, operator formula-
tion of two-dimensional multipole expansions was considered, in which
forming the multipole out of a monopole source (delta-function source)
can be expressed through a linear operator.

Appendix: Table of Operation Rules

Applying a table of Laplace transforms in, e.g., [27], and tables of
integral identities as [31, 32], a table of pseudo-differential operators
F (∂z) operating on the delta function 6 has been collected for future
convenience in working with operators. The items in the table are of
the form

F (∂z)δ(z) = f(z)

and arranged according to the operator function F (∂z). Reference to
the source of some of the more uncommon rules are given in the form
[reference]p‘pagenumber’(equation number) at the end of the rule.

6 n = 1, 2, 3, · · · is an integer while ν may be any number.
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Integer Powers

∂−n
z δ(z) =

zn−1

(n − 1)!
θ(z) (167)

1
∂z + β

δ(z) = e−βzθ(z) (168)

∂z + β1

∂z + β2
δ(z) = δ(z) + (β1 − β2)e−β2zθ(z) (169)

1
(∂z + β)2

δ(z) = ze−βzθ(z) (170)

1
(∂z + β1)(∂z + β2)

δ(z) = − e−β1z − e−β2z

β1 − β2
θ(z) (171)

1
∂2

z + β2
δ(z) =

1
β

sin(βz)θ(z) (172)

1
∂2

z − β2
δ(z) =

1
β

sinh(βz)θ(z) (173)

Fractional Powers
1
∂ν

z

δ(z) =
zν−1

Γ(ν)
θ(z) (174)

(√
∂z+β1−

√
∂z+β2

)
δ(z) = − 1

2z
√

πz

(
e−β1z−e−β2z

)
θ(z) (175)

1√
∂z + β

δ(z) =
eβz

√
πz

θ(z) (176)
√√

∂2
z + β2 − ∂z δ(z) =

1
j
√

2

[√
∂z + jβ −

√
∂z − jβ

]
δ(z)

=
sinβz

z
√

2πz
θ(z), [26](139) (177)

√√
∂2

z + a2 ± ∂z

∂2
z + a2

δ(z) =

√
2
πz

(
cos az

sin az

)
θ(z),

[26](140, 141) (178)
√√

∂2
z − a2 ± ∂z

∂2
z − a2

δ(z) =

√
2
πz

(
cosh az

sinh az

)
θ(z),

[26],p.236, (142, 143) (179)
1

√
∂2

z + β2
δ(z) =J0(βz)θ(z) (180)



Heaviside operational rules for electromagnetics 325

1
(∂2

z + β2)ν+1/2
δ(z) =

√
πzν

(2β)νΓ(ν + 1/2)
Jν(βz)θ(z),

(ν > −1/2) [26](146) (181)
(√

∂2
z + β2 − ∂z

)ν

√
∂2

z + β2
δ(z) =βνJν(βz)θ(z) (182)

(√
∂2

z +β2−∂z√
∂2

z +β2+∂z

)n/2

δ(z) =
1
βn

(√
∂2

z + β2 − ∂z

)n
δ(z)

=
n

z
Jn(βz)θ(z) (183)

(
α∂z−

√
∂2

z +β2

α∂z+
√

∂2
z +β2

)

δ(z) =
α − 1
α + 1

δ(z) − 8α

α2 − 1

∞∑

n=1

n

(
α − 1
α + 1

)n J2n(βz)
z

θ(z) (184)

1
√

∂2
z + β2

α∂z −
√

∂2
z + β2

α∂z +
√

∂2
z + β2

δ(z)

=

(
α − 1
α + 1

J0(βz) − 4α

α2 − 1

∞∑

n=1

(
α − 1
α + 1

)n

J2n(βz)

)

θ(z) (185)

Exponentials and Trigonometric Functions

ea∂zδ(z) = δ(z + a) (186)

1
1 ± e−a∂z

δ(z) =
∞∑

n=0

(∓1)nδ(z − na) (187)

(
cosh
sinh

)
(a∂z)δ(z) =

1
2

[δ(z + a) ± δ(z − a)] (188)

sinh a∂z

a∂z
δ(z) =

1
2a

θ
(
a2 − z2

)
(189)

(
sinh a∂z

a∂z

)2

δ(z) =
1
a2

(a − |z|) θ
(
a2 − z2

)
(190)

tanh a∂z

∂z
δ(z) = θ(z) + 2

∞∑

n=1

(−1)nθ(z − 2na) (191)
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(
cos
sin

)
(a∂z)δ(z) =

1
2

[δ(z + ja) ± δ(z − ja)] (192)

1
cos(a∂z)

δ(z) =
1

2a cosh(πz/2a)
(193)

1
sin(a∂z)

δ(z) =
eπz/2a

2a cosh(πz/2a)

=
1

a(1 + e−πz/a)
, [30](3.311.9) (194)

cot(a∂z)δ(z) =
eπz/2a

2a sin(πz/2a)

=
1

a(1 − e−πz/a)
, [30](3.311.8) (195)

e(a∂z)2δ(z) =
e−(z/2a)2

√
4πa

, [8]p.387 (196)

1
∂z

cos (β/∂z) δ(z) = ber
(
2
√

βz
)

θ(z), [42]p.5 (197)

1
∂z

sin(β/∂z)δ(z) = bei
(
2
√

βz
)

θ(z), [42]p.5 (198)

1
∂z

e−β/∂zδ(z) =J0

(
2
√

βz
)

θ(z), [26](161) (199)

1
∂ν+1

z
e−β/∂zδ(z) = (z/β)ν/2Jν

(
2
√

βz
)

θ(z), [26](162) (200)

1√
β∂z

eβ/∂zδ(z) =
1√
πβz

cosh
(
2
√

βz
)

θ(z), [26](165) (201)

1
∂z

e−
√

a∂zδ(z) = erfc
(√

a/4z
)

θ(z), [26](168) (202)

e−
√

∂2
z+β2a

√
∂2

z + β2
(
∂z +

√
∂2

z + β2
)ν δ(z)

=
1
βν

(
z − a

z + a

)ν/2

Jν

(
β
√

z2 − a2
)

θ(z − a) (203)

e−
√

∂2
z−β2a

√
∂2

z − β2

(
∂z −

√
∂2

z − β2

∂z +
√

∂2
z − β2

)ν

δ(z)

=
(

z − a

z + a

)ν

I2ν

(
β
√

z2 − a2
)

θ(z − a) (204)
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Logarithms

ln ∂z

∂z
δ(z) = − (0.5772.. + ln z)θ(z), [29](865.901) (205)

ln ∂z√
∂z

δ(z) = − 1√
πz

(0.5772.. + 2 ln 2 + ln z)θ(z),

[29](865.904) (206)

ln
∂z + β1

∂z + β2
δ(z) =

1
z

(
e−β2z − e−β1z

)
θ(z), [26](155) (207)

ln

√
∂z + β

∂z − β
δ(z) =

1
z

sinh(βz) θ(z) (208)

ln
∂2

z + β2
1

∂2
z + β2

2

δ(z) =
2
z

(cos β2z − cos β1z) θ(z), [26](158) (209)

1
∂z

ln(a∂z±1)δ(z) = − Ei(∓z/a)θ(z). [32](2.5.3.1, .8) (210)

Bessel Functions

In(a∂z)δ(z) =
(−1)n

π

Tn(z/a)√
a2 − z2

θ
(
a2 − z2

)
,

[32](2.18.1.10) (211)

Kn(a∂z)δ(z) =
Tn(z/a)√
z2 − a2

θ(z − a), [32](2.18.1.12) (212)

∂ν
z Iν(a∂z)δ(z) =

Γ
(
ν + 1

2

)

π3/2

(
cos 2νπ

(a2 − z2)ν+1/2
θ
(
a2 − z2

)

− sin 2νπ

(z2 − a2)ν+1/2
θ(z − a)

)

ν < 1/2, [25]p.277(4) (213)

1
∂ν

z

Iν(a∂z)δ(z) =

(
a2 − z2

)ν−1/2

√
πΓ

(
ν + 1

2

)
(2a)ν

θ(a2 − z2),

ν > −1/2, [25]p.277(5) (214)

1
∂ν

z

Kν(a∂z)δ(z) =

(
z2 − a2

)ν−1/2

√
πΓ

(
ν + 1

2

)
(2a)ν

θ(z − a),

ν > −1/2, [25]p.278(14) (215)
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1
∂n

z

e∓ja∂zH(1,2)
n (a∂z)δ(z) = ∓ j

2 [z(z ∓ 2ja)]n−1/2

√
π(2a)nΓ(n + 1/2)

θ(z),

[25]p.273, 274(9, 10) (216)

I0

(
a
√

∂2
z − β2

)
δ(z) =

cos
(
β
√

a2 − z2
)

π
√

a2 − z2
θ(a2 − z2),

[25]p.282(27) (217)
1√
∂z

In+1/2(a∂z)δ(z) =
(−1)n

√
2πa

Pn(z/a)θ(a2 − z2),

[32](2.17.5.2) (218)
1√
∂z

Kn+1/2(a∂z)δ(z) =
√

π

2a
Pn(z/a)θ(z − a),

[32](2.17.5.4) (219)

K∂z
(a)δ(z) =

1
2
e−a cosh z, [8]p.31 (220)

jn(ja∂z)δ(z) =
1

2ajn
Pn(z/a)θ(a2 − z2) [8]p.394 (221)

Other Functions

1
(∂2

z +β2)n/2
Tn

(
∂z√

∂2
z +β2

)

δ(z) =
zn−1

(n − 1)!
cos(βz)θ(z),

[29](860.99) (222)

ea2∂2
z erfc(a∂z)δ(z) =

1
2a

√
π

e−z2/4a2
θ(z),

[26](189) (223)

arctan
β

∂z
δ(z) =

1
z

sin(βz)θ(z),

[26](181), [29](861.01) (224)
1
∂z

arccot(a∂z)δ(z) =Si(z/a)θ(z), [42]p.5 (225)

δ(j∂z)δ(z) =
1
2π

, [8]p.385 (226)

θ(j∂z)δ(z) =
1
2
sgn(j∂z)δ(z) =

1
2πjz

(227)
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