
From Control Flow To Dataflow

Micah Beck
Keshav Pingali

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract

Are imperative languages tied insepara-
bly to the von Neumann model or can
they be implemented in some natural way
on dataflow architectures? In this paper,
we show how imperative language pro-
grams can be translated into dataflow
graphs and executed on a dataflow ma-
chine like Monsoon. This translation
can exploit both fine-grain and coarse-
grain parallelism in imperative language
programs. More importantly, we estab-
lish a close connection between our work
and current research in the imperative
languages community on data dependen-
cies, control dependencies, program de-
pendence graphs, and static single as-
signment form. These results suggest
that dataflow graphs can serve as an ex-
ecutable intermediate representation in

∗This research was supported by an NSF
Presidential Young Investigator award (NSF
grant #CCR–8958543), and grants from the
General Electric Corp. the Math Sciences Insti-
tute of Cornell, and the Digital Equipment Cor-
poration

†The authors can be reached at electronic
mail addresses beck@cs.cornell.edu
and pingali@cs.cornell.edu.

parallelizing compilers.

1 Introduction

Religious wars between the declarative
and imperative schools of parallel com-
putation are fought on the battlegrounds
of both language and architecture. Dis-
ciples of the declarative approach pro-
gram in functional or logic languages
and await the coming of dataflow or re-
duction machines on which their pro-
grams can run efficiently. Believers in
the imperative approach keep connect-
ing von Neumann processors in differ-
ent ways and have faith that paralleliz-
ing compilers will let them program their
machines in fortran. Are these approaches
contradictory and irreconcilable or can
we find some middle ground? We are
far from being able to answer this ques-
tion, but to do so, it will be necessary
to separate out the effects of language
from those of architecture. In particu-
lar, we must answer the following ques-
tion: Are imperative languages tied in-
separably to the von Neumann model or
can they be implemented in some natu-



ral way on dataflow architectures?
At first sight, dataflow machines ap-

pear ill-suited to executing imperative
language programs. Dataflow machines
have no program counter to sequence
operations; rather, instructions are sched-
uled dynamically for execution when-
ever they receive input data. All non-
memory operations are purely functional
in effect since a dataflow instruction ex-
ecutes by consuming data tokens at its
inputs and producing a data token at its
output. These notions are in stark con-
trast to the traditional operational seman-
tics of imperative language programs,
defined in terms of side-effects. Each
statement in an imperative language pro-
gram is a command whose execution causes
a change in storage. Sequencing of com-
mand execution is achieved through a
program counter, which specifies the unique
next instruction to be executed. The ex-
istence of a program counter in the un-
derlying operational model is reflected
in the programming language through
commands such as gotos’s that modify
the program counter. Thus, there would
appear to be a vast gulf between the dataflow
model of program execution and the op-
erational semantics of imperative languages.

Given these differences, is it possi-
ble to execute imperative language pro-
grams on dataflow machines in some nat-
ural way? Some researchers have pro-
posed to achieve this by extending dataflow
graphs with imperative operators, and
executing the entire graph sequentially
using a “thread descriptor” to simulate a

program counter. In our opinion, this is
really a simulation of von Neumann in-
struction sequencing on a dataflow ma-
chine, which is one (bad) way of imple-
menting imperative languages. Such a
simulation overly restricts parallelism.
In this paper, we exhibit a parallelizing
translation of imperative language pro-
grams into dataflow graphs which can
be executed on a dataflow machine like
Monsoon [7]. Instruction level paral-
lelism in imperative programming lan-
guages is very easily exploited using our
approach. More importantly, we estab-
lish a close connection between our work
and current compiler efforts in the im-
perative languages community. We es-
tablish ties with work on data depen-
dencies [8], control dependencies, pro-
gram dependence graphs [5, 3], and static
single assignment form [4]. This result
suggests that dataflow graphs can serve
as an executable intermediate represen-
tation for imperative language programs.

The rest of the paper is organized as
follows. In Section 2.1, we describe a
simple imperative flowgraph language.
In Section 2.2, we describe our dataflow
model, and in Section 2.3 we show a
simple translation of flowgraph programs
into dataflow graphs. This translation
does not exploit any parallelism across
the statements of the source program. In
Section 3, we refine our translation by
parallelizing independent memory op-
erations. Section 4 discusses a further
refinement that increases parallelism by
removing redundant control operations;



this refinement is related to the notions
of control dependencies and static sin-
gle assignment form. The development
in these sections ignores aliasing and data
structures. However, any realistic scheme
for implementing imperative languages
on a parallel machine must take aliasing
into account. In Section 5, we describe
a framework for exploiting parallelism
in the presence of aliasing. Section 6
discusses standard parallelization meth-
ods including exploitation of array par-
allelism in loops. Our schemes for han-
dling aliasing and loops demonstrate that
we can exploit existing compiler tech-
niques such as dependency analysis and
loop detection. We summarize our re-
sults in Section 7.

2 A Framework for Trans-
lation

In this section, we present a simple im-
perative flowgraph language. We will
initially ignore aliasing and data struc-
tures, but will consider these issues in
Sections 5 and 6. We also present a
fairly standard dataflow execution model;
with minor changes, the dataflow graphs
in this paper can be executed on the Mon-
soon dataflow machine being built at M.I.T. [7].
Finally, we present a simple translation
from flowgraph programs to dataflow pro-
gram graphs.

2.1 A Simple Imperative Lan-
guage

A program in our imperative flowgraph
language consists of a set of labeled as-
signments connected by conditional or
unconditional branches. The syntax of
expressions and predicates is left unspec-
ified, and we have ignored all issues of
variable type, scope, and aliasing. We
will however assume that each expres-
sion or predicate is a functional com-
bination of the values of a fixed set of
variables. In Section 5, we generalize
our translation to handle aliasing, en-
abling programs in a language like for-
tran to be easily translated into our flow-
graph language.

A flowgraph is a set of statements of
the form

l : v := e ‖ if p then lt else lf

where l is a unique label for that state-
ment, v is a variable name, e is an ex-
pression, p is a predicate, and lt and lf
are statement labels. Unconditional con-
trol transfer is implemented by using the
constant predicate true. Execution be-
gins at the statement labeled start and
completes upon branching to the reserved
label end.

The operational semantics of state-
ment execution are as follows:

1. expression e and predicate p are
evaluated.



start

x:=x+1

y:=x+1

TF
x<5

true

end

a

Figure 1: An example flowgraph

2. the variable v is assigned the value
of e.‡

3. control then passes to statement
lt if p is true, and to statement lf
otherwise.

We will use the following simple flow-
graph as a running example:

start: y := x + 1 ‖ if true then a
a: x := x + 1 ‖ if x < 5 then start else end

Figure 1 illustrates this flowgraph.

2.2 Dataflow Model

We will use a conventional explicit to-
ken store dataflow machine, such as MIT’s
Monsoon [7] as our model of execution.
In this model, each invocation of a pro-
cedure and each loop iteration gets an

‡Note that p is evaluated before the assign-
ment to v. An occurrence of v in p refers to the
old value of v.

activation context, which is analogous
to a stack frame in conventional com-
puters. Frame memory takes the place
of the waiting-matching section in ear-
lier dynamic dataflow models: tokens
destined for a two-input operator will
rendezvous at a fixed location in some
frame.

One important aspect of our model
is the behavior of memory. Data struc-
tures in earlier models of dataflow were
implemented in I-structure memory in
which locations could be allocated un-
der program control and could be writ-
ten into at most once. A garbage collec-
tor was used to recycle I-structure loca-
tions no longer in use by the program.
This memory also supported synchro-
nization between reads and writes at the
memory — a read request that arrived
at a location before the corresponding
write was held by the memory controller
until the write occurred. In our model,
as in Monsoon, memory locations can
be written more than once. Thus the re-
sult of a read can depend on the order of
memory operations; in these cases cor-
rect ordering must be observed by the
dataflow program graph. To facilitate
such ordering, each load and store oper-
ation consumes a “dummy” token at its
input and generates another at its out-
put when the operation has completed.
These tokens are used only to sequence
load and store operations; the value they
carry is irrelevant. As in all dataflow
models, loads and stores are implemented
as split-phase operations to avoid block-



z

y
x

x

zt zf

y

Throttle Synch Tree Switch

Figure 2: Key To Dataflow Schema
Symbols

ing the processor pipeline while a mem-
ory operation is underway.

There is no standard textual repre-
sentation of dataflow programs. Instead
they are represented as graphs, with op-
erations specified at the nodes and the
propagation of tokens between nodes shown
as arcs. For clarity, we use dotted lines
to represent arcs that carry dummy to-
kens used for coordinating memory op-
erations. General subgraphs are repre-
sented by rectangles bearing an appro-
priate label; expression subgraphs are
represented by labeled triangles.

Some important operations are indi-
cated by special symbols, as shown in
Figure 2. The throttle is a two-input
identity operation used for synchroniza-
tion. It has two inputs x and y; when
both are present the throttle copies x to
the output z; the input y is treated as a
signal — its value is ignored. Throttles
can be combined into synchronization
trees, which generate a single output to-
ken when all of their inputs are present.
Since a synchronization tree is a form
of expression, it is indicated by an unla-
beled triangle. A switch is a special op-

lf

store v

pe

switch

read

lt

Figure 3: Schema 1 — Implementing
Sequential Semantics

access token

load b

load a

Figure 4: Detail of Schema 1 read block

eration that has two inputs x and y, and
two possible outputs zt and zf . When
both x and y are present, x is copied to
either zt or zf according to the boolean
value carried by y.

2.3 A Simple Translation

We will first consider implementing the
fully sequential semantics of flowgraph
execution directly in dataflow graphs. The



store y

<5+1
+1

FT

switch

store x

load xload x

Figure 5: Example flowgraph schema 1

translation of a statement is illustrated
in Figure 3, with a detailed view of the
read block shown in Figure 4. The trans-
lation schema for a statement consists
of graphs to evaluate e and p, a store
operation to assign the value to v, and
a switch.

Sequencing of statements is achieved
by circulating a token that represents ac-
cess to the stored state of the program
variables. This access token visits ev-
ery memory operation in a statement in
sequence, and visits statements in se-
quence. Because the access token car-
ries no useful value, it is considered to
be a signal and is indicated by dotted
lines. Conditional sequencing is imple-
mented by a token switch that directs
the access token to one of two possi-
ble destinations. For unconditional se-
quencing the switch is omitted. Figure
5 illustrates the translation for our ex-
ample flowgraph.

This schema correctly implements the

sequential semantics of flowgraphs. Ex-
pression parallelism is allowed within
a single statement, but all memory op-
erations are sequentialized. The order-
ing of operations enforced by our trans-
lation schema is even more restrictive
than is specified by the operational se-
mantics given in Section 2.1.

In the next section we refine our schema
to allow parallelism across the statements
of a program.

3 Parallelizing Memory Op-
erations

The translation of flowgraphs to dataflow
program graphs given in Section 2.3 uses
a single token to represent access to any
part of the stored program state. Since
every statement accesses memory, this
token enforces sequential execution of
statements. While this schema does en-
sure a correct sequence of memory ac-
cesses, it restricts parallelism unneces-
sarily.

Our first refinement of this transla-
tion implements access control with a
set of access tokens, one for each pro-
gram variable name. In order to sim-
plify the presentation of this schema, we
will assume initially that there is no alias-
ing of variables. We will denote the to-
ken that represents access to the vari-
able named x by accessx. Its arrival at a
statement means that all previous mem-
ory operations on the variable name x



switch

store v

pe

read

accessv

lflt

Figure 6: Schema 2 — Refining Access
Control

have completed.
Because we are not considering alias-

ing of variables, every variable name de-
notes a unique memory location. To achieve
the sequential semantics of flowgraphs,
we will preserve the order in which load
and store operations are applied to each
memory location. This is implemented
by synchronizing each memory opera-
tion of a variable a with the arrival of
the token accessa. The accessa token is
propagated when the memory operation
is complete.

Statement Schema 2, illustrated in
Figures 6 and 7, shows that the circu-
lation of a single access token has been
replaced by a set of access tokens cor-
responding to variable names. Tokens
representing variables not used by the
statement flow directly to the switch and
on to the next statement. By allowing
independent memory operations to pro-

access

accessbaccessa

load bload a
other

tokens

Figure 7: Detail of Schema 2 read block

ceed in parallel, we are exploiting fine-
grain parallelism across statements.

3.1 Cyclic Flow Graphs

Unfortunately our translation does not
work correctly if there is a cycle in the
flowgraph. Consider the dataflow graph
corresponding to our running example,
illustrated in Figure 8. For now, let us
ignore the boxes labeled loop entry, loop
exit, and loop-back. Since x and y de-
note different memory locations, oper-
ations on location x can proceed inde-
pendently of operations on location y.
When the load operator labeled L fires,
it produces a token at the input of the in-
crement operator labeled I. The accessx

token is passed on to the second state-
ment where operations on x are allowed
to proceed. When these operators com-
plete, the accessx token can start on a
new iteration of the loop, returning to
the first statement, and the load opera-
tor labeled L can fire again.

It is easy to verify that the load op-
erator labeled L can fire an unbounded



switch

<5+1
+1

FT

loop exit

loop entry

L

I

loop-back

accessxaccessy

accessx

accessy

store y

load x

store x

load x

Figure 8: Example flowgraph schema 2

number of times before the increment
operator labeled I fires. In explicit to-
ken store machines like Monsoon, as in
static dataflow architectures, each arc can
hold at most one token. Therefore, the
graph shown in Figure 8 does not spec-
ify a meaningful computation.

The problem with circular dataflow
graphs is not a consequence of the un-
structured nature of our flowgraph lan-
guage — the same problem arises when
compiling the structured looping con-
struct of a functional language like Id [6].
We can generalize the solutions used in
translating Id programs to dataflow graphs
by considering intervals rather than loops [1].
An interval is a maximal, single entry
subgraph which has a unique node called
the header which is the only entry node
and in which all cyclic paths contain the

header.
If loops generalize to intervals, what

is the generalization of nested loops? No-
tice that any subgraph that strictly con-
tains an interval cannot itself be an in-
terval. On the other hand, if the inner
intervals are collapsed to single nodes
(and self-loops are eliminated), the outer
subgraph may become an interval in the
new graph. It can be shown that any
graph can be decomposed hierarchically
into “nested intervals” this way — ev-
ery “nested interval” is either an interval
in its own right, or it becomes an inter-
val if inner intervals are collapsed into
single nodes and self-loops are elimi-
nated [1].

To execute programs with cycles cor-
rectly, we decompose the flowgraph into
nested intervals and introduce three new
statements called loop control statements.
Arcs leading to the header from outside
the interval are changed to lead to a sin-
gle loop entry statment, which then leads
to the header. A loop exit statement is
placed before any node which:

1. is not in any cycle, and

2. all of whose immediate predeces-
sors are in some cycle.

Arcs leading to such a node are changed
to lead to a loop exit statment. All arcs
from within the interval back to the header
are changed to lead instead to a single
loop-back statement, which then leads
to the header.



This flowgraph can then be translated
as in Schema 2. How should we trans-
late the new statements into dataflow graphs?
Since there are many possible approaches
to dataflow loop control, we will not spec-
ify the implementation of the loop con-
trol statements. We will instead intro-
duce three “black box” subgraphs corre-
sponding to these statements and in our
translation we will simply require that
each of them takes the complete set of
access tokens as input and produces this
set again as output. In Section 4, we
will relax this requirement to increase
parallelism.

A full discuss of the implementation
of interval control subgraphs and a full
must take several factors, including de-
tails of the specific model of dataflow
execution, into account [2]. No single
solution exists; instead there is a trade-
off of parallelism against resources which
admits many possible solutions. Because
of space limitations, we offer the fol-
lowing summary.

In Monsoon, each loop iteration is
given an activation frame for holding its
tokens. The loop entry operator arranges
for the allocation of such a frame and
starts the execution of the first iteration.
The loop-back operator handles frame
allocation for subsequent iterations. If
a new frame is required, it arranges for
its allocation; otherwise, a frame allo-
cated for a previous iteration is reused,
provided that that iteration has termi-
nated. The loop exit operator sends the
outputs of the loop back to the parent

b

FT

x:=x+1

x:=0

w:=1w:=0

w>0

end

true true

a
true

c d

Figure 9: An example of restrictive se-
quential ordering

context. Thus, these operators are con-
cerned with context manipulation.

4 Optimizing Control Flow

Schema 2 exploits parallelism between
independent memory operations by us-
ing access tokens that circulate indepen-
dently. However these access tokens still
flow along the path of sequential exe-
cution. That is they flow through every
statement that is executed, even if they
play no role in that statement. This can
result in access tokens flowing through
switch operators unnecessarily, which in-
troduces unnecessary dependencies. An
example of this is shown in Figure 9,
and the dataflow graph for this program
in shown in Figure 10.

In this example, the token accessx

will flow from statement b to statement



a regardless of the value of variable w.
However Schema 2 enforces sequential-
ity between the calculation of the pred-
icate in statement b and the execution
of statement a. If accessx were passed
directly to statement a, then no such de-
pendence would be introduced, and par-
allelism would be enhanced.

In representations such as the pro-
gram dependence graph (PDG), this sit-
uation can be recognized by the fact that
there is no control dependence between
the predicate in statement b and state-
ment a [5, 3]. That is, statement a is
executed regardless of the value of the
predicate in statement b. However, this
does not necessarily mean that the ac-
cess token for x can be passed directly
from statement b to statement a. For ex-
ample if statement c contained an as-
signment to x, then there would be a
data dependence from that statement to
a, and the access token for x would have
to flow through c. In PDGs, control and
data dependencies are represented by sep-
arate sets of arcs. Interactions between
dependency types introduce complica-
tions into the use of PDGs [3].

In contrast, our use of dataflow switches
to represent the effect of control flow on
data dependencies makes the identifica-
tion of unnecessary switches easy. Con-
sider the switch operator for accessx in
Figure 10, which corresponds to the con-
ditional branch in statement b of our ex-
ample. Both arms of this switch go to
statement a and there are no uses of x on
either of these arms. It is clear that this

accessw

switch

FT

>0

accessxaccessw

accessw

accessxaccessw

accessx

accessx

accessw accessx

+1

store w
1

store w
0

0
store x

load w

store x

load x

Figure 10: Dataflow graph with redun-
dant switch



switch operator is redundant and can be
deleted from the graph if accessx is rerouted
to flow directly from the store operator
in statement b to the store operator in
statement a. In this example there is
only one redundant switch, but in gen-
eral the removal of one switch may cause
other switches to become eligible for dele-
tion. Section 4.2 shows how redundant
switches can be removed from the dataflow
graph.

4.1 Detecting Redundant Switches

We now formalize the notion of a switch
in a dataflow graph being redundant, and
indicate an efficient global algorithm for
determining which switches are redun-
dant. We will then show how the flow
of access tokens in the dataflow graph
can be optimized on the basis of this in-
formation.

Definition 1 A use of variable x in a
dataflow graph is any memory opera-
tion on variable x.

Definition 2 A node P postdominates
a node S in a dataflow graph iff all paths
from S to exit pass through P . If P is
a postdominator of S, and every post-
dominator of S postdominates P , then
P is the immediate postdominator of S.

Definition 3 Let P be the immediate post-
dominator of a switch S in a dataflow
graph. Switch S is redundant iff there
is no use of x on any path from S to P ,
other than P itself.

Theorem 1 establishes an important
connection between the problem of find-
ing redundant switches in a dataflow graph
and the notion of static single assign-
ment form [4]. This leads us to an ef-
ficient algorithm for calculating the set
of redundant switches.

Theorem 1 A switch S for an access
token accessx in the dataflow graph is
redundant iff it is not possible to find
two paths S

+→S1 and S
+→S2 such that

1. S1 and S2 are uses of x

2. the two paths are disjoint except
for S.

The proof of Theorem 1, which ap-
pears in [2] has been omitted for reasons
of space.

Standard compiler techniques such
as def-use chaining can be used to cal-
culate the set of redundant switches. A
faster algorithm can be obtained by re-
ducing the problem to that of computing
static single assignment (SSA) form [4].
Computing SSA form requires the in-
troduction of so-called φ-functions for
each variable x in the program. A φ-
function for variable x is introduced at a
node S in the graph if there exist nodes
S1 and S2 such that there are non-null
paths S1

+→S and S2
+→S in which S is

the only common node and S1 and S2

both contain assignments to x, or them-
selves need φ-functions for x. In other
words, we can determine which switches



for a variable x are redundant by revers-
ing the direction of arcs in the graph,
treating every use of x as a definition
and solving the problem of finding where
to introduce φ-functions for variable x
in this graph. An O(E × V ) algorithm
for this problem has been devised by Cytron
et al [4].

The correspondence between opti-
mal placement of switches and reverse
SSA form is not coincidental. The arcs
along which access tokens flow in the
dataflow graph can be viewed as a rep-
resentation of def-use chains in which
this information has been knitted in with
control flow information (the switches
implement forking of these chains due
to conditional branching). By way of
analogy, we can view the SSA form as a
representation of use-def chains in which
the φ-functions implement joining of these
chains due to the confluence of control
flow paths. Thus while different graphs
are considered and the dependencies are
reversed, the structure is the same.

4.2 Eliminating Redundant Switches

Having calculated which switches are
needed in a dataflow graph, we can now
eliminate those that are redundant. The
postdominator of each redundant switch
can easily be calculated as part of the al-
gorithm for determining which switches
are needed. Any redundant switch for
a variable x can then be eliminated by
simply rerouting its input(s) to its im-
mediate postdomintator. By definition

there is no use of x between the switch
and the postdominator.

This said, some attention must be
paid to the order in which redundant switches
are eliminated. A redundant switch S1

may itself be an immediate postdomi-
nator of another redundant switch S2.
If switch S1 is eliminated before switch
S2, then the postdominator of S2 must
be recalculated. We want to eliminate
the switches in an order which avoids
recalculating immediate postdominators
in such cases.

To find such an order, we use the
fact that the immediate postdominator
relation organizes the nodes of the dataflow
graph into a tree. In this tree the leaves
are nodes which postdominate nothing,
and the root is exit which postdominates
everything. If we order the nodes in
the graph by a postorder traversal of this
tree, then the restriction of this order to
redundant switches has the desired prop-
erty. A switch will always be eliminated
before its immediate postdominator.

This optimization has the property
that an access token which is not used in
the cyclic portion of an interval will be
eliminated from the cycles, and will not
be made to flow through the loop-back
subgraphs. However, such a token will
still flow needlessly through the loop en-
try and exit subgraphs. This case can
easily be detected, and such tokens can
be removed from the loop control sub-
graphs altogether.



5 Aliasing, Parallelism, and
Synchronization

The possibility of aliasing is significant
because it means that a single memory
location may be accessed by more than
one name. Thus in Schema 2 it will not
suffice to synchronize a memory oper-
ation on variable x with the arrival of
accessx.

We call the set of variables which
might be aliased to variable x the alias
class of x. Schema 2 can be generalized
to account for aliasing as follows: be-
fore a memory operation is performed
on variable x, it is necessary to ensure
that all memory operations on that loca-
tion have completed. This condition can
be ensured by requiring that all mem-
ory operations on any variable y in the
alias class of x have completed. We im-
plement this requirement by specifying
that access tokens for all variable names
in the alias class of x must be collected
before a memory operation on x is initi-
ated. The completion signal from the
memory operation would similarly be
split into a separate signal to propagate
each accessy.

This simple approach has one draw-
back: it will perform unnecessary syn-
chronization in many cases. Consider
two variables x and y which are equiva-
lent; they always represent the same lo-
cation. Assume further that neither x
nor y is aliased to any other variable.
Clearly, we can represent x and y by

a single access token with no loss of
parallelism. The cost of synchronizing
accessx and accessy will then be elimi-
nated.

Equivalent variables are an extreme
case, and are easily accounted for. How-
ever, when alias classes are not transi-
tive, the assignment of sets of variables
to access tokens can reduce parallelism.
A formal framework can be developed
for analyzing the decomposition of the
set of all variables into a collection of
sets of variables called a cover [2]. It is
possible to prove that, given particular
aliasing information, two natural covers
can be defined: one which maximizes
parallelism, and one which minimizes
synchronization. In general, there will
not exist a single cover which achieves
both.

6 Parallelizing Transfor-
mations

Up to this point, our concern has been
the translation of programs into dataflow
graphs without inserting unnecessary de-
pendencies. In many programs, paral-
lelism can be enhanced by transforma-
tions that remove dependencies. Many
of these transformations make the pro-
gram more “functional” in the sense that
they are used to remove anti-dependencies
(that is, dependencies that arise because
of multiple writes into a single mem-
ory location). In fact, in the absence of



aliasing, memory operations on scalars
can be eliminated completely and all val-
ues can be carried on tokens, as is usual
in implementations of functional languages
on dataflow machines. We also discuss
some coarse-grain parallelization trans-
formations similar to vectorization.

6.1 Elimination of Memory Op-
erations

In our dataflow schema, all communi-
cation of values between statements is
through memory. Every statement be-
gins by reading the values it will refer-
ence, and ends by storing a result. The
ability of dataflow tokens to carry val-
ues is used only in the calculation of ex-
pressions and predicates. Access tokens
that flow across statements are dummy
tokens which carry no value, but are used
only for synchronization. An important
optimization is to eliminate memory lo-
cations wherever possible by passing val-
ues directly on tokens, rather than via
access tokens. For variables that are not
aliased, this is very easy. Recall that
a store operation takes an access token
and a value as input, performs the store
and passes on the address at its output.
To delete the store, we simply remove
the store operator and the access token
line from the graph, rerouting the value
line to the output. The load operator can
be deleted by replacing it with a fork
operation that receives a value token at
its input and duplicates it to both of its

outputs. Some of these outputs may be
removed from the graph if the access
token from the load operator went to a
store operator in the original graph.

If we restrict our attention to una-
liased scalar variables only, this trans-
formation has the effect of converting
the program into a single assignment,
functional program. It is similar in ef-
fect to classical transformations like re-
naming, live range splitting and conver-
sion to static single assignment form.
Why is this transformation so simple in
our representation? Consider two defi-
nitions of a variable that both reach some
use. Most of the conventional transfor-
mations will not rename the lefthand side
variables of the two definitions to differ-
ent variables since there is no easy way
of “joining” these variables together at
the use; the exception is static single as-
signment form which uses φ-functions
for this purpose. In our representation,
the joining of values to produce a sin-
gle value is implicit in the model, which
simplifies the transformation consider-
ably.

6.2 Parallel Operations and Alias-
ing

Eliminating storage operations for po-
tentially aliased variables is more diffi-
cult. However, some parallelism can be
exploited even for these variables. If a
store to a variable x is followed sequen-
tially by a read from x, with no inter-



vening stores to any variable that could
be aliased to x, then the value stored can
be passed directly to the output of the
load.

Another important category of par-
allelization is parallelism between mem-
ory reads. Our access tokens enforce
sequential access to memory, which is
necessary only when writes are involved.
Parallel access to memory can be allowed
among any set of reads, even to poten-
tially aliased variables.

Consider a sequence of load opera-
tions, each of which receives the accessc

from its predecessor and passes it di-
rectly to its successor. The predeces-
sor of the first load can safely replicate
accessc and pass it to every operation in
the sequence. The replicas must be col-
lected and passed to the successor of the
last operation in the sequence. By paral-
lelizing maximal sequences of load op-
erations, read parallelism is maximized.

(c)

store x[1]

store x[i]

store x[3]

store x[2]

store x[1]

store x[3]

store x[2]

(b)

accessxaccessx

(a)

accessx

loop-back

Figure 11: Vectorizing loop operations

6.3 Loop Vectorization

In Schema 3, we have shown how an
analysis of aliasing can be applied to
the parallelization of independent mem-
ory operations. The above section ad-
dresses the parallelization of scalar reads.
A more subtle issue is the paralleliza-
tion of independent memory operations
in loops. Our simple method of deter-
mining independence on the basis of vari-
able names ignores the fact that many
accesses to a single array may be inde-
pendent.

Consider the following looping flow-
graph:

start: i := i + 1 ‖ if true then a
a: x[i] := 1 ‖ if i < 10 then start else end

It is clear that stores to successive el-
ements of the array x are independent,



and can be executed in parallel. How-
ever our analysis based on variable names
would sequentialize them, since all re-
quire the access token for x.

Our approach to parallelizing these
operations, illustrated in Figure 11 is a
generalization of the method for paral-
lelizing reads. Part (a) shows the se-
quential stores to x[i] in each iteration
of the loop unfolded into a single thread
of execution. Part (b) shows how the the
access token for x can duplicated and
passed to the next iteration. After stor-
ing to x[i], the access token must then
be synchronized with the completion of
the store in the next iteration. The du-
plication of the token ensures that there
is no dependence between stores in suc-
cessive iterations, and the synchroniza-
tion ensures that the token is not gener-
ated at the end of the loop until all stores
have completed. Finally, part (c) shows
how this schema can be implemented in
a dataflow loop.

This schema for vectorizing loops is
a departure from our uniform treatment
of arbitrary control flow. Loops are a
special case because their regularity can
allow an analysis of subscripts to deter-
mine the independence of successive it-
erations. Because our simple flowgraph
language does not include looping con-
structs, such loops must be discovered.
Parallel versions of fortran not only spec-
ify loops, but also allow parallelism to
be declared by the user in a doall con-
struct. A further enhancement of this
transformation is to detect when an ar-

ray is “write-once”. In that case, ar-
ray reads and writes can be done con-
currently, since the I-structure memory
takes care of delaying premature read
requests until the corresponding writes
have occurred.

7 Conclusions

We have shown in this paper that imper-
ative languages are not wedded to von
Neumann architectures nor to the von
Neumann execution model. The con-
straints imposed by the possibility of mul-
tiple writes to a single memory location
define a partial order on the execution of
operations. We can implement this par-
tial order on a dataflow machine by cir-
culating a set of access tokens. Starting
with a fairly sequential schema, we in-
troduced parallelism on the basis of in-
dependent memory operations. We then
further optimized the sequential control
flow of the original program to elimi-
nate synchronization at decision points
not corresponding to control dependen-
cies. Finally, we considered a number
of parallelizing transformations and showed
that they could be implemented easily
in our framework.

We do not see the importance of this
work as being limited to the develop-
ment of parallelizing compilers for im-
perative languages running on dataflow
architectures. The arcs that connect op-
erations in a dataflow program graph can
be viewed as a representation of depen-



dencies. By abstracting away the details
of context manipulation instructions in
dataflow graphs, we get a parallel, exe-
cutable representation of imperative pro-
grams that incorporates all the depen-
dencies between operations. We believe
that this representation is good for par-
allelizing compilers, even if the target
architecture is not dataflow.

Currently, parallelizing compilers for
imperative languages use a combination
of abstract syntax trees control flow graphs,
data dependence graphs and control de-
pendence graphs (linked together in some
way) to provide complete information
about the execution semantics of pro-
grams and dependencies between oper-
ations. On the other hand, many declar-
ative language compilers use continua-
tion passing style (CPS) as an interme-
diate form [9]. Dataflow graphs syn-
thesize these two representations of de-
pendencies since the arcs in a dataflow
graph can be viewed both as encodings
of dependency information as well as
continuations in a parallel model of ex-
ecution. We believe that some kind of
dataflow representation is better suited
for this purpose, and that the real im-
pact of dataflow ideas may well be at
the level of compiling, rather than at the
level of machine architecture. We leave
that subject for another paper.

Acknowledgments

We would like to thank Richard Huff,
Richard Johnson, and Anne Rogers for
their helpful comments. The proof of
Theorem 1 was contributed by Richard
Johnson and Wei Li. Discussions with
Karl Ottenstein helped us to understand
Program Dependence Graphs. We thank
Bob Rau the the Advanced Architecture
group at Hewlett Packard for useful dis-
cussions on the subject of compiler in-
termediate forms.

References

[1] A. V. Aho, R. Sethi, and J. D.
Ullman. Compilers: Principles,
Techniques, and Tools. Addison-
Wesley, 1986.

[2] M. Beck and K. Pingali. From con-
trol flow to dataflow. Technical Re-
port TR89-1050, Cornell Univer-
sity, October 1989.

[3] R. Cartwright and M. Felleisen.
The semantics of program depen-
dence. Proceedings of the 1989
SIGPLAN Conference on Pro-
gramming Language Design and
Implementation, 25(6), June 1989.

[4] Ron Cytron, Jeanne Ferrante,
Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. An
efficient method of computing
static single assignment form. In



Proceedings of the 16th ACM
Symposium on Principles of
Programming Languages, pages
25–35, January 1989.

[5] J. Ferrante, K. J. Ottenstein, and
J. D. Warren. The program de-
pendency graph and its uses in op-
timization. ACM Transactions on
Programming Languages and Sys-
tems, 9(3):319–349, June 1987.

[6] R. Nikhil, K. Pingali, and Arvind.
Id Nouveau. Technical Report CSG
Memo 265, M.I.T. Laboratory for
Computer Science, 1986.

[7] G. Papadopoulos. Implementa-
tion of a General Purpose Dataflow
Multiprocessor. PhD thesis, Mas-
sachusetts Institute of Technology,
1988.

[8] C. Polychronopoulos. The
Parafrase-2 restructurer. In Pro-
ceedings of the Second Workshop
on Languages and Compilers for
Parallel Computing, August 1989.

[9] G. Steele. RABBIT: A compiler
for SCHEME. Technical Report AI
memo 474, M.I.T. Laboratory for
Artificial Intelligence, May 1978.


