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Abstract. The retinotopic mapping of the visual field
to the surface of the striate cortex is characterized as
a logarithmic conformal mapping. This summarizes
in a concise way the observed curve of cortical magni-
fication, the linear scaling of receptive field size with
eccentricity, and the mapping of global visual field
landmarks. It is shown that if this global structure is
reiterated at the local level, then the sequence regularity
of the simple cells of area 17 may be accounted for as
well. Recently published data on the secondary visual
area, the medial visual area, and the inferior pulvinar
of the owl monkey suggests that the same global
logarithmic structure holds for these areas as well.
The available data on the structure of the somatotopic
mapping (area S— 1) supports a similar analysis. The
possible relevance of the analytical form of the cortical
receptotopic maps to perception is examined and a
brief discussion of the developmental implications of
these findings is presented.

Introduction

The primary sensory projection of the brain is a
topographic mapping of the receptor periphery onto
the central neural processor. Early workers such as
Talbot and Marshall [29] (retinostriate projection).
Apter [7] (retinotectal projection), Woolsey [36]
(somatotopic projection), and Lorenté de No [20]
(auditory projection) established the basic existence
and structure of these mappings using relatively crude
slow-wave recording techniques. Subsequent work,
making use of more refined and sophisticated single-
unit mapping methods, has served in recent years 1o
greatly increase the detailed knowledge of the structure
of the various sensory mappings, and has extended
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their domain of definition to include a variety of
thalamic and mid-brain structures as well.

The existence of orderly spatial mapping in diverse
neural structures would seem to have considerable
importance to the functional aspects of sensory
neurophysiology: in each modality, a receptor surface
(the retina, the cutaneous surface, the basilar mem-
brane) is mapped, through sub-cortical relay nuclei,
to an essentially two-dimensional (laminar) representa-
tion at the cortical surface. This representation of
the sensorium in terms of a receptor sheet mapped onto
a cortical surface has led Arbib [8] to characterize
the brain as “a layered, somatotopically organized
computer”.

The view of the primary sensory projection as a
planar (although “distorted”) map of the sensorium
underlies a basic controversy that has existed for the
past thirty years. Somjen [26] has provided a concise
statement of this question:

“The issue of the cortical movie screen, popular at
first, discredited later... and defended once again, is
still not resolved. The presence of these topographic-
ally organized projection areas can hardly be mere
accident, of course. Besides the retina and the body
surface, the receptor sheet of the cochlea also finds a
representation of sorts in several regions of the brain.
What kind of significance can we attach to them?”

The present work is a critical examination of this
question, which begins by analyzing the anatomical
and physiological data that has accumulated during
the past twentyfive years on the detailed structure of
the retinotopic mapping of the striate cortex (area 17).
It is possible to present a simple analytic description
of the retinotopic mapping, using complex variables
to represent points in the visual and cortical planes.
The retinotopic mapping is thus found to be a
complex logarithmic (conformal) mapping of the visual
field onto the cortical surface. Furthermore, the
available evidence suggests that the receptotopic
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mappings of the secondary visual cortex, the inferior
pulvinar, and the somatosensory cortex, may be
described by the same mathematical formalism. In
addition. it is pointed out that the local receptive
field structure of the striate cortex, as represented by
Hubel and Wiesels [17] model of the hypercolumn,
may very well be the consequence of a complex
logarithmic mapping on a local scale. The possible
relevance to visual perception of the complex lo-
garithmic mapping will then be investigated by
studying the mapping of a visunal stimulus. This
demonstration will support, in a graphic way, the
conclusion that the preprocessing of the two-dimen-
sional brightness distribution available at the retina,
by the complex logarithmic retinotopic mapping,
may possibly play a role in the analysis of form in-
variant information. Finally, a brief discussion of the
seemingly ubiquitous presence of complex logarith-
mic structure in the sensory projection will be pre-
sented with respect to the developmental mechanisms
that could lead to this structure in a biological system.

Global Retinotopy

The notion of retinotopy may be traced back to the
pioneering anatomical investigations of Polyak [23],
who suggested, on the basis of the anatomy of the
visual cortex, that a mathematical projection of the
retina on the cortex must exist. Talbot and Marshall
[29] confirmed this hypothesis with physiological
methods, and the extensive investigation of Daniel
and Whitteridge [11] provided a source of precise.
quantitative data; however, a mathematical analysis
of the retinotopic mapping has never been presented.

In subsequent work. making use of single cell
recording techniques, the locus of accurate topo-
graphical representation in the striate cortex has been
limited to layer IVc, where the receptive fields are
predominantly small and circularly symmetric, and
the cortical afferents arriving from the lateral genicu-
late nucleus (LGN) arrive and terminate [17]. In the
subsequent discussion of global topography. it will be
understood that it is mainly layer IVc of the striate
cortex that is accurately retinotopic. Following this
discussion of global topography, the local remapping
of cortical afferents to simple cells, which are located
mainly in the cortical laminae surrounding layer Ve,
will be separately analyzed.

Daniel and Whitteridge measured the cortical
magnification factor by recording slow wave and
multiple unit responses to spots of light in the visual
periphery, and then reconstructing the electrode
tracks from histological sections. They defined the
cortical magnification factor as the distance moved
(in millimeters) across the cortical surface correspond-

ing to one degree of movement of a point stimulus in
the visual field [11].

Daniel and Whitteridge found that the cortical
magnification factor is the same along all radii,
regardless of the angular coordinate, and is the same
whether measured radially or along the circumference:
thus the magnification factor is radially symmetric,

The cortical magnification data was used to con-
struct a three dimensional model. which accounted
closely for the surface area of the cortex, and could be
simply folded to duplicate the actual folding pattern
of the striate cortex. However. their investigation was
largely phenomenological: “no simple equation was
found to fit the data”™.

Daniel and Whitteridge presented their cortical
magnification data graphically. For the present analy-
sis, data published in their original work were mea-
sured, and fit by computer to a power law. The fit is
excellent over the entire range of measured date
(from 1° to 50°):

Figure 1A

M()=6*(r)"%° (C.L.=95%). (1)

M(r) is the magnification factor in millimeters/degree,
and the variable r measures the eccentricity in degrees.
The choice of r as the variable representing eccentri-
city is made in order to simplify the geometry by
approximating the visual sphere by its tangent plane.
The spherical polar coordinates of eccentricity and
azimuth may be approximated by the polar co-
ordinates of the tangent plane (r and ¢). The polar
coordinate ¢ is identical to the azimuthal spherical
coordinate. The polar coordinate r is approximately
proportional to the eccentricity:

r=Rsin@=R6 . 2

Where r is the tangent plane radial polar coordinate,
R is the radial distance of the tangent plane from the
retina, and @ is the eccentricity. The approximation
of Equation (2) is accurate to 98% for the central
20 degrees of visual field. Furthermore, for a tangent
plane that is placed 57.3 cm from the eye, the polar
coordinate r in the tangent plane is numerically equal
(in cm) to the eccentricity in degrees.

The fit of Equation (1) is the best power fit to the
data of Daniel and Whitteridge. For the central
foveal representation (less than 1° of eccentricity), no
magnification data is available; it is assumed that the
inverse dependence on eccentricily tapers off in 2
gradual way for this central-most part of the visual
field. For the central 20 degrees of visual field, a simp»le
straight line fit to the inverse magnification is 10
excellent agreement with the data. In order to include
peripheral parts of the visual field (beyond 20°)
Equation (1) may be used, which is very close to a8



jnverse linear dependence on eccentricity for the entire
visual field. Thus. the exponent of r in Equation (1) is
sufficiently close to unity to be replaced by it; that is
supported by the later work of Hubel and Wiesel [18],
who find that the inverse magnification curve is closely
approximated by a straight line. In light of the
previOUS discussion, it is possible to simplify the
analysis of Danicl and Whitteridge’s data, expressed
in Equation (1) by the approximation:

m=k/r. . (3)

Where k is a constant. r represents eccentricity from
the fixation point (foveal representation) and m is the
magnification. Cortical magnification is a differential
quantity: small changes in cortical position are related
to small changes in visual field position. Since we are
interested in the analytic form of the retinotopic
mapping, and not its derivative, we must find an
analytic function whose derivative is radially sym-
metric and is proportional to 1/r. The analytic function
that has this property is the complex logarithm:

w=In(2) )

where w represents a point in the cortical plane and
z represents a point in the visual plane. which may be
represented as:

z=rexp(i¢). (5)
Equation (4) may be written in real variables as:

z=Inr
y=9¢ (6)

with the point (x, y) located in the cortical plane and
the point (r, ¢) located in the visual plane.
Magnification is defined for a complex (conformal)
mapping as the amount by which an infinitesimal
line segment is “stretched” by the mapping f(z) [1].
This is exactly analagous to the physiological definition
of magnification. In general. the magnification of a
conformal mapping may be written as: (1)
n(zg)<tim [ /D=1 )
z=2p

= 1/(zo) . o

z—12,
Substituting the logarithm function for f(z). we

have: .

k -ie

4
“

KL

To

1/ (zo)| = =—. (8)

To

0

Thus, the magnification of the complex logarithm has
the required logarithmic dependence on eccentricity,
and is radially symmetric, satisfying the experimental
findings of Daniel and Whitteridge. In order to verify
this analysis, it is possible to examine the mapping of
global visual field landmarks and compare these to
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the predicted mappings of the same stimuli under the
logarithmic mapping. It should be emphasized that
this is a totally independent verification. The (differen-
tial) cortical magnification, as a measurement, is
independent of the (global) measured representations
of the vertical and horizontal meridians. and other
visual landmarks.

The mapping of global visual field landmarks, as
measured by Talbot and Marshall and Daniel and
Whitteridge is shown in Figure 1B.

The vertical meridian is wrapped around the visual
projection, and forms the border of area 17; circles of
constant eccentricity are mapped to vertical straight
lines. Alongside the experimental data is presented
the predicted mappings of the same visual field land-
marks. There is excellent agreement between the
measured and predicted geometries.

Thus, the phenomenological aspects of the retino-
topic mapping discussed above, and illustrated in
Figures 1A and 1B support the hypothesis summarized
by Equation (4).

The characteristic features of planar mapping
which indicate the underlying presence of logarithmic
spatial structure are summarized in Table 1, and are
derived in Appendix 1.

These features may be thought of as the “signature”
of the complex logarithmic mapping. Wherever these
“signatures” are evident in a receptotopic mapping,
the presence of a logarithmic spatial structure may be
inferred. This situation is analagous to plotting data
on semi-logarithmic paper. Exponentually distributed
data is difficult to characterize by eye: if one takes the
(exponential) data points representing the growth of a
bacteria colony and plots them on linear graph paper,
they may seem to be derived from an exponential
distribution. However, if the same data is plotted on
semi-logarithmic paper, the resultant straight line fit
is satisfying confirmation that the underlying distri-
bution actually is exponential. In a similar manner,
once the underlying signatures of the complex loga-
rithmic mapping are familiar. it becomes very much

Table 1. Geometry of the logarithmic conformal mapping

log = = w

Vertical lines

{equally spaced)

Horizontal lines

(equally spaced)

Inclined straight lines

slope =I/k; intercept= — (log A)/k

{. Concentric circles
(exponentially spaced)
2. Radial lines
(equal angular spacing)’
3. Logarithmic spirals
(0=Ae")

The three geometric patterns on the left are the level lines (1), or
streamlines, of the logarithmic conformal mapping. Numbers 1 and 2
may be thought of as limiting cases of the logarithmic spiral; No. 1
for k=0 and No. 2 for k=00
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Fig. 1. A Thecortical magnification data of Daniel and Whitteridge.
Through the points is drawn the best fit to the data for a power law,
as described in the text. B The measured and predicted mapping of
visual landmarks in striate cortex. The upper (90°) and the lower
(270°) vertical meridians, the horizontal half meridian (180°), the
octants (135° and 225°) and the circles of constant eccentricity are
drawn as measured by Talbot and Marshall, and Daniel and
Whitteridge. The data of Talbot and Marshall, on the left, does
not show the correct (logarithmic) spacing between the lines of
constant eccentricity; their experiment is the pioneering measure-
ment of this data. The data of Daniel and Whitteridge is much more
accurate, and is shown in the center. This is a projection, onto a
horizontal plane, of a three dimensional model; the meridians and
octants are equally spaced, as they are in the theoretical prediction
of these mappings under the logarithmic conformal mapping. The
theoretical prediction, on the right, actually represents a vertical
meridian that is infinitesimally displaced from the origin; otherwise
the curved part of the contour would actually be a right angle. The
horizontal meridian is an average of a line infinitesimally above and
below the precise horizontal meridian. With these qualitative
reservations, there is great similarity between the data and the
theoretical prediction of the data under the logarithmic mapping.
C The global retinotopic mapping under the logarithm function.
Concentric circles {(exponentially spaced) and radial straight lines
are mapped onto the equidistant cartesian grid on the cortex. Note
the density (derivative) of the exponentially spaced lines gives a
linear dependence on the eccentricity; this is observed as a linear
scaling of the receptive field size in the visual plane, with a constant
(hypercolumn) size in the cortex

easier to identify the presence of complex logarithmic
structure. This analogy is particularly applicable to
neuroanatomical data because of the complex folding
and bending characteristic of neural structures. Virtu-
ally all the “surfaces” alluded to in this paper are

actually highly complex. convoluted. doubly curveq
surfaces, for which the “planar” structure must be
inferred by histological reconstruction. and then by
projection onto a planar map. Naturally. the maps that
result from this procedure are often difficult to
interpret merely by their visual appearance. However,
the signature of spatial logarithmic structure, as out-
lined above, is easy to see and provides satusfying
confirmation of the underlying mathematical structure
of the neural maps.

The previous analysis has demonstrated that the
retinotopic mapping of the striate cortex may be
mathematically described as a complex logarithmic
mapping. The characteristics of logarithmic spatial
structure that support this statement are summarized
in Table 1. In the case of the striate cortex, excellent
measurements are available, and these satisfy all the
requirements specified in Table 1 for the existence of
logarithmic spatial structure. For other cortical and
sub-cortical areas and modalities, the experimental
data is much less comprehensive. Nevertheless, the
signature of the complex logarithm is so characteristic
that it is possible to identify a receptotopic mapping
as a logarithmic mapping, even in the absence of the
detailed data available for the striate cortex.

In the following discussion, the lateral geniculate
nucleus, the secondary visual cortex, the inferior
pulvinar, and the somatosensory cortex, will be
discussed with respect to specifying the analytic
structure of their receptotopic maps.

The Optic Tract and the Lateral Geniculate

The magnification factor for the lateral-geniculate
nucleus (LGN) is the same from as that for the striate
cortex, up to a scale factor [9] and therefore is of the
same form as Equation (3) above. Since cell density
in both the LGN and the striate cortex is roughly
constant with respect to eccentricity [ 18] most workers
in the physiology of the geniculo-striate system have
assumed that the origin of the magnification curve lies
in the form of the density of the retinal ganglion cells
themselves [9] which follow a distribution of the form
of Equation (3). As in the previous discussion, it is
evident that a (differential) magnification curve of the
form of Equation (3) implies a logarithmic radial
structure for the LGN retinotopic mapping, and thus
raises the possibility that the source of the complex
logarithmic structure of the striate cortex may lie in
the LGN (and possibly the retinal ganglion cells).
However, the available maps of the LGN show that
this is not the case. Lines of equal azimuth and eleva-
tion from a grid which is approximately cartesian in
the visual plane. They also form an approximately
cartesian grid in the LGN [9]. The form of the



magnification curve is clearly in evidence in these
plots, causing the central representation of the visual
field to occupy a disproportionately large area.
Nevertheless, the angular part of the complex log-
arithmic mapping is not present at the level of the
LGN, and must occur in the projection of the LGN
onto layer IVc of the striate cortex. Thus. the complex
Jogarithmic structure of the striate cortex seems to be
effected in two separate steps: 1) the form of the den-
sity of retinal ganglion cells, leading to a logarithmic
radial structure in the optic tract, and LGN, 2) the
projection of the LGN onto the cortex, where the
angular reorganization of optic tract fibers is effected
that leads to the final form of the striate cortex
retinotopic map, as in Equation (4) above.

Secondary Visual Cortex

The quantitative data available on the secondary
visual cortex is much less documented that that for
the striate cortex. However, in recent years. the
secondary visual cortex of the primate and the lower
mammals has begun to be extensively studied. In a
recent investigation of the organization of the second
visual area (area 18) of the owl monkey, Allmann and
Kaas [5] have published receptive field plots corre-
sponding to straight line trajectories across the surface
of visual area V-II. Their data is reproduced in
Figure 2. It is evident from this figure that the image,
under a straight line across the surface of V-IL, is a
spiral pattern of receptive fields in the tangent plane.
Referring to Table 1, it can be seen that the mapping
which images a spiral onto a straight line is the
logarithmic conformal mapping.

In order to emphasize this point, Allman and Kaas’
figure is reproduced in Figure 2. Also shown in this
figure is a logarithmic spiral, for reference, and a
semi-logarithmic polar plot of the receptive field
centers corresponding to straight line trajectories in
the periphery. Recalling that the equation of the
logarithmic spiral is r=A4e?, il can be seen that the
log of the radius should be linear with respect to the
polar angle. The straight line plots (and the coefficients
of linear regression) presented in Figure 2 support this
statement. This procedure is not intended to be quanti-
tative, but merely to support the observation that the
spiral receptive field structure reported by Allman and
Kaas does in fact represent a logarithmic structure.

Allman and Kaas emphasize in their paper that
area V-I (area 17) is a “simple topological transforma-
tion of the visual hemifield” and call this a “first order
transformation”. They refer to V-II as a “second order
transformation” because they feel that the simple
Ietinotopy of the striate cortex is not maintained
there. This is because area V-II forms a belt around
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the striate cortex (V-I) such that points above and
below the horizontal meridian are mapped to points
quite far apart in the cortical representation. However.
aside from this peculiarity of the representation of the
horizontal meridian, it would seem that the global
structure of secondary visual cortex is described by
a logarithmic spatial conformal mapping. as is the
primary visual arca,

In subsequent work, Allman and Kaas [6] have
mapped the global receptive field structure of the
medial visual area of the owl monkey. This data is
shown in Figure 3.

Again each trajectory across the surface of the
cortex corresponds to a logarithmic spiral trajectory
in visual space. Also shown in Figure 3 is a plot on
semilogarithmic paper of the radial versus the angular
coordinates of the receptive field centers. These plots
support the characterization of the receptive field
trajectories as logarithmic spirals, analogous to those
presented above for the secondary visual cortex
(V-II). This characterization of the secondary visual
cortex (area 18) and the medial visual area of the
primate cortex as logarithmic conformal mapping is
expected. Clasically, area 18 is described as a “mirror
image” of area 17 [5], and the medial visual cortex is
explicitly an image of the striate cortex [6]. The
“mirror image” description of area 18 is called into
question by the analysis of Allman and Kaas, cited
above. Nevertheless, logarithmic spatial structure is
clearly evident in these areas.

Somatosensory Cortex

The primate dorsal column-medial lemniscal compo-
nent of the somatosensory projection subserves the
modalities of touch and kinesthesis. One more synapse
(at the level of the gracial or cuneate nuclei) than the
visual system separates the cutaneous periphery from
the primary cortical processor, The cutaneous peri-
phery is represented by a map-like representation of
the body, located in the post-central gyrus of the
cerebral cortex (area S—1). This is termed the somato-
topic map. The elegant experimental observations of
Werner and Whitsel are of particular interest to the
present discussion. Instead of determining the project-
ion of the body to the cortex, Werner and Whitsel [34]
measured the projection of straight lines of cells in
the cortex (S—1) to the surface of the limbs. They
found that “the receptive fields of the neurons progress,
essentially, in bands around the limb, much as did the
laces of a Roman soldier’s footwear ...the sum total
of all RF’s represented in any mediolateral traverse
of the cortical map describes a continuous spiral path
around the limb”. Coupling this observation with that
of Mountcastle [21], that the size of the cutaneous
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Fig.2. On the left is reprinted the data of Allman and Kaas showing their results for the measurement of receptive field size and position,
corresponding to straight lines across the secondary visual area of the monkey. The perimeter charts labeled 1, 2, 3, and 4 correspond to the
anatomical locations indicated in the lower part of the figure. On the right is an example of a logarithmic spiral. Below the spiral is a semi-
logarithmic plot of the radial position of the receptive field centers with respect to the corresponding angular positions. The hypothesis that
these receptive field trajectories lie along logarithmic spirals is equivalent to the hypothesis that this semi-logarithmic plot should be linear.
The coefficients of linear correlation to the best (least-squares) fit 1o a straight line are shown in the figure. The measurements were made
directly from the figure of Allman and Kaas, starting from the first RF in V-II

receptive ficlds linearly increases with distance from
the distal point of the limb, it is clear that the
somatotopic mapping takes straight lines (in the
cortex) to logarithmic spirals in the cutaneous peri-
phery. This conclusion is supported by the further
observations of Werner and Whitsel [35] that for
rostro-caudal trajectories across the surface of S—1,
“the sequence of receptive fields describe circular
paths around the limb”. With reference to Table 1 and
Appendix 1, the mathematical structure that this

implies for the somatotopic mapping is the logarithmic
conformal mapping, centered about the distal point
of the limb. To summarize the parallels between the
visual and (somatic) maps: receptive field size for the
visual (somatic) map scales linearly with distance
from the foveal (distal) point of the receptor surface.
Straight lines in the cortical representation correspol{d
to receptive fields trajectories that are concentriC
circles, logarithmic spirals, or radial straight lines.
depending on the orientation of the cortical
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Fig. 3. Above is reprinted the figure of Allman and Kaas showing their measurements of receptive field size and position, corresponding to
straight lines across the medial visual area of the monkey. On the right, sections of logarithmic spirals have been drawn through the receptive
field trajectories (dashed lines), corresponding to the contiguous straight line tracks across the cortex shown on the right. Below is shown a
semi-logarithmic plot of the radial position of the receptive field centers with respect to the corresponding angular positions. The hypothesis
that these receptive ficld trajectories lie along logarithmic spirals is equivalent to the hypothesis that this semi-logarithmic plot should be linear.
The coelTicients of linear correlation to the best (least-squares) fit to a straight line are shown in the figure. The measurements were made
directly from the figure of Allman and Kaas, starting from the first RF in the medial visual area

trajectories. Again, as in these case of the secondary
visual areas, this discussion of the somatotopic map-
ping is qualitative; nevertheless, the observations of
Werner and Whitsel, and Mountcastle imply that the
analytic structure of the somatotopic mapping is the
same as- that found previously to account so pari-
someously for the structure of visuotopic mappings.

The importance that this analysis has with regard
to visual-haptic coordination of eye-limb activity is

obvious, and will be discussed in more detail later in
this paper. Additionally, the motor representation of
the cortex is itself a mirror-image of the somatotopic
representation. Thus, the visual, somatotopic, and
motor maps of the primary cortical representation
may be described. at least approximately. by the same
mathematical function: the complex logarithm. A
similar situation is known to exist in the superior
colliculus, where superimposed visual, motor, somatic,
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Fig. 4. A recent map of the retinotopic structure of the primate inferior pulvinar has been provided by Aliman and Kaas. The visual field
trajectories and the corresponding thalamic trajectories are shown in the figure. Clearly, parallel straight line trajectories in the inferior pulvinar
correspond to radial straight line trajectories in the visual field. With reference to Table |, this observation gives tentative support to the
classification of the retinotopic structure of the pulvinar as a complex logarithmic map, like that of the primary and secondary visual cortex.
It can be predicted from this data that, had the thalamic trajectories been rotated by 90 degrees, circular visual field trajectories would have been
obtained; an intermediate angle of rotation would yield logarithmic spiral trajectories, as shown in Figures 2 and 3, for the sccondary visual

cortex

and auditory maps exist. These (linear) collicular
maps are in registration with one another, both
anatomically and functionally [13] and are thought
to subserve the functional capabilities of the superior
colliculis that have to do with visual orientation. The
results of the present paper are very intriguing in this
light, because they suggest the existence of a basic
principle of sensory-motor function. A primary algo-
rithm of the sensory system of the brain seems to be
the creation of maps of the relevant sensory-motor
spaces, in registration with one another. This is appa-
rently the plan utilized by the (linear) tectal system
and the (logarithmic) cortical system, as a general
principle of sensory information processing.

Inferior Pulvinar

The inferior pulvinar is a large thalamic nucleus
located in close proximity to both lateral geniculate
and the superior colliculus. The pulvinar is a some-
what mysterious structure, both anatomically and

functionally, and has been described as “terra in-
cognita of the thalamus” [33]. Recently, it has been
established that the inferior pulvinar receives a retino-
topic projection of the visual field, in the primate [4].
A parasagital section of the brain. showing a number
of straight line electrode trajectories, along with the
corresponding receptive field plots, is shown in
Figure 4.

It is clear from this figure that straight line trajec-
tories in the brain correspond to radial straight
line receptive field plots. Consequently, (with reference
to Table 1 and Appendix 1), the retinotopic mapping
of the pulvinar may be described, insofar as available
data allows, by the complex logarithm function. This
figure represents the only available data to date on
the mapping of the inferior pulvinar. no magnification
data is available. Consequently, the assignment of 2
complex logarithmic structure to the retinotopic map
of the pulvinar is only tentative,

Allman and Kaas speculate that the source of
the retinotopy of the pulvinar may lie either in the
LGN, the superior colliculus, or the cortex. The puta-



tive logarithmic structure suggested in this paper
would tend to group the pulvinar with the geniculo-
striate system, (which is generally logarithmic in struc-
qure) rather than with the tecto-fugal system (superior
colliculus) which is generally linear in the structure
of its retinotopy. Consequently the above analysis
may provide some hints as to the function and anato-
mical relationship of this poorly understood thalamic
yisual area.

Sequence Regularity in the Striate Cortex

The previous analysis of the various receptotopic
mappings of the sensory projection was concerned
with the global nature of these mappings, with the
mapping of entire receptor surfaces (the retina, the
cutaneous surface) onto the corresponding central
recciving areas. In the case of the striate cortex. the
global logarithmic spatial structure holds at the
level of layer IVc where the afferent input to the
cortex arrives from the LGN [17]. In the surrounding
laminae of the cortex, this precise topographic map-
ping is no longer valid; as is well known, the simple
and complex cells in thesc laminae are responsive
to straight line stimuli tuned about a range of angular
orientation, and with definite stimulus velocity cha-
racteristics [16]. The local structure of the striate
cortex has recently been examined in exquisite detail
by Hubel and Wiesel in a series of paper culminating
in their recent elegant demonstration of sequence
regularity and the “hypercolumn” model [17]. A
brief summary of this model, and the demonstration
of sequence regularity among the simple cells of the
striate cortex. will be presented, in order to demon-
strate that the local mapping of cortical (LGN)
afferents to the simple cells may be characterized as a
logarithmic mapping, on the scale of a single hyper-
column.

In the original paper of Hubel and Wiesel [16]
reporting the existence of simple cells, they speculated
that the orientation tuning property of these simple
cells arises from the convergence of a row of geniculate
cells onto a single simple cell, as shown in Figure 5.
Although the question of modeling the origin of simple
cell orientation tuning is an active field of research in
itself, the original model of Hubel and Wiesel is
correct in its substantial details.

Recently, Hubel and Wiesel [17] have specified
in detail the spatial arrangement of these columns,
or slabs, of simple cells. The striate cortex of the
macaque (and likely of the cat) is subdivided into
two independent and overlapping series of columns
termed “orientation slabs” and “ocular dominance
columns™. Each orientation slab represents tuning of
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simple cells over an angular range of 1015 degrees.
The width of these slabs is 25-50 u. Thus, over a
cortical traverse of from 0.5-1 mm. a complete traverse
of the angular tuning variable (180°) is accomplished.
This is the same distance which two ocular dominance
columns span; the complete angular set of orientation
tuning slabs, coupled with the binocular representa-
tion of two ocular dominance columns, is a functional
unit of the striate cortex, called a hypercolumn.

This demonstration of “sequence regularity” shows,
in the words of Hubel and Wiesel. that the striatc
cortex “after all is a remarkably uniform and homo-
geneous structure”. In order to account for this regu-
larity of orientation tuning, we have to deal with a
situation as depicted in Figure 5. Each row of geni-
culate cells converges onto a slab of cortical cells, and
the rows of geniculate cells rotate through regular angu-
lar increments, as the cortical representation moves
through parallel slabs. 1t is obvious that in order to si-
multaneously satisfy the requirement of sequence reg-
ularity, as well as orientation tuning, the mapping that
describes the wiring of LGN afferents to cortical simple
cells must be very precisely constrained. In fact, with ref-
erence to Table 1, it is evident that the formal mapping
which takes equal angular strips to parallel strips is the
complex logarithm. If one describes the local mapping
of LGN afferents (located in layer IV¢) to simple cells
(located in the surrounding laminae) by a local
complex logarithmic mapping, about the hypercolumn
center, then it is possible to satisfy the requirement
that rows of LGN cells converge onto simple cells in a
spatially regular way such that equal angular increments
in visual space correspond to equal linear steps in
cortical space. The analysis would seem to be parti-
cularly harmonious with the thinking of Hubel and
Wiescl on this subject. They view each hypercolumn
as a quasi-independent unit of the cortex... “capable
of analyzing a region of visual field equal to the local
field size” [17]. The image evoked by their model is
of a cortex that is spanned by a mosaic of quasi-
independent patches, each of which is responsible
for the analysis of a small area of the visual field.
The receptive fields are globally located across the
surface of the cortex by a similar complex logarithmic
mapping that describes the global relationship of
the entire retinal surface to the cortical surface. The
cortex is thus a concatenated logarithmic structure,
whose structure in the large mirrors that of its local
elements. This structure has a simple developmental
rational, which will be discussed later in this paper.
Furthermore, this concatenated logarithmic structure
has some very potent information processing charac-
teristics which may be of direct relevance to visual
perception. These will now be illustrated.
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Fig. 5. Figure 5 shows a schematic representation of Hubel and Wiesel’s suggestion for the origin of the orientation tuning ol the simple cells
of the striate cortex. A row of LGN cells (corresponding to a row of excitation at the retinal surface) converges onto a simple cell, whose response
properties will then show orientation tuning. The recent demonstration of sequence regularity by Hubel and Wiesel is schematically
represented in the bottom part of the figure. Here, a number of rows of LGN cells, arranged in equi-angular steps, are shown as they must
project to the simple cells in order to maintain both orientation tuning and sequence regularity. The geometric statement of the sequence regu-
larity property is that equi-angular steps in the visual (LGN) plane correspond to equal linear steps in the cortical plane. With reference to
Table L, it can be scen that the complex logarithm function provides this property. Consequently, it may be hypothesized that the projection,
within the approximate area of represcntation of a receptive ficld at the cortex, of cortical affercnts ta simple cells, may be formally described

as a local complex logarithmic mapping

Perceptual Consequences of Logarithmic Structure

Many years ago, Polyak [23] advanced the suggestion
that there may exist a mathematical representation
of the retina in the cortex. The present work supplies
the mathematical form for this mapping: the complex
logarithm of Equation (4). The anatomical and physio-
logical thrust of this paper ends here. However, the
fundamental reason for studying the anatomy and
physiology of the visual system is to gain insight into
its functional aspects. At present, our fundamental
knowledge of perception is slight. Julesz [19] has
said: “We still lack a physiological psychology of...
visual perception. One of the greatest obstacles to
its attainment is our inability even to guess the
neural levels where certain perceptual phenomena
might occur”. One of these illusive perceptual pheno-
mena is size invariance. We have no problem re-
cognizing a familiar stimulus, whether it is near or

far from us in space. The locus of retinal excitation
due to the face of a friend is very different if that friend
is sitting next to us. or is across the room. According
to Sutherland [28], this size invariance property is
one of the fundamental aspects of the visual system
that any neural theory of perception must explain.
The following discussion will demonstrate that the
complex logarithm has a natural size invariance
properly. This mathematical fact, coupled with the
previous anatomical and physiological analysis, sug-
gests that the psychological property of size invariance
may be subserved by the anatomical structure of the
striate cortex. This is a hypothesis at present: it may
be merely accidental that the mathematical properties
of the retinotopic map automatically provides a size
scaling effect. However, the lack of any viable neural
theory for the existence of size invariance in visual
perception makes this suggestion an attractive working
hypothesis.
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Fig. 6. The size-scaling property of the complex logarithm is
graphically illustrated. The top of the figure shows the mappings
of a large and small square, as they would appear across the surface
of the unfolded and flattened cortex. The image of the square is an
invariant; size dilitation merely causes this invariant image to shift
across the cortical surface. The bottom of the figure shows the
analagous mapping, under the local (hypercolumn) logarithmic
mapping. In this figure, a small square element of the image space
corresponding to a visual receptive field is depicted; the slightly
different size of the retinal images are normalized by the complex
logarithmic mapping. The relative shift, on the scale of a hyper-
column, is a possible cue for the disparity of the stimulus, since this
relative shift is proportional to the relative difference in size of the
left and right eye projections

A two dimensional contrast distribution (for ex-
ample the grain of a photographic emulsion) may be
represented as the locus of points (complex variable z))
of each independent element of the pattern. The opera-
tor for size dilitation in complex variables is simple
multiplication by a real constant k. The point z;
(rje')) is then taken to the point z; (kr;e™®j). The locus
of points log (z,) is mapped to the locus log (kz;)=log
(z)+log(k). Thus. in the logarithmic (cortical) plane,
size changes in the image plane reduce to a simple
translation. The size of the image is thus invariant.
This mathematical property of the complex logarithm
is illustrated in Figure 6.

Chaikin and Wieman [10] have exploited this
property of the complex logarithm, in a computer
oriented pattern recognition approach. An earlier
work in computer oriented pattern recognition [22]
pointed out an additional useful property of processing
pictorial information via the complex logarithm:
multiplicative effects in the picture plane become
additive effects in the logarithmic plane. Thus. the
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intensity distribution of a scenc may be written as:
I(x, y)=R(x. ) U(x, y) 9)

where R is the reflectance distribution of the stimulus
and U is the illumination distribution of the ambient
lighting. In the complex logarithmic plane the above
relation becomes:

log I(x, y}y=log R(x, y)+log U(x, y). (10)

Thus, the reflectance and illumination may be treated
separately and then additively combined. This simpli-
fication is not possible in the linear image plane.

These potent information processing capabilities of
the complex logarithm have been exploited by workers
in articial pattern recognition. As regards the problem
of neural pattern recognition, it is not possible to
state unequivocally whether or not the brain helps
itself to the advantages of image processing outlined
above. Nevertheless, it is a striking fact that both the
primary and sccondary visual cortex, the inferior
pulvinar, and the somatotopic cortex as well, represent
a complex logarithmic mapping of the sensory receptor
surface onto a central neural surface. The prepro-
cessing of spatial information by the complex loga-
rithm may well be a crucial step in the functioning of
the sensory system.

The size scaling property of the complex logarithm
may have relevance to stereopsis. When the eyes
fixate a stimulus, the two corresponding retinal
projections will be, in general, of slightly different size.
This size difference will be normalized by the complex
logarithmic structure of the retinotopic map (both
for the cortical projection as a whole, and for the local,
hypercolumnar logarithmic structure described ear-
lier). Psychological studies of steropsis have demon-
strated the existence of this binocular “perceptual
zooming” effect. Random dot stereograms may still
be fused, even though the size scaling.of the left and
right images differs by up to 15% [19].

The need for a size-scaling mechanism in the visual
system has been emphasized by a number of authors
[19, 24, 25, 28]. Richards has pointed out that there is
a correlation between size-scaling under changes in
the vergence angles of the eyes (Emmerts Law) and
binocular rivalry. He concludes that the neural site
of size scaling precedes the site of binocular combi-
nation; it is after the chiasm, but before the cortex [24].
This is supported by the analysis of this paper, which
locates the site of size-scaling to the projection of the
LGN onto the striate cortex. It must be emphasized
that the various psychological phenomena grouped
under the general label of “size invariance” (Emmerts
law, perceptual zooming; Sutherlands conception of
size invariance) are diverse; no attempt is made to
present a specific model. Rather, it is merely to be
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pointed out that the cortical visuotopic mappings,
which may be mathematically represented by the
complex logarithm, operate on visual data that is
automatically scaled for size, by the anatomical
structure of the cortex. Whether this is an accident of
anatomy, or has direct functional significance, is of
course, a matter for further experimental study.

One of the principal cues for steropsis is binocular
disparity; random dot stereograms which present a
correlated (shifted) image to the left and right eyes
create a very potent illusion of depth, as discovered by
Wheatstone in the last century, and recently exploited
by Julesz's [19] elegant investigations. Perhaps the
neural basis of disparity as a cue for depth perception
lies in the fact that the complex logarithm links a
(cortical) shift to a (visual plane} size change, as
derived above. Thus, the slightly different projections
of the two eyes are normalized by the complex
logarithm to the identical cortical pattern, with the
shift proportional to the size difference, and ultimately,
the disparity of the stimulus.

The fact that both the somatosensory and visual
maps have the same logarithmic spatial structure
has obvious relevance to the problem of cross-modal
intergration of sensory information. Consider the
following remark of Somjen [26]: “...What boggles
the imagination is how the non-linearity of the
somatic projection be matched with the different
structure of the non-linearity of the visual projection.
For while it is true that the somatic sensory figurines
are more or less mirror images of the motor figurines,
there is no correspondence whatsoever between the
somatic projection and the visual projection. If eye-
hand coordination is to be guided by the brain charts
of visual space and of body-image, the two cannot be
scaled by discordant nonlinear transformations.”

Since a result of the present work is that both the
primary sensory projection of each limb and the
visuotopic projection of the retina, are both described
by the complex logarithm, Somjens’ particular ob-
jection to the perceptual relevance of the receptopic
mappings is eliminated. As Gibson has emphasized
from the psychological point of view the visual and
haptic worlds are of “one piece” [14]. The fact that
the visual and haptic maps available at the cortical
level are of the same analytic structure provides a
link between the psychology and the neurophysiology
of the spatial senses.

The previous discussion of the complex logarithmic
mapping and perception is speculative. Nevertheless,
potentially rich insight into perceptual processes is
apparent once the mathematical form of the retinotopic
mapping is understood. This is particularly true since
the topographical structure of the sensory system is
at the present time felt to be of minor importance to

sensory perception. This attitude is typified by the
widely quoted study of Doty [12] (performed in 1958,
before any of the "modern™ results of cortical physio-
logy had been accumulated), which concluded: “The

.topographical arrangement of the retino-cortical pro-

jection is in itself of minor importance or no im-
portance in the visual analysis of geometrical patterns.”
Recently, Towe has analyzed this question with regard
to columnar structure of visual and sensory-motor
cortex. The crucial question concerns the fine-grain
nature of the sensory mappings: are they continuous?
Towe [30] remarks: “whether such (continuous)
shifts, if reduced to the limits of experimental reso-
lution, would continue to exhibit this (topographic)
property has never been formally determined”. This
question. like many others in sensory neurophysiology,
is still an open one. In the light of the results of the
present work, it is timely to reopen, both experi-
mentally, and theoretically, the issue of the relevance
of the receptotopic mapping properties of the sensory
system to the functional aspects of perception.

Morphology, Development and Logarithmic Spatial
Structure

The assertion that something as forbidingly mathe-
matical sounding as a logarithmic conformal mapping
is a ubiquitous structural principle in the brain has a
firm foundation in morphological biology. In the
seminal work of D’Arcy Thompson [32], “On Growth
and Form”, first published over fifty years ago, the
many common examples in biology *of logarithmic
spatial structure are discussed. They range from the
beautiful shell of the Nautilus {and many other
molluscans) to the horns of the ram, and the florets of
the sunflower. Thompson suggests that there is 2
mathematical law of growth which is common to
these diverse species. The characteristic shared is the
property that a structure “shall widen and lengthen
in the same unvarying proportions: and this simplest
of laws is that which nature tends to follow. The shell,
like the creature within it, grows in size but does not
change its shape; and the existence of this constant
...similarity of form...may be made the basis of 2
definition of the equiangular (logarithmic) spiral”.

Another important fact concerning logarithmic
structure is that the real and imaginary parts of the
complex logarithm are harmonic functions that are
solutions to the diffusion equation (the laplacian) 10
polar coordinates [l]. Thus, a diffusion related
growth process. in which a central active site releascs
a diffusing morphogenic substance would have 1S
dynamics described by the complex logarithm. The
lines of equal concentration would be given by




the real part of the complex logarithm and the lines
of flow. or streamlines, by the imaginary part.

The suggestion that the striate cortex is a con-
catenated logarithmic structure (both locally and
g]obally logarithmic) also has a simple interpretation
in terms of developmental systems. Compound struc-
wure is frequently seen in biology, wherever an organism
consists of a number of similar parts, and in which the
development of the parts repeats more or less exactly
the development of the whole organism. Examples
are branching systems such as compound leaves,
inflorescences. the lung trachae, blood vessels and so
forth. Recently, the powerful mathematical apparatus
of formal automation theory, or developmental lan-
guages, has begun to be applied to the growth and
structure of biological organisms. Compound struc-
ture is particularly simple to model in this framework,
and Lindenmeyer languages with a single recurrence
formula have been found to be well suited to model
compound developmental systems [15]. In any case,
the compound logarithmic spatial structure suggested
for the striate cortex in this work might be the simple
expression of a common biological growth law.

The formal language theory approach to growth
and development is essentially a combinatorial, finite
mathematical method. Contrasting to this is the work
of René Thom [31], who has tried to apply the differen-
tial topology of many dimensional spaces to the same
general problem. In addition to these two lines of
research. the present work suggests that the properties
ofa simple and familiar concept such as conformal map-
ping may in fact be useful in describing as complicated
a morphological structure as the mammalian nervous
system. These three lines of thought represent an
initial assault on the formidable mathematical problem
of describing form and structure in biology. It is
fitting to close this work with a statement of D’Arcy
Thompson, who wrote, over fifty years ago:

“How far even mathematics will suffice to describe,
and physics to explain, the fabric of the body. no man
can foresee. It may be that all the laws of energy. and
all the properties of matter... are as powerless to
explain the body as they are impotent to comprehend
the soul. For my part, I think it is not so...”

Appendix 1

Associated with each analytic function f(z), is a conformal mapping
which affords an excellent visualization of the properties of the
function f(z). Conformal mapping enters naturally into many
!I)l'émChCS of mathematical physics, and in this way accounts for the
Immediate usefulness of complex function theory. When a conformal
mappirig is defined by an explicit analytic function w=f(z), we
naturally wish to gain information about the specific geometric
properties of the mapping. One of the most fruitful ways is to
study the correspondence of curves induced by the point trans-
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formation. The special properties of the function f(z) may express
themselves in the fact that certain simple curves are transformed
into curves of a well known character. This information strengthens
our visual conception of the mapping.

The complex logarithm may be written as:

fiz)=lnz=gp+i¢ (1)

using the polar form for the complex variable =. Thus, circles in the
z plane (constant g) are transformed into striaght lines in the w plane,
parallel to the imaginary axis. Likewise, radial straight lines
(constant ¢) are transformed into straight lines in the w plane,
parallel to the real axis. Logarithmic spirals in the z plane (o= Ae*?)
are transformed to straight lines in the w plane, making a slope of
17k with the real axis. Circles and radial straight lines are limiting
cases of logarithmic spirals, with the constant k approaching 0 and oo
respectively. Thus, in general, the complex logarithm maps loga-
rithmic spirals to straight lines.
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