
Chapter 1

Sigma-Algebras

1.1 Definition

Consider a set X.
A σ–algebra F of subsets of X is a collection F of subsets of X satisfying

the following conditions:

(a) ∅ ∈ F

(b) if B ∈ F then its complement Bc is also in F

(c) if B1, B2, ... is a countable collection of sets in F then their union
∪∞n=1

Bn

Sometimes we will just write “sigma-algebra” instead of “sigma-algebra
of subsets of X.”

There are two extreme examples of sigma-algebras:

• the collection {∅, X} is a sigma-algebra of subsets of X

• the set P(X) of all subsets of X is a sigma-algebra

Any sigma-algebra F of subsets of X lies between these two extremes:

{∅, X} ⊂ F ⊂ P(X)

An atom of F is a set A ∈ F such that the only subsets of A which are
also in F are the empty set ∅ and A itself.

1



2 CHAPTER 1. SIGMA-ALGEBRAS

A partition of X is a collection of disjoint subsets of X whose union is
all of X. For simplicity, consider a partition consisting of a finite number of
sets A1, ..., AN . Thus

Ai ∩ Aj = ∅ and A1 ∪ · · · ∪ AN = X

Then the collect F consisting of all unions of the sets Aj forms a σ–algebra.
Here are a few simple observations:

Proposition 1 Let F be a sigma-algebra of subsets of X.

(i) X ∈ F

(ii) If A1, ..., An ∈ F then A1 ∪ · · · ∪ An ∈ F

(iii) If A1, ..., An ∈ F then A1 ∩ · · · ∩ An ∈ F

(iv) If A1, A2, ... is a countable collection of sets in F then ∩∞n=1
An ∈ F

(v) If A, B ∈ F then A− B ∈ F .

Proof Since ∅ ∈ F and
X = ∅c

it follows that X ∈ F .
For (ii) we have

A1 ∪ · · · ∪ An = A1 ∪ · · · ∪ An ∪ ∅ ∪ ∅ ∪ · · · ∈ F

Then (iii) follows by complementation:

A1 ∩ · · · ∩ An = (Ac
1
∪ · · · ∪ Ac

n)c

which is in F because each Ac
i ∈ F and, by (i), F is closed under finite

unions. Similarly, (iv) follows by taking complements :

∩∞n=1
An = [∪∞n=1

Ac
n]c

which belongs to F because F is closed under complements and countable
unions.

Finally,
A− B = A ∩Bc

is in F , because A, Bc ∈ F . QED
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1.2 Generated Sigma-algebra σ(B)

Let X be a set and B a non-empty collection of subsets of X. The smallest

σ–algebra containing all the sets of B is denoted

σ(B)

and is called the sigma-algebra generated by the collection B.
The term “smallest” here means that any sigma-algebra containing the

sets of B would have to contain all the sets of σ(B) as well.
We need to check that such a smalled sigma-algebra exists. To this end

observe first the following fact:

• If G is any non-empty collection of sigma-algebras of subsets of X then

the intersection ∩G is also a sigma-algebra of subsets of X. Here

∩G = {A ⊂ X|A ∈ F for every F ∈ G}

consists of all sets A which belong to each sigma-algebra F of G.

The verification of this statement is left as an (easy) exercise.
Given a collection B of subsets of X, let GB be the collection of all sigma-

algebras containing all the sets of B. Note that

P(X) ∈ GB

and so GB is not empty. Then
∩GB

is a sigma-algebra, contains all the sets of B, and is minimal among such
sigma-algebras. Minimality here means that if F is a sigma-algebra such
that

B ⊂ F

then
∩GB ⊂ F

Thus ∩GB is the sigma-algebra generated by B:

σ(B) = ∩GB

If B is itself a sigma-algebra then of course σ(B) = B.
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1.3 The Dynkin π − λ Theorem

Let X be a set.
A collection P of subsets of X is a π-system if

(π) P is closed under finite intersections: if A, B ∈ P then A ∩B ∈ P

Note that by the usual induction argument, this condition implies that if
A1, ..., An are a finite number of sets in P then their intersection A1∩· · ·∩An

is also in P .
A collection L of subsets of X is called a λ–system if

(λ1) L contains the empty set ∅

(λ2) L is closed under complements: if A ∈ L then Ac ∈ L

(λ3) L is closed under countable disjoint union: if A1, A2, ... ∈ L and Ai ∩
Aj = ∅ for every i 6= j, then ∪∞n=1

An ∈ L

Unlike a σ–algebra, the notions of π–system and λ–system are not in
themselves fundamental. Their significance is contained in the following the-
orem which will be of great use later in proving uniqueness of measures:

Theorem 1 The Dynkin π − λ theorem If P is a π–system and L a λ–

system of subsets of X then

σ(P ) ⊂ L,

i.e. the sigma-algebra generated by P is contained in L.

The proof of this result is long but can be broken up into simple little
pieces.

As a first step, we have

Lemma 1 A λ–system is closed under proper differences, i.e. if A, B ∈ L,

where L is a λ–system, and A ⊂ B then the difference B − A is also in L.

Proof. It is best to draw a little diagram illustrating the fact that A ⊂ B.
From this you can see that B − A is the complement of the set A ∪ Bc,
and the latter, being the disjoint union of A ∈ L and Bc ∈ L, is in L; thus
B − A ∈ L. More formally,

B − A = B ∩ Ac = (Bc ∪ A)c
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is in L because it is the complement of the set Bc ∪A which is in L because
it is the union of two disjoint sets A and Bc both of which are in L. QED

The next step is more substantial:

Lemma 2 A family which is both a π–system and a λ–system is a σ–algebra.

Proof. Let S be a collection of subsets of X which is both a π system and a
λ system. To prove that S is a σ–algebra it will be enough to show that S

is closed under countable unions (not just disjoint countable unions).
Let A1, A2, ... ∈ S. We have to show that their union ∪∞n=1

An is in S.
The trick (and it is a very useful trick) is to rewrite ∪∞n=1

An as a countable
union of disjoint sets:

∪∞n=1
An = ∪∞n=1

Bn

where B1 = A1 and, for n ≥ 1,

Bn = An − (A1 ∪ A2 ∪ · · · ∪ An−1) = An ∩ Ac
1
∩ Ac

2
∩ · · · ∩ Ac

n (1.1)

Thus Bn consists of all elements of An which do not appear in any “previous”
Ai.

It is clear that the sets B1, B2, ... are mutually disjoint. Since S is a
λ–system, each complement Ac

i is in S, and since S is a π–system it follows

then that Bn, which is a finite intersection of sets in S, is also in S. QED
As further preparation for the proof of the main theorem let us make one

more observation, though its significance will only become clear later:

Lemma 3 Suppose L′ is a λ–system of subsets of X. For any set A ∈ L′,

let SA be the set of all B ⊂ X for which A∩B ∈ L′. Then SA is a λ–system.

Proof. First note that ∅ ∈ SA, because A ∩ ∅ = ∅ ∈ L′.
It is also clear that SA is closed under countable disjoint unions.
The last thing we have to show is that SA is closed under complements.

To this end, let B ∈ SA and observe that

A ∩ Bc = A− B = A− (A ∩ B)

The utility in writing the difference A−B as the proper difference A−(A∩B)
lies in the fact that A ∩ B ⊂ A and we can appeal to Lemma 1, along with
the facts that A and A ∩ B are both in L′, to conclude that A− (A ∩ B) is

in L′. QED
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Now we return to the proof of the main theorem. As before, P is a
π–system and L a λ–system, with P ⊂ L. Our objective is to show that
the sigma-algebra σ(P ) generated by P is contained in L. The strategy will
be to produce a sigma-algebra which lies between P and L, i.e. contains
P and is contained in L. This will imply that σ(P ), which is the smallest

sigma–algebra containing P , is contained in L.

We look at

l(P ),

the intersection of all λ–systems containing P . Clearing l(P ) is itself also a
λ–system and contains P , and is thus the minimal λ–system containing P .
This means that any λ system which contains P must also contain l(P ).

The objective will be to show that the λ–system l(P ) is also a π–system.
This would imply that l(P ) is a sigma-algebra. It contains P and, being the
minimal λ–system containing P , is a subset of L. This would provide our
sigma-algebra lying between P and L. So the last piece of the argument is:

Lemma 4 l(P ) is a π–system.

The proof of this uses a “bootstrap” argument which is often useful in mea-
sure theory. We start with a set A ∈ P and show that A ∩ B is in l(P ) for
every B in l(P ); then we turn around and use this to show that if A and B

are in l(P ) then so is their intersection.

Proof. Let A ∈ P , and let SA be the set of all sets B ⊂ X for which
A ∩B is in l(P ). We have already proven that SA is a λ–system. Moreover,
it is clear that every element of P is in SA. Thus SA is a λ–system with
P ⊂ SA. Therefore, l(P ) ⊂ SA. Which means that we have proven that for
any A ∈ P and any B ∈ l(P ) the intersection A ∩B is in l(P ).

So now consider a B ∈ l(P ), and look at SB. The preceding paragraph
proves that P ⊂ SB. On the other hand, by Lemma 3, SB is a λ–system.
Therefore, l(P ) ⊂ SB. Which means: for any A ∈ l(P ), the intersection

A ∩ B is in l(P ). Thus, l(P ) is a π–system. QED

Putting all of the strands together, we have:

Proof of Dynkin’s theorem. We have proven that the λ–system l(P ) is
also a π–system, and is therefore a σ–algebra. On the other hand, we also
know that

P ⊂ l(P ) ⊂ L
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because l(P ) is the intersection of all λ–systems containing P , and L is just
one λ–system containing P . Thus we have produced a sigma-algebra l(P )
lying between P and L. Therefore,

P ⊂ σ(P ) ⊂ l(P ) ⊂ L

since σ(P ) is the intersection of all sigma-algebras which contain P . QED
There are several other similar results which can substitute for the Dynkin

π − λ theorem. The best known alternative is the monotone class lemma,
but we shall not go into this.


