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Abstract: One of the prime reasons inhibiting the
widespread use of discrete-event simulation in construc-
tion planning is the absence of appropriate visual com-
munication tools. Visualizing modeled operations in 3D is
arguably the best form of communicating the logic and the
inner working of simulation models and can be of immense
help in establishing the credibility of analyses. New soft-
ware development technologies emerge at incredible rates
that allow engineers and scientists to create novel, domain-
specific applications. The authors capitalized on a com-
puter graphics technology based on the concept of the
scene graph to design and implement a general-purpose 3D
visualization system that is simulation and CAD-software
independent. This system, the Dynamic Construction Visu-
alizer, enables realistic visualization of modeled construc-
tion operations and the resulting products and can be used
in conjunction with a wide variety of simulation tools. This
paper describes the scene graph architecture and the frame
updating algorithms used in designing the Dynamic Con-
struction Visualizer.

1 INTRODUCTION

Construction operations have been modeled for many years
using discrete-event simulation (Huang and Halpin, 1994;
Tucker et al., 1998; Martinez and Ioannou, 1999). Discrete-
event simulation is a powerful objective function evaluator
that is well suited to the design of construction operations.
However, decision makers often do not have the training or
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the time to check the validity of simulation models and thus
have little confidence in the results (Ioannou and Martinez,
1996). This is largely due to the fact that construction simu-
lation tools provide users with a large amount of numerical
and statistical data, but are not designed to illustrate the
modeled operations graphically.

The capability to visualize modeled construction oper-
ations in 3D can be of substantial help in describing the
intricacies of simulation models and in obtaining valu-
able insight into the subtleties of construction operations
that are otherwise nonquantifiable and unpresentable. By
communicating the logic and the inner working in a com-
prehensible manner, 3D visualization can facilitate the vali-
dation and verification of complex simulation models, thus
providing an opportunity to convince all parties involved
that models indeed reflect reality (Biles and Wilson, 1987;
Cox, 1988; Robinson, 1997; Tucker et al., 1998; Henriksen,
1999; Jain, 1999; Law and Kelton, 2000; Rohrer, 2000).
These are essential in establishing the credibility of simu-
lation analyses, without which the results will not be used
in decision-making (Law and Kelton, 2000).

1.1 Background

Visualization is a broad term in the realm of construc-
tion planning. The term has been used in the literature to
refer to any kind of series of sequential computer frames
without taking into account their origin or their contents
(Op den Bosch, 1994). In effect, numerous computer-
based visual activities that can be directly or indirectly
used for construction planning may be appropriately termed
visualization. These activities include, but are not limited
to, the animation of construction schedules (i.e., 4D CAD)
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(McKinney et al., 1996), design analysis of equipment in
physical simulation environments (e.g., Working Model),
visualization of assembly sequences and real-time vir-
tual interactive modeling of construction equipment (e.g.,
IV++) (Op den Bosch, 1994), scenario creation and visu-
alization for interference analysis (e.g., Bentley Dynamic
Animator) (Bentley Systems, 2000), and interactive ani-
mation of construction equipment and product model–
based information access over the internet using VRML
(Campbell, 2000; Lipman and Reed, 2000).

None of the available 3D visualization tools are able to
visualize construction operations modeled using discrete-
event construction simulation systems. 3D visualization of
modeled construction operations involves being able to see
the graphical depiction of the operations being carried out
with the same logical and physical relationships that are
embedded in the underlying simulation models.

Model verification is the process of determining whether
a model accurately reflects the model developer’s idea of
the existing or proposed system. On the other hand, the aim
of validation is to determine whether simulation models
accurately represent the real-world system under study. Val-
idation is carried out by consulting people who are inti-
mately familiar with the operations of the actual system,
but who are not necessarily proficient with modeling tools.
Simulation models are termed as credible when the models
and their results are accepted as being valid, and they are
used as an aid in making decisions (Law and Kelton, 2000).
3D visualization facilitates both model verification and val-
idation and can thus help establish the credibility of sim-
ulation analyses. In addition, it can provide subtle visual
details about the modeled operations that can be critical in
making decisions.

Modeled construction operations have been visualized
in several ways in the past. Schematic models capable
of dynamically displaying associated model information
(Huang and Halpin, 1994) and graphical iconic anima-
tion (Liu and Ioannou, 1993; Shi and Zhang, 1999) have
been used to illustrate simulated construction operations.
Although schematic visualization is somewhat good at
model verification, it has little applicability in model vali-
dation.

2D system visualization tools such as Proof (Wolverine
Software, 1995; Henriksen, 1999) have been effectively
used to visually communicate some modeled construction
(Ioannou and Martinez, 1996; Martinez, 1998) and mining
operations (Sturgul and Seibt, 1999), as well as operations
in other disciplines. Proof graphically illustrates changes
in the state of modeled systems in one plane of motion
by changing the position, shape, and/or color of icons
representing resources. 2D visualization, although effec-
tive in communicating the logic of many simulation mod-
els, inherently lacks the real-world 3D capabilities that are

indispensable for the realistic visualization of many com-
plex construction operations.

Some manufacturing simulation systems display real-
time 3D animations of modeled operations during simu-
lation runs. Examples of such systems include Delmia’s
Quest (Delmia, 2000) and AutoSimulations’ AutoMod
(AutoSimulations, 2000). These systems have modeling
constructs and built-in 3D templates of common manu-
facturing environments and equipment that enable users
to simulate and visualize most manufacturing operations
(Donald, 1998; Phillips, 1998). Typical manufacturing
operations are characterized by sequential process and
assembly lines that are fixed in location and geometry. In
contrast, construction operations are carried out in a more
complex manner. They involve the transformation of space
and the evolution of a product. In addition, they can be
spread out over a vast area (e.g., earthmoving, tunneling,
paving, etc.). Although some construction operations can be
modeled and visualized in 3D using manufacturing simula-
tion systems, they are generally unable to effectively handle
the additional complications introduced by the dramatic
changes in the geometry of the construction site as work
progresses (Tucker et al., 1998).

In addition, in all these systems, the simulation engines
are tightly coupled with their built-in visualizers. This
compels model developers who desire to visualize their
models in 3D to learn and use a different simulation tool
than the one with which they are proficient. For instance,
a GPSS (Schriber, 1995) user intending to visualize his/her
models in 3D would have to entirely recreate the models
in a different 3D-enabled simulation system. The time and
effort invested by modelers in achieving proficiency in a
particular simulation system of choice is phenomenal.

Furthermore, these 3D visualization–enabled systems are
tied to their own simulation engines based on process inter-
action. This makes them quite effective for modeling man-
ufacturing systems but not a clear choice for construction.
The use of these systems to model and animate construction
operations requires a radical change in the frame of thought
of construction model developers (Oloufa, 1993; Tucker
et al., 1998). Simulation strategies (process interaction vs.
activity scanning) and their impact on construction oper-
ations modeling are discussed in detail in the literature
(Martinez and Ioannou, 1999).

Given the current state of affairs, the authors experienced
the need for a generic 3D visualization system that would
be capable of realistically depicting modeled construction
operations as well as the evolving construction products in
3D virtual space.

1.2 The initiative

New software development technologies emerge at incred-
ible rates, allowing engineers and scientists to create
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domain-specific applications that far surpass previous
attempts. The design of a generic 3D construction opera-
tions visualizer presents numerous interesting challenges.
Construction sites are highly and, at times, unpredictably
dynamic. Construction products are built by perform-
ing numerous operations that involve complex interac-
tions between multiple pieces of equipment, labor trades,
and materials. In selecting suitable high-level computer
graphics tools to approach the design of a 3D construction
visualization system, the authors saw most promise in a
computer graphics technology based on the concept of the
scene graph. Scene graph application programming inter-
faces (APIs) facilitate and speed up the process of creating
complex, domain-specific 3D graphics applications.

The authors capitalized on scene graph technology
to design and implement a general-purpose 3D visu-
alization/animation system, the Dynamic Construction
Visualizer, that enables realistic visualization of modeled
construction operations and the resulting products. This
paper describes the scene graph architecture and the frame
updating algorithms used in the design of the Dynamic
Construction Visualizer.

2 THE SCENE GRAPH

2.1 Overview

Conceptually, a 3D computer graphics scene can be created
in one of two ways. A scene can either be modeled as a
single unit or can be “assembled” from discrete compo-
nents. Modeling the scene as a single unit in a modeling
package involves creating and placing geometrical objects
at appropriate positions and with appropriate orientations
in the scene using the package’s built-in tools. The scene
entities so created and placed are fixed in position and ori-
entation and can be manipulated within the design environ-
ment of the modeling package. Such static scene models
are primarily used for CAD-type applications, where it is
usually necessary to render, visualize, and examine large
data sets ranging from individual components, to subassem-
blies, to entire complex layouts.

On the other hand, scenes “assembled” from discrete
components within domain-specific applications allow the
components to be dynamically manipulated (positioned,
oriented, and scaled) within the scene. Such control over
individual scene components is essential for animation. The
individual scene components can be modeled separately
and independently using various modeling packages or can
be obtained from disparate sources, such as CAD model
vendors. Scene graph technology speeds up and facili-
tates the creation of domain-specific scene assembling and
manipulating applications that can use components mod-
eled with various modeling packages and CAD file formats.
The afforded flexibility and usability of the “assembling”

utilities (i.e., scene graph APIs) and of the applications
created therewith increase with their ability to use com-
ponents created within different modeling packages such
as 3D Studio (.3ds), AutoCAD (.dxf), MicroStation (.dgn),
and VRML (.wrl). This capability motivated the authors to
explore the possibility of using scene graph technology in
designing the Dynamic Construction Visualizer.

2.2 Scene graph characteristics

Scene graph APIs allow applications to assemble and
manipulate scenes in a hierarchical data structure of objects
called nodes that can be arranged in a directed acyclic
graph (DAG) structure. This hierarchical structure is called
a scene graph. A node is an object that can be part of or
entirely comprise a scene graph. Each node is a collection
of one or more fields (values) and methods that together
perform a specific function. Each node encapsulates the
semantics of what is to be drawn but not how it is to be
drawn. The user creates one or more scene subgraphs and
attaches them to a virtual universe, often referred to as the
root node. The individual connections between scene graph
nodes always represent a directed relationship (i.e., parent
to child).

Figure 1 presents the structure of a simple scene graph.
Scene graph nodes can be divided into two subclasses:
group and leaf nodes. Group nodes assemble together one
or more child nodes. A group node can point to one or
more children but can have only one parent. Leaf nodes
contain the actual definitions of shapes (geometry), lights,
fog, sounds, and so forth. A leaf node has no children.

In Figure 1, the node “Jobsite” is the root node of
the scene graph and is a group type node. Scene sub-
graphs are created and attached to the root node to com-
pletely encapsulate the entire jobsite in the scene graph.
For instance, in Figure 1, subgraphs rooted at nodes “Exca-
vator,” “Truck,” and “Terrain” are created and attached
to the root node of the scene graph. The nodes “Exca-
vator,” “Truck,” and “Terrain” are group type nodes. The
node “Excavator” groups together all the nodes that com-
pletely describe an excavator (i.e., the base, the cabin,
the boom, the stick, and the bucket). The nodes “Base,”
“Cabin,” “Boom,” “Stick,” and “Bucket” contain the geo-
metrical description of the individual excavator components
and are leaf-type nodes. These individual excavator com-
ponent models can be imported from any CAD model-
ing package whose file format is supported by the scene
graph API’s geometry loader. In fact, different components
may be modeled in different CAD modeling packages. For
instance, in the scene graph in Figure 1, the base and the
cabin of the excavator may have been modeled in Auto-
CAD (in .dxf file format) and the other digging components
in 3D Studio (in .3ds file format). Similarly, the group node
“Truck” groups together the leaf nodes “Base” and “Bed”
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Fig. 1. Scene graph hierarchy and role of the camera.

to completely encapsulate the geometrical description of a
truck and add it to the scene. The group node “Terrain”
consists of only one child node “Topography” that is a leaf
node and contains the geometrical description of the jobsite
terrain.

Scene graph nodes hold only data. They encapsulate the
semantics of what is to be drawn but not how it is to be
drawn. An action is an operation that can be carried out
on one or more nodes in a scene graph. Actions trigger
the events that are prescribed in the scene graph nodes. An
action visits each node in the scene graph (i.e., traverses
the scene graph) and uses the data contained in each node
to display, modify, or augment the state of the scene graph.
Examples of actions include rendering the scene (draw-
ing) and intersection testing (collision detection). Although
actions are a part of the scene graph API’s functionality,
they do not have a nodal representation. The behavior of
an action on a node is a function of both the action and
the node. For instance, if a drawing action were applied to
the root node “Jobsite” of the scene graph in Figure 1, the
action would operate on all of the nodes in the scene graph
and render all the visible objects (i.e., the terrain, an exca-
vator, and a truck) contained therein. The hierarchy of the
scene graph determines the order in which the nodes are
acted upon when an action is applied to the scene graph.

This hierarchy is established by the order in which the
group nodes are added to the sub-branches in a scene graph
branch.

2.3 Creating scene graphs

The coordinate system of the root node in a scene graph
is known as the world space and is the principal frame of
reference. This three-dimensional system is the basis for
defining and locating in space all objects in a scene, includ-
ing the observer’s position and line of sight. On the other
hand, a local space is used to define the geometry of an
object (i.e., size, location, and orientation) independently
of the world space. This is done to define geometrical
objects independently without giving them fixed specific
sizes, locations, and orientations in the world space. Each
scene component imported from a CAD modeling package
is defined in its own local space.

A scene is created by appropriately sizing and placing
geometrical objects (each created and defined in its own
local space) at appropriate positions and orientations in
the world space. This is accomplished using transformation
nodes. Transformation nodes allow scene graph builders to
set and manipulate the location (translation), rotation, and
scale of their child nodes. Transformation nodes are group-
type nodes that translate the local coordinates of their child
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nodes into the coordinates of their parent nodes. If there is
more than one transformation node in a hierarchy of nodes,
each transformation node translates the coordinates of its
children into the coordinates of its parents all the way up
the hierarchy until a final transformation node translates the
coordinates of geometrical objects into those of the root
node (i.e., world space). Typically, transformation nodes
are placed between geometrical object nodes or group-type
nodes and the rest of the scene graph. For instance, in
Figure 1, the group-type nodes “Excavator,” “Truck,” and
“Terrain” need to be transformation nodes in order to be
able to place and orient the scene components at desired
positions in the scene “Jobsite.”

2.4 Visualizing scene graphs

A scene graph stores the description of a scene by encap-
sulating relevant data in a hierarchy of suitably arranged
nodes. Visualizing a scene encapsulated in a scene graph
involves obtaining a suitable view of the hierarchy from
any desired viewpoint. Scene graph APIs provide several
utilities to position and orient a viewpoint within the world
space. The viewpoint in the world space is analogous to a
video camera whose image is continuously transmitted to
the viewport (rectangular window on the computer screen)
through which a viewer views the scene. The position and
orientation of a viewpoint (camera) can be dynamically
manipulated within scene graph applications to obtain dif-
ferent views of the same scene graph. Conversely, more
than one viewpoint (camera) can be positioned and ori-
ented in the world space to simultaneously transmit differ-
ent views of the same scene graph to different viewports
(windows).

Although cameras are positioned and manipulated in the
world space, they are not a part of the scene graph and
hence do not have a nodal representation. They are external
mechanisms for visualizing the data encapsulated in the
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Fig. 2. Discrete-step motion of an object along the positive X-axis.

scene graph. Figure 1 also summarizes graphically the rela-
tionship between scene graphs and cameras. Viewpoints
placed at different positions in the world space provide dif-
ferent views of the same scene graph.

2.5 Animating scene graphs

Scene graphs are constructed by developing an appropriate
hierarchical node structure of individual scene compo-
nents that are scaled, placed, and oriented at desired posi-
tions in the world space by suitably setting transformation
node fields. Depicting the motion of scene entities (i.e.,
animation) involves a dynamic relationship between scene
graph components. Such a relationship is achieved by
dynamically manipulating the fields (values) of the trans-
formation nodes in the scene graph.

For instance, assume that the truck in the scene graph
in Figure 1 is placed at point (0�0�0) in the world space
by setting the translation field of its transformation node
(“Truck”) to (0�0�0). Imagine that it is required to move
this truck along the positive X-axis (in world space) in dis-
crete steps at a rate of 1 unit per second. In order to achieve
this motion, the X-axis component of the translation field
in the transformation node must be incremented by 1 unit
every second. For example, the value of the translation field
would be (1�0�0), (2�0�0), and (3�0�0) at the end of one,
two, and three seconds. The motion (i.e., discrete jumping
action) of the truck described above is schematically repre-
sented in Figure 2. The figure shows the changing position
of the truck along the X-axis with the passage of time. At
all times, camera(s) transmit view(s) of the current state of
the scene graph to the appropriate viewport(s).

In this example, the truck would appear at point (0�0�0)
for 1 second, instantaneously jump to point (1�0�0) and
stay there for another second, and so on. However, realis-
tic animation requires that objects move smoothly between
discrete points with the passage of animation time. This
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requires constant monitoring and updating of all moving
objects in a scene graph. The frame updating algorithms
that are used to accomplish this are explained in the fol-
lowing section.

3 FRAME UPDATING MECHANISMS

3.1 Fixed frame rate

In movie theaters, motion is achieved by projecting a
sequence of pictures at a rate of 24 per second on the
screen. Although viewers watch 24 different frames each
second, the human brain blends them into a smooth
animation. In fact, most modern projectors display each
picture twice at a rate of 48 per second to reduce flicker-
ing. Typical computer graphics screens redraw the picture
(refresh) approximately 60 to 76 times per second (Woo
et al., 1997). High-end graphics workstations can refresh
up to about 120 times per second. Refresh rates higher than
120 per second are beyond the point of diminishing returns,
since the human eye is only so good.

Computer animation generally involves the computing
and updating of the positions and orientations of all the
dynamic scene objects before the frame can actually be
drawn. Imagine that a constant frame rate of 60 per second
is desired during computer animation. To obtain a constant
frame rate, a routine similar to the one displayed in Figure 3
will need to be implemented.

The critical component in this arrangement is the sum
of the times it takes for the system to compute a typical
frame and draw it after clearing the screen. The anima-
tion results will degrade progressively depending on how
close to 1/60 second it takes to compute, clear, and draw.
In the limiting case, when the drawing takes nearly a full
1/60 second, scene objects that are drawn first will be vis-
ible for the full 1/60 second and present a solid image
on the screen. However, scene objects drawn toward the
end will be instantly cleared as the system starts on the
next frame. This problem is compounded when the time
required to draw an entire frame exceeds 1/60 second. In
this case, the system will clear the screen for the next
frame even before all scene objects in the current frame
are drawn, causing unpredictable and distorted images. In
this arrangement, the system does not display completely
drawn frames. Instead, the viewer watches the drawing as
it happens.

3.2 Double buffering

To alleviate the problem of displaying partially drawn
frames, most graphics library implementations provide an
arrangement known as double buffering. Double buffering
allows the system to maintain two screen images at all
times. One of the screen images is displayed while the other
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Fig. 3. Fixed frame-rate algorithm.

is being drawn. When the drawing of a frame is complete,
the two images are swapped, so the one that was being dis-
played is now used for drawing, and vice versa. With dou-
ble buffering, every frame is displayed only when the draw-
ing is complete and the viewer never sees a partially drawn
image. This improved arrangement that displays smoothly
animated graphics is reflected in Figure 4.

3.3 Variable frame rate

In most double buffering implementations, the swapping
of the buffers is generally synchronized with the sys-
tems’ screen refresh rate. This procedure allows the pre-
vious buffer as well as the new buffer to be displayed
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completely, starting from the beginning (Woo et al., 1997).
The implication of implementing such a procedure is that
the fastest achievable frame rate in an animation is equal to
the system’s screen refresh rate. For instance, on a system
that refreshes the display 60 times per second, the fastest
achievable frame rate is 60 frames per second (fps). If all
the frames can be computed, cleared, and drawn in under
1/60 second, an animation will run smoothly at that rate.

However, since 3D computer graphics are typically com-
putationally expensive, more often than not typical frames

are too complex to be computed and drawn between the
screen refreshes of a standard machine. This delay in
displaying the new frame results in the previous frame
being displayed more than once. For instance, on the same
60-refreshes-per-second system, if it takes 1/40 second to
draw a frame, the animation runs at 30 fps, and the graphics
are idle for 1/30–1/40 = 1/120 second per frame. Since a
system’s screen refresh rate is constant, the obtained frame
rate in animations is a multiple of the screen refresh rate.
For instance, on the 1/60 second per refresh monitor, the
obtainable frame rates are 60 fps, 30 fps, 20 fps, 15 fps,
and so on (i.e. 60/1�60/2�60/3�60/4, and so on). The
obtainable frame rate is inversely proportional to the scene
complexity in the animation (i.e., the frame rate degrades
proportionately as new scene objects and features are added
to the scene).

4 THE DYNAMIC CONSTRUCTION
VISUALIZER

The Dynamic Construction Visualizer (DCV) is a general-
purpose 3D visualization/animation system that combines
scene graph technology and an effective double-buffering
frame-updating algorithm. The DCV allows simulation
model developers to visualize modeled operations with
chronological and spatial accuracy in 3D virtual space.
The system is independent of any particular simulation-
modeling program or CAD modeling software.

4.1 System description

DCV language files unambiguously describe the visual con-
figuration of modeled systems with the passage of time.
The DCV is as a “post-simulation” visualization engine that
possesses the following characteristics:

• Uses scene graphs to organize and depict construction
jobsite scenarios

• Allows the user to navigate easily in the 3D virtual space
and place himself/herself at any desired vantage point by
controlling the camera using the keyboard or the mouse

• Maintains an independent simulation clock, the speed of
which can be controlled by the viewer depending upon
the animation speed desired

• Allows the user to jump ahead or back to any desired
location in the simulation by specifying a future or past
time value

• Permits the viewer to start and pause the animation at any
time to make static observations in the modeled system

The DCV language allows the construction and manip-
ulation of complex scene graphs. Modeled operations are
visualized in 3D by processing sequential, time-ordered
animation commands written in the DCV language. The
animation commands are contained in an ASCII text file
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hereinafter referred to as the trace file. DCV trace files
are meant to be generated by simulation software. Any
simulation software capable of writing custom text output
during a simulation run can generate the trace files auto-
matically. These include most of the programmable generic
and special-purpose simulation languages as well as high-
level programming languages such as BASIC, FORTRAN,
C and C++. Non–language-based simulation software may
also be adapted to generate trace files during a simulation
run (Henriksen, 1999).

The DCV uses 3D models of all pertinent resources and
system entities to depict the simulated operations and the
evolving product in 3D. The DCV system does not possess
any built-in 3D model building capability. Instead, required
3D models of system entities can be imported from a wide
variety of 3D CAD modeling software. The DCV pro-
vides direct support for the VRML file format. Geome-
try files from practically every 3D modeling program (e.g.,
AutoCAD, MicroStation, 3D Studio) can be easily exported
or converted into VRML format.

4.2 Scene graphs and the DCV

The DCV has been designed using the Cosmo3D Scene
Graph API. Cosmo3D (Silicon Graphics, 1998) is a C++
toolkit that brings 3D graphics programming to desktop
applications. Cosmo3D facilitates the development of com-
plex graphic applications by allowing application devel-
opers to use a higher-level interface than the lower-level
OpenGL language on which it is based. The scene graph
architecture in Cosmo3D allows developers to arrange and
manipulate visible objects in a hierarchical structure that
facilitates the depiction of the realistic motion of complex
construction equipment, such as dumptrucks and forklifts,
as well as that of complex hierarchical assemblies, such as
cranes and backhoes.

The DCV language is a high-level language that allows
users to use simple text statements (commands) to construct
and manipulate complex scene graphs. Table 1 lists a few
of the DCV commands and provides a concise explana-
tion of their functionality. Figure 5 presents a sample DCV
trace file. Figure 6 shows how a scene graph evolves as the
statements in the trace file in Figure 5 are processed.

The root node of the scene graph is created immediately
when the trace file is opened in the DCV application. Two
paths, “LoadToDump” and “DumpToLoad,” are defined by
specifying the beginning, ending, and all intermediate 3D
coordinates of the points constituting the paths. The exam-
ple defines paths consisting of two segments each. Paths do
not have a nodal representation and hence are not part of
the scene graph. They are used to compute fields for trans-
forms that place objects along the path. Defined paths are
stored into memory by the DCV application until an ani-
mation is complete.

Table 1
Selected DCV animation language commands and

their functionality

Statement Functionality

TIME Indicates the simulation time at which all subsequent
commands take place

CLASS Associates a class of simulation entities with their
geometric description contained in a CAD file

CREATE Creates specific simulation objects by instantiating
predefined classes

ATTACH Attaches specific simulation objects to one another
PLACE Places simulation objects at particular locations or

at the beginning of resource movement paths
MOVE Moves simulation objects on resource movement

paths
ROTATE Appropriately manipulates the orientations of

specific simulation objects

The next three statements in the trace file grouped as
(A) augment the scene graph, as represented in Figure 6A.
The “CLASS” statement defines a leaf node, Terrain, which
obtains its geometry from the CAD file Terrain.wrl. Ter-
rain.wrl contains the 3D model of the terrain in VRML
format. The “CREATE” statement instantiates a transfor-
mation node “ExTerrain” and adds a child object conform-
ing to the geometry defined by class “Terrain” to it. The
“PLACE” statement places the created object in the scene
by adding the “ExTerrain” transformation node to the root
of the scene graph. The object is placed at point (0�0�0)
in the world space by setting the translation field of the
“ExTerrain” transformation node to (0�0�0).

The subsequent three statements grouped as (B) similarly
define the class “Excavator,” create a transformation node
“Excvtr1,” and place an excavator object at point (5,2,1)
in the world space. The corresponding augmented scene

PATH LoadToDump (3,2,1)(0,1,5)(-5,0,3);
PATH DumpToLoad (-4,0,3)(1,1,5)(2,2,1);

CLASS Terrain Terrain.wrl; 
(A) CREATE ExTerrain Terrain; 

PLACE ExTerrain AT (0,0,0); 

CLASS Excavator EX1100.wrl; 
(B) CREATE Excvtr1 Excavator; 

PLACE Excvtr1 AT (5,2,1); 

CLASS Truck A30C.wrl; 
(C) CREATE Truck1 Truck; 

PLACE Truck1 ON LoadToDump; 

CREATE Truck2 Truck; 
(D) PLACE Truck2 ON DumpToLoad; 

Fig. 5. Sample DCV trace file to illustrate the construction of a
scene graph.
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Fig. 6. Evolution of the scene graph.

graph is shown in Figure 6B. The first two trace state-
ments in group (C) define class “Truck” and instantiate
the object “Truck1” conforming to the geometry defined
in class “Truck.” The final statement in group (C) places
“Truck1” at the beginning of Path “LoadToDump” (i.e., at
point (3�2�1)) with the appropriate orientation by suitably
setting the translation and the rotation fields of the trans-
formation node. The modified scene graph is represented
by Figure 6C. The trace statements in group (D) similarly
define another truck, “Truck2,” and place it at the begin-
ning of the path “DumpToLoad.”

Referring to the completed scene graph in Figure 6D, it
is interesting to note that both “Truck1” and “Truck2” refer
to the same geometry (i.e., leaf node). Therefore, the simul-
taneous depiction of both trucks involves presenting two
different views of the same geometrical object via two dif-
ferent transformation nodes (i.e., “Truck1” and “Truck2”)
as shown in Figure 6D. This approach is infinitely scal-
able and is one of the major advantages afforded by scene
graph technology. For instance, an entire steel frame struc-
ture consisting of hundreds of beams and columns can be
depicted by loading only a few CAD models of beams and
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columns and placing them repeatedly at appropriate loca-
tions using multiple transformation nodes. Furthermore,
due to the ability of transformation nodes to scale and rotate
objects in addition to positioning them, it is theoretically
possible to depict the same steel structure using just one
CAD model each of a beam and column. Of course, all the
beams and columns must use the same type of steel section
if this is to be done.

4.3 Scene graph complexity

The scene graph hierarchy depicted in Figure 6D is a sim-
plified version of the scene graph created by the DCV. This
is done to facilitate this discussion without involving imple-
mentation details. The hierarchy depicted in Figure 6D
would only allow the manipulation of the excavator and
the trucks as whole units via the transformation nodes
“Excvtr1,” “Truck1,” and “Truck2.” In order to depict the
articulated motion of the excavator and the trucks (i.e., real-
istically display the digging action of the excavator and
the dumping action of the trucks), it is necessary to con-
trol the motion of individual machine components, such as
the boom and the stick of the excavator, and the bed of
the dumptrucks. Such hierarchical control over individual
machine components can be easily achieved by suitably
constructing the scene graph.

Figure 7 presents an animation snapshot of a modeled
earthmoving operation that was visualized using the DCV.
In this animation, the viewer is able to observe the accumu-
lating trucks waiting to be loaded, the trucks maneuvering

Fig. 7. Animation snapshot of the loading area in an earthmoving operation.

to get into position under the excavator, the excavator dig-
ging the earth and loading the trucks until they are full, the
trucks traveling to the dumpsite, accumulating occasionally
to enter the dump area, backing up and tipping their load,
and then returning to the loading site to begin another cycle.

Figure 8 augments and presents the scene graph hier-
archy presented in Figure 6D. This scene graph has the
same scene components (i.e., a terrain, an excavator, and
two trucks) as the one in Figure 6D. However, scene com-
ponents are now arranged in a logical, multi-level hier-
archy. The DCV implementation permits the construction
and manipulation of similar complex scene graph hierar-
chies via commands such as “ATTACH” and “DETACH”
in the trace file. Such hierarchies permit the realistic depic-
tion of complex machine movements. An attached object
can move relative to its parent. For instance, with a scene
graph hierarchy similar to the one presented in Figure 8, it
is easy to depict the boom of the swinging excavator being
lifted. The hierarchy that develops during the earthmoving
visualization depicted in Figure 7 is similar (except for the
number of trucks) to the one depicted in Figure 8. The hier-
archy permits the depiction of realistic digging action of
the excavator and the dumping action of the trucks.

Resources often need to be combined and act as a group.
For example, a flatbed and steel shapes often need to travel
together as a loaded flatbed in an animation. Besides facil-
itating the depiction of complex hierarchical motion, the
“ATTACH” and “DETACH” commands allow resources to
be combined into a compound resource and compound
resources to be broken up into their constituents. Figure 9
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presents an animation snapshot of a modeled block-laying
operation that shows a mason and his assistant working on
a wall section. This operation was modeled and animated
at a very low level of detail. The viewer is able to observe
a mason constructing a wall section by laying successive
courses of individual blocks. The viewer is also able to
observe the materials (blocks and mortar) being delivered to
the working floor by a lift (not visible in the snapshot) and
being transported to the workface by the mason’s assistant.

In this operation, resources often need to be grouped
together at times and then separated again into constituents.
For instance, the lift and the material loaded onto it need to
move (and hence be grouped) together whenever a loaded
lift ascends or descends. When the material is unloaded,

each resource (the hauled material and the lift) needs
to be independently manipulated and hence needs to be
ungrouped. Figure 10 presents an example of scene graph
modification by the use of the “ATTACH” and “DETACH”
commands. Figure 10 represents a portion of the scene
graph that develops during the visualization of the block-
laying operation in Figure 9.

Imagine that the empty lift is in a lowered position and
a handcart full of mortar is placed onto it. The structure of
the scene graph at this point would resemble Figure 10a.
The lift now needs to haul the loaded handcart to the work
floor. Attaching the handcart to the lift at this point would
modify the scene graph as in Figure 10b. Any positional
change applied to the lift (via transformation node “Lift”)
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Fig. 9. Animation snapshot of a block-laying operation.

would also apply to the handcart, since the node “Handcart”
is a child node of “Lift.” Conversely, positional changes
applied to the attached handcart would be relative to the
parent lift. When the loaded lift reaches the work floor,
the handcart is detached from the lift to revert the scene
graph structure to Figure 10a. The lift and the handcart
can now be independently manipulated via transformation
nodes “Lift” and ‘Handcart,” respectively.

Lift

Lift Model

Jobsite Jobsite

(a) (b)

Lift

Lift Model

Handcart

HC Model Handcart

HC Model

ATTACH

DETACH

Fig. 10. Dynamic scene graph modification.

5 ANIMATING CONSTRUCTION
SITE ACTIVITIES

The Cosmo3D API provides several utilities that facilitate
the depiction of simple animations of scene graph entities,
such as the rotation of wheels in a moving car, the constant
motion of a swinging pendulum, and other simple transla-
tional object motions. However, the dynamic characteristics
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of typical construction sites demanded the design and
implementation of specialized position and orientation-
updating algorithms in addition to the scene graph API’s
built-in utilities. Understanding the working of the DCV
animation clock (explained in the following section) is
fundamental to understanding the animation capabilities
of the DCV.

5.1 Measuring time

The DCV measures time in floating point animated time
units. One time unit can equal whatever duration is most
suitable for the animation (e.g., a microsecond, a minute, or
a day) as long as it matches the time unit in the simulation
model that is driving the animation.

DCV animations can run at any desired animation speed.
The animation speed, also known as the viewing ratio, rep-
resents the number of animated time units per second of
viewing time. For instance, if the simulation model (and
the animation) uses seconds as a unit of time, and the view-
ing ratio is 6, then the DCV animation is running at a rate
of six animated seconds per viewing second. Consequently,
a modeled activity requiring one minute for completion in
reality would be accomplished in 10 (i.e. 60/6) seconds in
the animation. In the DCV application, the user can change
the viewing ratio of an animation at any time depending
on the animation speed desired.

The primary time-tracking DCV command is TIME. The
syntax of the TIME command is as follows:

TIME timevalue�

The TIME command waits for the animation clock to
reach the new value specified. The DCV then executes the
commands that follow it until another TIME command is
reached. When a TIME statement is encountered in a trace
file, the DCV initially verifies that the timevalue is greater
than or equal to the current animated time. If not, the ani-
mation terminates with an error. After ascertaining that the
TIME command specifies a future time, the DCV suspends
the reading of any more lines from the trace file until the
animation time specified by the TIME command has been
reached or exceeded. When that happens, the DCV reads
and processes the next line(s) in the trace file until another
TIME statement is encountered. Statements are read and
processed in this manner until the end of the trace file is
reached or the viewer interrupts the animation. The read-
ing and processing of the trace file statements is practically
instantaneous. All the while, the DCV continues to display
the animation as it progresses at a constant, user-specified
viewing ratio.

Figure 11 augments and presents the sample DCV trace
file previously presented in Figure 5. The implications of
visualizing this trace file in the DCV are easily inter-
pretable. Immediately before the onset of the animation,

two paths, “LoadToDump” and “DumpToLoad,” and three
classes, “Terrain,” “Excavator,” and “Truck,” are defined
and their representations are stored into memory. The
construction of the scene graph begins at the onset of the
animation (i.e., at time zero) when the terrain and the exca-
vator objects are created and placed in the scene. Further
reading of statements from the trace file is suspended until
the animation time equals 6. Thus, a person viewing the
animation sees a motionless excavator in the terrain for six
animation time units. At this point, a truck, “Truck1,” is
created and placed in the scene at the beginning of path
“LoadToDump.” Six animation time units later (at time
12), “Truck1” starts moving along the path “LoadToDump”
at a speed that will require 120 animation time units to
reach the end of the path. At the same time (12), another
truck, “Truck2,” is created and placed in the scene at
the beginning of path “DumpToLoad.” At animation time
18, “Truck2” starts moving along the “DumpToLoad” and
will require 90 time units to reach its destination. At the
moment “Truck2” starts moving, the already in motion
“Truck1” will have completed about 1/20th of its journey.

Figure 11 also displays graphically the processing of
commands in the presented trace file. The real-timeline
displayed below the animated-timeline assumes a viewing
ratio of 6. Immediately after the trace file commands at
time 12 are processed, the scene graph for this animation
would exactly resemble the one presented in Figure 6D.
The motion of the scene objects is achieved by manipu-
lating the values of the transformation nodes in the scene
graph. As such, the “structure” of the scene graph remains
unaltered during the animation of scene objects unless it is
explicitly modified using the “ATTACH” and “DETACH”
commands. These commands do change the structure of
the scene graph by modifying the parent–child relationships
between scene graph nodes. In addition, the scene graph is
obviously altered (augmented or diminished) if new scene
objects are created or existing scene objects are destroyed
dynamically during the animation.

5.2 The DCV frame-updating mechanism

The DCV is intended for the smooth and scalable 3D
visualization of modeled construction operations over a
wide range of systems ranging from typical laptops and
desktops to high-end graphics workstations. As such, the
DCV implementation needed to achieve “maximum per-
formance” rendering on all supported systems. Maximum
performance means that when there is no contention for
rendering resources, and once utilized resources are made
available, graphics rendering performance is limited only
by the system’s raw graphics performance and the graph-
ics software efficiency (Kilgard et al., 1995). The DCV
application needed to obtain the maximum performance
potential of the system on which it was run.
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;
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PATH LoadToDump (3,2,1) (0,1,5) (-5,0,3);
PATH DumpToLoad (-4,0,3) (1,1,5) (2,2,1); 
CLASS Terrain Terrain.wrl;
CLASS Excavator EX1100.wrl; 
CLASS Truck A30C.wrl;

TIME 0;
CREATE ExTerrain Terrain; 
PLACE ExTerrain AT (0,0,0); 
CREATE Excvtr1 Excavator; 
PLACE Excvtr1 AT (5,2,1); 

TIME 6;
CREATE Truck1 Truck; 
PLACE Truck1 ON LoadToDump; 

TIME 12;
MOVE Truck1 LoadToDump 120; 
CREATE Truck2 Truck; 
PLACE Truck2 ON DumpToLoad; 

TIME 18;
MOVE Truck2 DumpToLoad 90;

Fig. 11. Processing of commands in a trace file.

In addition, construction operations range from the rela-
tively simple to the most complex. The complexity of DCV
visualizations would depend on the type of operations being
visualized as well as on the level of detail incorporated
therein. For instance, simultaneously visualizing all mod-
eled operations in the construction of a building would be
computationally much more expensive than visualizing a
single modeled operation such as the construction of a wall
section by a crew of masons. The cause of the increased
computational load is that the number of scene objects that
would need to be monitored for position and/or orientation
changes, updated, and drawn in each frame would be sig-
nificantly higher in the former visualization.

In addition to the number of scene objects, the desired
amount of realism would also influence the complexity
of DCV visualizations. For instance, the use of accurate,
detailed 3D models and texture-mapped geometrical objects
would significantly increase the load on the graphics sub-
system and consequently degrade the obtainable frame rate.

See Silicon Graphics (1998) and Woo et al. (1997) for
a detailed discussion on texture-mapped geometry. The
DCV needed to allow the smooth visualization of modeled
operations at a user-specified, but constant, animation speed
(viewing ratio).

The double buffering, variable frame rate paradigm was
found to be most suitable in achieving the design require-
ments of the DCV and was therefore employed. Figure 12
presents the DCV time advancing and frame updating
mechanism, which yields satisfactory results on standard
machines without the need for any special hardware, and
which takes advantage of extra computing power and spe-
cial graphics accelerators for increased performance. For
instance, in visualizing the earthmoving operation depicted
in Figure 7 on a standard laptop computer powered by a
300 MHz Pentium processor, a modest screen refresh rate
of 10 frames per second was obtained without the use of
any additional specialized graphics hardware. Any increase
in the available computing power resulted in a proportional
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Fig. 12. The DCV event loop.

improvement in rendering performance and frame rate. On
a desktop featuring a 600 MHz Pentium III processor, 128
megabytes of RAM, and an Nvidia TNT2 graphics card
with 16 megabytes of video memory, a consistent full-
screen performance in excess of 60 frames per second was
observed. This frame-update mechanism is explained in the
following sections.

5.3 Relationship between frame updates and
the viewing ratio

The viewing ratio should always be maintained at a con-
stant value irrespective of the frame rate being attained.
For instance, if the animation speed were maintained at 6,
a truck needing 24 animation time units to move along a
path should complete its journey in 4 viewing seconds on
any system, irrespective of the frame rate. Of course, the
number of frames displayed in 4 viewing seconds (anima-
tion smoothness) would vary depending on the host sys-
tems’ capabilities. In addition, the frame rate can also vary
on the same system depending on the frame complexity at
various times during animations.

Figure 13 graphically explains the relationship between
the constant maintained viewing ratio and the obtained vari-
able frame rate in DCV animations. Consider an example
similar to the one depicted in Figure 2. Imagine that a
truck requires 10 seconds in real life to cover a distance
of 100 meters and that 1 unit of distance in world space
(point (0�0�0) to point (1�0�0)) represents 100 meters. If a
viewing ratio of 10 were adopted during the animation, the
truck would require 1 second to cover the distance between
point (0�0�0) and point (1�0�0). Assume, for illustrative
purposes, that this animation is run on various systems that
refresh their display 10 times per second. In such a sce-
nario, ideally, the journey of the truck should comprise
10 different frames as depicted in Figure 13A.

On systems powerful enough to compute, clear, and draw
each frame within 1/10 second, the ideal frame rate of
10 fps illustrated in Figure 13A would be attained and
the 1 second journey of the truck would be depicted as
10 different and equally spaced consecutive frames. If the
same animation was run on systems that require a little
more than 1/10 second but less than 1/5 (i.e., 2 times 1/10)
second to produce each frame, a constant frame rate of
5 fps would be attained. As demonstrated in Figure 13B,
frames 1�3�5�7, and 9 would be skipped and, conse-
quently, frames 2�4�6�8, and 10 would each be displayed
twice during consecutive screen refreshes.

In the concluding case, imagine that the same anima-
tion is run on systems that can produce typical frames
within 1/10 second but require more time to generate and
draw certain frames. The increased time to produce certain
frames could be due to increased frame complexity or due
to a temporary increase in the computational load, such as
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Fig. 13. Relationship between the viewing ratio and the obtained frame rate.

calculating and updating the positions of a large number
of objects in the animation. Such a scenario is depicted in
Figure 13C.

Frames 1 and 2 are computed and displayed within
1/10 second. However, the subsequent frame (frame 3) is
not produced by the system within the next 1/10 second
and is therefore skipped (i.e., frame 2 is displayed again
during the next screen refresh). The system uses the idle
time (accrued by skipping frame 3) and the time allotted
for the next frame to compute and draw frame 4. A steady
state is temporarily attained and frames 5 and 6 are each
produced within 1/10 second. At this point, the system is
again unable to produce the next frame (frame 7) within the
allotted time and hence skips it, displaying frame 6 for the
second time. The system tries to use the accrued idle time
and the allotted frame time to produce frame 8. However, it
fails to do so and skips frame 8 as well, displaying frame 6
for the third time. Steady state is attained subsequently and
frames 9 and 10 are produced within their allotted time.

The vital point to be noted in this discussion is that on
all systems on which the animation is run (Figures 13A–
C), the journey of the truck requires 1 viewing second irre-
spective of the frame rate obtained. Frame 10 is drawn
at the end of 1 second regardless of the intermediate
frames. On all systems, the DCV frame-update algorithm
maximizes the number of intermediate frames, and hence

the smoothness of the animation, by fully utilizing the
host system’s frame-generating capacity at all times. The
implementation of the DCV thus smoothly animates con-
struction site activities at a fixed user-defined and control-
lable viewing ratio by achieving maximum possible perfor-
mance from host systems.

6 CONCLUSION

The design of a scalable system capable of smoothly ani-
mating simulated construction operations in 3D requires
three key technologies: (1) the conversion of discretely
recorded animation information into smooth motion;
(2) the spatial organization and rendering of multiple
dynamic objects; and (3) the efficient sequencing and tim-
ing of frames such that the ratio of viewing to simulated
time is constant.

Discrete-event simulation systems can communicate with
other processes only at discrete, but possibly random, sets
of simulated time points. These time points are typically the
start or end of activities, and it is only then that a discrete-
event simulation can communicate with other processes or
perform other actions, such as input/output. Smooth ani-
mation is continuous, however, and achieving it based on
discrete information recorded at non-fixed time steps is
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a challenge. The straight-line DCV language and the algo-
rithms that the DCV system uses to convert discrete infor-
mation demonstrate that this is not only possible, but also
quite effective.

3D visualizations require a graphical database of 3D
scene objects that must be created, manipulated, and main-
tained in order to depict animation. Scene graph architec-
tures are effective for organizing such databases and are
well supported by several industrial-strength commercial
libraries. The dynamic maintenance of scene graphs needed
to represent virtual construction worlds that are constantly
evolving, however, requires the development of algorithms
specific to the application. The algorithms presented here
illustrate how the DCV creates, manipulates, and man-
ages such databases while animating simulated construction
operations.

In implementing the DCV, the authors experimented with
the various frame-updating algorithms described in this
paper. The high variability of the graphical and compu-
tational processing load required to render and maintain
the scene graphs makes the commonly used fixed frame
rate algorithms ineffective because they reduce the frame
rate to that of the worst case experienced. The variable-
rate, double-buffered frame-updating algorithm developed
for the DCV is able to achieve the smoothest possible
motion and is scalable across a wide range of hardware
platforms. While jerkiness is evident only during moments
of intense computational and graphical demands, the ratio
of simulated to visualized time is maintained with near-zero
variation.
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