
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 2, FEBRUARY 2002 321

Iterative Channel Estimation and Decoding for
Convolutionally Coded Anti-Jam FH Signals

Hesham El Gamal, Member, IEEE,and Evaggelos Geraniotis, Senior Member, IEEE

Abstract—In this paper, an iterative algorithm for joint
decoding and channel estimation in frequency-hopping (FH)
networks is proposed. In the proposed algorithm, soft decoder
outputs are used in the iterative estimation of the time-varying
variance of the additive interference resulting from the sum of
the thermal noise, partial-band noise jamming, and other-user
interference. The soft outputs are also used in the estimation
of the independent random carrier phases and multiplicative
Rayleigh fading coefficients in different frequency dwells. The
estimation process is further enhanced through the insertion of
known symbols in the transmitted data stream. The proposed
iterative symbol-aided demodulation scheme is compared with the
coherent scenario, where the channel state information is assumed
to be known a priori at the receiver, for both convolutionally
coded and Turbo coded FH systems. The proposed iterative
channel estimation approach is suited for slow FH systems where
the channel dynamics are much slower than the hopping rate.
This observation motivates the consideration of another robust
approach for generating the log-likelihood ratios for fast hopping
systems in additive white Gaussian noise channels. Simulation re-
sults that demonstrate the excellent performance of the proposed
algorithms in various scenarios are also presented.

Index Terms—Channel estimation, convolutional codes, fre-
quency hopping, iterative decoding, partial band jamming, Turbo
codes.

I. INTRODUCTION

T HE performance of frequency-hopping (FH) communica-
tion networks subject to partial band jamming and/or mul-

tiple access interference is generally unacceptable without the
use of some form of forward error control (FEC) coding. Most
of the work done on error control coding for FH networks was
based on the use of RS codes with error-erasure decoding [1],
[2].

Several erasure strategies have been proposed in the litera-
ture. Some of these strategies are based on the use of side infor-
mation where some known symbols are inserted into each dwell
and used at the receiver to identify which dwells were severely
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jammed and/or hit by other users’ signals to erase them [2]. This
approach suffers from two drawbacks. First, it may not be neces-
sary to erase all the symbols in the jammed dwells since it is un-
likely that all the received symbols in those dwells are corrupted.
The erasure of all the symbols in the jammed dwells reduces the
efficiency of information utilization at the receiver. Second, the
transmission of known symbols in each dwell reduces the effec-
tive transmission rate especially when the hopping rate is fast.
Other erasure strategies decide on a symbol-per-symbol basis
using the soft outputs of the detector [1], [3]. The latter class of
erasure strategies was shown to achieve better performance than
the former one [1]. This can be attributed to the better utilization
of the “soft” information contained in the received signal in the
latter approach.

Recently, a new powerful class of concatenated convolutional
codes was proposed by Berrouet al.[4], i.e., Turbo codes. These
codes use parallel concatenation of two (or more) recursive sys-
tematic convolutional codes (constituent codes, CCs) fed by two
information sequences of which the second is obtained from the
first through the interposition of a long Interleaver. The fact that
this coding structure was shown to yield a performance close to
the Shannon capacity limit has stimulated a large amount of re-
search from all around the world. This research has led to better
understanding of their behavior, upper bounds to the maximum
likelihood performance [5], and to the proposal of an alternative
scheme based on the serial concatenation of interleaved codes
which was shown to yield in some cases a superior performance
[6].

One of the key factors contributing to the remarkable per-
formance of Turbo codes is the elegant iterative soft-in/soft-out
decoding structure whose performance was shown (via simula-
tion) to approach that of maximum likelihood (ML) decoding,
at signal-to-noise ratios (SNRs) very close to the Shannon limit,
with much less complexity. This decoder is based on iteratively
decoding the component codes and passing the so-called ex-
trinsic information, which is a part of the component decoder
soft output, to the next decoding stage. The soft-in/soft-out de-
coders, of the constituent codes, take as input the log-likeli-
hood ratios of the received symbols plus the extrinsic informa-
tion supplied by the other decoder. The impressive performance
achieved by this iterative decoding architecture has encouraged
several researchers to consider applying this iterative architec-
ture in the other submodules of the receivers. In [7], Hagenauer
coined the term “Turbo processing principle” for this architec-
ture. He also pointed out that this receiver architecture can be
used to improve the performance of other receiver submodules.

In this paper, we benefit from the Turbo processing principle
to develop an iterative scheme for joint decoding and channel
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estimation in convolutionally coded and Turbo coded FH net-
works operated in the presence of additive thermal noise, addi-
tive partial band jamming, additive other user interference, and
multiplicative flat Rayleigh fading. The proposed scheme uti-
lizes the soft information, provided by the previous decoding
step, to obtain better estimates of the “equivalent” channel pa-
rameters after each iteration. As such, the iterative scheme is
applied to: 1) the estimation of the variance of the additive inter-
ference and 2) the estimation and subsequent mitigation of the
multiplicative “interference” resulting from the random carrier
phase introduced by the transmitter oscillator at the beginning
of each frequency dwell and the complex Rayleigh fading coef-
ficient.

To further enhance the estimation process, some known sym-
bols are inserted by the transmitter at the beginning of each
frequency dwell. In fact, at least one known symbol must be
inserted into each frequency dwell to resolve the phase ambi-
guity at the receiver, as will be shown later. In this context, we
compare the proposed iterative symbol-aided estimation algo-
rithm with two other approaches. In the first one, which will
be referred to as symbol-aided demodulation (SAD), only the
known symbols are used in the estimation process. The second
approach is the coherent demodulation scenario where knowl-
edge of the multiplicative coefficients are assumed to be avail-
ablea priori at the receiver. The bit error rate (BER) perfor-
mance of this scheme serves as a lower bound on the perfor-
mance of any practically realizable technique. In all cases, no
prior knowledge about the additive interference variance is as-
sumed at the receiver.

At the final stages in this paper preparation, we became
aware of the work in [8]. This work discusses the application of
Turbo codes to coherent FH systems with partial band jamming
[8]. There are considerable differences between our approach
and that presented in [8]. First, in [8] the FH channel with
partial band jamming was modeled using a two-state model.
The authors assumeda priori knowledge at the receiver of the
noise variance in each state and the probability distribution of
the two-state model. Therefore, the problem was formulated
as a detection problem, i.e., detecting the channel state. By
contrast, in our work we consider the case where the receiver
does not have sucha priori information about the channel.
Therefore, we formulate the problem as an estimation problem,
i.e., estimating the channel parameters. This formulation can
handle the more general case of multiple jammers and/or
other-user interference. Second, the authors in [8] only con-
sidered the case of coherent demodulation in additive white
Gaussian noise (AWGN) channels. In this paper, however,
we consider, in addition to the coherent case, more practical
modulation/demodulation schemes, i.e., SAD and iterative
SAD, both in AWGN and flat Rayleigh fading channels.
Finally, the work in [8] was mainly proposed for the case of
Turbo codes with maximuma posteriori probability (MAP)
constituent decoders, whereas the proposed scheme in this
paper is applicable to the more general case of convolutionally
coded systems using any of the available soft-input/soft-output
(SISO) decoders (MAP, Log-MAP, or SOVA) [4], [10].

The outline of the rest of this paper is as follows. The system
model is presented in Section II. In Section III, we present

the iterative approach for estimating the log-likelihood ratios.
Numerical results that compare the performance of different
schemes are presented in Section IV. Finally, Section V offers
some concluding remarks.

II. SYSTEM MODEL

In the system under consideration, the source generates
information bits which are encoded by an error control code
to produce code words of length over the binary alphabet.
The encoded symbols are mapped into binary phase shift keying
(BPSK) constellation points using the modulation operator

for transmission across the channel. Exten-
sion to QPSK modulation is straightforward. The encoded data
stream is then interleaved using a block channel interleaver. This
interleaving is necessary to avoid bursty error blocks at the input
of the decoder. It is worth noting that this channel interleaving
is different from any internal interleaving that may be used in
the encoder as in the case of Turbo codes, for example. The in-
terleaved data stream is grouped into blocks ofbits and each
block is transmitted in a different frequency dwell. The choice
of frequency dwells is done according to the hopping sequence
assigned to the user. The hopping sequences assigned to dif-
ferent users are assumed to be independent random sequences
that span the allowable frequency space. Also, all users and jam-
mers are assumed to be synchronous on the frequency dwell
level [11]. The received signal is thus the transmitted signal
corrupted by additive noise and multiplicative interference. The
base-band received signal at time is given by

(1)

where is the multiplicative interference at timeresulting
from the random carrier phase and Rayleigh fading;is the
base-band transmitted symbol i.e., ; is the ad-
ditive noise sample at time. For simplicity of notation, the
signal power was normalized to one in (1) with the provision
that the normalized variance of the additive noise will reflect
the effective SNR. The additive noise is the sum of the thermal
noise, partial band jamming [8], and other user interference. In
this paper, we follow the model presented in [11] where both
the partial band jamming and the multi-access interference were
modeled as white Gaussian noise. The Gaussian modeling of
the partial band jamming noise has been widely used in the lit-
erature (for example [1], [8]), and the Gaussian approximation
for the other user interference was shown (in [11] and refer-
ences therein) to give very accurate results for a wide range of
SNRs. The importance of the the Gaussian approximation is that
it allows for modeling the channel as a time-varying discrete
channel where the additive noise is characterized as a zero mean
white Gaussian process with normalized time-varying variance

. We also assume, without loss of generality, that there are
groups of jammers (users), where group

has jammers (users). Each jammer has a normalized jam-
ming (interfering) single-sided power spectral density equal to

, and hitting probability1 , and the normalized thermal noise

1The hitting probability is the probability that this particular jammer (user)
shares the same frequency dwell with the user of interest [11].
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single-sided power spectral density is. The random hopping
sequence assumption ensures that each jammer (user) is inde-
pendent from the others and that the noise variance is indepen-
dent from one dwell to the next. Therefore, the total noise vari-
ance has the following conditional distribution:

(2)

where is the number of jammers (users) of
group sharing the same frequency dwell with the
user of interest at time.

We also assume perfect symbol synchronization and perfect
power control, i.e., the receiver knowsa priori the transmitted
signal timing and power. The channel estimation problem is thus
reduced to estimating the multiplicative interference term and
the additive noise variance.

To further motivate the channel estimation problem in FH net-
works, consider the simple case of the additive white Gaussian
noise (AWGN) channel and coherent demodulation, i.e., the re-
ceiver knowsa priori the carrier phase. The AWGN channel
assumption reduces the multiplicative interference term to

(3)

where is the uniformally distributed random phase intro-
duced by the transmitter oscillator at the beginning of each fre-
quency dwell. Since this phase is assumed to be knowna priori
at the receiver, is multiplied by to obtain and the
log-likelihood ratio at time is obtained as

(4)

Now, even in this idealized example, the need for efficient
channel estimation is clear. The importance of the accurate
estimation of the additive noise variance is evident in (4).
This can be attributed to two main reasons. First, in FH
systems, the noise variance is changing with time due the
time-varying nature of the jammers and other users sharing
the same frequency spectrum, and hence, a different weighting
term inversely proportional to the noise variance must be used
in each log-likelihood ratio. Otherwise, the highly corrupted
symbols will result in long bursty error blocks at the decoder
output. Second, in the Turbo codes case, the input to each
constituent decoder is updated by the extrinsic information
supplied by the other constituent decoder. Hence, one needs
to have an accurate estimate of the noise variance, even if it
does not change with time, to calculate the log-likelihood ratios
necessary for the iterative decoding algorithm. This comes in
contrast to maximum likelihood decoding of convolutional
codes where the knowledge of the noise variance is not required
if it does not change with time.

In flat Rayleigh fading channels, the only difference in the
model is related to the multiplicative interference term which is
now given by

(5)

where is the fading amplitude characterized by a Rayleigh
distribution with . is the uniformally distributed
phase introduced by the channel. The complex Rayleigh fading
coefficient is assumed to be constant across the whole frequency
dwell and changes independently from one dwell to the next.
Since both and have uniform distributions, then their
sum is also characterized by a uniform distribution.

Several papers have studied the effect of errors in the SNR
estimation on the performance of Turbo codes (e.g, [12]) in
AWGN channels. These papers drew the conclusion that the
performance of Turbo codes is generally robust to those errors.
However, previous works have only considered the case of con-
stant noise variance and coherent demodulation in AWGN chan-
nels. In this paper, we address the more general problem of con-
volutionally coded systems with time-varying noise variance in
AWGN and flat Rayleigh fading channels.

III. I TERATIVE DECODING AND CHANNEL ESTIMATION

In the proposed algorithm, the channel estimator uses the soft
information after each decoding iteration to update the channel
parameters’ estimates. This approach can be used with any de-
modulation scheme and is also independent of the decoding al-
gorithm used by the constituent decoder(s). However, unlike the
traditional Turbo decoder, the decoders now need to update the
reliabilities of both the information and parity bits (similar to se-
rially concatenated codes [10]). Throughout this paper, we have
assumed that the receiver does not have prior knowledge of the
channel parameters’ statistics.

A. AWGN Channels

In this scenario, the receiver is assumed to have prior knowl-
edge of the carrier phase, and hence, the only unknown param-
eter that needs to be estimated is the effective noise variance.
The estimation, and subsequent mitigation, of the multiplica-
tive interference is considered in Section III-B. We also assume
that the channel variations are much slower than the hopping
rate such that the additive noise power remains the same across
the whole frequency dwell.

First, the carrier phase shift is compensated by multiplying
with to obtain . Assuming, without loss of generality,
that the vector is transmitted in
the same frequency dwell, the log-likelihood ratio at time

is given by

(6)

where . Denote

(7)
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The set can be similarly defined. The log-likelihood ratio
can now be written as (8), shown at the bottom of the page.

After each decoding iteration,
must beestimatedfrom the soft

decoder outputs in order to update the log-likelihood ratio as
in (8). Unfortunately, this computation is generally intractable
without further assumptions. Hence, we introduce the following
independence assumption:

(9)

This assumption is justified by the channel interleaving
used to distribute the encoded data stream across the
different frequency dwells. For simplicity of notation,

will be referred to as in the
following. The MAP detector is then given by

(10)

where is obtained from the soft output of the previous
decoding iteration as

(11)

(12)

where is the output log-likelihood ratio of the previous it-
eration. In the first iteration, it is assumed that

.
Let be the additive noise variance at time, then we have

(13)

From (13), it is clear that in order to compute the MAP
estimate of the log-likelihood ratio, the conditional distri-
bution of the noise variance must be knowna priori at the
receiver. Even if this information is available at the receiver,
the integration with respect to “” does not seem to have a
closed-form solution for most practical distributions. Thus,
instead of the integration with respect to “,” we use the
ML estimate of the noise variance obtained from the re-
ceived symbols to compute

. This results in (14), shown at the
bottom of the page, where

(15)

The main drawback of this approach is the exponential com-
putational complexity involved in the summations (i.e., propor-
tional to ). This complexity may be prohibitive in many ap-
plications which motivates the investigation of alternative sub-
optimum approaches with reasonable complexity.

To this end, let’s assume for now that only a single observa-
tion is used to estimate . Let

as obtained in (11) and
as in (12). If is knowna priori at the receiver
the ML estimator is

(16)

where for and for .
This observation suggests the following suboptimum vari-

ance estimator

(17)

where is a constant added to unbias the
estimator. Now, going back to the original problem, the estimate

(8)

(14)
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of the noise variance at timebased on the other samples
can be obtained as

(18)

The log-likelihood ratio at time is then obtained from the
estimated noise variance as

(19)

This algorithm offers two immediate advantages. First, it is nat-
urally adapted to the iterative decoding structure used for de-
coding Turbo codes and is independent of the algorithm used
in each decoding step. Second, the complexity of the algorithm
only grows linearly with the number of symbols sharing the
same noise variance (i.e., transmitted in the same frequency
dwell).

It is easy to see that the proposed iterative scheme can only
be used for slow FH networks where the channel dynamics are
much slower than the hopping rate. This limitation results from
the assumption that all the symbols in the same dwell are cor-
rupted by white noise samples with the same variance. This as-
sumption is not necessarily valid in all cases. For example, in
the case of fast hopping networks, networks operated asynchro-
nously, and networks subject to rapidly varying jamming, this
assumption does not hold. In these situations, the need arises
for a robust estimator that does not depend on this assumption.

The generalized ML ratio test is used to derive a robust esti-
mate for the log-likelihood ratio in these cases

(20)

where and are the variance values which maximize
and , respectively. These values

are given by

(21)

(22)

and, substituting these values back into (20), we obtain

(23)

As expected in this estimator, as or
which gives an indication that the estimate will be more robust

to the effect of high jamming powers. This will be validated by
simulation results in Section IV.

Finally, for comparison purposes, we consider the simplest
scheme where the log-likelihood ratio is simply given by

(24)

This scheme will be referred to as the No Side Information (NSI)
in the numerical results section. It is worth noting that the NSI
log-likelihood ratios are optimal for maximum likelihood de-
coding of convolutional codes in systems characterized by a
constant noise variance.

B. Flat Rayleigh Fading Channels

In this section, we consider the estimation of the multiplica-
tive interference term in flat Rayleigh fading channels. Also, it
will be shown that, with only a minor modification, the same al-
gorithm can used to estimate the random carrier phase in AWGN
channels. Based on the slow hopping assumption, the complex
fading gain is constant across the whole dwell.

In the new scenario, the receiver needs to estimate the com-
plex fading gain as well as the effective noise variance in each
dwell. At least one known symbol must be transmitted at the
beginning of each dwell to resolve the phase ambiguity. The
number of known symbols in a single dwell is referred to as
and, hence, the total number of transmitted symbols in the dwell
is .

Similar to (14), the ML estimates of the complex fading gain
and noise variance are used to obtain the log-likelihood ratio as
shown in (25), at the bottom of the page, where

(26)

(27)

It is easy to see that this scheme also suffers from the high
computational complexity that grows exponentially with the
number of symbols in the same dwell. This motivates the
following suboptimal scheme whose complexity only grows
linearly with the number of symbols . To estimate the
complex fading gain, we follow the same suboptimal strategy
used for estimating the noise variance in Section III-A:

(28)

(25)
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where is used to unbias
the estimator. Assuming, without loss of generality, that the
known symbols are ones implies that for these sym-
bols. For the data symbols, is obtained from the previous
decoding iteration as given by (12). Using the estimates of the
complex fading gain, the suboptimal estimate for the noise vari-
ance can now be obtained as

(29)

where and are constants adjusted to unbias the estimator.
The log-likelihood ratio is now given by

(30)

For the sake of comparison, we considered also the SAD ap-
proach where is estimated as in (28), however, using
the known symbols only.

In AWGN channels, the only difference is that the fading am-
plitude is known to be equal to one. The receiver still needs to
estimate the carrier phase in each dwell. Hence, the only modi-
fication to the algorithm is to set , and the estimate of the
carrier phase at timeis obtained from

(31)

where is now adjusted to keep the modulus equal to one.

IV. PERFORMANCERESULTS

A. Coded FH System Parameters

In all the simulations pertaining to Turbo codes, we used rate
code using four-state recursive systematic constituent

encoders with octal generators . The interleaver
length is 200 bits. In addition to the internal random Turbo
interleaver [4], an outer block interleaver of the same block
length is used to distribute the encoded symbols among the
different dwells. The number of decoding iterations is 5 and
the decoding algorithm used by the constituent decoders is
the SOVA. The log-likelihood ratios computed throughout the
paper correspond to the channel intrinsic information used
by the Turbo decoder [6]. After each half iteration by one
constituent decoder, the log-likelihood ratios are updated and
passed, along with the soft extrinsic information [6], to the
other constituent decoder.

In the convolutional codes case, a rate nonsystematic
code with generator polynomials is used. The depth of
the channel interleaver used is 400 symbols which is equivalent
to 200 bits. For the iterative approach, the number of decoding
iterations is 3.

Unless otherwise stated, we assumed that the number of trans-
mitted information symbols per frequency dwell is .
The simulations were terminated after 15 frame errors.

B. Iterative Estimation of the Additive Noise Variance

Figs. 1 and 2 report the performance of the different decoding
strategies for Turbo coded FH networks operated in the presence
of partial band jamming in AWGN channels. The energy per bit
to thermal noise ratio is set to 20 dB and assumed to
be knowna priori at the receiver. The receiver is also assumed
to know a priori the carrier phase. We assumed the existence
of one jammer that distributes its power equally over a frac-
tion of the frequency range. The single-sided power spectral
density of the jammer in the frequency range where it exists is

. In Fig. 1 , whereas in Fig. 2 , respec-
tively. Also, in Fig. 1, we included the performance with perfect
channel state information (CSI) at the receiver which serves as
a lower bound on the BER achieved by any channel estimation
scheme.

Fig. 1 compares the performance of the proposed iterative
scheme for estimating the jamming power and the NSI case. In
the range between and BERs, the iterative scheme
provides a gain of more than 3 dB compared to the NSI case.
Fig. 2 compares the performance of the robust scheme described
by (23) and the NSI case. It is clear that the performance of the
robust scheme is less sensitive to variations in especially
for low and low which was expected. Also, it is shown
that the gain provided by the robust scheme compared to the
NSI case increases asdecreases.

The multiple access capability of FH networks employing the
iterative decoding and channel estimation approach is investi-
gated in Figs. 3 and 4 for both convolutionally coded and Turbo
coded FH systems, respectively. We considered the case of a
single cell and the frequency utilization is defined as

where is the total number of users which is to set to 50
in our simulations, is the code rate, and is the number of
frequency slots. The other user interference is modeled as a
Gaussian process with zero mean and variance

(32)

where and is the power control error which is set
to 3 dB.2 We also assumed 6 dB. From the figures,
it is observed that the performance gain of the proposed scheme
is more significant in convolutionally coded systems compared
to systems employing Turbo codes. One possible reason for this
trend is the steep performance characteristics of Turbo codes
[4].

C. Iterative Symbol-Aided Demodulation

In Figs. 5 and 6, we study the performance of different mul-
tiplicative interference estimation schemes in convolutionally
coded FH networks operated in AWGN and Rayleigh fading
channels. In these figures, the number of known symbols in-
serted in the beginning of each dwell is varied. It is worth
noting that increasing the number of known symbols, per dwell,

2The value of the power control error was chosen somewhat arbitrarily, how-
ever, we believe that it does not change the conclusion that the proposed scheme
outperforms the NSI case significantly.



El GAMAL AND GERANIOTIS: ITERATIVE CHANNEL ESTIMATION AND DECODING FOR ANTI-JAM FH SIGNALS 327

Fig. 1. BER performance for Turbo coded FH/SSMA networks subject to partial band jamming.

Fig. 2. BER performance for Turbo coded FH networks subject to partial band jamming.

decreases the achievable throughput. The symbol energy is now
given by

and the throughput loss is

which amounts to the effective reduction in theuncodedinfor-
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Fig. 3. BER versus frequency utilization for convolutionally coded FH networks.

Fig. 4. BER versus frequency utilization for Turbo coded FH networks.

mation throughput due to the insertion of known symbols. In
the differential binary phase shift keying (DPSK) case, only one
known symbol is transmitted at the beginning of each dwell.
This is necessary to resolve the phase ambiguity. The conven-
tional symbol-aided demodulation where only the known sym-
bols are used in the estimation is referred to as (SAD) in the

figures. The proposed iterative SAD algorithm is referred to
as (iterative). It is clear that both the SAD and iterative SAD
schemes do not suffer from the error floor experienced in the
DPSK case. The performance of the iterative scheme is shown
to be uniformly better than the SAD, with the same, and DPSK
schemes. For the SAD technique, increasingfrom 2 to 3 im-
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Fig. 5. BER performance for convolutionally coded FH networks in AWGN channels.

Fig. 6. BER performance for convolutionally coded FH networks in Rayleigh fading channels.

proves the performance slightly. Quite interestingly, the same
change in the number of known symbols degraded the perfor-
mance of the iterative SAD scheme. This can be explained when
we consider the reduction in the symbol energy, for a fixed en-
ergy per bit, resulting from the addition of more known symbols.

In this particular case, the benefit of adding more known sym-
bols was overweighted by the negative impact resulting from
the reduction in the symbol energy. In fact, for both the itera-
tive SAD and SAD schemes, there exists an optimum number
of known symbols. This optimum number will, in general, de-
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Fig. 7. BER performance for Turbo coded FH networks in Rayleigh fading channels.

Fig. 8. BER performance for convolutionally coded FH networks in Rayleigh fading with different dwell sizes.

pend on the network configuration (i.e., hopping rate, channel
dynamics, code rate, and the power of the used code). It is clear
that the iterative scheme with is the best solution for this
network configuration.

A similar performance comparison is repeated in Fig. 7 for
Turbo coded FH systems in Raleigh fading channels. In gen-

eral, trends similar to the convolutional code case are observed.
However, in this case, is better than for the iter-
ative SAD scheme. This can be attributed to the lower coding
rate used, and hence, lower symbol energy for the known sym-
bols. One also observes that the advantage of the iterative SAD
scheme is less than the convolutional code case.
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In Fig. 8, we investigate the effect of dwell size (i.e., )
on the performance of convolutionally coded systems in flat
Rayleigh fading channels. The number of known symbolswas
varied in proportion to to keep the throughput loss fixed at
1/12. The iterative SAD scheme was used for channel estima-
tion. It is clear that, for the same throughput loss and delay, there
exists an optimum value for . This optimum value depends
on the different system parameters. This can be explained as
follows. Increasing allows for the insertion of more known
symbols to enhance the channel estimation process. However,
increasing will also result in more correlation in the same
decoding frame, and consequently, increasing the probability of
error propagations. The optimum achieves the best trade-off
between these two contending effects.

V. CONCLUSION

In this paper, we have proposed an iterative scheme for joint
decoding and channel estimation in frequency hopping mul-
tiple access networks. First, in AWGN channels, we showed
that the proposed iterative algorithm provides superior perfor-
mance to the NSI case in the presence of partial band jamming
or other-user interference. We have also proposed a robust esti-
mation scheme based on the generalized ML ratio test for esti-
mating the log-likelihood ratios in fast hopping networks. The
performance of this robust algorithm was also shown to be sig-
nificantly better than that of the NSI case. Second, for both
AWGN and flat Rayleigh fading channels, we developed an it-
erative SAD approach for estimating the multiplicative interfer-
ence term and the additive noise variance. This approach was
shown to outperform both the DPSK and traditional SAD ap-
proaches in various scenarios.
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