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Iterative Channel Estimation and Decoding for
Convolutionally Coded Anti-Jam FH Signals
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Abstract—In this paper, an iterative algorithm for joint  jammed and/or hit by other users’ signals to erase them [2]. This
decoding and channel estimation in frequency-hopping (FH) approach suffers from two drawbacks. First, it may not be neces-
networks is proposed. In the proposed algorithm, soft decoder a1y 15 erase all the symbols in the jammed dwells since it is un-
outputs are used in the iterative estimation of the time-varying . (- ved bols in those dwell ed
variance of the additive interference resulting from the sum of Ikely thatallthe received sym _Os'n . ose dwells are corrupted.
the thermal noise, partial-band noise jamming, and other-user The erasure of all the symbols in the jammed dwells reduces the
interference. The soft outputs are also used in the estimation efficiency of information utilization at the receiver. Second, the
of the independent random carrier phases and multiplicative transmission of known symbols in each dwell reduces the effec-
Rayleigh fading coefficients in different frequency dwells. The e transmission rate especially when the hopping rate is fast.

estimation process is further enhanced through the insertion of . . .
known symbols in the transmitted data stream. The proposed Other erasure strategies decide on a symbol-per-symbol basis

iterative symbol-aided demodulation scheme is compared with the Using the soft outputs of the detector [1], [3]. The latter class of
coherent scenario, where the channel state information is assumed erasure strategies was shown to achieve better performance than
to be known a priori at the receiver, for both convolutionally the former one [1]. This can be attributed to the better utilization

coded and Turbo coded FH systems. The proposed iterative f iha “soft” information contained in the received signal in the
channel estimation approach is suited for slow FH systems where latter approach

the channel dynamics are much slower than the hopping rate. .
This observation motivates the consideration of another robust ~ Recently, a new powerful class of concatenated convolutional

approach for generating the log-likelihood ratios for fast hopping codes was proposed by Berretal.[4],i.e., Turbo codes. These
systems in additive white Gaussian noise channels. Simulation re- codes use para||e| concatenation of two (Or more) recursive sys-
sults that demonstrate the excellent performance of the proposed o matic convolutional codes (constituent codes, CCs) fed by two
algorithms in various scenarios are also presented. . . . A
o _ information sequences of which the second is obtained from the
Index Terms—Channel estimation, convolutional codes, fre- first through the interposition of a long Interleaver. The fact that
q“gncy hopping, iterative decoding, partial band jamming, Turbo s coding structure was shown to yield a performance close to
codes. the Shannon capacity limit has stimulated a large amount of re-
search from all around the world. This research has led to better
|. INTRODUCTION understanding of their behavior, upper bounds to the maximum
ikelihood performance [5], and to the proposal of an alternative

HE perf ff -hopping (FH icd
T performance of frequency-hopping (FH) communic cheme based on the serial concatenation of interleaved codes

tion networks subject to partial band jamming and/or mufS" h h to vieldi : ¢
tiple access interference is generally unacceptable without ?'C was shown o yield In Some cases a Superior periormance

use of some form of forward error control (FEC) coding. Mo

of the work done on error control coding for FH networks Wag? One of the key factors contributing to the remarkable per-

mance of Turbo codes is the elegant iterative soft-in/soft-out
coding structure whose performance was shown (via simula-

Several erasure strategies have been proposed in the Iitgf?{‘) to approach that of maximum likelihood (ML) decoding,

ture. Some of these strategies are based on the use of side irﬁbﬁgnal-to-nmse ratios .(SNRS.’) very CIOS? tothe Shar.‘”on !'m't’
mation where some known symbols are inserted into each d f h much less complexity. This decoder is based on iteratively

and used at the receiver to identify which dwells were sever r?chl_ng the c_ompongnt _codes and passing the so-called ex-
trinsic information, which is a part of the component decoder
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estimation in convolutionally coded and Turbo coded FH nethe iterative approach for estimating the log-likelihood ratios.
works operated in the presence of additive thermal noise, addidmerical results that compare the performance of different
tive partial band jamming, additive other user interference, asdhemes are presented in Section IV. Finally, Section V offers
multiplicative flat Rayleigh fading. The proposed scheme utsome concluding remarks.

lizes the soft information, provided by the previous decoding

step, to obtain better estimates of the “equivalent” channel pa- II. SYSTEM MODEL

rameters after each iteration. As such, the iterative scheme i? . .

applied to: 1) the estimation of the variance of the additive inter- h the system under consideration, the source genefdtes

ference and 2) the estimation and subsequent mitigation of {HEormgmon bltch whmk:jarefelncog;d by E:E ert:pr cont{o:]c(gd?
multiplicative “interference” resulting from the random carriefC Produce code words of lengiN over the binary alphabet.

phase introduced by the transmitter oscillator at the beginni e encoded symbols are mapped into binary phase shift keying

of each frequency dwell and the complex Rayleigh fading coé 5PSK) constellation pomts_ using the modulation opergtor
0 — —1,1 — 1 for transmission across the channel. Exten-

ficient. . . .
To further enhance the estimation process, some known syﬂ?—n to QPSK modulatlon IS §tra|ghtforward. Th(_e encoded da"f"
fteamis then interleaved using a block channel interleaver. This

bols are inserted by the transmitter at the beginning of ead L . ;
terleaving is necessary to avoid bursty error blocks at the input

frequency dwell. In fact, at least one known symbol must B% the decoder. It th noting that this ch linterleavi
inserted into each frequency dwell to resolve the phase ampbi- 1€ decoder. 1t Is worth hoting that this channet interieaving
different from any internal interleaving that may be used in

guity at the receiver, as will be shown later. In this context, w . .
compare the proposed iterative symbol-aided estimation al & encoder as in the case of Turt_)o codes, for gxample. The in-
rithm with two other approaches. In the first one, which wil erleayed data s_,trear_n IS 9Y°“ped into blocka/pbits and each.
be referred to as symbol-aided demodulation (SAD), only t ‘iock is transmitted ina different frgquency dweII.. The choice
known symbols are used in the estimation process. The sec) H_equency dwells is done acco_rdmg to the hoppmg sequence
approach is the coherent demodulation scenario where kno signed to the user. The hoppl_ng sequences assigned 1o dif-
edge of the multiplicative coefficients are assumed to be av frent users are assumed to be independent random sequences
ablea priori at the receiver. The bit error rate (BER) perforI atspan the allowable frequency space. Also, all users and jam-
mance of this scheme serves as a lower bound on the per frs are assumed Fo be 'synch.ronous on the freq.uency. dwell
el [11]. The received signal is thus the transmitted signal

mance of any practically realizable technique. In all cases, o . Lo
prior knowledge about the additive interference variance is rrupted by additive noise and multiplicative interference. The
ase-band received signal at timek is given by

sumed at the receiver.
At the final stages in this paper preparation, we became
aware of the work in [8]. This work discusses the application of
Turbo codes to coherent FH systems with partial band jammin
[8]. There are considerable differences between our appro
and that presented in [8]. First, in [8] the FH channel wit
partial band jamming was modeled using a two-state mod
The authors assumedpriori knowledge at the receiver of the™, ) . . o
noise variance in each state and the probability distribution |gnal power was normghzed to one in (1) W'th. the brovision
the two-state model. Therefore, the problem was formulat t the normalized variance of the additive noise will reflect

as a detection problem, i.e., detecting the channel state rgj effective SNR. The additive noise is the sum of the thermal
v

contrast, in our work we consider the case where the receith se, partial b?nl(lj jant}:nlng [g]’l and othfrdu§er1|r11terfﬁrenct)e.tlr?
does not have such priori information about the channel. IS paper, we follow the model presented in .[ ] where bo
me partial band jamming and the multi-access interference were

deled as white Gaussian noise. The Gaussian modeling of
e partial band jamming noise has been widely used in the lit-

Tk = apdr + Iy 1)

erec; is the multiplicative interference at timeresulting
om the random carrier phase and Rayleigh fadigis the
Iase—band transmitted symbol i.é, € {—1,1}; I, is the ad-
itive noise sample at tim&. For simplicity of notation, the

i.e., estimating the channel parameters. This formulation c

handle the more general case of multiple jammers and} . L
other-user interference. Second, the authors in [8] only cofiiure (for example [1], [8]), and the Gaussian approximation

sidered the case of coherent demodulation in additive whifd the other user interference was shown (in [11] and refer-

Gaussian noise (AWGN) channels. In this paper, howev fices therqin) to give very accurate re;ults fora\_/vide.rar?ge of
we consider, in addition to the coherent case, more practi Rs. The importance of the the Gaussian approximation is that

modulation/demodulation schemes, i.e., SAD and iterati\'}%""”o"vS for modeling the channel as a time-varying discrete

SAD, both in AWGN and flat Rayleigh fading channels® annel where the additive noise is characterized as a zero mean
Finally, the work in [8] was mainly proposed for the case o

Turbo codes with maximuna posteriori probability (MAP) Py h ) 2 <
constituent decoders, whereas the proposed scheme in ﬁﬁigroqps of jammers (usEersr){ where grr]aupl =t i mg .
paper is applicable to the more general case of convolutionféllﬁsn"’ jammers (users). Each jammer has a normalized jam-

hite Gaussian process with normalized time-varying variance
o—,%). We also assume, without loss of generality, that there are

coded systems using any of the available soft-input/soft-out n9 (Ljntt_]e_zt:ferlng) Smbg_lli-aded(?%wer speclt_ral ddterz]nsny quu_a Ito
(SISO) decoders (MAP, Log-MAP, or SOVA) [4], [10]. i»and hitting probabilityp;, and the normalized thermal noise

The (?Ut“ne of the r?St of th|s paperis as f.OHOWS- The systemurp,e hitting probability is the probability that this particular jammer (user)
model is presented in Section Il. In Section lll, we preseBlbares the same frequency dwell with the user of interest [11].
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single-sided power spectral densityV¥g. The random hopping In flat Rayleigh fading channels, the only difference in the
sequence assumption ensures that each jammer (user) is imdedel is related to the multiplicative interference term which is
pendent from the others and that the noise variance is indepeaw given by

dent from one dwell to the next. Therefore, the total noise vari-

ance has the following conditional distribution: = akeﬂ'(%”w(f)) (5)
1 (& whereaqy, is the fading amplitude characterized by a Rayleigh
2 P — > . . 3 - ~
<"k = <§_; hilVi + NO) (s oz oo )> distribution with£ [a2 = 1]. ¢/ is the uniformally distributed

" phase introduced by the channel. The complex Rayleigh fading
_ H <”z) piyi (1— pi)(nﬁki) @) coefficientis assumed to be constant across the whole frequency
dwell and changes independently from one dwell to the next.
Since both¢§f> and¢§f) have uniform distributions, then their
wherek; (0 < k; < n;) is the number of jammers (users) okum is also characterized by a uniform distribution.
groups (1 < ¢ < m) sharing the same frequency dwell with the Several papers have studied the effect of errors in the SNR
user of interest at timé. estimation on the performance of Turbo codes (e.g, [12]) in
We also assume perfect symbol synchronization and perf@#/GN channels. These papers drew the conclusion that the
power control, i.e., the receiver knowespriori the transmitted performance of Turbo codes is generally robust to those errors.
signal timing and power. The channel estimation problem is thigwever, previous works have only considered the case of con-
reduced to estimating the multiplicative interference term arghant noise variance and coherent demodulation in AWGN chan-
the additive noise variance. nels. In this paper, we address the more general problem of con-
To further motivate the channel estimation problem in FH negolutionally coded systems with time-varying noise variance in
works, consider the simple case of the additive white GaussiaWGN and flat Rayleigh fading channels.
noise (AWGN) channel and coherent demodulation, i.e., the re-
ceiver knowsa priori the carrier phase. The AWGN channel  |||. | TERATIVE DECODING AND CHANNEL ESTIMATION

assumption reduces the multiplicative interference term to ) .
In the proposed algorithm, the channel estimator uses the soft

information after each decoding iteration to update the channel
parameters’ estimates. This approach can be used with any de-
modulation scheme and is also independent of the decoding al-
orithm used by the constituent decoder(s). However, unlike the
aditional Turbo decoder, the decoders now need to update the
reliabilities of both the information and parity bits (similar to se-
rially concatenated codes [10]). Throughout this paper, we have
assumed that the receiver does not have prior knowledge of the

P
o = C’]qbk (3)

where¢(0) is the uniformally distributed random phase intro-
duced by the transmitter oscillator at the beginning of each f
quency dwell. Since this phase is assumed to be kreopniori

at the receiveryy is multiplied bye=7¢* to obtainy; and the
log-likelihood ratio at timek is obtained as

B plyrlde = 1) channel parameters’ statistics.
L =108 el = 1)
0 p(yxldi = —1) A. AWGN Channels
Yk
=z (4)  Inthis scenario, the receiver is assumed to have prior knowl-
k

edge of the carrier phase, and hence, the only unknown param-

Now, even in this idealized example, the need for efficie@ter that needs to be estimated is the effective noise variance.
channel estimation is clear. The importance of the accurdiBe estimation, and subsequent mitigation, of the multiplica-
estimation of the additive noise variance is evident in (4%ive interference is considered in Section I1l-B. We also assume
This can be attributed to two main reasons. First, in FHpat the channel variations are much slower than the hopping
systems, the noise variance is changing with time due tfRée such that the additive noise power remains the same across
time-varying nature of the jammers and other users sharititg Whole frequency dwell.

the same frequency spectrum, and hence, a different weightindrirst, the carrier phase shiftis compensated by multiplying
term inversely proportional to the noise variance must be useith ¢ 7% ” to obtainy.. Assuming, without loss of generality,

in each log-likelihood ratio. Otherwise, the highly corruptethat the vectod = [di, dr11, .. ., dk+n,—1] IS transmitted in
symbols will result in long bursty error blocks at the decodéhe same frequency dwell, the log-likelihood ratio at tifne
output. Second, in the Turbo codes case, the input to edc &+ N, — 1 is given by

constituent decoder is updated by the extrinsic information

supplied by the other constituent decoder. Hence, one needs L = log P (yld: =1) ©6)

to have an accurate estimate of the noise variance, even if it (yld: )
does not change with time, to calculate the log-likelihood ratios

necessary for the iterative decoding algorithm. This comesWherey = [yx, ..., yr+n~,-1]. Denote
contrast to maximum likelihood decoding of convolutional

codes where the knowledge of the noise variance is not requui’éd =ldr, o dim, 1 deyr, o dign, -1

if it does not change with time. cdp € {1,-1}, .. diyn -1 € {-1,1}]. (7)
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The setD~ can be similarly defined. The log-likelihood ratio e (U —di)? /25

can now be written as (8), shown at the bottom of the page. ] Vers,
After each decoding iterationP(dy,...,d¢ 1,d¢41,-- -, X P (st|di, Yty - s UNy+—1, ANy +5—1) dst. (13)
Ay +k—1|Uks - - -, YNy +k—1) Must beestimatedfrom the soft

decoder outputs in order to update the log-likelihood ratio as" oM (13). it is clear that in order to compute the MAP
in (8). Unfortunately, this computation is generally intractabigStimate of the log-likelihood ratio, the conditional distri-

without further assumptions. Hence, we introduce the foIIowwR;uuon of the noise variance must be knowrpriori at the
independence assumption: receiver. Even if this information is available at the receiver,

the integration with respect tos;” does not seem to have a

P(dy,...;dee1,devt, oo ANy bh—1|Why -+ YNy +E—1) closed-form solution for most practical distributions. Thus,
_ H (dilgks - yniar ). (9) instead of the integration with respect te;,” we use the
K<<k Ny -1 ot ' ML estimate of the noise variance obtained from the re-
- ' ceived symbolgyy, . .., %—1, Y41, - - -, Ye+ N, —1) 1O COMpute
This assumption is justified by the channel interleaving (y;|d, yx, . . ., yn,+x—1). This results in (14), shown at the
used to distribute the encoded data stream across Hugtom of the page, where
different frequency dwells. For simplicity of notation, )
P(d;lux. . .. uny4n—1) Will be referred to asP(d;) in the o2 = > (s —dy)” (15)
following. The MAP detector is then given by ’ K<j<ktNo—1, jt Ny —1
Ly —log acp+ P Weld) Tli<j<nin, -1, je () The main drawback of this approach is the exponential com-

(10) : ity : ions (i )

dep_ P (y|d) H§j§k+Nz,—1, i P (dy) putaﬂonajl\gompl_exﬂy |nvolv_ed in the summ_a'q(_)ns_(Le., propor
tional to2**). This complexity may be prohibitive in many ap-

where P (d;) is obtained from the soft output of the previouglications which motivates the investigation of alternative sub-

decoding iteration as optimum approaches with reasonable complexity.
N To this end, let’'s assume for now that only a single observa-
P(d;=1)= © JA_ (11) tion y; is used to estimate; = o7 = o}, n,_; = 0°. Let
1+ et p1; = P(d; = 1) as obtained in (11) angh; = P(d; = —1)
P(d; = -1) :% (12) asin (12). Ifd; is knowna priori at the receivepo; € {0,1}
1+eh the ML estimator is
where ); is the output log-likelihood ratio of the previous it- 5 5
eration. In the first iteration, it is assumed tHa{d; = 1) = onr. = (¥ — dj) (16)

P(d; =—-1) = 0.5

"y , . i whered; = —1 for pg; = 1 andd; = 1 for po; = 0.
Let s, be the additive noise variance at timyghen we have

This observation suggests the following suboptimum vari-
ance estimator
r (yt|6_l7 Yy oo vy yN;,+k71)
~2 2
:/P(yta3t|c_layka"'ay/\fz,-l—k—l)dst d _Edj I:(yj _;l»]) ] tc )
=poj(y; +1)° + (1 —poj)(y; — 1) +c  (17)

= [ P(yl|d P (syldp, v, ys—1, di— . .
/ (welde, se) P (seldr, U, - - -, ge—1, de—1, wherec = 2(1 — 2po;)° — 2 is a constant added to unbias the
Yt Det 1y - o s YUNyth—1> Qe Ny —1) ASt estimator. Now, going back to the original problem, the estimate

dei}k P(Qv dk7 L) dt—17 dt+17 LR dN;,-I—k—l|dt = 1)

L, =
' Egcl)* P(ya dka"'adt—ladt-l-la-- d/\’;,—l—k 1|dt = _1)
ZdeD+ P(yt|d Yky oo - s UNy+k— 1)P(yk7 dk7 cea Y1, dt*lvyt-l—lv dt+17 s YN +R—1, sz,-f—k*l)
Zd&’D— Plydld, yr, - - s YN+ k=) Pk, dier -+ -1, de—1, 1, degrs -+ YN+ k-1, ANy 41— 1)
~ 2acor Puddyis v e—) Pl - dia digas o dvg it [ - Y k1) (8)
EQED— P( |d7 Yk o oo s YNy +k— 1)P(dk7 i1, dH—lv sy dl\r{,+k—1|yk7 s 7yNz,+k—1)
—(y:—1)*/207 \,
ZQEDJF |: 012 ’ 6( (y:—1)°/ Ut,l\IL) Hkﬁjﬁk-l—l\’;,—l, j;ﬁp(dj):|
L, =log (14)

—(ys+1)2 /202
Saco- { 012 o(—(t1)2/ t,ML)HkSJ,SHN&lyj#p(dj)}
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of the noise variance at tintidased on the othéy, — 1 samples to the effect of high jamming powers. This will be validated by

can be obtained as simulation results in Section IV.
1 Finally, for comparison purposes, we consider the simplest
67 = N —1 Z [poy(yj +1)? scheme where the log-likelihood ratio is simply given by
P k< <h AN -1, Gt
+(1 = poj)(y; — 1)°] +c. (18) Lo = v (24)
The log-likelihood ratio at time is then obtained from the This scheme will be referred to as the No Side Information (NSI)
estimated noise variance as in the numerical results section. It is worth noting that the NSI
9 log-likelihood ratios are optimal for maximum likelihood de-
L, = fét_ (19) coding of convolutional codes in systems characterized by a
T constant noise variance.

This algorithm offers two immediate advantages. First, it is nat- ) )
urally adapted to the iterative decoding structure used for d&- Flat Rayleigh Fading Channels
coding Turbo codes and is independent of the algorithm usedn this section, we consider the estimation of the multiplica-
in each decoding step. Second, the complexity of the algorittive interference term in flat Rayleigh fading channels. Also, it
only grows linearly with the number of symbols sharing thwill be shown that, with only a minor modification, the same al-
same noise variance (i.e., transmitted in the same frequegoyithm can used to estimate the random carrier phase in AWGN
dwell). channels. Based on the slow hopping assumption, the complex
It is easy to see that the proposed iterative scheme can ofalgting gain is constant across the whole dwell.
be used for slow FH networks where the channel dynamics ardn the new scenario, the receiver needs to estimate the com-
much slower than the hopping rate. This limitation results froplex fading gain as well as the effective noise variance in each
the assumption that all the symbols in the same dwell are cdwell. At least one known symbol must be transmitted at the
rupted by white noise samples with the same variance. This Agginning of each dwell to resolve the phase ambiguity. The
sumption is not necessarily valid in all cases. For example, iumber of known symbols in a single dwell is referred towas
the case of fast hopping networks, networks operated asynchand, hence, the total number of transmitted symbols in the dwell
nously, and networks subject to rapidly varying jamming, this N, + n.
assumption does not hold. In these situations, the need ariseSimilar to (14), the ML estimates of the complex fading gain
for a robust estimator that does not depend on this assumptiand noise variance are used to obtain the log-likelihood ratio as
The generalized ML ratio test is used to derive a robust esshown in (25), at the bottom of the page, where
mate for the log-likelihood ratio in these cases

PN [-- PR P
L (—(we=1)?/207) " TR N+b 2 i (26)
I1 k<j<k4+n+N,—1, j#t
Ly =log (20)

l6(_(%4—1)2/263) o2 :—1

aq t,ML 2(Nb Fn— 1)
where o1 and o are the variance values which maximize ) i X
P(y;|d; = 1) and P(y:|d; = —1), respectively. These values x > ‘U —d;a;e’% | . (27)

are given by k<j<k4ntNy—1, j#t

It is easy to see that this scheme also suffers from the high
o1 =y — 1] (21) computational complexity that grows exponentially with the
oo =|y: +1] (22) number of symbols in the same dwell. This motivates the
following suboptimal scheme whose complexity only grows
linearly with the number of symbols + N,. To estimate the
e+ 1] complex fading gain, we follow the same suboptimal strategy

and, substituting these values back into (20), we obtain

Ly = e — 1] (23)  used for estimating the noise variance in Section I1I-A:
As expected in this estimataf;; — 0 asy; — oo or —co &teié% — 1 Z [(1 — 2po,) 7] (28)
which gives an indication that the estimate will be more robust b h<j<ktntNo, j2t
1 ( 7’1_&163}}% |2/2°'f2,,ML
2acp+ o2 © Iecichsnprn—t, jue £ (d5)
Ly =log (25)

5
tbieite|* 1207
ZQGD* |: 21 e(|"f e | / ”t,ML) Hkﬁjﬁk-l—N;,-l—n—l, j;étp(dj):|

9%, ML
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whereb = >, icpin—1, gz (1= 2po;)” is used to unbias B. Iterative Estimation of the Additive Noise Variance
the estimator. Assuming, without loss of generality, that the Figs. 1 and 2 report the performance of the different decoding

known symbols are ones implies tha; = 0 for these sym-  qategies for Turbo coded FH networks operated in the presence
bols. For the data symbolge; is obtained from the previous o nartial hand jamming in AWGN channels. The energy per bit

decoding iteration as given by (12). Using the estimates of tﬂ_‘?thermal noise ratidZ, /N, is set to 20 dB and assumed to

complex fading gain, the suboptimal estimate for the noise vaglg nowna priori at the receiver. The receiver is also assumed
ance can now be obtained as to know a priori the carrier phase. We assumed the existence

. 1 a2 of one jammer that distributes its power equally over a frac-
o= Z [Po]' i+ a;e’ % tion p of the frequency range. The single-sided power spectral
k<j<k+Np+n—1, j#t density of the jammer in the frequency range where it exists is
. a2 N;.InFig. 1p = 0.6, whereas in Fig. 2 = 0.4, 0.6, respec-
— . RPN - 7 J P ' g ’ ’ p
(= poj) |75 — aje } 7 (29 tively. Also, in Fig. 1, we included the performance with perfect

. _ _ channel state information (CSI) at the receiver which serves as
wherea and 3 are constants adjusted to unbias the estimat@riower bound on the BER achieved by any channel estimation

The log-likelihood ratio is now given by scheme.
B Fig. 1 compares the performance of the proposed iterative
2Re (Ttat@_m) scheme for estimating the jamming power and the NSI case. In
Ly = 52 : (30)  the range betweetn—2 and10~3 BERSs, the iterative scheme

provides a gain of more than 3 dB compared to the NSI case.
For the sake of comparison, we considered also the SAD dg. 2 compares the performance of the robust scheme described
proach wherei,c=7? is estimated as in (28), however, usindy (23) and the NSI case. It is clear that the performance of the
the known symbols only. robust scheme is less sensitive to variationBjjV; especially

In AWGN channels, the only difference is that the fading anfer low p and lowE, /N ; which was expected. Also, itis shown

plitude is known to be equal to one. The receiver still needs tioat the gain provided by the robust scheme compared to the
estimate the carrier phase in each dwell. Hence, the only molliSI case increases aglecreases.
fication to the algorithm is to sét, = 1, and the estimate of the  The multiple access capability of FH networks employing the

carrier phase at timeis obtained from iterative decoding and channel estimation approach is investi-
gated in Figs. 3 and 4 for both convolutionally coded and Turbo
P — x Z [(1—2po;)r;] (31) coded FH systems, respectively. We considered the case of a
by B kb Ny—1, jt single cell and the frequency utilization is defined as
whereb; is now adjusted to keep the modulus equal to one. n= Ko or
q
IV. PERFORMANCERESULTS where K, is the total number of users which is to set to 50

in our simulationsy is the code rate, angl is the number of

) ) o frequency slots. The other user interference is modeled as a
In all the simulations pertaining to Turbo codes, we used ra¢; ssian process with zero mean and variance
r = 1/3 code using four-state recursive systematic constituent

encoders with octal generatof$/5s,1/7s). The interleaver o2 =(14¢)-E, (32)
length is 200 bits. In addition to the internal random Turbo
interleaver [4], an outer block interleaver of the same blogkhereE; = E; - r ande is the power control error which is set
length is used to distribute the encoded symbols among fi§e—3 dB2 We also assume#;, /No = 6 dB. From the figures,
different dwells. The number of decoding iterations is 5 ariflis observed that the performance gain of the proposed scheme
the decoding algorithm used by the constituent decodersiggnore significant in convolutionally coded systems compared
the SOVA. The log-likelihood ratios computed throughout th&® systems employing Turbo codes. One possible reason for this
paper correspond to the channel intrinsic information usé@nd is the steep performance characteristics of Turbo codes
by the Turbo decoder [6]. After each half iteration by on&l-
constituent decoder, the log-likelihood ratios are updated and
passed, along with the soft extrinsic information [6], to th&
other constituent decoder. In Figs. 5 and 6, we study the performance of different mul-

In the convolutional codes case, arate 1/2 nonsystematic tiplicative interference estimation schemes in convolutionally
code with generator polynomia{Ss, 7s) is used. The depth of coded FH networks operated in AWGN and Rayleigh fading
the channel interleaver used is 400 symbols which is equivaletiannels. In these figures, the number of known symbols in-
to 200 bits. For the iterative approach, the number of decodisgrted in the beginning of each dwétl) is varied. It is worth
iterations is 3. noting that increasing the number of known symbols, per dwell,

Unless otherwise stated, we assumed that the number of tran;Fh o

e value of the power control error was chosen somewhat arbitrarily, how-

m'tted_ 'nforr_nat'on Symbo'?’ per frequency dwellig = 10. ever, we believe that it does not change the conclusion that the proposed scheme
The simulations were terminated after 15 frame errors. outperforms the NSI case significantly.

A. Coded FH System Parameters

Iterative Symbol-Aided Demodulation
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Fig. 2. BER performance for Turbo coded FH networks subject to partial band jamming.

decreases the achievable throughput. The symbol energy is reowd the throughput loss is
given by

Eb'T'Nb

E, =
Ny +n

n-r

Ny +n

which amounts to the effective reduction in timecodednfor-
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Fig. 4. BER versus frequency utilization for Turbo coded FH networks.

mation throughput due to the insertion of known symbols. lilgures. The proposed iterative SAD algorithm is referred to
the differential binary phase shift keying (DPSK) case, only ores (iterative). It is clear that both the SAD and iterative SAD
known symbol is transmitted at the beginning of each dwelichemes do not suffer from the error floor experienced in the
This is necessary to resolve the phase ambiguity. The conv®RSK case. The performance of the iterative scheme is shown
tional symbol-aided demodulation where only the known synte be uniformly better than the SAD, with the same@nd DPSK
bols are used in the estimation is referred to as (SAD) in tsehemes. For the SAD technique, increasirfgom 2 to 3 im-
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proves the performance slightly. Quite interestingly, the sanethis particular case, the benefit of adding more known sym-
change in the number of known symbols degraded the perfopls was overweighted by the negative impact resulting from
mance of the iterative SAD scheme. This can be explained whie reduction in the symbol energy. In fact, for both the itera-
we consider the reduction in the symbol energy, for a fixed etive SAD and SAD schemes, there exists an optimum number
ergy per bit, resulting from the addition of more known symbol®f known symbols. This optimum number will, in general, de-
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BER performance for convolutionally coded FH networks in Rayleigh fading with different dwell sizes.

pend on the network configuration (i.e., hopping rate, chanresfal, trends similar to the convolutional code case are observed.

dynamics, code rate, and the power of the used code). It is cleknwever, in this case; = 3 is better tham = 2 for the iter-

that the iterative scheme with= 2 is the best solution for this ative SAD scheme. This can be attributed to the lower coding

network configuration. rate used, and hence, lower symbol energy for the known sym-
A similar performance comparison is repeated in Fig. 7 fdools. One also observes that the advantage of the iterative SAD

Turbo coded FH systems in Raleigh fading channels. In geseheme is less than the convolutional code case.
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ayleigntading ¢ : u wn symboi& DS/CDMA,” in ARL Workshop on Spread-Spectrum Technigdese

varied in proportion taV, to keep the throughput loss fixed at 1997.

1/12. The iterative SAD scheme was used for channel estimét0l S- Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Soft-input soft-
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ollows. IncreasingV, allows for the insertion of more known [12] M. Jordan and R. Nicholas, “The effects of channel characteristics on
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