
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 10, Numbers 3–4, 2003
© Mary Ann Liebert, Inc.
Pp. 575–597

An Algorithm to Enumerate Sorting Reversals
for Signed Permutations

ADAM C. SIEPEL

ABSTRACT

The rearrangement distance between single-chromosome genomes can be estimated as the
minimum number of inversions required to transform the gene ordering observed in one
into that observed in the other. This measure, known as “inversion distance,” can be com-
puted as the reversal distance between signed permutations. During the past decade, much
progress has been made both on the problem of computing reversal distance and on the
related problem of � nding a minimum-length sequence of reversals, which is known as “sort-
ing by reversals.” For most problem instances, however, many minimum-length sequences
of reversals exist, and in the absence of auxiliary information, no one is of greater value
than the others. The problem of � nding all minimum-length sequences of reversals is thus a
natural generalization of sorting by reversals, yet it has received little attention. This prob-
lem reduces easily to the problem of � nding all “sorting reversals” of one permutation with
respect to another—that is, all reversals ½ such that, if ½ is applied to one permutation,
then the reversal distance of that permutation from the other is decreased. In this paper, an
ef� cient algorithm is derived to solve the problem of � nding all sorting reversals, and exper-
imental results are presented indicating that, while the new algorithm does not represent a
signi� cant improvement in asymptotic terms (it takes O(n3) time, for permutations of size
n; the problem can now be solved by brute force in 2(n3) time), it performs dramatically
better in practice than the best known alternative. An implementation of the algorithm is
available at www.cse.ucsc.edu/»acs.

Key words: genome rearrangements, sorting by reversals.

1. INTRODUCTION

Chromosomal rearrangements are believed to occur primarily by a few simple mechanisms,
including inversion, transposition, and reciprocal translocation (Sankoff and El-Mabrouk, 2002). Of

these, inversion is considered the most important for many genomes (McLysaght et al., 2000; Blanchette
et al., 1996). A model based on inversions is therefore a natural starting place for a mathematical treatment
of genome rearrangements, and the minimum number of inversions required to transform one genome into
another is a natural measure of evolutionary distance. If each of two genomes has exactly one copy of each

Department of Computer Science, University of New Mexico, Albuquerque, NM 87131 and National Center for
Genome Resources, Santa Fe, NM 87505.

575

http://www.cse.ucsc.edu/%7E


576 SIEPEL

of n genes, then the genomes can be represented by permutations of size n, and their inversion distance is
equal to the minimum number of “reversals” required to transform one permutation into the other, known
as the reversal distance between the permutations. Here, a reversal is an operation by which contiguous
elements of a permutation are changed in order: for example, .1; 2; 3; 4/ ! .3; 2; 1; 4/. There has been
considerable interest during the past decade in the reversal distance problem and in the related but distinct
problem of � nding an actual sequence of reversals that will “sort” one permutation with respect to another.
Both of these problems have been shown to be NP-hard with ordinary permutations (Caprara, 1997), but in
the case of signed permutations, where each permutation element is assigned a “C” or “¡” sign, they have
polynomial-time solutions (Hannenhalli and Pevzner, 1995) (with signed permutations, a reversal changes
the sign of affected elements, as well as their order). The genome rearrangement problem can be modeled
with signed permutations if the direction of transcription is known of each gene in each genome.

The � rst major step in solving the reversal-distance and sorting-by-reversals problems was apparently
the recognition, by Bafna and Pevzner (1993), that the reversal distance between signed permutations
was closely related to the number of cycles in a particular diagram—the “breakpoint graph,” or (more
colorfully) “Diagram of Reality and Desire” (Setubal and Meidanis, 1997). The breakthrough came when
Hannenhalli and Pevzner (1995) characterized certain peculiar structures in the breakpoint graph—which
they called “hurdles” and “fortresses”—that caused the relationship between cycles and distance not to
be exact. Hannenhalli and Pevzner proved that reversal distance can be exactly expressed as a function
of the numbers of cycles, hurdles, and fortresses and derived a O.n4/-time algorithm to sort by reversals
(where n is the permutation size). Berman and Hannenhalli (1996) soon improved the bound for the sorting
problem to O.n2®.n// (where ® is the inverse of Ackermann’s function), and it was then further improved
by Kaplan, Shamir, and Tarjan (1999) to O.n2/. Recently, Bader, Moret, and Yan (2001) have shown how
to compute reversal distance (without actually sorting) in O.n/ time, and Bergeron (2001) and Bergeron
and Strasbourg (2001) have described an alternative sorting algorithm that takes O.n2/ time but sidesteps
much of the complexity of earlier algorithms.

All sorting-by-reversals algorithms published so far � nd a single minimum-length sequence of sorting
reversals. While they generally can be adapted to � nd multiple sequences of sorting reversals, none will � nd
all sequences. For certain search problems in the space of genome rearrangements, it can be very useful
to obtain all minimum-length sequences of sorting reversals, as has been shown in the case of the reversal
median problem (Siepel, 2001). Knowing all minimum-length sequences of sorting reversals also might
improve the usefulness in real scienti� c applications of reversal sorting algorithms. One might attempt, for
example, to assess the biological merits of various parsimonious rearrangement scenarios. Indeed, from
a biological perspective, a single minimum-length sequence of sorting reversals is of limited value, even
aside from the limitations of an inversions-only model of rearrangement. Many such sequences exist (as
will be shown below), and in the absence of additional data or a richer model, no one is more plausible
than the others.

The problem of � nding all minimum-length sequences of sorting reversals between a permutation ¼ and
a permutation Á reduces easily to the problem of � nding all individual sorting reversals of an intermediate
permutation ¼ 0 with respect to Á. It is this “inner” or “branching” problem—which I will call the “all
sorting reversals problem” .ASR/—that this paper addresses. The paper begins with a straighforward
classi� cation scheme for all possible reversals. Next, a simpli� ed version of the problem is introduced,
called the “Fortress-Free Model” (FFM), and it is shown, under the FFM , what criteria the reversals of
each class must meet in order to be sorting reversals. Next, fortresses are reintroduced, the results of the
previous section are adapted for the general case, and an algorithm is presented that solves ASR. Finally,
experimental results are shown that demonstrate the ef� ciency of the algorithm and af� rm its correctness.

2. NOTATION AND DEFINITIONS

Let ¼ and Á be signed permutations of size n, such that ¼ D .¼1; ¼2; : : : ; ¼n/ and Á D .Á1; Á2; : : : ; Án/.
Let the unsigned permutation ¼ 0 D .¼ 0

0; ¼ 0
1; : : : ; ¼ 0

2nC1/ be de� ned such that ¼ 0
0 D 0, ¼ 0

2nC1 D 2n C 1, and
for all i (1 · i · n), ¼ 0

2i D 2¼i , ¼ 0
2i¡1 D 2¼i ¡ 1 (if ¼i > 0) or ¼ 0

2i D 2j¼ij ¡ 1, ¼ 0
2i¡1 D 2j¼i j (if ¼i < 0);

let the unsigned permutation Á0 D .Á0
0; Á0

1; : : : ; Á0
2nC1/ be de� ned exactly the same way with respect to Á.

Two elements ¼i and ¼iC1 are said to be adjacent in ¼ , and the corresponding elements ¼ 0
2i and ¼ 0

2iC1



ALGORITHM TO ENUMERATE SORTING REVERSALS 577

FIG. 1. Breakpoint graph B and overlap graph O for the permutation ¼ D f¡5; ¡3; ¡4; ¡2; C1; C6; C8; ¡9;

C10; C13; C12; C11; C14; C15; C16; C7g with respect to the identity permutation of size n D 16. Connected com-
ponents t and w are oriented, y and z are trivial, and u, v, and x are unoriented. Unoriented components u and x are
hurdles, but unoriented component v is a protected nonhurdle because it separates u and x. Oriented gray edges are
represented in O by solid circles.

are said to be adjacent in ¼ 0; similarly for Á and Á0. The breakpoint graph B of ¼ with respect to Á is
constructed by arranging in a line a sequence of 2n C 2 vertices, corresponding to the elements of ¼ 0 (the
vertices must obey the order of ¼ 0; see Fig. 1), and connecting every two of these vertices that re� ect an
adjacency in ¼ 0 with a black edge (a “reality” edge) and every two that re� ect an adjacency in Á0 with a
gray edge (a “desire” edge, often depicted as a dashed line). The black edges necessarily span alternating
intervals between adjacent vertices; the gray edges are by convention drawn as arcs extending above the
baseline of the diagram. I will refer to the process of visiting the vertices of B in the order in which they
appear as traversing the breakpoint graph. A traversal may begin at any vertex but must include all vertices
(it is circular); it can proceed in either direction.

A cycle in B is a sequence of connected vertices .v0; v1; v2; : : : ; v2m; v2mC1; v2mC2/, such that m ¸ 0,
v2mC2 D v0, and for all i (0 · i · m), v2i and v2iC1 are connected with a black edge, and v2iC1 and v2iC2

are connected with a gray edge. A traversal of the cycle is a visitation of vertices and edges in the order
of such a sequence. As with a traversal of B, a traversal of a cycle can begin at any place and proceed in
either direction. A given traversal of a cycle induces at every black edge a positive or negative ordering of
the vertices of B. For example, in Fig. 1, a traversal of the cycle containing vertices 0, 10, 3, 1, 2, and 11,
beginning along the black edge from 0 to 10, induces a positive ordering of vertices at edge (0,10) and a
negative ordering at edge (11,2). The black and gray edges that connect the vertices of a cycle are said to
belong to the cycle.

Let the overlap graph O D .V ; E/ for B be de� ned such that there exists a distinct ve 2 V for every
gray edge e in B and two vertices ve and ve0 are connected by an edge (fve; ve0g 2 E) iff gray edges e

and e0 overlap in B (see Fig. 1). Two edges overlap if they span overlapping intervals in the sequence of
vertices (if the diagram is drawn according to convention, overlapping edges must intersect). A connected
component in O has the usual meaning and is sometimes called simply a “component.”

A gray edge is said to be oriented if it spans an odd number of vertices in B, and unoriented otherwise.
A cycle in B and a connected component in O are each said to be oriented if they have at least one
oriented gray edge. Cycles and components are called unoriented if they are not oriented, except when
they are trivial. A trivial cycle consists of a single gray edge and a single black edge and corresponds to
an adjacency shared in permutations ¼ and Á. A component is trivial if it consists of a single, isolated
vertex in O. Such a component always corresponds to a single trivial cycle.1 Note that the gray edges
of a cycle always belong to the same connected component, so we can say that the cycle belongs to that
component. In some cases, it is useful to group together oriented and trival components; I will refer to a
component that is either oriented or trivial as a benign component.

1There has been some variation in the literature in the treatment of trivial cycles and components. In this paper,
they will be distinguished explicitly from unoriented cycles and components.



578 SIEPEL

Every unoriented component can be classi� ed as either a hurdle or a protected nonhurdle. A hurdle is
an unoriented component that does not separate other unoriented components, and a protected nonhurdle
is one that does. A component u is said to separate two other components v and w if, in a traversal of B,
it is impossible to pass (in either circular direction) from a vertex belonging to v to a vertex belonging to
w without encountering a vertex belonging to u. Note that, while separation is primarily used with respect
to unoriented components, the de� nition (as stated here) applies as well to benign components. A hurdle
is called a superhurdle if, were it eliminated, a protected nonhurdle would emerge as a hurdle; otherwise,
it is called a simple hurdle.

By Hannenhalli and Pevzner’s duality theorem, the distance d.¼; Á/ between ¼ and Á is given by
d.¼; Á/ D n C 1 ¡ c C h C f , where c is the number of cycles and h is the number of hurdles in B. The
parameter f is equal to one if there is a fortress in B and zero otherwise. A fortress exists iff there is
an odd number of hurdles and all are superhurdles (Setubal and Meidanis, 1997). The function d.¼; Á/ is
sometimes represented by the variable d when ¼ and Á are clear from context.

A reversal ½i;j (1 · i < j · n) applied to ¼ D .¼1; : : : ; ¼n/ transforms ¼ into ½i;j .¼/ D ¼1; : : : ;

¡¼j ; : : : ; ¡¼i ; : : : ; ¼n/. A reversal ½ (the subscripts will be omitted when unimportant) is a sorting reversal
iff d.½.¼/; Á/ D d.¼; Á/ ¡ 1. I will use the term 1d to indicate the quantity d.½.¼/; Á/ ¡ d.¼; Á/ and,
similarly, the terms 1c, 1h, and 1f to indicate the changes caused by a given reversal to the numbers
of cycles, hurdles, and fortresses, respectively (1d D ¡1c C 1h C 1f ). Note that these quantities have
meaning only with respect to a given reversal ½ and pair of permutations, .¼; Á/, one of which is designated
as the “reference” or “target” (Á); in this paper, ½, ¼ , and Á will generally be clear from context. A given
reversal can only increase by one, decrease by one, or leave unchanged the reversal distance of ¼ from Á;
thus, 1d 2 f¡1; 0; 1g. The end-points i and j of a reversal ½i;j correspond to the ith and .j C 1/st black
edges of B. The reversal ½ is said to act on these edges.

Setubal and Meidanis (1997) have presented an alternative distinction to the one between oriented and
unoriented gray edges, based on black edges. They de� ne two black edges of the same cycle as convergent
if in a traversal of the cycle, these edges induce the same ordering of the vertices of B; otherwise, the edges
are divergent. It can be shown easily that an oriented gray edge always connects nodes adjoining divergent
black edges and an unoriented gray edge always connects nodes adjoining convergent black edges (if the
unoriented gray edge is part of a trivial cycle, then it connects nodes that adjoin the same black edge;
thus, the rule holds, as long as any black edge is considered to be convergent with itself). Setubal and
Meidanis have shown that a reversal splits a cycle iff it acts on divergent black edges of the cycle. This
result is stronger than the corresponding one for oriented gray edges, which says that a reversal splits a
cycle if (not iff) it acts on black edges corresponding to an oriented gray edge. They have also shown that
a reversal does not change the number of cycles iff it acts on convergent edges of the same cycle, and a
reversal combines two cycles iff it acts on edges belonging to different cycles. These results are especially
useful when enumerating all sorting reversals, as will be seen below.

When a gray edge has one vertex within and one vertex outside the range of a reversal, the edge is said
to be affected by the reversal.2 A component is affected by a reversal iff it has at least one gray edge that
is affected by the reversal. It can be shown that a reversal causes an edge to change orientation (that is, to
change from oriented to unoriented or vice versa) iff it affects the edge (two black edges adjoining a gray
edge change from convergent to divergent, or vice versa, iff the gray edge is affected) (Siepel, 2001). As
a result, a reversal will cause an unoriented component to become oriented iff it affects the component.
This observation provides a simple explanation for the phenomena Hannenhalli and Pevzner (1995) have
called “hurdle cutting” and “hurdles merging.”

I will denote as follows all connected components, the cycles within them, and the black edges within
the cycles. Let M D fmig be the set of components in O, let Ci D fci;j g be the set of cycles that belong
to mi , and let Bi;j D fbi;j;kg be the set of black edges that belong to ci;j . This notation allows several
of the de� nitions above to be summarized concisely, as follows. Any two black edges belonging to the
same cycle, bi;j;k and bi;j;l , must be convergent or divergent. If there exist divergent black edges bi;j;k

2More precisely, a reversal induces a bipartitioning of the vertices of the breakpoint graph, and each partition can
be considered to represent “a range” of the reversal (the ranges are complementary). An edge is said to be affected
by the reversal iff it connects a vertex of one range to a vertex of the complementary range (Siepel, 2001).



ALGORITHM TO ENUMERATE SORTING REVERSALS 579

and bi;j;l , then cycle ci;j is oriented; otherwise, ci;j is unoriented, unless it has only a single black edge
(jBi;j j D 1), in which case ci;j is trivial. If there exists ci;j 2 Ci such that ci;j is oriented, then mi is
oriented; otherwise, mi is unoriented, unless jCi j D 1 and the single element of Ci is trivial, in which case
mi also is trivial. If mi is unoriented, then mi is either a hurdle or a protected nonhurdle, depending on
whether it separates other unoriented components.

3. SORTING REVERSALS IN THE ABSENCE OF FORTRESSES

These de� nitions lead directly to an exhaustive classi� cation scheme for reversals.

Lemma 1. Suppose ½ is a reversal acting on two black edges, bi;j;k and bi 0;j 0;k0 , which belong re-
spectively to cycles ci;j and ci 0j 0 and to connected components mi and mi 0 . Then one and only one of the
following is true:

1. (i D i 0 and j D j 0) bi;j;k and bi 0;j 0;k0 belong to the same cycle, ci;j , and either:
(a) ci;j is oriented and mi is oriented; or
(b) ci;j is unoriented, bi;j;k and bi0;j 0;k0 are convergent, and mi is either oriented or unoriented;

2. (i D i0 and j 6D j 0) bi;j;k and bi 0;j 0;k0 belong to different cycles of the same component, mi , which is
either oriented or unoriented;

3. (i 6D i0) bi;j;k and bi0;j 0;k0 belong to different components, mi and mi 0 .

Proof. Either i D i0 or i 6D i 0 (the edges are part of the same or different components); and if i D i0,
then either j D j 0 or j 6D j 0 (the edges are part of the same or different cycles). Each of ci;j , ci0;j 0 , mi ,
and mi 0 is by de� nition oriented, unoriented, or trivial. A component that has at least two edges cannot
be trivial, however, and can contain no trivial cycle, so Cases 1 and 2 need only consider oriented and
unoriented cycles and components. Moreover, a component containing an oriented cycle is by de� nition
oriented, so Case 1a need not allow mi to be unoriented. Similarly, Case 1b need not consider the possibility
of divergent black edges, because every two edges of an unoriented cycle must be convergent.

The “Fortress-Free Model” (FFM) of ASR will be de� ned in terms of a surrogate measure of distance,
d 0.¼; Á/, that ignores fortresses. Speci� cally, let d 0.¼; Á/ D nC1¡cCh and 1d 0 D d0.½.¼/; Á/¡d 0.¼; Á/.
Let the FFM be a version of ASR in which a sorting reversal is rede� ned to be a reversal that causes
1d 0 D ¡1.

The FFM allows for a simple but powerful rule I will call “conversation of distance,” which will be
used heavily throughout this section of the paper.

Lemma 2 (Conservation of Distance). Under the FFM, a reversal is a sorting reversal iff one of the
following is true:

1. 1c D ¡1 and 1h D ¡2,
2. 1c D 0 and 1h D ¡1,
3. 1c D 1 and 1h D 0.

Proof. By de� nition, the reversal is a sorting reversal iff 1d 0 D ¡1. Because d 0 D n C 1 ¡ c C h,
1d 0 D ¡1 iff 1h¡1c D ¡1. Clearly, 1h¡1c D ¡1 if any of the cases of the lemma apply. Furthermore,
we know that 1c 2 f¡1; 0; 1g, because a reversal can only merge cycles, be neutral with respect to cycle
number, or split a cycle. Therefore, 1h ¡ 1c D ¡1 only if one of the cases of the lemma applies.

I will now address Cases 1a, 1b, 2, and 3 of Lemma 1 in turn, under the assumptions of the FFM.

Lemma 3 (Case 1a). Under the FFM, a reversal ½ that acts on two black edges belonging to the
same oriented cycle is a sorting reversal iff the edges are divergent and ½ does not change the number of
hurdles.



580 SIEPEL

Proof. First consider the claim that ½ is a sorting reversal if the edges are divergent and the number of
hurdles is left unchanged. Suppose ½ acts on two divergent black edges of the same cycle and ½ does not
change the number of hurdles. Then 1c D 1 (½ must split the cycle) and 1h D 0; therefore, ½ is a sorting
reversal by conservation of distance. Now consider the converse claim, that ½ is a sorting reversal only
if the edges are divergent and the number of hurdles does not change. Suppose ½ acts on black edges of
the same cycle and is a sorting reversal. Either the black edges are divergent and ½ splits the cycle, or the
black edges are convergent and ½ is neutral with respect to cycle number. If ½ splits the cycle (1c D 1),
then 1h D 0, by conservation of distance. Similarly, if ½ is neutral with respect to cycle number (1c D 0),
then 1h D ¡1. It must be true, however, that 1h ¸ 0, because ½ acts on black edges of an oriented cycle,
and therefore of an oriented component (thus, ½ can affect no unoriented component3 and can eliminate
no hurdle). Consequently, ½ is a sorting reversal only if the edges are divergent and the number of hurdles
is left unchanged.

Lemma 4 (Case 1b). Under the FFM, a reversal ½ that acts on two black edges belonging to the
same unoriented cycle ci;j is a sorting reversal iff the component mi to which ci;j belongs is a simple
hurdle.

Proof. First consider the claim that ½ is a sorting reversal if mi is a simple hurdle. Suppose that ½

acts on two black edges belonging to the same unoriented cycle ci;j , which belongs to a simple hurdle mi .
Because ci;j is unoriented, all of its black edges are convergent; therefore, ½ must cause 1c D 0. Because
mi is a simple hurdle, ½ must orient the hurdle; furthermore, ½ can eliminate or introduce no other hurdle,
because it can neither affect another existing component, nor introduce a new one. Thus, ½ must also cause
1h D ¡1, and must be a sorting reversal by conservation of distance. Now consider the converse claim,
that ½ is a sorting reversal only if mi is a simple hurdle. Suppose that ½ is a sorting reversal that acts
on two black edges of the same unoriented cycle, ci;j . The component mi to which ci;j belongs is either
oriented, a hurdle, or a protected nonhurdle (it cannot be trivial because it has at least two black edges).
If mi is oriented or a protected nonhurdle, then 1h ¸ 0, because ½ can affect no hurdle4; these cases are
impossible, because they would not allow ½ to be a sorting reversal. Therefore, mi must be a hurdle. If
mi is a superhurdle, however, then when ½ orients it, another hurdle will emerge, causing 1h D 0 and
preventing ½ from being a sorting reversal. Therefore, mi must be a simple hurdle.

A reversal that affects a hurdle in the way described in Lemma 4—by acting on two black edges of the
same cycle—is said to cut the hurdle.

Lemma 5 (Case 2). Under the FFM, a reversal ½ cannot be a sorting reversal if ½ acts on two black
edges belonging to different cycles of the same component.

Proof. Suppose to the contrary that ½ acts on two black edges belonging to different cycles of the
same component and ½ is a sorting reversal. Because ½ acts on different cycles, 1c D ¡1; therefore, by
conservation of distance, 1h D ¡2. It is impossible, however, for ½ to eliminate more than one hurdle,
because it affects only a single component.

Before addressing Case 3 of Lemma 1, I must introduce two new ideas (see Figures 2 and 3).

3A reversal that acts on two edges belonging to the same component can affect no other component. The proof
of this fact goes essentially as follows. Assume to the contrary that a reversal ½ acts on two edges belonging to a
component u and affects another component v. Then u and v must each have at least one vertex in each of the ranges
of ½. It follows (omitting some details) that an edge of u and an edge of v must overlap, and hence that u and v are
not separate components—a contradiction.

4In general, a reversal can decrease the number of hurdles by no more than the number of hurdles it directly affects.
The reason is that a hurdle can cease to be a hurdle only if it is affected (and hence oriented) or caused to separate
other unoriented components, but it cannot be caused to separate other unoriented components without being affected;
therefore, a hurdle can be eliminated only if it is affected. This fact can be shown by contradiction, using an argument
based on the ranges of ½ .



ALGORITHM TO ENUMERATE SORTING REVERSALS 581

FIG. 2. Breakpoint graph in which hurdles u and v form a double superhurdle with respect to protected nonhurdle
p. Note that all unoriented components besides u, v, and p either separate u and v (y and z) or are separated from
both u and v by p (x and w). This construct is called a “double superhurdle,” by analogy to ordinary superhurdles,
because a reversal that simultaneously destroys u and v will cause p to emerge as a hurdle. In this example, x and w

also form a double superhurdle with respect to p.

De� nition 1. Two hurdles u and v form a double superhurdle iff two other unoriented components w

and p coexist with u and v such that:

1. p separates u and v from w but does not separate u and v from each other,
2. every other unoriented component either separates u and v or is separated by p from both u and v,

and
3. p does not separate from each other any two of the components that it separates from u and v.

De� nition 2. A hurdle that separates a benign component from all other unoriented components is
said to be the separating hurdle of the benign component.

It follows from De� nition 2 that a benign component may have at most one separating hurdle, but
a hurdle may be the separator of multiple benign components. All separating hurdles and the benign
components that they separate can be found easily in a traversal of the breakpoint graph (Siepel, 2001).

Lemma 6 (Case 3). Under the FFM, a reversal ½ that acts on black edges belonging to different
components u and v is a sorting reversal iff all of the following are true:

1. each of u and v is a hurdle or a benign component that has a separating hurdle,
2. u and v are not benign components sharing the same separating hurdle, and
3. u and v or their separating hurdles do not form a double superhurdle.

Proof. A reversal ½ that acts on black edges belonging to different components must act on black edges
belonging to different cycles and therefore must cause 1c D ¡1; hence, such a reversal is a sorting reversal
iff it causes 1h D ¡2 (conservation of distance). Therefore, to prove the claim in the “if” direction, it
is suf� cient to show that ½ causes 1h D ¡2 if it meets the criteria of the lemma. Suppose ½ acts on
black edges belonging to different component u and v, each of u and v is a hurdle or a benign component
that has a separating hurdle, and u and v are not benign components sharing the same separating hurdle
(see Fig. 3). Then ½ must affect two hurdles and hence must eliminate two hurdles. Therefore, as long

FIG. 3. A reversal ½ that acts on black edges belonging to two benign components (u and v) can still cause the
destruction of two hurdles (p and q), if the hurdles are distinct separating hurdles of the benign components. The
effect is similar to what would be observed if the hurdles were merged.



582 SIEPEL

as ½ does not introduce any new hurdles, 1h D ¡2. Assume temporarily that ½ introduces one or more
new hurdles iff u and v or their separating hurdles form a double superhurdle. Because this circumstance
is prohibited by the third criterion of the lemma, this part of the proof is complete, conditional on the
assumption about double superhurdles (to be addressed below).

For the claim in the “only if” direction, it is suf� cient to show that 1h D ¡2 only if the criteria of
the lemma hold. Suppose 1h D ¡2. If 1h D ¡2, ½ must orient at least two hurdles, and if ½ orients at
least two hurdles, it must affect at least two hurdles. It is impossible for a single reversal to affect more
than two hurdles,5 so ½ must affect (and orient) exactly two hurdles. There are three possible ways that
½ can affect two hurdles: either (1) u and v are both hurdles; or (2) u and v are both nonhurdles and are
separated by two hurdles; or (3) one of u and v is a hurdle—call it u, without loss of generality—and the
other, v, is a nonhurdle that is separated from u by a second hurdle. Case (2) can occur only if the two
components u and v are benign and have distinct separating hurdles. The reason is that u and v cannot be
unoriented (otherwise a hurdle would separate unoriented components, which is prohibited by de� nition),
so they must be benign; and if two benign components are separated by two hurdles, those hurdles by
de� nition are their separating hurdles. Similarly, case (3) can only occur if u is benign and has a separating
hurdle and that separating hurdle is distinct from v. Thus, the � rst two criteria of the lemma must hold.
To address the third criterion, notice that if 1h D ¡2, then ½ must not only eliminate two hurdles, but
avoid introducing new ones. If we invoke again the assumption about double superhurdles, then u and v or
their separating hurdles cannot form a double superhurdle; thus, this part of the proof is complete, again
conditional on the assumption.

Let me now prove that ½ introduces one or more new hurdles iff u and v or their separating hurdles
form a double superhurdle. First, consider the claim in the “if” direction. Let u0 be u (if u is a hurdle)
or the separating hurdle of u (if u is benign), let v0 be v or the separating hurdle of v, and suppose u0

and v0 form a double superhurdle. Let U be the set consisting of u0, v0, and all unoriented components
that separate them. By De� nition 1, there exists an unoriented component p that separates all members
of U from all members of a nonempty set V , consisting of all unoriented components besides p that are
not in U . Component ½ will affect and orient every member of U and no member of V ; consequently,
½ will cause p to emerge as a hurdle. Now consider the converse claim, that ½ introduces one or more
new hurdles only if u and v or their separating hurdles form a double superhurdle. Suppose ½ causes a
new hurdle p to emerge. Prior to ½, p must have been a protected nonhurdle separating each member
of a nonempty set U of unoriented components from each member of a nonempty set V of unoriented
components. Furthermore, ½ must affect all members of U or all members of V but not members of both (if
½ affected members of both U and V , it would orient p). Without loss of generality, assume that ½ affects
all members of U . Then u0; v0 2 U , and u0 and v0 are separated from all members of V . Furthermore, u

and v must be separated from one another by all other members of U (otherwise, either u and v could not
be hurdles, or a reversal that destroyed them could not also destroy the other members of U ) and p must
not separate any two members of V (otherwise, it could not emerge as a hurdle). Thus, u0 and v0 meet the
de� nition of a double superhurdle.

Notice that the proof of this fact about double superhurdles does not depend on the assumptions of the
FFM: in general, a reversal ½ acting on edges belonging to different components u and v introduces one
or more new hurdles iff the components or their separating hurdles form a double superhurdle.

4. ACCOMMODATING FORTRESSES

In this section, I adapt what has been established under the FFM to allow for the possibility of a
fortress. The FFM differs from the general case exactly when 1f 6D 0. As a result, two possibilities must

5This fact can be shown easily by contradiction. Suppose ½ affects two hurdles, u and v. Then, each of u and v

must have vertices in each range of ½ . Now suppose ½ also affects a third hurdle w. If, as required, w has vertices in
each range of ½ , then w must either separate u and v or have a gray edge that overlaps a gray edge of u or v. Either
case represents a contradiction.



ALGORITHM TO ENUMERATE SORTING REVERSALS 583

be considered. The � rst occurs when a fortress does not exist before a candidate reversal ½; here it is
possible that ½ is a sorting reversal under the FFM, but introduces a fortress, and thus is not a sorting
reversal in the general model. The second possibility occurs when there exists a fortress; here it is possible
that ½ does not sort under the FFM, but eliminates the fortress, and thus is a sorting reversal in the general
model. The � rst possibility is addressed by the following lemma.

Lemma 7. A reversal ½ that meets the criteria for a sorting reversal under the FFM will introduce a
fortress iff one of the following is true:

1. ½ acts on divergent black edges of the same oriented cycle, and ½ introduces at least one unoriented
component such that the number of hurdles becomes odd and all of them are superhurdles;

2. ½ cuts the only simple hurdle and there are an odd number of superhurdles;
3. ½ acts on two black edges belonging to different components such that two hurdles are destroyed, and

the set of hurdles is altered so that there remain an odd number and all are superhurdles.

Proof. First consider the claim that ½ will introduce a fortress if one of the cases of the lemma applies.
A fortress is introduced if the set of hurdles is changed such that it becomes odd in size and consists only
of superhurdles. Each of the three cases of the lemma explicitly accomplishes such a change, so this part
of the proof is complete. Now consider the claim that ½ will introduce a fortress only if one of the cases
of the lemma applies. Suppose that ½ is a sorting reversal under the FFM and ½ introduces a fortress.
Any sorting reversal must belong to one of three classes: (a) those that split cycles (Lemma 3); (b) those
that cut simple hurdles (Lemma 4); and (c) those that destroy pairs of hurdles (Lemma 6). If ½ belongs to
class (a), it can change the set of hurdles only by introducing new unoriented components, because it only
affects a single oriented component. Thus, case 1 must apply. If ½ belongs to class (b), it can affect only
a single simple hurdle. As a result, it can introduce a fortress only if there already exist an odd number
of superhurdles, and the reversal removes the sole simple hurdle; thus, case 2 must apply. If ½ belongs to
class (c), then case 3 must apply.

The second possibility above, that of a sorting reversal that eliminates a fortress, is more dif� cult and
requires the introduction of several new concepts.

De� nition 3. Two unoriented components u and v are adjacent in a breakpoint graph B iff at least
one pair of vertices from u and v have between them, in a traversal of the breakpoint graph, no vertex
belonging to another unoriented component.

De� nition 4. Let U be the set of unoriented components in a breakpoint graph B. The hurdle graph
for B is a graph H D .V ; E/ such that V D U and E D ffvi; vj g j vi ; vj 2 V and vi , vj are adjacent
in Bg.

The hurdle graph (Fig. 4) can easily be constructed in a single traversal of the breakpoint graph. It has
many useful properties. For example, hurdles, protected nonhurdles, and superhurdles can all be identi� ed
from local properties of vertices in the hurdle graph, as described below (proofs omitted).

1. Suppose u, v, and w are three unoriented components and u0, v0, and w0 are the corresponding vertices
in the hurdle graph. Then, w separates u and v iff there exists no path in the hurdle graph between
u0 and v0 that does not pass through w0. For convenience, I will say that node w0 separates nodes u0

and v0.
2. A vertex in the hurdle graph does not separate other vertices iff it belongs to a cycle and has degree 2,

or it has degree less than 2. Thus, such a vertex corresponds to a hurdle.
3. A vertex in the hurdle graph separates other vertices iff it belongs to a cycle and has degree greater

than 2, or it does not belong to a cycle and has degree 2. Thus, such a vertex corresponds to a protected
nonhurdle.

4. A vertex corresponds to a superhurdle iff it has degree 1 and its neighbor either has degree 3 and
belongs to a cycle, or has degree 2 and does not belong to a cycle.



584 SIEPEL

FIG. 4. The hurdle graph for the breakpoint graph of Fig. 2. Every unoriented component is represented by a vertex,
and adjacencies between unoriented components are represented by edges. Here, unoriented components y, z, and u

form a superhurdle chain for superhurdle u, with y as the anchor.

It is certain higher-level structures in the hurdle graph, however, that are most important for the problem
of identifying sorting reversals in the case of a fortress.

De� nition 5. A hurdle chain is a chain of vertices in the hurdle graph consisting of a hurdle and zero
or more other vertices, such that every vertex v in the chain is a hurdle, has degree 2, and does not belong
to a cycle, or is the last vertex in the chain and either belongs to a cycle or has degree greater than 2.

De� nition 6. If a hurdle chain has one end that is not a hurdle, the vertex at that end is the anchor
of the chain.

A hurdle chain that has hurdles at both ends is said to be “unanchored” (such a chain must have exactly
two hurdles). If there exists an unanchored chain, it must encompass the entire hurdle graph (that the
hurdle graph must be connected is implicit in its de� nition); therefore, if there exists at least one anchored
chain, all chains must be anchored. A hurdle chain that contains a superhurdle is called a “superhurdle
chain.” Such a chain cannot have a simple hurdle; it must either be anchored and have a single superhurdle
or be unanchored and have two superhurdles.

Double superhurdles can also be identi� ed readily from the hurdle graph, using the ideas of hurdle
chains and anchors. Speci� cally, two hurdles u and v form a double superhurdle iff u and v belong to
hurdle chains anchored by vertices w and x, such that w and x belong to a 3-vertex cycle, the third vertex
of that cycle has degree 3, and each of w and x has degree of at most 3 (Siepel, 2001).

Two � nal de� nitions are necessary.

De� nition 7. A superhurdle is a single protector if it belongs to an anchored hurdle chain of length 2.

De� nition 8. The neighbor of a single protector is a pseudohurdle.

The reason for the name “pseudohurdle” will become apparent below. Essentially, when there is a
fortress, such a component can be treated much like a hurdle.

Lemma 8. A reversal ½ that cuts a pseudohurdle or a single protector leaves the total number of
hurdles unchanged, but causes a superhurdle to be replaced by a simple hurdle.

Proof. Suppose ½ cuts a single protector u having pseudohurdle v. Then the only effect of ½ on the
hurdle graph is to shorten an anchored hurdle chain from length 2 to length 1, because ½ orients u, but can
affect no other unoriented component, and because u is adjacent to no other unoriented component besides
v. By de� nition, u is a superhurdle and belongs to a chain of length 2; therefore, v must initially have



ALGORITHM TO ENUMERATE SORTING REVERSALS 585

degree 3 and belong to a cycle, and after u is eliminated, v must have degree two and belong to a cycle.
Thus, the number of hurdles stays the same, but a superhurdle is replaced by a simple hurdle. Suppose
instead that ½ cuts a pseudohurdle v having single protector u. Once again, the effect of ½ is to shorten
an anchored hurdle chain from length 2 to length 1. Here, ½ orients v, and the chain is shortened from its
anchor rather than from its terminus. The reason that the chain is simply shortened is that any unoriented
component that was adjacent to v now becomes adjacent to u. Thus, after the reversal, u must have degree
two and belong to a cycle, and once again, the number of hurdles stays the same, but a superhurdle is
replaced by a simple hurdle.

Now I am prepared to address the second possibility described at the beginning of this section—that of a
sorting reversal that eliminates a fortress. In the discussion below, I return to the original, general-purpose
de� nition of a sorting reversal.

Lemma 9. A reversal ½ will eliminate a fortress and be a sorting reversal iff there exists a fortress
and one of the following is true:

1. ½ acts on divergent edges of the same cycle and introduces at least one new unoriented component
such that the number of hurdles increases by exactly one.

2. ½ cuts a single protector or a pseudohurdle.
3. ½ affects two components u and v such that one of u and v is a superhurdle or a benign component that

has a separating superhurdle. Let u be this component, let the hurdle u0 be either u or the separating
hurdle of u, and let k be the hurdle chain of u0. One of the following must be true of v:
(a) v is the anchor of chain k.
(b) v is a protected nonhurdle not belonging to chain k.
(c) v is a benign component that has no separating hurdle, and no one component in chain k separates

v from another component in chain k.
(d) v is a superhurdle or a benign component with a separating superhurdle, and v or its separating

superhurdle forms a double superhurdle with u0.

The proof of Lemma 9 is rather complicated and depends on establishing several intermediate results.
It is left for the appendix.

Lemmas 7 and 9 allow Lemmas 3, 4, 5, and 6 to be generalized to accommodate fortresses.

Theorem 1 (Generalization of Lemma 3). A reversal ½ that acts on two black edges belonging to
the same oriented cycle is a sorting reversal iff the edges are divergent and one of the following is true:

1. ½ does not introduce an unoriented component.
2. There exists no fortress (f D 0) and ½ introduces at least one unoriented component, but does not

change the number of hurdles, and does not cause there to be an odd number of hurdles all of which
are superhurdles.

3. There exists a fortress (f D 1), and ½ introduces at least one unoriented component such that the
number of hurdles remains the same or increases by exactly one.

Proof. The reversal is a sorting reversal iff ¡1c C 1h C 1f D ¡1. For a reversal that acts on two
black edges of the same oriented cycle, 1hC1f ¸ 0, because no unoriented component is affected. Thus,
a sorting reversal occurs iff 1c D 1 and 1h C 1f D 0 (because 1c 2 f¡1; 0; 1g). As before, 1c D 1
iff the edges are divergent. Therefore, it is suf� cient to show that 1h C 1f D 0 iff one of the three
cases of the lemma applies. First, consider the claim that 1h C 1f D 0 if one of the cases of the lemma
applies. If the � rst case applies, ½ cannot alter the set of unoriented components, because it affects only
a single oriented component and introduces no new unoriented components; thus, 1h D 0 and 1f D 0.
The second case requires directly that 1h D 0 and indirectly (by Lemma 7) that 1f D 0; thus, it ensures
1h C 1f D 0. The third case states that 1h 2 f0; 1g. Furthermore, by Lemma 9, if 1h D 0, then 1f D 0,
and if 1h D 1, then 1f D ¡1. Thus, in the third case also, 1h C 1f D 0. Now consider the converse
claim, that 1h C 1f D 0 only if one of the cases applies. Suppose 1h C 1f D 0. Either (1) ½ does not



586 SIEPEL

introduce at least one unoriented component, (2) ½ introduces at least one unoriented component and there
is not a fortress, or (3) ½ introduces at least one unoriented component and there is a fortress. Each of these
three possibilities implies the corresponding case of the lemma, as follows. Possibility (1) is equal to the
� rst case. Under possibility (2), either 1f D 0 and 1h D 0, or 1f D 1 and 1h D ¡1 (because f D 0);
but we know 1h ¸ 0, because ½ affects only a single oriented component, so 1f D 0 and 1h D 0. Thus,
½ cannot increase the number of hurdles and, by Lemma 7, cannot cause there to be an odd number of
hurdles all of which are superhurdles. Under possibility (3), either 1f D 0 and 1h D 0, or 1f D ¡1
and 1h D 1 (because f D 1); thus, the number of hurdles either remains the same or increases by
exactly one.

Theorem 2 (Generalization of Lemma 4). A reversal ½ that acts on two black edges belonging to
the same unoriented cycle ci;j is a sorting reversal iff one of the following is true of the component mi to
which ci;j belongs:

1. There exists no fortress (f D 0), mi is a simple hurdle, and either mi is not the only simple hurdle or
the number of superhurdles is even.

2. There exists a fortress (f D 1) and mi is a single protector or a pseudohurdle.

Proof. If ½ acts on two black edges of an unoriented cycle, then 1c D 0; thus, ½ is a sorting reversal
iff 1h C 1f D ¡1. The claim in the “if” direction can be proved by showing that 1h C 1f D ¡1 if one
of the cases of the lemma applies. Suppose there exists no fortress, ½ acts on two black edges belonging
to the same cycle ci;j of a simple hurdle mi , and either mi is not the only simple hurdle or the number of
superhurdles is even. Then, as in Lemma 4, ½ eliminates mi and affects no other hurdle, causing 1h D ¡1.
Furthermore, ½ cannot introduce a fortress (Lemma 7), so 1f D 0. Suppose instead that there exists a
fortress and mi is a single protector or a pseudohurdle. Then by Lemma 8, 1h D 0, and by Lemma 9,
1f D ¡1. Therefore, both of the cases in the lemma imply that 1h C 1f D ¡1. The claim in the “only
if” direction can be proved by showing that 1h C 1f D ¡1 only if one of the cases of the lemma applies.
Suppose 1h C 1f D ¡1. Either 1f D ¡1 and 1h D 0 or 1f D 0 and 1h D ¡1; it cannot be true that
1f D 1 and 1h D ¡2, because ½ affects only a single component. If 1f D ¡1 and 1h D 0, then a
fortress must exist initially and be eliminated; thus, ci;j must belong to a single protector or pseudohurdle
(Lemma 9). If 1f D 0, then Lemma 4 applies, and mi must be a simple hurdle. Furthermore, by Lemma
7, it must not be true that there are an odd number of superhurdles and mi is the only simple hurdle.
Therefore, one of the cases of the lemma must apply.

Theorem 3 (Generalization of Lemma 5). A reversal ½ cannot be a sorting reversal if ½ acts on two
black edges belonging to different cycles of the same component.

Proof. Suppose to the contrary that ½ acts on two black edges belonging to different cycles of the
same component and ½ is a sorting reversal. Because ½ acts edges of different cycles, 1c D ¡1; therefore,
it must be true that 1h C 1f D ¡2. Because 1f 2 f¡1; 0; 1g and 1h ¸ ¡1 (the latter because ½ affects
a single component), it must be true that 1f D ¡1 and 1h D ¡1. Thus, a fortress must exist initially and
be destroyed by ½. But a reversal that affects a single unoriented component eliminates a fortress iff it cuts
a single protector or a pseudohurdle (Lemma 9)—a contradiction, because ½ acts on edges of different
cycles.

Theorem 4 (Generalization of Lemma 6). A reversal ½ that acts on black edges belonging to different
components u and v is a sorting reversal iff either:

1. There exists no fortress (f D 0) and all of the following are true:
(a) Each of u and v is a hurdle or a benign component that has a separating hurdle.
(b) u and v are not benign components sharing the same separating hurdle.
(c) u and v or their separating hurdles do not form a double superhurdle.
(d) The elimination of the hurdles associated with u and v will not leave an odd number of hurdles

all of which are superhurdles.



ALGORITHM TO ENUMERATE SORTING REVERSALS 587

2. There exists a fortress (f D 1) and either:
(a) Each of u and v is a superhurdle or a benign component that has a separating superhurdle, u and

v are not benign components sharing the same separating hurdle, and u and v or their separating
hurdles do not form a double superhurdle; or

(b) Case 3 of Lemma 9 applies.

Proof. First, consider the claim that ½ is a sorting reversal if either case of the lemma applies. If case 1
applies, then 1f D 0 by criterion 1d (Lemma 7); as a result, Lemma 6 applies, and by virtue of criteria
1a, 1b, and 1c, ½ is a sorting reversal. If case 2 applies, then either case 2a applies or case 2b applies. If
case 2a applies, then either 1f D 0 or 1f D ¡1 (because f D 1). If 1f D 0, then Lemma 6 applies, and
½ is a sorting reversal. Otherwise, if 1f D ¡1, then it must be true that 1h ¸ ¡1, because 1c D ¡1 and
1d 2 f¡1; 0; 1g; but this is impossible, because ½ will eliminate two hurdles and introduce no new ones,
as described in the proof of Lemma 6. If, instead, case 2b applies, then ½ is a sorting reversal by Lemma 9.
Thus, ½ is a sorting reversal if either case of the lemma applies. Now consider the converse claim, that
½ is a sorting reversal only if one of the cases of the lemma applies. For all reversals, 1f 2 f¡1; 0; 1g.
In addition, if 1f D 0, then f 2 f0; 1g; if 1f D ¡1, then f D 1; and if 1f D 1, then f D 0. Suppose
1f D 0. Then Lemma 6 applies, and ½ is a sorting reversal only if f D 0 and criteria 1a, 1b, and 1c are
met, or if f D 1 and case 2a applies. In addition, if f D 0, then criterion 1d must be met, as required by
Lemma 7. Suppose instead that 1f D ¡1. Then ½ is a sorting reversal only if case 3 of Lemma 9 applies,
and equivalently, case 2b of the present lemma. Finally, suppose 1f D 1. Then, because 1c D ¡1, ½ is
a sorting reversal only if 1h D ¡3, which is impossible, because 1h ¸ ¡2 in all cases (see the proof of
Lemma 6). Therefore, ½ is a sorting reversal only if one of the cases of the lemma applies.

5. AN ALGORITHM TO ENUMERATE ALL SORTING REVERSALS

Theorems 1, 2, 3, and 4 lead directly to an algorithm to address ASR (Fig. 5). For clarity of presentation
and economy of space, I have described as separate subroutines the steps of the algorithm that split cycles
(get_revs_split_cycles , see Fig. 6; Theorem 1), cut hurdles or pseudohurdles (get_revs_cut_

hurdles, see Fig. 7; Theorem 2), and merge components (get_revs_merge_nofort , see Fig. 8, and
get_revs_merge_fort , see Fig. 9; Theorem 4). Theorem 3 is addressed implicitly, by the absence
of a corresponding step. The correctness of algorithm find_all_sorting_reversals follows from
Lemma 1 and Theorems 1, 2, 3, and 4.

One step in the routine to enumerate sorting reversals that split cycles (get_revs_split_cycles ) is
particularly important: the step that detects whether a reversal that splits a cycle introduces new unoriented
components. This step is relatively expensive, and turns out to be a bottleneck for the algorithm; it must
be performed for every candidate reversal of the class that splits cycles, and candidates of this class are
by far the most common (candidates of the other classes are possible only when hurdles are present, and
hurdles are rare). I refer to the routine that executes this step as detect.

I implemented two versions of detect and compared their performance. The � rst version simply reruns
the connected_components algorithm of Bader et al. (2001) and tests whether more unoriented
components are present after a reversal than before. This approach takes time linear in the number of
vertices of the affected component (the connected_components routine can be constrained to run
only on the affected component). The second version of detect uses a novel algorithm that extends ideas
presented by Bergeron (2001) and Bergeron and Strasbourg (2001) for modeling changes to the overlap
graph induced by a reversal. The key to the algorithm is the following lemma.

Lemma 10 (Siepel, 2001). The effect on the overlap graph of any reversal is to complement the
subgraph of all vertices corresponding to affected gray edges.

Lemma 10 is a generalization of Lemma 11 (below), which was central to Bergeron and Strasbourg’s
approach to sorting by reversals. Lemma 11 was not adequate for my purposes because it applies only to
reversals induced by oriented gray edges in the breakpoint graph. As has been shown above, many other
classes of sorting reversals exist.



588 SIEPEL

FIG. 5. Algorithm find_all_sorting_reversals. The subroutines get_revs_split_cycles, get_

revs_cut_hurdles, get_revs_merge_nofort, and get_revs_merge_fort are assumed to return lists
of all sorting reversals that, respectively, split cycles, cut hurdles (or pseudohurdles), merge components when
there is no fortress, and merge components when there is a fortress. They are de� ned below in Figs. 6, 7, 8,
and 9.

Lemma 11 (Kaplan et al., 1999; Bergeron, 2001). If one performs the reversal corresponding to an
oriented vertex v, the effect on the overlap graph will be to complement the subgraph of v and its adjacent
vertices.

A complete description of the new detect algorithm is outside the scope of this paper. Essentially, this
algorithm obtains the new overlap graph that would result from a candidate reversal using Lemma 10 and
the “bitwise” techniques introduced by Bergeron and Strasbourg, by which the overlap graph is represented
as a “bit matrix” and changes to it are modeled using bitwise and, not, and exclusive or operations. The
algorithm searches the new graph for unoriented components, using certain tricks to avoid an exhaustive
search. I will refer to this algorithm as the “bitwise” version of detect. It takes O.k2/ time, where k is the
number of vertices in the affected component.

Algorithm find_all_sorting_reversals takes O.n3/ or O.n4/ time, depending on whether
the connected-components or bitwise version of detect is used. While all sorting reversals can be
enumerated by brute force in 2.n3/ time, in practice the new algorithm offers a considerable improvement
in performance, as will be shown in the next section.

6. EXPERIMENTAL METHODS AND RESULTS

I implemented Algorithm 5 in C and tested it for correctness and speed. My implementation, program
find-all-sr , allows either detect algorithm to be selected at compile time. The program comprises
about 1,600 lines of code (source code is available at www.cse.ucsc.edu/»acs).

http://www.cse.ucsc.edu/%7E


ALGORITHM TO ENUMERATE SORTING REVERSALS 589

FIG. 6. Algorithm get_revs_split_cycles. Note that cases 2 and 3 of Theorem 1 are not handled separately.
It is simplest just to test whether the sum 1h C 1f D 0, as will be true iff ½ is a sorting reversal (see the proof
of Theorem 1). In this algorithm, and in the ones that follow, the notation ½.ei;j;k; ei0;j 0;k0 / is used to indicate the
reversal that acts on black edges ei;j;k and ei 0;j 0;k0 .

FIG. 7. Algorithm get_revs_cut_hurdles.



590 SIEPEL

FIG. 8. Algorithm get_revs_merge_nofort.

Test data fell into three classes. The � rst class consisted of pairs of random signed permutations, such
that one member of each pair had been “scrambled” with respect to the other by a speci� ed number of
random reversals. The second class was similar to the � rst except that permutations were scrambled not
with random reversals but with a procedure designed to introduce unoriented components (to exercise the
parts of the program that are active only when multiple unoriented components are present). The third class
consisted of hand-picked pairs of permutations representing special cases unlikely to appear in the other
two classes (con� gurations involving fortresses, long hurdle chains, double superhurdles, and the like).
A total of several thousand pairs of permutations were produced. Correctness testing was performed by
comparing the output of program find-all-sr with that of a control called program find-all-bf .
The latter program � nds all sorting reversals of one permutation with respect to another by brute force—
that is, by considering all

¡
nC1

2

¢
“neighbors” of one permutation and computing the reversal distance of

each neighbor from the other permutation. Program find-all-bf directly uses the well-tested code for
reversal distance by Bader et al. (2001), and because it is also very simple, is believed to be highly reliable.
Program find-all-sr was not con� rmed to be correct until on all test cases it produced identical results
to program find-all-bf . Performance testing focused on two types of comparisons: the performance
of find-all-sr versus that of find-all-bf , and the performance of find-all-sr when using
the connected-components version of the detect algorithm versus that when using the bitwise version.
All testing was performed on a Sony laptop with a 700 MHz Pentium III processor and 128 MB of RAM,



ALGORITHM TO ENUMERATE SORTING REVERSALS 591

FIG. 9. Algorithm get_revs_merge_fort. The array “mark” simply ensures that pairs of hurdles are not
processed twice.

running the Linux operating system (RedHat 7.0). The most extensive testing was performed using test data
of the � rst class, as the presence of multiple unoriented components did not appear to change performance
signi� cantly. I ran tests for values of n between 25 and 100 and numbers of random reversals (a parameter
called r) between 0% and 100% of n.

Figure 10 shows results for n D 100 and 0 < r · 100, which are typical of what was observed. Plots
are shown for find-all-bf and both versions of find-all-sr . As would be expected, the brute



592 SIEPEL

FIG. 10. (a) Running times of programs find-all-bf (an implementation of the brute-force algorithm) and
find-all-sr (an implementation of Algorithm 5) for n D 100 and various values of r (the number of random
reversals by which one of the permutations has been “scrambled”). Plotted are total times required to process 500 pairs
of permutations. Results are shown for find-all-sr using both the connected-components(find-all-sr1) and
bitwise (find-all-sr2) versions of detect. (b) Speed-up of find-all-sr2 with respect to find-all-bf

for the same experiment.

force algorithm shows approximately constant performance6 for all values of r, and the implementations
of Algorithm 5 perform signi� cantly better at small r than at large r . Note that Algorithm 5 still performs
approximately three times as fast as the brute force approach even when r D n, when it should be
closest to its worst-case performance. Note also that the bitwise implementation of detect outperforms
the connected-components implementation consistently, for all values of r . Figure 10 plots the speed-up
of find-all-sr with respect to find-all-bf . In this experiment, a speed-up of over 400 times
is achieved for r · 10. These results are particularly encouraging because small values of r are often
of greatest interest when solving higher-level genome rearrangement problems with real biological data.
Figure 11 shows the number of sorting reversals for 0 < r · 100. When r is close to n, as one might
expect, a signi� cant fraction of all possible reversals are sorting reversals; but even when r D 0:5n,
hundreds of sorting reversals are possible.

6The slightly better performance of find-all-bf at small r is probably the result of improvements in the speed
of distance calculations due to the presence of numerous trivial components.



ALGORITHM TO ENUMERATE SORTING REVERSALS 593

FIG. 11. Average number of sorting reversals for the experiment shown in Fig. 10. Error bars indicate one standard
deviation.

7. SUMMARY

An algorithm has been presented that enumerates all sorting reversals of one signed permutation with
respect to another, and consequently, allows the enumeration of all minimum-length sequences of sorting
reversals. The algorithm is based on a combination of the original theory of Hannenhalli and Pevzner with
more recent insights by Setubal and Meidanis. It depends on the characterization of several new types of
unoriented components and makes use of a simple graph that succintly captures many of the important
relationships among unoriented components (the hurdle graph). The algorithm follows from an exhaustive
classi� cation scheme for all reversals and a case-by-base analysis of each class. It has been derived by � rst
solving a simpler version of the problem, the “Fortress Free Model” .FFM/, then adjusting the solution
to accommodate fortresses. The solution of the FFM is fairly straightforward; accommodating fortresses
is more dif� cult, especially in the case of a reversal that affects multiple components (Theorem 4).

The � nal algorithm takes O.n3/ or O.n4/ time, depending on which version is used of the routine
to detect the introduction of new unoriented components (detect). In asymptotic terms, it offers little
improvement over a very simple brute-force solution, that of enumerating each neighbor of one permuta-
tion and testing its distance from the other permutation, which requires 2.n3/ time. In practice, however,
the new algorithm performs dramatically better; a speed-up of more than 400 times was observed for
permutations of size 100, when the distances between permutations were small. The algorithm is signi� -
cantly faster when using the “bitwise” version of detect than when using the “connected-components”
version.

In both real and simulated data, hurdles are very rare (unless they are intentionally introduced into
simulated data). When no hurdle exists, the problem of ASR is dramatically simpli� ed, because only
reversals that split cycles can be sorting reversals. Thus, Theorem 1 and the algorithms of Figs. 5 and 6 are
suf� cient to solve the problem. An irony of problems of sorting-by-reversals is that while most theoretical
dif� culty stems from hurdles and fortress, these structures are almost completely absent in real data. An
implementation of only the algorithms of Figs. 5 and 6 would be adequate for most practical purposes, and
one of the algorithms of Figs. 5, 6, and 7 for nearly all practical purposes (such a program could simply
abort when two or more hurdles were present).

While enumerating all minimum-length sequences of sorting reversals is of some theoretical interest,
the algorithm presented here is probably more useful for solving problems in which additional constraints
help to limit the size of the search space. For example, it has allowed for a large improvement in the
performance of a simple branch-and-bound approach to the reversal median problem (Siepel, 2001). Recent
work has supported the use of methods for phylogeny reconstruction that are based on multiple-permutation
generalizations of the problem of sorting by reversals (Bourque and Pevzner, 2002; Moret et al., 2002).
The algorithm presented here may help to improve the ef� ciency of such methods.



594 SIEPEL

A natural extension of the problem of enumerating all minimum-length sequences of reversals is to
enumerate all sequences of reversals that exceed the minimum length by no more than a small constant
k. This problem can be solved relatively easily if one can enumerate “neutral” reversals—that is, reversals
that do not change the reversal distance—as well as sorting reversals. As it turns out, the results pre-
sented in this paper can be extended to the case of neutral reversals without too much trouble (Siepel,
2001).

APPENDIX

Here, a complete proof for Lemma 9 is presented, beginning with several intermediate results.

Lemma A1. A reversal ½ that affects a single oriented component eliminates a fortress and is a sorting
reversal iff there exists a fortress, ½ acts on divergent edges of the same cycle, and ½ introduces at least
one new unoriented component such that the number of hurdles increases by exactly one.

Proof. If there exists a fortress, ½ acts on divergent edges of the same cycle, and ½ introduces at least
one new unoriented component such that the number of hurdles increases by exactly one, then ½ eliminates
the fortress (1f D ¡1), because there can no longer be an odd number of hurdles; furthermore, 1c D 1
(because ½ acts on divergent edges of the same cycle) and 1h D 1 (as required explicitly), so 1d D ¡1
and ½ is a sorting reversal. Thus, the claim in the “if” direction is proved. Now consider the converse claim,
that ½ eliminates a fortress and is a sorting reversal only if the criteria of the lemma are met. Suppose ½

is a sorting reversal that affects a single oriented component and eliminates a fortress. Clearly there must
exist a fortress. In addition, because 1f D ¡1 and 1d D ¡1, it must be true that 1h D 1c. Furthermore,
1h ¸ 0, because ½ affects a single oriented component, so either 1h D 1c D 0 or 1h D 1c D 1 (recall
that 1c 2 f¡1; 0; 1g). It is impossible, however, that 1h D 0, because ½ can eliminate a fortress only by
changing the number of hurdles or by converting simple hurdles to superhurdles; and here it cannot convert
a simple hurdle to a superhurdle, because it affects only a single oriented component. Thus, 1h D 1c D 1.
If 1c D 1, then ½ must act on divergent edges of the same cycle, and if 1h D 1, then ½ must introduce
at least one new unoriented component (again because it affects only a single oriented component). Thus,
all of the criteria of the lemma must be met.

Lemma A2. A reversal ½ that affects a single unoriented component eliminates a fortress and is a
sorting reversal iff there is a fortress and ½ cuts a single protector or a pseudohurdle.

Proof. First consider the claim that ½ eliminates a fortress and is a sorting reversal if there is a fortress
and ½ cuts a single protector or a pseudohurdle. Suppose there is a fortress and ½ cuts a single protector
or a pseudohurdle. By Lemma 8, ½ must leave the number of hurdles unchanged but replace a superhurdle
with a simple hurdle. Thus, the fortress must be eliminated, because a fortress cannot exist if a simple
hurdle is present. Furthermore, ½ must be a sorting reversal, because 1c D 0 (½ must act on convergent
edges of the same cycle), 1h D 0 (by Lemma 8), and 1f D ¡1 (as shown above). Now consider the
converse claim, that ½ eliminates a fortress and is a sorting reversal only if there is a fortress and ½ affects
a single protector or a pseudohurdle. Suppose to the contrary that ½ eliminates a fortress and is a sorting
reversal but affects a component u that is (1) a superhurdle but not a single protector or (2) a protected
nonhurdle but not a pseudohurdle (these are the only possible alternatives because a simple hurdle cannot
exist in the case of a fortress). By De� nitions 7 and 8, ½ must belong either to an unanchored hurdle chain
or to an anchored hurdle chain of length greater than two. But an unanchored hurdle chain cannot exist,
because it would require there to be an even number of hurdles (which is impossible if there is a fortress);
thus, u must belong to an anchored hurdle chain of length greater than two. As a result, when ½ affects
and orients u, an anchored hurdle chain of length at least two must remain, and such a chain must be
terminated by a superhurdle. Because ½ can alter no other hurdle chain (it affects only a single unoriented
component), the number of hurdles must remain unchanged and no superhurdle can have been converted
to a simple hurdle; thus, the fortress must remain, and we have a contradiction.



ALGORITHM TO ENUMERATE SORTING REVERSALS 595

Lemma A3. A reversal ½ that affects multiple components eliminates a fortress and is a sorting
reversal iff there is a fortress and ½ acts on black edges belonging to different components u and v such
that either:

1. u and v are superhurdles or benign components with separating superhurdles, and u and v or their
separating hurdles form a double superhurdle; or

2. u and v are such that ½ affects all members of exactly one superhurdle chain.

Proof. First consider the claim that ½ eliminates a fortress if there is a fortress and one of the cases
of the lemma applies. Suppose there is a fortress and u and v or their separating hurdles form a double
superhurdle (note that all hurdles must be superhurdles, because there is a fortress). Then ½ must destroy
two hurdles and cause a new one to emerge, as described in the proof of Lemma 6. Thus, 1h D ¡1, and as
a result, ½ will destroy the fortress (an odd number of hurdles will be made even). Furthermore, 1c D ¡1
(½ acts on edges of different cycles), so 1d D ¡1 and ½ is a sorting reversal. Suppose instead that there
is a fortress and u and v are such that ½ affects all members of exactly one superhurdle chain, k. Then
½ must remove k from the hurdle graph, but can completely remove no other hurdle chain. The reason
is that every member of k will become oriented and so will be removed from the graph; but every other
chain will have at least one member that is not affected (note that all chains must be anchored, because
there is a fortress). Every hurdle chain must have a hurdle at its terminus, so the number of hurdles will
be decreased by exactly one and the fortress can no longer exist. Once again, 1c D ¡1, 1h D ¡1, and
1f D ¡1, and ½ is a sorting reversal.

Now consider the converse claim, that a reversal ½ that affects multiple components eliminates a fortress
only if there is a fortress and one of the cases of the lemma applies. Suppose ½ affects multiple components,
eliminates a fortress, and is a sorting reversal. Clearly ½ can eliminate a fortress only if there is a fortress.
In addition, if ½ affects multiple components, it must act on black edges belonging to different components.
Consequently, 1c D ¡1, and ½ is a sorting reversal only if 1h D ¡1. If 1h D ¡1, ½ must affect all
members of at least one hurdle chain; if it affected all members of no hurdle chain, the number of hurdles
could not decrease. Because no reversal can affect more than two hurdles, ½ can affect all members of no
more than two hurdle chains. Thus, if 1h D ¡1, ½ either affects all members of one hurdle chain and
introduces no new hurdles, or affects all members of two hurdle chains and introduces one new hurdle.
As described in the proof of Lemma 6, ½ introduces a new hurdle only if u and v or their separating
hurdles form a double superhurdle. Furthermore, if ½ affects the members of a double superhurdle, then it
affects two hurdles and all unoriented components that separate them; thus, ½ affects all members of two
hurdle chains and introduces one new hurdle. Therefore, ½ either affects all members of one hurdle chain
or affects the members of a double superhurdle. Finally, any affected hurdle chain must be a superhurdle
chain, because there is a fortress, so the claim is proved.

Lemma A4. A reversal ½ eliminates all members of exactly one superhurdle chain iff it acts on black
edges belonging to two components u and v such that the following is true. One of u and v is either a
superhurdle or a benign component with a separating hurdle. Let u be this component, let the hurdle u0

be either u or the separating hurdle of u, and let k be the hurdle chain of u0. One of the following is true
of v:

1. v is the anchor of chain k,
2. v is a protected nonhurdle not belonging to chain k,
3. v is a benign component that has no separating hurdle, and no one component in chain k separates v

from another component in chain k.

Proof. First consider the claim that ½ eliminates all members of exactly one superhurdle chain if the
criteria of the lemma are met. Let u, u0, and k be de� ned as stated, and suppose one of the three cases
of the lemma applies to v. Each case requires that every member of k either be equal to u, be equal
to v, or separate u and v. (The third case is subtle: if v is a benign component that has no separating
hurdle, and no one component in chain k separates v from another component in chain k, then v must



596 SIEPEL

be separated from u0 by the anchor of k; thus, for our purposes, v is much like a protected nonhurdle
not belonging to chain k). Each case also requires that all members of no other chain separate u and v.
Therefore, ½ does not eliminate all members of any other superhurdle chain. Now consider the converse
claim, that ½ eliminates all members of exactly one superhurdle chain only if the criteria of the lemma
are met. Suppose ½ eliminates all members of superhurdle chain k and does not eliminate all members of
any other superhurdle chain. Then ½ must act on the black edges of two components u and v such that
(without loss of generality) u is equal to, or separated from v by, the superhurdle u0 of k, and v is equal
to, or separated from u by, the anchor a of k. Therefore, u must either equal u0 or be a benign component
separated by u0. If v equals the anchor a, then the � rst case applies. Otherwise, v must be a superhurdle, a
protected nonhurdle, or a benign component. However, v cannot be a superhurdle; if it were, all members
of two superhurdle chains would be eliminated. If v is a protected nonhurdle (and is not a), then it must
not belong to k; otherwise, a would not separate u and v. If v is a benign component, then it must not
have a separating superhurdle (otherwise all members of two superhurdle chains would be eliminated),
and no one component in k can separate v from another (otherwise a would not separate u and v). Thus,
the criteria of the lemma must be met.

Lemma 9. A reversal ½ will eliminate a fortress and be a sorting reversal iff there exists a fortress
and one of the following is true:

1. ½ acts on divergent edges of the same cycle and introduces at least one new unoriented component
such that the number of hurdles increases by exactly one.

2. ½ cuts a single protector or a pseudohurdle.
3. ½ affects two components u and v such that one of u and v is a superhurdle or a benign component that

has a separating superhurdle. Let u be this component, let the hurdle u0 be either u or the separating
hurdle of u, and let k be the hurdle chain of u0. One of the following must be true of v:
(a) v is the anchor of chain k.
(b) v is a protected nonhurdle not belonging to chain k.
(c) v is a benign component that has no separating hurdle, and no one component in chain k separates

v from another component in chain k.
(d) v is a superhurdle or a benign component with a separating superhurdle, and v or its separating

superhurdle forms a double superhurdle with u0.

Proof. Any reversal must affect a single oriented component, a single unoriented component, or mul-
tiple components. A reversal that affects a single oriented component eliminates a fortress and is a sorting
reversal iff case 1 applies (Lemma A1), a reversal that affects a single unoriented component eliminates
a fortress and is a sorting reversal iff case 2 applies (Lemma A2), and a reversal that affects multiple
components eliminates a fortress and is a sorting reversal iff case 3 applies (Lemmas A3 and A4).

ACKNOWLEDGMENTS

Thanks to Bernard Moret, my adviser at the University of New Mexico, for encouragement and support,
and to the anonymous reviewers of this paper for corrections and helpful suggestions.

REFERENCES

Bader, D.A., Moret, B.M.E., and Yan, M. 2001. A linear-time algorithm for computing inversion distance between
signed permutations with an experimental study. Proc. 7th Int. Workshop on Algorithms and Data Structures, Lecture
Notes in Computer Science, vol. 2125, 365–376.

Bafna, V., and Pevzner, P.A. 1993. Genome rearrangements and sorting by reversals. Proc. 34th Ann. IEEE Symposium
on Foundations of Computer Science, 148–157.

Bergeron, A. 2001. A very elementary presentation of the Hannenhalli–Pevzner theory. Proc. 12th Ann. Symposium
on Combinatorial Pattern Matching, Lecture Notes in Computer Science, vol. 2089, 106–117.



ALGORITHM TO ENUMERATE SORTING REVERSALS 597

Bergeron, A., and Strasbourg, F. 2001. Experiments in computing sequences of reversals. Proc. 1st Int. Workshop on
Algorithms in Bioinformatics, Lecture Notes in Computer Science, vol. 2149, 164–174.

Berman, P., and Hannenhalli, S. 1996. Fast sorting by reversal. Proc. 7th Ann. Symposium on Combinatorial Pattern
Matching, 168–185.

Blanchette, M., Kunisawa, T., and Sankoff, D. 1996. Parametric genome rearrangement. Gene 172, GC11–GC17.
Bourque, G., and Pevzner, P.A. 2002. Genome-scale evolution: Reconstructing gene orders in the ancestral species.

Genome Res. 12, 26–36.
Caprara, A. 1997. Sorting by reversals is dif� cult. Proc. 1st Ann. Int. Conf. Computational Molecular Biology, 75–83.
Hannenhalli, S., and Pevzner, P.A. 1995. Transforming cabbage into turnip (polynomial algorithm for sorting signed

permutations by reversals). Proc. 27th Ann. ACM Symposium on the Theory of Computing, 178–189.
Kaplan, H., Shamir, R., and Tarjan, R.E. 1999. A faster and simpler algorithm for sorting signed permutations by

reversals. SIAM J. Comput. 29(3), 880–892.
McLysaght, A., Seoighe, C., and Wolfe, K.H. 2000. High frequencyof inversionsduring eukaryote gene order evolution.

In Sankoff, D., and Nadeau, J.H., eds., Comparative Genomics, 47–58, Kluwer Academic Press, NY.
Moret, B.M.E., Siepel, A., Tang, J., and Liu, T. 2002. Inversion medians outperform break-point medians in phylogeny

reconstruction from gene-order data. Proc. 2nd Int. Workshop on Algorithms in Bioinformatics, Lecture Notes in
Computer Science, vol. 2452, 521–536.

Sankoff, D., and El-Mabrouk, N. 2002. Genome rearrangement. In Jiang, T., Xu, Y., and Zhang, M., eds., Current
Topics in Computational Molecular Biology, 135–156, MIT Press, New Haven, CT.

Setubal, J., and Meidanis, J. 1997. Introduction to Computational Molecular Biology, PWS Publishing, Boston, MA.
Siepel, A. 2001. Exact Algorithms for the Reversal Median Problem. Master’s thesis, University of New Mexico,

Albuquerque, New Mexico. Available at www.cse.ucsc.edu/»acs/masters-thesis.html.

Address correspondence to:
Adam C. Siepel

Center for Biomolecular Science and Engineering
Baskin Engineering Building

University of California
Santa Cruz, CA 95064

E-mail: acs@soe.ucsc.edu

http://www.cse.ucsc.edu/%7Eacs/masters-thesis.html
http://www.cse.ucsc.edu/%7Eacs/masters-thesis.html
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1088-9051^28^2912L.26[aid=5137072]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0097-5397^28^2929:3L.880[aid=1938238]

