
Adaptive Plug-and-Play Components for Evolutionary Software Development

Mira Mezini and Karl Lieberherr

College of Computer Science, Northeastern University, Boston, MA 02115-9959

e-mail: fmira,lieberg@ccs.neu.edu

Abstract

In several works on design methodologies, design pat-
terns, and programming language design, the need for
program entities that capture the patterns of collabora-
tion between several classes has been recognized. The
idea is that in general the unit of reuse is not a single
class, but a slice of behavior a�ecting a set of collaborat-
ing classes. The absence of large-scale components for
expressing these collaborations makes object-oriented
programs more di�cult to maintain and reuse, because
functionality is spread over several methods and it be-
comes di�cult to get the \big picture". In this pa-
per, we propose Adaptive Plug and Play Components
to serve this need. These components are designed such
that they not only facilitate the construction of complex
software by making the collaborations explicit, but they
do so in a manner that supports the evolutionary nature
of both structure and behavior.

1 Introduction

This paper describes an approach to generic, compos-
able components that encapsulate collaborations be-
tween objects, providing a linguistic construct for ex-
pressing design segments found in collaboration-based
(role-based) designs [8, 28, 24]. The term collaboration-
based design [1, 9, 23] describes a methodology for de-
composing object-oriented applications into a set of classes
and a set of collaborations. Collaborations express dis-
tinct and (relatively independent) aspects of an appli-
cation which may involve several participants, or roles.
Each application class may play di�erent roles in di�er-
ent collaborations, where each role embodies a separate
aspect of the class behavior.

In this way, collaboration-based designs represent
object-oriented applications in two di�erent ways: in
terms of participants or classes that are involved, and
in terms of the tasks or concerns of the design, as il-
lustrated in Fig. 1. This twofold representation results
in more comprehensive and reusable designs [1, 9, 23].
For the same reason, several other design methodolo-
gies support collaboration diagrams as one of their most
important artifacts which facilitate understanding the
overall behavior of high-level system operations result-
ing from the use-cases [4].

class K1

collaboration C1

collaboration C2

collaboration C3

collaboration C4

2,1role K

1,1role K

4,1role K

class K2

2,2role K

1,2role K

3,2role K

4,2role K

class K3

1,3role K

3,3role K

4,3role K

Figure 1: Collaboration-Based Decomposition

However, as also indicated in several other works
[7, 8, 28, 24], object-oriented languages lack appropriate
language constructs for expressing collaboration-based
designs. This causes the clarity of the designs to get
lost in the control
ow of several small methods scat-
tered around the class hierarchy, when mapped into
code. The aim of our work is to bridge this gap be-
tween design and implementation. We propose a new
component construct that:

(a) explicitly captures a slice of behavior (a speci�c
task) that a�ects several classes,

(b) is complementary to the existing object-oriented

models in the sense that it does not substitute
classes but rather complements them, and

(c) supports a decomposition granularity that lies be-
tween the granularity supported by classes and
package modules.

The motivation behind (a) is that the unit of reuse
is generally not the class, but a slice of behavior af-
fecting several classes. The idea is that single methods
often only make sense in a larger context, and are dif-
�cult to reuse individually. This is actually the core of
the object-oriented application framework technology.
However, frameworks are described by means of pro-
gramming languages. As a result, they su�er from prob-
lems that are due to the lack of language constructs for
clearly expressing patterns of collaborations [9, 12, 19].

This is supported by studies conducted by Wilde et
al. [30] which observe that object-oriented technology
can be a burden to the maintainer because function-
ality is often spread over several methods which must
all be traced to get the "big picture". Similar results
have recently been reported by a series of studies on
real-life object-oriented systems by Lauesen [14]. He
observes that object-oriented technology has not met
its expectations when applied to real business applica-
tions and argues that this is partly due to the fact that
there is no natural place where to put higher-level sys-
tem operations which a�ect several objects. He justi�es
his claim based partly on the experience of companies
which did not succeed with large OO systems until they
put control
ow and higher-level system operations out-
side class behavior: \if built into the classes involved,
it was impossible to get an overview of the control
ow.
It was like reading a road map through a soda straw"
[14].

The rationale behind (b) is that both classes and
modules are essential language constructs for program-
ming software systems [27]. The construct we are propos-
ing does not substitute classes; it is a higher-level con-
struct that complements classes in expressing collabora-
tions rather than isolated behaviors. As stated in [28],
it is the symbiosis of the two views, participant-based
versus task-based, that gives the collaboration-based de-
sign its power. The participant view captures conven-
tional notions of object-oriented design { classes are a
perfect construct to map the participant view from de-
sign into code. The collaboration view captures cross-
cutting aspects of designs; without it, the relationships
across objects are lost.

The requirement stated in (c) follows from the fact
that classes are "too small" while package-like modules
�a la Oberon [31] are "too big" program building blocks.
The class construct is a perfect vehicle to implement
variations of an abstract data type. What is needed,

however, is a mechanism to built higher-level program
entities that capture the collaboration of classes. On
the other hand, package-like modules are important to
master complexity and are often used as a unit for sep-
arate compilation and dynamic loading, but they are
only syntactic in nature and have no direct signi�cance
at run-time.

The new linguistic constructs proposed in this paper
are called Adaptive Plug and Play Components (AP-
PCs for short). The name stems from two features
in their design. First, APPCs are called adaptive be-
cause they are designed to express collaborations that
can be matched against a whole family of applications
(class graphs). Collaborations are written to an ab-
stract class graph that is made a formal parameter of
an APPC, called the interface class graph. The inter-
face class graph de�nes the \view" of the collaboration
to a \true" class graph. By letting each component de-
�ne a view (interface) to the "true" class graph, and
by programming to that interface, we achieve a big win
in reusability; to reuse the component, one needs only
wrap the interface around another class graph and the
component should work in that setting too. Some prop-
erties that must be ful�lled in order for the wrapping
of the interface to work have been de�ned.

Second, APPCs are attributed as \plug and play"
components because they have been designed to sup-
port
exible white/black-box compositions that allow
to incrementally evolve existing collaborations, respec-
tively to create higher-level collaborations out of simpler
ones, while keeping the ingredients in the composition
loosely coupled for better reuse.

The remainder of the paper is organized as follows.
Section 2 justi�es the need for the \adaptive" and \plug
and play" features in the design of the intended compo-
nent construct. Section 3 presents APPCs and shows
how they actually provide the intended features. Some
implementation issues are considered in Section 4. Re-
lated proposals are discussed in Section 5. Section 6
concludes the paper and outlines areas of future work.

2 Requirements on the Design of Collabo-

rative Components

In order to outline and justify some requirements on the
design of a language construct for explicitly expressing
collaborations, we elaborate an example originally pre-
sented in a more simple form in Holland's thesis [9]. The
example originated from an application system genera-
tor developed at IBM for the domain of order processing
systems. The goal of this application generator was to
encode a generic design for order entry systems that
could be subsequently customized to produce applica-
tions meeting a customer's speci�c needs. Customer's

speci�c requirements were recorded using a question-
naire. The installation guide supplied with the ques-
tionnaire described the options and the consequences
associated with questions on the questionnaire.

We start the discussion with a simpli�ed version of
the pricing component of such an application genera-
tor. Fig. 2 and 3 provide a partial speci�cation of the
functionality of this component by a partial class di-
agram and a simpli�ed collaboration diagram for the
main operation, price(). Although the design presented
in these two diagrams is fairly simple, complexity was
still a problem with the pricing component in the ap-
plication generator [9]; it's functionality was described
in nearly twenty pages of the installation guide.

The complexity resulted from numerous (and arbi-
trary) pricing schemes in use in industry and from the
representation of these schemes in the system. The
price of an order depends on several factors, such as
the type of the customer (government, educational), the
type of payment (regular, cash, etc.), the time of the
year (high versus low demand season), whether cost-
plus, or discounting applies, whether prior negotiated
prices are involved, whether extra charges for the items
apply such as taxes, deposits or surcharges, etc. For
the purpose of this paper, we consider two examples of
pricing schemes presented in [9]:

1. Regular Pricing: each product has a base price
which can be discounted depending on the number
of the units ordered.

2. Negotiated Pricing: a customer may have nego-
tiated certain prices and discounts for particular
items.

Given this short introduction of our running exam-
ple, let us now consider some requirements on the design
of a construct for expressing collaborative behavior that
are illustrated by the example.

First, collaborative behavior should, in general, be
reusable with a range of concrete applications, i.e., con-
crete class graphs. Recall that the design for the pricing
collaboration speci�ed in Fig. 2 and 3 is part of the de-
sign of an application generator. As such, the design is
actually not bound to any particular application. The
design speci�es only minimal requirements on the con-
crete applications to which this generic collaboration
may be attached. Concerning the structural aspects of
the application it states that there should be classes in
the application that play the roles of the participants
in Fig. 2, and these classes should directly or indirectly
be connected according to the connection pattern be-
tween the participants in the class diagram of Fig. 2.
With regard to the behavioral aspects, the design only
mentions some operations expected in the interface of

the participants and the control
ow among these op-
erations to realize the collaboration.

Given an actual application, the generic design of the
pricing component in Fig. 2 and 3 needs to be mapped
to the concrete class structure. By mapping we mean
assigning the responsibility for playing particular roles
in the generic collaboration to particular classes in the
concrete application and mapping paths in the generic
design into concrete association paths in the concrete
class diagram. The collaborative behavior in the col-
laboration diagram in Fig. 3 will carry over.

Second, even within the same application, it should
be possible to reuse the same collaboration multiple
times with di�erent objects playing di�erent roles. For
instance, given a concrete application, the participant-
to-class assignment for the pricing collaboration may
di�er from one pricing scheme to the other. For il-
lustration, assume a hypothetical application for order
processing that has a Product and a Customer class. In
this case, the role of the PricerParty would be played by
both Product and Customer depending on the pricing
scheme. Product has the information needed when the
regular pricing scheme is applied, while the Customer
is the knowledge expert when the negotiated pricing
scheme is applied.

The example considered so far is not special in the
requirement to write collaborative components that can
be applied to a family of class graphs. In general,
reusing collaborative components with a class graph is
useful for supporting any kind of polytypic function (al-
gorithm) [10] on data structures. These are functions
(algorithms) that apply to a range of data structures.
A very simple example would be counting all instances
of type x that are part of the structure representing a
type y. Even if we consider operations that apply only
to a certain data type, there might be several possible
representations of the data type, and it is desirable to
have algorithms adaptable to concrete representations.

In the remainder of the paper, we refer to the re-
quirement for reusing collaborations with both a fam-
ily of class graphs and with several class-to-participant
mappings for the same class graph, as the requirement
for supporting structure-generic components.

Let us now state some requirements on the com-
position mechanisms for collaborative behavior, using
the term composition for both white-box and black-box
composition. That is, we intend to support both (a) in-
crementally evolving collaborative behavior, i.e., being
able to de�ne new collaborative behavior by incremen-
tally re�ning the de�nitions of existing collaborations
(white-box composition), and (b) creating higher-level
collaborative behavior by making use of existing collab-
orations (black-box composition). The main goal in the
design of these compositions is to maximize reuse.

customer
item

ItemParty

float additonalCharges(float uniPrice, int qty);

PricerParty

float basicPrice(ItemParty item);
float discount(ItemParty item, int qty, Customer customer);

pricer

charges

ChargerParty

float cost(int qty, float unitPrice, ItemParty item);

LineItemParty

int quantity();

Customer

Figure 2: Class Diagram for the Pricing Component

:LineItemPartylineItem

price() 2: discount(item, qty, customer)
1: basicPrice(item)

3.2: cost(qty, unitPrice, itemInst)

:ChargerPartych

:ItemParty

3: additionalCharges(unitPrice, qty)

3.1: ch = next()

price() {
basicPrice = pricer.basicPrice(item);
discount = pricer.discount(item, qty, customer);
unitPrice = basicPrice - (discount * basicPrice);
quotePrice = unitPrice + item.additionalCharges(unitPrice, qty);
return quotePrice;}

pricer : PricerParty

:ChargerParty

itemInst
additionalCharges(qty, unitPrice, item) {
float addCharges = 0;
for all ch in charges {

addCharges = addCharge + ch.cost(qty, unitPrice, itemInst)}
return addCharges;}

Figure 3: Collaboration Diagram for the Pricing Component

Let us �rst consider white-box composition. One can
envisage several re�nements of the pricing functionality
considered so far (independent of the pricing schemes
in use). Two of them are considered here. A �rst ex-
ample, called AgingPricing, is a pricing policy in which
certain items get a reduction on their calculated price
based on the period of time they have been in stock
and on some characteristics of the items, e.g., whether
they are of certain brands. Another scenario is to have
reduction on certain items for frequent customers that
are identi�ed by a frequent customer advantage card.

The height of the reduction is determined based on the
recorded buying pro�le of the customer. We call this
second pricing policy FrequentCustomerPricing.

Both AgingPricing and FrequentCustomerPricing also
embody a collaboration among LineItemParty, ItemParty,
PricerParty, ChargerParty, and Customer. For instance,
calculating the (reduced) price remains the responsibil-
ity of the LineItemParty. This calculation is based on
the height of reduction, computing which would be the
responsibility of ItemParty and Customer in AgingPricing
and FrequentCustomerPricing, respectively. The collab-

orations for AgingPricing and FrequentCustomerPricing
represent re�nements of Pricing, in the sense that the
role of each participant in each of them can be expressed
as a re�nement of the role of the same participant in
Pricing. For instance, calculating the price in the Ag-
ingPricing policy is a re�nement of the way price is cal-
culated with the standard pricing policy.

The discussion above indicates inheritance-like re-
lationships, now at the level of collaborations between
several classes rather than at the level of single classes.
These relationships are schematically shown in Fig. 4,
with ellipses representing collaborations, and arrows rep-
resenting re�nement relationships between collabora-
tions without any commitment to the composition mech-
anism that would express these relationships at the im-
plementation level.

Pricing

AgingPricing FrequentCustomer
Pricing

Figure 4: Re�nement Collaborations

Several other variations of the basic pricing function-
ality can be speci�ed. In addition, one can think of fur-
ther re�ning AgingPricing and/or FrequentCustomerPric-
ing or combining them into a composed variation, say
AgingAndFrequentCustomerPricing, to apply both reduc-
tions at the same time. The existence of a variety of
other possible variations of the pricing functionality is
presented in Fig. 4 by the unnamed ellipses. Concrete
applications may not need all available variations of the
pricing collaboration. Furthermore, a single application
may need several variations of Pricing, e.g., both Ag-
ingPricing and FrequentCustomerPricing and/or combi-
nations of variations, e.g., AgingAndFrequentCustomer-
Pricing.

This analogy of the re�nement relationships among
collaborations and inheritance among classes indicates
that it is desirable to support a white-box composition
mechanism similar to inheritance for components that
would enable to reuse the de�nition of Pricing in de�n-
ing the collaborations for AgingPricing and FrequentCus-
tomerPricing. If we consider standard object-oriented
mechanisms for behavior variations, we could naturally
think of using application frameworks for realizing the
re�nement relationships between collaborations. The

participants in the collaborations would be implemented
as classes; roles from are added to these participants by
subclassing.

If a framework was used in our example, base classes
in the framework would implement the elements of a
concrete application and their role in the base Pricing
collaboration. For instance, suppose that in an ap-
plication ConcreteLineItem is the class that will play
the LineItemParty role. The contribution of Concrete-
LineItem in the Pricing collaboration would then be im-
plemented as a subclass of ConcreteLineItem, say Pric-
ingConcreteLineItem. In order to accommodate possible
future re�nements, the pricing functionality would be
implemented as a template method in PricingConcrete-
LineItem, i.e., it would invoke other methods that are
left unimplemented in PricingConcreteLineItem. These
abstract methods would then be implemented in sub-
classes of PricingConcreteLineItem that implement the
roles played by ConcreteLineItem in the re�nement col-
laborations, e.g., AgingPricingConcreteLineItem or Fre-
quentCustomerPricingConcreteLineItem.

Holland [8], as well as VanHilst and Notkin [28], in-
vestigate several problems with a framework based so-
lution for composing collaborations. The main problem
is the implicit commitment to a particular composition
structure. For instance, PricingConcreteLineItem must
statically bind a concrete implementation of LineItem-
Party as its parent class (ConcreteLineItem in this case)
even though the same Pricing collaboration could equally
be reused for other implementations of LineItemParty.
As pointed out in [11], reusing the edi�ce that ties the
components together is usually possible only by copy-
ing and editing it. Another problem with the frame-
work based composition results from naming issues that
might raise when an application combines more than
one re�nement of the framework (e.g., con
icts may oc-
cur in AgingAndFrequentCustomerConcreteLineItem).

In a more general context, several works [18, 20]
show that inheritance does not provide an e�ective com-
position mechanism when a considerable number of be-
havior variations exist and can be arranged in several
di�erent combinations for creating more complex varia-
tions. These works motivate the need for more
exible
mechanisms for composing class-de�ned behavior, using
variants of mixin-classes [2]. Mixin-classes also called
abstract subclasses, de�ne behavior that will eventually
inherit from a superclass { the behavior de�ned in a
mixin-class is expressed in terms of a super parameter.
This parameter, however, is not bound to any concrete
superclass when the mixin is de�ned.

The discussion above indicates that similar techniques
are relevant also at the level of whole collaborations.
The construct we intend to design for explicitly ex-
pressing collaborations should have a mixin
avor in

the sense that when de�ned a collaboration makes as
few assumptions as possible about other collaborations
it is going to be combined with in an actual applica-
tion. Furthermore, while we want to support white-box
reuse of the collaboration de�nitions, the composition
mechanism should be designed such that, it maintains
the \encapsulation" and independence of collaborations
when involved in compositions with other components.
The aim is to avoid name con
icts and allow simulta-
neous execution of several collaborations even if these
may share a common \parent".

The requirement for loose coupling holds also for the
black-box composition. As already mentioned above, is
should be possible to create higher-level collaborations
that make use of the functionality provided by other
collaborations. A simple scenario for illustrating this
kind of composition in our running example is the To-
tal collaboration, whose functionality is schematically
presented in Fig. 5. Calculating the total of an order
involves a simple collaboration between an OrderParty
object and the LineItemParty objects contained in it: the
total of an order is the sum of the price of each line item
contained in it.

Again, the design presented in Fig. 5 is expressed
in terms of an abstract class graph. Furthermore, the
only assumption it makes about the behavior of the
participants is that whatever class is going to play the
LineItemParty role in a concrete application, this class is
responsible for calculating the price. However, the de-
sign does not make any commitment as what concrete
pricing scheme, or pricing policy is in use. As a conse-
quence of the loose coupling, the design can be reused
with a variety of pricing schemes and policies. By re-
quiring that the mechanism for black-box composition
of collaborative components should allow for loose cou-
pling among collaborations, i.e., that one collaboration
uses another collaboration without explicitly mention-
ing it in its implementation, we simply aim at preserving
this feature of the design at the implementation level.

In the remainder of the paper, we will refer to the
requirements we posed on the omposition mechanisms
uniformly as the decoupled behavioral composition re-
quirement. After having outlined and justi�ed the re-
quirements in detail, below we brie
y summarize their
meaning and implications.

� R1: structure-generic.

Generic speci�cation of the collaboration with re-
spect to the class structure it will be applied to
should be enabled. This serves two purposes: (a)
allow the same component to be used with a fam-
ily of class graphs, and (b) allow a collaborative
component to be matched against several places in
the same class graph, i.e., with di�erent class-to-

participant mappings for the same class structure.

� R2: decoupled behavioral composition

Flexible composition mechanisms are needed to
support reusing the de�nition of existing compo-
nents to build more complex collaborations. This
implies: (a) loose coupling among collaborations
in the sense that their de�nitions do not make
explicit commitments to a particular structure of
composition, and (b) maintaining the \encapsula-
tion" and independence of collaborations when in-
volved in white-box compositions with other com-
ponents. The aim is to facilitate reusing the same
components with several compositions.

3 Adaptive Plug and Play Components

An Adaptive Plug and Play Component is a language
construct for expressing collaborative behavior that in-
volves a set of participants (classes) in an object-oriented
application domain. It extends the standard object-
oriented model, while being orthogonal to it, and is de-
signed to satisfy the requirements (R1 and R2) listed
above:

� In achieving structural genericity we borrow and
further develop the Adaptive Programming [16, 17]
technology for decoupling structure from behavior.

� In achieving decoupled behavioral composition we
partly reuse ideas from Rondo [20] and partly ap-
ply the technique of programming to interfaces.

Because of its importance for understanding APPCs,
in the following key ideas behind Adaptive Programming
will be �rst brie
y outlined.

3.1 Adaptive Programming

One of the key elements of adaptive programming is the
concept of a traversal strategy graph, also called traver-
sal strategy, or strategy for short [22, 17]. The emergence
of traversal strategies is the result of the Law of Demeter
(LoD) [15] which says that a method should only talk
to its \direct friends": the argument objects, the part
objects and the newly created objects. If you do not fol-
low LoD, you get methods that contain too many details
about the object structure and are for this reason brittle
with regard to structural changes. If you follow LoD,
the situation is better but you get many small meth-
ods that refer to the details of the object structure. To
solve this trade-o� and build more maintainable sys-
tems, Adaptive Programming [16] introduces traversal
strategy graphs which are use-case based abstractions of
class graphs.

2: price()

:LineItemParty lineItem

1: lineItem = next()

: LineItemParty

:OrderParty

total()
total() {

. . .
int total = 0;

while (items.hasElements()) {
lineItem := items.next();
total += lineItem.price();

} }LineItemParty

float price();

lineItems

OrderParty

Figure 5: Partial Class Diagram and Collaboration Diagram for the Total Component

Strategies have their origin in automata theory ap-
plied to structural architectures. Strategy graphs con-
sist of nodes and edges. They describe the overall topol-
ogy of a group of collaborating classes. The nodes are
the cornerstones of the topology and the edges describe
that certain connections must exist. The details of those
connections at the class graph level are left unspeci�ed.
The edges may also have constraints assigned. An edge
(A,B) without constraint means A.any*.B and an edge
(A,B) with a constraint C means a.(any, satisfying

C)*.B. A regular expression like A.any*.B for a class
graph means to take all paths from class A to class B
and to view them as a group of collaborating classes.

Thus, trategies add a third layer of abstraction to the
usual two level object model of object graphs and class
graphs. A third layer is needed because class graphs
serve several purposes, and for each purpose only a part
of the class graph is really important; the rest is just
noise. With strategies we can focus on the important
part and �lter out the noise. As mentioned earlier, it
has been observed that following the control
ow in an
object-oriented program is like reading a road map with
a soda straw [14]. Strategies help to solve this problem
by expressing an important part of the control
ow,
namely the object navigation part, at a high level of ab-
straction in a localized manner and not spread through
many classes.

The compilation problem for strategies is as follows:
given a strategy S and a class graph G, generate a pro-
gram in some object-oriented language which will per-
form the correct traversals (speci�ed by S) in the object
graphs de�ned by G. A strategy graph de�nes a \stan-
dard" traversal (depth-�rst, ordering speci�ed by class
graph) of object graphs. While the details of an e�cient
algorithm are non-trivial [22, 17, 21] the basic idea is to
adapt the intersection algorithm for non-deterministic
�nite automata (NDFA). Both the strategy S and the
class graph G can be viewed as NDFAs for which we
want to compute the intersection resulting in a third

NDFA TG, called a traversal graph. Conceptually, to
traverse an object graph O, we need to compute the
intersection of an NDFA corresponding to O and the
NDFA TG. In the implementation we do something
similar to the simulation of an NDFA to avoid the ex-
ponential state explosion problem of expansion into a
DFA.

How can we write programs using strategies? First,
it should be noted that one of the key features of adap-
tive programming style is the separation of structure
from behavior speci�cation. The structural aspect of
an application is speci�ed by a textual form of the ap-
plication's UML class diagram. The speci�cation of the
behavior consists of a set of traversal strategies and a
set of \tasks" to be performed on the nodes encoun-
tered during the traversals. The behavior speci�ed in
this way is less brittle with respect to changes in the
structure of the application than behavior written in a
standard object-oriented style. This is because the be-
havior speci�cation is based on strategy graphs, rather
than detailed class graphs. For this reason adaptive
programs are also called structure-shy.

Let us illustrate this brief introduction with the sim-
ple order processing application for hardware products
written in Demeter/Java1 [25, 16] style, presented in
Fig. 6. Appl.cd is the textual representation of the ap-
plication's (simpli�ed) class diagram, a graphical repre-
sentation of which is also drawn in Fig. 7 (a) for clarity
reasons. There is one \equation" in Appl.cd for each
class in Fig. 6. The right hand side of the equation for
a class C lists all adjacent classes of C in the class dia-
gram, Ca, along with the name of the link connecting C
with Ca. Thus, Quote = <prod> HWProduct ... has to
be read as, \in the class diagram, there is an association
named prod connecting classes Quote and HWProduct".

In the second part of Fig. 6, Appl.beh lays down the
behavior of the application. Note that there are no
attribute (instance variable) declarations in Appl.beh,

1Demeter/Java is the embodiment of Adaptive Programming in
Java.

Appl.cd
Quote = <prod> HWProduct <quantity> int <cust> Customer.
HWProduct = <price> float <salePrice> float <taxes> ListOf(Tax) <discountTable> DiscountTable.
Tax = <percent> float <taxKind> String.
Customer = <name> String.

Appl.beh
class HWProduct f

float salePrice() freturn salePrice;g;
float saleDiscount(int qty, Customer c) freturn 0; g;
float regPrice() freturn price;g;
float regDiscount(int qty, Customer c) freturn discountTable.lookUp(qty);g;
Vector allTaxes() f

Vector all;
to Tax f

init fall = new Vector(); g
at Tax fall.addElement((Object)taxKind);g
return freturn all;g g g

g
class Tax f

float taxCharge(int qty, float unitPrice, HWProduct p) freturn unitPrice * percent/100g;g
class Quote f

int quantity() freturn quantity; g g
class Customer f

float negProdPrice(HWProduct p) f ... g;
float negProdDiscount(HWProduct p, int qty, Customer c) f ... g;

g
class Main f

static public void main(String args[]) throws Exception f
Quote aQuote = Quote.parse(System.in);
float r = aQuote.allTaxes();
System.out.println(``Taxes'' + r);

g

Figure 6: Application Speci�cation

DiscountTable

HWProductprod
float price;

cust
discountTabletaxes

Customer
String name;

Tax
int percentage;

Quote

(a)

DiscountTable

String kind;

float salePrice;
int quantity;

HWProduct
float price;
float salePrice;

PriceInfo

priceIssues

Tax
int percentage;
String kind;

taxes
discountTable

cust

Customer
String name;

Quote
int quantity;

prod

(b)

Figure 7: Application Class Diagram

since the speci�cation of the structure is taken out of
the classes and de�ned separately in Appl.cd. Classes
in Appl.beh look pretty much like classes in a Java pro-
gram. The only exception is the method allTaxes() in
HWProduct, which returns a collection of all di�erent
kinds of taxes that apply for a HWProduct object. all-
Taxes is an example of the so-called adaptive methods

in Demeter/Java [16]. The method allTaxes involves
traversing part of the object graph(s) that are de�ned
by the class graph represented by Appl.cd. This travers-
ing is speci�ed in a succinct way in Appl.beh by means
of the strategy speci�cation \to Tax".

This de�nition has to be read as \starting from a
HWProduct object, follow the links that lead to all its

Tax subparts, and once at a Tax object, add the string
describing the kind of the Tax object to the vector all".
The de�nition includes no further details about the in-
termediate nodes involved and the behavior performed
at the intermediate nodes, since they only contribute
traversal behavior passing the responsibility down to
Tax. As the result of this succinct speci�cation, the
implementation of allTaxes can be reused without mod-
i�cations for the slightly modi�ed class structure pre-
sented in Fig 7 (b). This modi�cation is representative
for the category of structural changes that might be per-
formed to an application as part of a perfective mainte-
nance process. This illustrates why adaptive programs
are called structure-shy.

3.2 De�ning Structure-Generic Collabora-

tive Behavior

So far, we explained structure-shy behavior and next
we discuss structure-generic behavior. Being structure-
shy is only a special case of being structure-generic.
Obviously, assumptions about the shape of the appli-
cation's structure are made in a more robust manner
in adaptive programs as compared to standard object-
oriented programs, due to using strategy graphs rather
than embodying the exact shape of the class graph in
the behavior implementation. However, the strategies
are still written to a concrete class graph. This damages
their adaptability.

For instance, the program in Appl.beh in Fig. 6, can-
not be reused with a class graph that names classes in
a di�erent way. In general, if an adaptive program con-
tains n strategies s1, s2, ..., sn, written to the class graph
Cg, updating of Cg to C'g may require the updating of
n strategies to make them select the right paths in C'g.
This might reveal a lot of representation information.

To remedy this situation the APPC construct uses
the traversal strategy graph technology at a higher level
of abstraction. An APPC is written to a interface class
graph rather than to a concrete class graph. An APPC
has two parts: a interface class graph and a behavior
de�nition part. This is re
ected in the syntactic struc-
ture of APPCs in the grammar of Fig. 81. The interface
class graph of an APPC (ICG for short), declares the
\type" of class graphs the APPC can be used with. This
type declaration consists itself of two sub-parts.

The Structural-Interface declares (a) the par-
ticipants in the collaboration, and (b) the pattern of
their relationships, pretty much the same way the struc-
ture of an application is speci�ed in a structure-shy

1This is only a partial grammar for the APPCs. A full-
edged
grammar is left out of the scope of this paper and can be retrieved
from [3]

adaptive program. In contrast to the class graph speci�-
cation of a structure-shy adaptive program whose nodes
and edges are concrete classes and link names in an
application, the structural interface of an APPC is de-
clared by using formal names for both nodes and edges,
called class-valued and link-valued variables, respectively.

The Behavioral-Interface part of a ICG declares
the signatures of operations that are required to be pro-
vided by the participants in the collaboration. These
operations are used (invoked) in the de�nition of the
collaboration (Behavior-De�nition part of the APPC).
The behavioral interface is organized as a collection of
interface declarations, in general one interface for each
participant. Note that as with the structural interface,
method names in the behavioral interface, are not con-
crete method names of a particular application { they
are formal names, called method-valued variables.

Summarizing, the ICG of an APPC can be thought
of as the textual speci�cation of the UML class diagram
of an abstract application.

The Behavior-De�nition part of an APPC re-
sembles an object-oriented program. The main part of
it consists of behavior de�nitions (Participant-Behavioral-
Entry in Fig. 8) for all participants that play an active
role in the collaboration, in general one for each of them.
As it can be noticed from the grammar in Fig. 8, a
participant behavior de�nition resembles a class in an
object-oriented program, in that it contains attribute
and method de�nitions. In general, a participant behav-
ior de�nition is expected to be much more \lightweight"
than a class, in the sense that it de�nes fewer behavior
than a class generally does. This is because a partici-
pant behavioral entry de�nes only one role among sev-
eral possible played by a class. Participant behavior is
written to the ICG: methods in a participant de�nition
may invoke messages required in the interface of other
participants along links in the ICG.

As with adaptive programming, participant roles may
also be de�ned in terms of traversal strategies graphs
and behaviors to be performed at their nodes. Traversal
strategies used in an APPC are, however, speci�ed to
the interface class graph of the APPC rather than to a
concrete class graph. Furthermore, besides the partici-
pant behavioral entries, the behavior de�nition part of
an APPC may also de�ne some auxiliary objects that
are used in the de�nitions of the participants (called
WorkSpace in Fig. 8).

Similar to a Java program, an APPC also has a dis-
tinguished method that serves as an \entry point" for
invoking the collaboration de�ned by the APPC. An
APPC is a slice of an adaptive program, implement-
ing only one coherent design segment involving inter-

APPCDefinition = Interface-Class-Graph Behavior-Definition
Interface-Class-Graph = Structural-Interface Behavioral-Interface
Structural-Interface = Class-Graph-Specification
Behavioral-Interface = fParticipant-Typeg�

Participant-Type = Participant-Name f fMethod-Signatureg� g
Method-Signature = Return-Type Method-Name(fArgument-Type Argument g�);
Behavior-Definition = WorkSpace fParticipant-Behavioral-Entryg�

WorkSpace = fClass-Definitiong�

Participant-Behavioral-Entry = fVariable-Definitiong� fMethod-Definitiong�

Method-Definition = Plain-Method-Definition j Inlined-Adaptive-Method-Definition
Inlined-Adaptive-Method-Definition = fVariable-Declarationg� Traversal-Behavior-Specification
Traversal-Behavior-Specification = [Init-Method] fAt-Node-Behavior-Definitiong+ [Return-Method]

Figure 8: Syntactic Structure of APPCs

object collaborations. APPCs serve as the linguistic
counterpart of design level collaboration diagrams for
high-level, system operations extracted from use cases.
The \main" method of an APPC then corresponds to
the method de�ned by the collaboration diagram. It is
part of the de�nition of one of the participants and lays
down the overall
ow of control of the collaboration, by
eventually initializing the workspace, invoking methods
de�ned in the same or other participant behavioral en-
tries, and returning a value.

For illustration, an APPC that models the pricing
component introduced in section 2 is presented in Fig. 9.
Comparing Fig. 9 with Fig. 2 and Fig. 3, it becomes
clear that design artifacts are mapped to the elements
of the APPC in a straightforward way. The interface
class graph of the APPC codi�es the partial class dia-
gram in Fig. 2. It states that there are �ve participants
in the collaboration: LineItemParty, ItemParty, Charg-
erParty, PricerParty and Customer. Also, it is assumed
that there is a way to get from e.g., LineItemParty to
ItemParty denoted by <item> in the scope of the APPC,
etc. On the other side, the behavior de�nition part is a
codi�cation of the collaboration diagram in Fig. 3.

The only active participant in the APPC in Fig. 9
is LineItemParty, whose behavioral entry contains the
main entry of the collaboration, price(). The other
participants contribute passively by providing services
to the LineItemParty role. LineItemParty is a client of
the expected interface of PricerParty: price() invokes ba-
sicPrice() and discount() on its assumed pricer subpart.
These operations are declared in the expected interface
for PricerParty, which means that in any concrete ap-
plication to work with the APPC, whatever class will
be assigned to play the PricerParty role must provide
implementations for these operations.

In addition to the main entry, an auxiliary method,
additionalCharges, is de�ned to calculate additional charges
to be added to the computed price. Based on the collab-

oration diagram in Fig. 3, calculating charges involves
the direct participation of ChargerParty with its cost
functionality; besides that, calculating the additional
charges, involves the indirect participation of ItemParty.
ItemParty only contributes traversal behavior by pass-
ing the responsibility for calculating additionalCharges
to ChargerParty. This
ow of control is expressed within
the de�nition of additionalCharges by means of a traver-
sal strategy.

The computation of additionalCharges is itself a (mini)
collaboration which is nested within Pricing. This col-
laboration has a slightly di�erent
avor: it happens
during a traversal of some part of the object structure.
We call such collaborations, traversal driven. They are
modeled after a generalized form of adaptive methods
of Demeter/Java. While in this particular example, the
traversal driven collaboration happens to be inlined in a
non-traversal driven collaboration, in general they may
exist as �rst-class APPCs. The participants in a traver-
sal driven APPC and the partial control
ow among
them are speci�ed by means of a strategy graph { \from
LineItemParty via itemInst: ItemParty to ChargerParty".

In addition, a set of tasks to be performed at each
node of the strategy graph are speci�ed. Only impor-
tant tasks are mentioned, i.e., those that contribute
non-traversal behavior to the overall task (a single task
to be performed when at ChargerParty, in this case).
Given a concrete class graph and the strategy, the code
for performing the traversal and for executing the spec-
i�ed tasks at each node will be generated. This makes
the de�nition of additionalCharges adaptive to several
di�erent structures of concrete paths connecting what-
ever classes will play the LineItemParty, ItemParty and
ChargerParty roles in a concrete application.

As indicated both by the grammar for Inlined-Adaptive-
Methods in Fig. 8 and the de�nition of additionalCharges
in Fig. 9, the speci�cation of traversal driven collab-
orations di�ers in two ways from the speci�cation of

APPC Pricing f

Interface Class Graph:

// structural interface

LineItemParty = <item> ItemParty <pricer> PricerParty <customer> Customer
ItemParty = <charges> ListOf(ChargerParty)

// behavioral interface

LineItemParty f int quantity();g
PricerParty f

float basicPrice(ItemParty item);
float discount(ItemParty item, int qty, Customer customer); g

ChargerParty f float cost(int qty, float unitP, ItemParty item);g

Behavior Definition:
LineItemParty f

main-entry float price()f
float basicPrice, unitPrice;
int discount, qty;
qty = this.quantity();
basicPrice = pricer.basicPrice(item);
discount = pricer.discount(item, qty, customer);
unitPrice = basicPrice - (discount * basicPrice);
return (unitPrice + additionalCharges(unitPrice, qty)); g

private float additionalCharges(float unitP, int qty) f
float total;
from LineItemParty via itemInst: ItemParty to ChargerParty f

init ftotal = 0; g
at ChargerParty ftotal += cost(qty, unitP, itemInst); g g
return ftotal;g g

g g

Figure 9: The Pricing APPC

\norma;" collaborations. First, they have distinguished
methods for initializing their working space (init) as well
as for returning their result (return). Second, traversal
driven collaborations do not have a main entry method.
Both these di�erences are due to the fact that these col-
laborations are driven by the (generated) traversal code
{ this is their main entry. Recall that initializing the
workspace and returning a value was inlined in the dis-
tinguished main entry of the non-traversal driven col-
laborations. With the traversal driven collaborations,
however, the main entry is not explicit. That is why
we need to put the code for initializing the workspace
and for returning the result of the collaboration in dis-
tinguished methods, that are known to the generated
traversal code and are called in the appropriate place
during the traversal.

Besides control
ow, a strategy graph may also spec-
ify how data should be propagated during a traversal.
An instance name associated with a strategy node is an
indication that during the traversal of the object graph,
instances of that node should be passed further down
as parameters of the traversal method. In the strategy

used in additionalCharges in Fig. 9, itemInst associated
with ItemParty indicates that each time the traversal
reaches an object of type ItemParty, this object will be
passed down the traversal of the remaining object struc-
ture still to be traversed. In this way, the implementa-
tion of the task to be performed at a ChargerParty, cp,
can access the ItemParty instance, itemInst, containing
cp.

3.3 Instantiating Collaborative Behavior

An APPC speci�es an abstract collaboration. In order
to turn it into executable code, a concrete application
must be provided that implements the interface class
graph of the APPC. Binding an application, appl, to
the ICG of an APPC, appc, is also referred to as instan-
tiating the APPC with the application and denoted by
the operation ::+.

The �rst issue in instantiating an APPC with an ap-
plication is to map ingredients in the APPC's interface
class graph, i.e., (a) participant names, (b) their as-
sumed relations, and (c) assumed operation names, to

corresponding elements in the application, i.e., classes,
paths, and operation names, respectively. While (a)
and (c) are realized by simple name maps, (b) requires,
in the general case, explicit mapping of edges in the
ICG to strategies over the CCG.

Given a participant-to-class name map, N, and as-
suming that the CCG is a valid implementation of ICG
(see the ICG-CCG conformance de�nition below), there
is always a default mapping of edges in ICG to paths
in CCG. For any edge e = (v1, v2) in ICG, the default
mapping is the set of paths in CCG from N(v1) to N(v2),
denoted as Paths[CCG](N(v1), N(v2)). Based on the
ICG-CCG conformance de�nition below, this path set
is not empty. There might be, however, cases where the
default mapping of ICG edges to CCG paths does not
su�ce. For instance, in dense class graphs we might
want to reduce the cardinality of the default path set,
or, in general, we may want some fancy mappings other
than those provided per default. In these cases, the
programmer can explicitly map ICG edges to concrete
traversal strategies over the CCG.

To illustrate the mapping process, in Fig. 10, we ap-
ply the Pricing APPC to the concrete application that
was presented in Fig. 6 (denoted by HWAppl in Fig. 10),
for modeling two pricing schemes, Regular and Negoti-
ated, discussed in Sec. 2. The regular scheme implies
that the role of PricerParty is played by the class that
models the products being ordered, HWProduct in our
case. On the other side, applying the negotiated scheme
means that the PricerParty role is played by the class
that models customers, Customer in our case.

HWAppl::+ ffloat regularPrice() = Pricing with f
LineItemParty = Quote;
PriceParty = HWProduct

fbasicPrice = regPrice;
discount = regDiscountg;

ItemParty = HWProduct;
ChargerParty = Tax fcost = taxChargeg;g g

HWAppl::+ ffloat negotiatedPrice() = Pricing with f
LineItemParty = Quote;
PriceParty = Customer

fbasicPrice = negProdPrice;
discount = negProdDiscountg;

ItemParty = HWProduct;
ChargerParty = Tax fcost = taxChargeg;gg

Figure 10: Instantiating the Pricing Collaboration

Consequently, the APPC needs to be applied twice,
each time with a di�erent mapping of roles to classes
and method-valued variables to actual operation names.
Note that in both cases, mapping participant to class
names is su�cient for generating paths in the applica-

tion that correspond to edges in the APPC. No actual
strategies are required for realizing this mapping; there
is a single mapping from relations between the partic-
ipants in the generic collaboration to relationships be-
tween the corresponding classes in the application.

Once a mapping of an ICG to a CCG is given, it
should be checked whether the CCG does actually im-
plement (we also say conform to, or specialize) the ICG.
Conformance checking includes (a) checking whether
the relation pattern between the participants speci�ed
in ICG can be matched by the relations between cor-
responding classes in CCG, and (b) checking signature
compatibility among the assumed operations in the APPC
and the corresponding implementation methods in the
application. For (a), we require the following to hold1.

De�nition: CCG-ICG conformance

Given node-labeled graphs G1=(V1,E1) and G2=(V2,E2)
and a name map N: V2 ! V1, G1 conforms to G2 ()
8 e = (es, et) 2 E1, 9 p 2 Paths[G2](N(es), N(et))

The intuition is that each edge of the ICG de�nes
a path in the class graph. This means that the inter-
face "matches" the class graph in terms of paths; we
can embed the paths in the ICG in the paths in the
class graph. We use the conformance concept in two
stages. At the adaptive level we check that the ICG
conforms to each strategy (graph) speci�ed in the be-
havior de�nition part of an APPC. At the instantiation
level we check that the concrete class graph conforms
to the interface class graph.

Assuming that an application, appl, conforms to the
interface of an APPC, appc, conceptually, the result
of instantiating appc with appl is an enhanced applica-
tion gained by adding the participant behavioral de�-
nitions of appc onto the corresponding classes in appl.
The implementation of the added methods is automati-
cally generated from the behavior de�nition part of the
APPC by (a) replacing participant names with the class
names they are mapped to, (b) replacing edges from the
APPC with the concrete paths they are expanded by
in the class structure, and (c) replacing formal method
names in the APPC code with the application's method
names they are mapped to. In addition, traversal code
as well as code for calling role implementations during
traversals will be generated, if there are traversal strat-
egy speci�cations involved in the implementation of the
APPC.

For giving the reader an intuition of what an APPC
instantiation produces, pseudo-generated code for the
instantiations in Fig. 10 is given in Fig. 11. The pseudo-
generated code indicates that the generator engine would
map collaborations down to objects; there is one class

1The condition can be checked in polynomial time. Further details
of this checking are out of the scope of this paper.

generated for each pricing scheme instantiated in Fig. 10,
RegularPrice and NegotiatedPrice. Furthermore, a method
for each scheme, regularPrice(), respectively negotiated-
Price() is added onto the application class Quote. These
methods simply create a \collaboration object" and del-
egate the responsibility to it. They are inserted in Quote
because Quote is mapped to LineItemParty participant
where the main method of the collaboration was de-
�ned. The generated methods can be invoked by other
collaborations that build on top of Pricing, as it will be
illustrated in the following section.

class Quote f
// ... as before ...
public float regularPrice() f

RegularPrice rp = new RegularPrice(qty, this);
return rp.price(); g

public float negotiatedPrice() f ... g
g

class RegularPrice f
public RegularPrice(int quantity, Quote hst) f

host = hst;
qty = quantity;
prod = pricer = host.getProduct();
cust = host.getCustomer(); g

public float price() f
float basicPrice, quotePrice, unitPrice;
basicPrice = pricer.regPrice();
int disc = pricer.regDiscount(prod, qty, cust);
unitPrice = basicPrice - (disc * basicPrice);
return (unitPrice +

additionalCharges(unitPrice, qty);
g
private float

additionalCharges(float unitPrice, int qty) f
float total = 0;
Enumeration taxes = pricer.getTaxes();
while (taxes.hasElements()) f

Tax tax = taxes.nextElement();
total += tax.taxCharge(unitPrice, qty); g

g
private Quote host;
private int qty;
private HWProduct pricer;
private HWProduct prod;
private Cust customer;

g

class NegotiatedPrice f ... g

Figure 11: Pseudo-Code Generated for Regular Pricing

This implementation is rather naive. First, it as-
sumes that the application is available in source code
and that recompilation can be performed at any time,
both unrealistic and undesirable assumptions in many
real situations. Second, putting collaborations in a sin-
gle class in the generated code is against the object-
oriented spirit. However, while this is the approach
currently taken, it should be noticed that the way AP-
PCs are mapped down to object-oriented code is an

implementation detail that has nothing to do with the
concept. We are already working on a better generator
engine in Java organizing the collaborations in separate
Java packages.

Apart of the few implementation details discussed
above, at the conceptual level, the sample instantia-
tions above demonstrates how the APPC construct al-
lows us to write collaborative software that (a) adapts
itself to the concrete shape of particular applications,
and that (b) can be reused with di�erent participant-
to-class mappings over the same application. In other
words, it illustrates that APPCs satisfy R1.

3.4 Composing Collaborative Behavior

As indicated in Sec. 2, we give APPCs a mixin [2]
avor,
in order to allow for more
exible white-box composi-
tion. A mixin-
avored APPC de�nes collaborative be-
havior in terms of a super component which is, however,
not bound at component de�nition time. The super-
component parameter will be bound later, at compo-
nent composition time.

Consider, for instance, how both special pricing poli-
cies, AgingPricing and FrequentCustomerPricing discussed
in Sec. 2, can be de�ned as deltas to the Pricing APPC.
Both policies share the same re�nement pattern: �rst
the price is calculated and then a reduction on that price
is computed based on a certain criteria that is speci�c
for each policy. This common pattern is factored out
in the SpecialPricing APPC in Fig. 12 which is speci�ed
to be a modi�cation of Pricing. Both AgingPricing and
FrequentCustomerPricing further modify SpecialPricing,
each implementing reducedPrice in a speci�c way.

The modi�es relationship between APPCs resembles
the inheritance relationship between classes. A modi-
�cation APPC inherits the interface and behavior def-
inition of the APPC it modi�es, while re�ning the be-
havior de�nition by making super calls. So far, the su-
per parameter of a modi�cation APPC resembles the
super parameter of Smalltalk/Java subclasses. There
is, however, an important di�erence: in contrast to in-
heritance, the modi�es relationship does not imply any
composition structure between APPC.

Declaring that SpecialPricing modi�es Pricing does
not mean that the super parameter in the de�nition of
SpecialPricing is �xed to Pricing. The super parameter
will be rather bound at composition time. That is, the
modi�es relation does not compose the APPCs. The
composition is a separate operation that is explicitly
applied to the APPCs after they have been de�ned. In
the following, this operation is denoted by +. It is non-
commutative, since the order of applying the operation
establishes the bindings of the super parameters of the
APPCs involved. The super parameter of the compo-

APPC SpecialPricing modifies Pricing f
Behavior-Definition:

LineItemParty f
public float price() f

float calcPrice = super.price();
return reducedPrice(calcPrice); g

protected float reducedPrice(float calcPrice); g
g

APPC AgingPricing modifies SpecialPricing f
Interface-Class-Graph: //more behavioral interface

ItemParty fTime stockTime();
Time stockTimeLimit(); g

Behavior Definition:
LineItemParty f

protected float reducedPrice(float calcPrice) f
float newPrice = calcPrice;
if (item.stockTime()>item.stockTimeLimit()) f

newPrice = newPrice - (newPrice * 0.1); g
return newPrice; g g

g

APPC FrequentCustomerPricing modifies SpecialPricing f
Interface-Class-Graph: //more behavioral interface

Customer fboolean frequent();
BuyHistory getBuyHistory();g

Behavior Definition:
LineItemParty f

protected float reducedPrice(float calcPrice) f
float newPrice = calcPrice;
if (customer.frequent()) f

BuyHistory hist = customer.getBuyHistory();
float freqRed = item.frequentReduct(hist);
newPrice = newPrice * freqRed; g

return newPrice; g g

ItemParty f
float frequentReduct(BuyHistory hist) f

// given hist calculate reduction g g
g

Figure 12: Re�ning the Pricing Collaboration

nent on the left hand side of the operation is bound
to the component on the right hand side. Dispite this
di�erence in the semantics, we have preferred to use
the Java/Smalltalk keyword, super, in the de�nition of
modi�cation APPCs, for the intuition related to it.

For illustration, two di�erent compositions of the
pricing APPCs from Fig. 12, AgingPolicy and AgingAnd-
FrequentCustomerPolicy are given in Fig. 13. Both com-
positions contain an AgingDelta = AgingPricing + Spe-
cialPricing. However, the meaning of the super-call in
the SpecialPricing part of AgingDelta is di�erent in each
case: in AgingPolicy it denotes Pricing, while in Agin-
gAndFrequentCustomerPolicy it denotes the SpecialPric-
ing part of FrequentCustomerDelta. With standard in-
heritance, the meaning of super in SpecialPricing would
have been �xed to Pricing at de�nition time. With com-
position time binding, we are given more
exibility in
reusing APPCs with di�erent compositions.

This composition time binding of super has the
a-

vor of super binding with the mixin-based inheritance.
However, the semantics of composing mixin-
avored AP-
PCs di�ers from that of composing mixins, as well.
While not binding their super parameter at de�nition
time, mixin-
avored APPCs declare their expected spe-
cialization interface at that time, via the modi�es rela-
tion, a feature that mixins do not have. This declara-
tion makes it possible to write the collaboration in the
re�nement APPC to the interface of the base APPC
(and possible extensions of it). More importantly, the
declaration of the specialization interface controls the
scope of the de�nitions from individual APPCs within
a composition, as outlined in the rules below. Let A be
an APPC and A1 and A2 be modi�cations of it. Let
Ac = A1 + A2 + A. The modi�es relation imposes the
following:

1. Let m be a method implemented in A, A1, and
A2. The implementations of m in both A1 and A2

re�ne the implementation in A (by making super
calls). The de�nition of m in Ac consists then of
the chain of de�nitions in A1, A2, and A, i.e., when
m is invoked all three de�nitions are executed in
the order mentioned above. This is because m is
in the specialization interface of A, the common
parent component for both A1 and A2. Thus, it is
natural to require that both re�nements are valid
and should be executed.

2. Let m be implemented in A1 and A2, but not in A.
Since A1 and A2 assume the specialization inter-
face of A and not that of each other, and since A
does not havem in its specialization interface, both
de�nitions of m in A1 and A2 should be invisible to
the other component. Ac has two de�nitions of m
and the invocation of m on Ac returns, in general,
a wrapper object containing both results.

To illustrate the meaning of these rules and their
role in maintaining the encapsulation of individual AP-
PCs involved in a white-box composition, assume Ac =
AgingAndFrequentCustomerPolicy, i.e., A1 = AgingDelta,
A2 = FrequentCustomerDelta, and A = Pricing. Assume
that after the application has been enhanced with the
AgingAndFrequentCustomerPolicy collaboration price() gets
invoked on a LineItemParty object. the chain of method
executions resulting from this invocation will be as fol-
lows.

Based on rule 1, all three implementations of price
get successively executed since price is in the special-
ization interface of Pricing and is re�ned in both Ag-
ingDelta and FrequentCustomerDelta. The implementa-
tion of price in AgingDelta will be executed �rst. The
super call in AgingDelta::price() invokes FrequentCus-
tomerDelta::price. The latter will invoke the implemen-

Figure 13: White-Box Composition of APPCs

tation of price in Pricing. After Pricing::price() returns,
FrequentCustomerDelta::price() invokes reducedPrice.

Although, there are two implementations of reduced-
Price in the de�nition of the receiver, the implemen-
tation of FrequentCustomerDelta has visibility only for
its own de�nition (rule 2), i.e., only the frequent cus-
tomer reduction will be executed. After the execu-
tion of FrequentCustomerDelta::price() returns, the ex-
ecution of AgingDelta::price() resumes by executing its
own implementation of reducedPrice. Although present
within the de�nition of the same object, the de�nitions
of reducedPrice do not collide due to their well-de�ned
scopes established by the modi�es relationships between
AgingDelta, FrequentCustomerDelta, and Pricing. The
same de�nitions would collide in a framework-based im-
plementation, since there are no scoping boundaries be-
tween the de�nitions of di�erent classes involved in the
de�nition of an object.

Thus, the white-box composition supported by AP-
PCs satis�es the R2 requirement we posed in Sec. 2.
Composition-time binding of super keeps the coupling
of APPCs loose: there are no commitments to a par-
ticular composition structure in the implementation of
a modi�cation APPC. This is in contrast to the frame-
work based composition we discussed in Sec. 2. While
borrowing this feature from mixins, APPCs are more

disciplined with regard to scope issues, due to their
de�nition-time declarations of the modi�cation relation-
ships. This maintains the encapsulation of the AP-
PCs when they get involved in a white-box composition
and avoids name con
icts problems we indicated for the
framework based approach.

Let us now consider how APPCs are composed into
higher-level collaborations in a black-box manner with-
out being strongly coupled to each other. Loosely cou-
pled black-box composition is automatically supported
in the proposed design. This is because APPCs de-
�ne collaborative behavior to an interface, rather than
to a concrete class graph. As already discussed, the
behavior de�nition part of an APPC uses operations
declared in the behavioral part of its interface without
committing to a particular implementation of these op-
erations. The actual implementation, which is bound
to the interface operations at APPC instantiation time,
may be one generated by instantiating another APPC.
It is at this point that the APPC that uses the opera-
tion gets composed with the APPC that generates the
implementation; the composition is uncoupled since the
implementation of the client APPC does not explicitly
mention the supplier APPC.

Consider for illustration the Total APPC in Fig. 14
which is de�ned as a collaboration between two partic-

ipants: an OrderParty and a set of LineItemParty con-
tained in it. The collaboration happens during travers-
ing from an OrderParty to all LineItemParty objects con-
tained in it (collaboration driven APPC). Once at a
LineItemParty, the result of invoking price is added to
the total calculated so far.

APPC Total f
Interface-Class-Graph:
OrderParty = <customer> Customer <lineItems>

SetOf(LineItemParty)
LineItemParty f float price(); g

Behavior-Definition:
float total;
from OrderParty to LineItemParty f

init ftotal = 0 g;
at LineItemParty ftotal += price();g
return f total g; g g

Figure 14: De�ning the Total Collaboration

Total merely assumes that LineItemParty provides an
price operation without committing to any particular
implementation of it. Even the name of the actual
method that eventually will serve as the implementa-
tion of price in whatever class will play the LineItemParty
role in a concrete application may be di�erent. Given
the de�nition of Total in Fig. 14, we can now create col-
laborations for computing the total regular, negotiated,
aging, or frequent customer price, by simply \plugging
in" the method generated by the respective component
as the implementation for price in the interface of Total.
For illustration, instantiating the Total APPC for a reg-
ular pricing scheme is given in Fig. 15. We assume that
the example application we have used so far (Fig. 6) has
an additional class called Order for modeling orders of
hardware products. In Fig. 15, the regularPrice method
which was added to Quote by the instantiation of Pric-
ing in Fig. 10 is bound to the operation price assumed in
the interface of LineItemParty. In this way, the example
illustrates how APPCs can serve as building blocks for
higher-level collaborations.

HWAppl ::+ ffloat totalReg = Total with f
OrderParty = Order;
LineItemParty = Quote fprice = regularPriceg; g g

Figure 15: Instantiating Total

4 Implementation Issues

So far, for the most part, APPCs are simulated in Deme-
ter/Java; a code generator translates high-level descrip-
tions of collaborative behavior from APPCs into stan-
dard object-oriented implementations based on visitor
objects [5]. In abstract terms, the workings of the gen-
erator for the case where no white-box compositions of
APPCs are involved is described by the following steps:

� Create a visitor class for the component(s) being
instantiated. Di�erent visitor classes will be cre-
ated for di�erent instantiations of the same com-
ponent with di�erent mappings of participants to
concrete classes. For instance, there will be dif-
ferent visitor classes created for di�erent pricing
schemes of the running example.

� If link-valued paths are used in the de�nition of a
component, replace them with the corresponding
concrete paths in the graph resulting from apply-
ing the concrete strategies to the concrete class
structure. Generate the needed code to traverse
the paths in all nodes involved in the paths.

� Generate code in the application class structure for
the main entry method of the APPCs. This is re-
sponsible for initiating the collaboration by creat-
ing and passing the responsibility to the appropri-
ate visitors (recall negotiatedPrice and regularPrice
generated in Quote in the sample generated code
in Fig. 11). Furthermore, code for traversing the
object structure, and delegating the responsibil-
ity to the created visitors during the traversal is
also generated in the application class structure
for traversal driven APPCs.

As far as the above functionality is concerned, the
existing generator technology of Demeter/Java [25, 16]
can be reused with some small modi�cations to arrange
for the fact that APPCs are more generic than Deme-
ter/Java software (visitors) as well as for syntactic mod-
i�cations associated with the introduction of APPCs.
As mentioned in conjunction with the presentation of
strategies, polynomial compilation algorithms exist for
Adaptive Programming. They are at the core of Deme-
ter/Java and are thus simply reused in the implementa-
tion of APPCs. Details about compilation of strategies
can be found in [22, 17, 21].

The question remains how to realize the
exible com-
ponent composition mechanism discussed above. As
mentioned earlier, the mixin-like composition of AP-
PCs is inspired by a similar composition of classes in
the Rondo model [20]. Unfortunately, there are no
such mechanisms in Java that could be immediately ap-
plied to compose the visitor classes generated from the

individual APPCs. We have worked around the prob-
lem within the same visitor-based framework described
above. When compositions are involved, issues related
to maintaining the control
ow among the visitors gen-
erated by the individual APPCs need to be considered.

We assign the responsibility of maintaining the con-
trol
ow among the individual APPCs in a composi-
tion to a visitor-composer object. This is an instance
of the prede�ned class Visitor-Composer and it is cre-
ated and initialized with the visitors to be composed.
A Visitor-Composer maintains a list of visitors to be ex-
ecuted one after the other as well as their relations.
The composer object plays the role of a script object
for connecting the elementary components. The struc-
ture of the script is derived from the composition state-
ments. In other words, the composer object in the case
of our example will encode the relationships illustrated
in Fig. 13. While composer objects are created individ-
ually for each composition statement, the functional-
ity for \interpreting" the script they encapsulate is im-
plemented in the prede�ned class VisitorComposer. It
should be noticed that composers do not have them-
selves any application functionality. They simply know
how to control the
ow among other visitors, given the
structure of their composition.

The implementation issues discussed in this section
can be summarized as follows. Instead of letting the
programmer �gure out how to use the visitor pattern for
expressing collaborative behavior and then encode the
pattern several times (e.g., for several pricing schemes),
we let the generator do the work. The primary mo-
tivation behind this is actually not necessarily to ease
the work of the programmer. The main goal is rather
the resulting increase of adaptability, reusability, under-
standability, and the decrease of maintenance costs.

Note that mapping APPCs down to visitor objects
is an implementation detail. It is rather a compro-
mise that allows us an easy reuse of the existing Deme-
ter/Java technology. Visitor objects has been preferred
over parameterized classes as in some related approaches
[28, 24], even though visitor objects might be less e�-
cient than inlining code. This is because by mapping
collaborations down to visitor objects, instead of inlin-
ing code, they can be shared by several parts of a class
structure. More importantly, the same visitor classes
can be shared to create di�erent compositions. The ad-
vantages are twofold: both code explosion and name
con
icts, characteristic for template based approaches,
are avoided.

As already indicated, the implementation sketched
here is rather naive. It assumes that the source code of
the application is available and lack an object-oriented
organization of the generated code. However, this is
only a �rst implementation and we are currently work-

ing on an enhanced implementation translating APPCs
to Java packages. In this implementation, the applica-
tion and the code generated for the APPCs will be put
in di�erent packages with the latter importing from the
former. In this implementation, the mini-language for
instantiating APPCs plays the role of a module linking
language.

5 Related Work

The Visitor pattern was proposed in [5] as an idiom for
expressing collaborative behavior in standard object-
oriented models. The essence of the pattern consists
in encapsulating a "task" to be performed on an ob-
ject structure within a visitor object. The interface of
the visitor object consists of a set of operations { one
for each class in the "basic" class structure to be vis-
ited. In order to allow for future visits, classes in the
basic structure implement an accept operation. The ac-
cept operation of a class C, expects a visitor object as
a parameter and sends a message to this visitor to in-
voke the visitor's method for C, generally named visitC.
There are several problems with applying the visitor
pattern for coding collaborative-based designs:

1. As noted in [5, 25, 20], the pattern is applicable
only when the base class structure to be visited
does not change and when there are not very many
additions of new concrete element classes.

2. Visitors make strong commitments to the particu-
lar class structure they are supposed to visit. This
unnecessarily hinders the reuse of collaborative be-
haviors that might be generic enough to be applied
to a range of di�erent class structures.

3. Variations in visiting behavior are not properly
supported, because the mechanism for supporting
variations is inheritance, which performs rather
poorly when a great number of variations of a ba-
sic functionality (or combinations of those) are to
be supported [20].

Other approaches, such as the work by VanHilst and
Notkin [28], and the work by Smaragdakis and Batory
[24], similarly recognize the need for constructs to sup-
port collaboration-based design, and show how to use
existing language mechanisms such as template classes
for this purpose. In [28], roles of classes are imple-
mented by means of template classes, where the su-
perclass is made a parameter of the role, as illustrated
below:

template <class Super> class Role:public

Superf... role implementation... g;

In addition to the superclass, a role (template class)
is also parameterized with the other roles, played by
other classes within the same collaboration. For in-
stance, the role of the class K2 in the collaboration C4

in Fig. 1 would be expressed as follows:

template <class RoleSuper, class K1;4, class

K3;4> class K2;4: public RoleSuper f... role

implementation using K1;4 and K3;4 .. g;

This approach has a scalability problem [24]. Com-
posing the template classes results in long and com-
plicated template instantiation statements even for rel-
atively small examples. There is no syntax for the
collaboration entity. This is implicitly encoded in the
parameter-relationships between the roles of the classes
contributing to the same collaboration. The program-
mer has to explicitly keep track of the collaborations
in which a class participates. For instance, the K1;4

in Fig. 1 must be explicitly parameterized with K1;2 {
there is no way the programmer can ignore the fact that
K1 is not involved in C3. As indicated in [24], the length
of parameterization expressions increases exponentially
with the number of di�erent roles for a class.

In the mixin-layers approach, these problems are
taken into account by implementing collaborations as
mixins (outer mixins) that encapsulate other mixins
(inner mixins). An outer mixin is called a mixin layer.
The super-parameter is speci�ed at the level of a mixin-
layer (collaboration). By explicitly representing col-
laborations as mixin layers and by de�ning the super-
parameter at the level of collaborations, this approach
provides for a much better organization of the code and
addresses the scalability problems of the work by Van-
Hilst and Notkin. In [24], a possible realization of the
general concept of a mixin layer by using C++ param-
eterized inheritance and nested classes is presented.

A mixin-layer is conceptually similar to a visitor
class. However, mixin-layers are reusable and inter-
changeable, which is not true for visitor classes. A sin-
gle layer can be used in several di�erent compositions
and is, to an extent, isolated from other layers. How-
ever, more complex combinations of collaborations that
contain more than one re�nement of the same base col-
laboration are not considered in [24]. As stated by Hol-
land [9], neither inheritance nor parameterization fully
support the desired features of a composition mecha-
nism listed in Sec. 2. Furthermore, mixin-layers are not
structure-generic.

Both the solution based on the visitor pattern and
the solutions based on template classes are only idioms
to be used to be used to resolve certain non-functional
forces. However, patterns and idioms are cover-ups and
not principal solutions to the problems they cover. The
principal solution implies turning idioms into language

features. Concerning the expression of collaborative be-
havior, the principal solution is the design of large-scale
components, such as APPCs, that directly support cod-
ing the collaborations captured by use cases, collabora-
tion diagrams and other similar artifacts available dur-
ing analysis and design in many design methodologies.

Holland also proposes a language construct for ex-
pressing collaborations called Contracts [9]. Both Con-
tracts and APPCs aim at making the collaboration pat-
terns between classes involved in an application explicit
by means of higher-level constructs that go beyond classes.
APPCs and Contracts are themselves the building blocks
of an application. Given a partly implemented applica-
tion, with a given structure and some low-level behavior
for accessing this structure, Contracts and APPCs �ll it
with additional behavior. Like APPCs, contracts make
explicit (a) classes involved in a collaboration, and (b)
the subset of instance variables, method interfaces and
implementations provided by each class for this collab-
oration.

However, APPCs are superior as compared to Con-
tracts. First, due to the use of interface class graphs,
APPCs provide an elegant and e�ective way for specify-
ing the collaboration pattern of a task, which is missing
in contracts. As a result, the de�nition of a collab-
oration as well as the instantiation of it for concrete
applications is more elegant and succinct. More impor-
tantly, in contrast to contracts APPCs are structure-
shy. Second, the composition mechanism used with
APPCs is more powerful. Holland uses frameworks as
the basic composition mechanism combined with lenses
to avoid name con
icts when con
icting collaborations
are involved in the same application. Lenses are meta-
objects that keep track of the current active collabo-
ration among con
icting collaborations. Before each
collaboration is executed, an appropriately initialized
lense-object needs to be enabled. After a collaboration
is executed, the current lense-object must be disabled to
allow the execution of other collaborations. In this way,
only one collaboration can execute at a time. More im-
portantly, as indicated in [28], using frameworks makes
contracts less reusable.

Related to APPCs is the work on Subject-Oriented
Programming (SOP) [6]. A subject is a collection of
class fragments whose class graph models its domain
in its own subjective way. Subject composition com-
bines subjects to produce new higher-level subjects. A
subject has an a�nity to APPCs. While a subject
deals with class fragments, an APPC deals with class-
valued variables which are mapped later onto class frag-
ments automatically generating the necessary glue code.
While a subject has to deal with all involved class frag-
ments explicitly, an APPC only talks about the im-
portant class-valued variables. After the mapping to

classes, code will be generated automatically for the
less important classes based on the information in the
traversal strategies and the class graph. We believe that
traversal strategies simplify the composition rules for
SOP and that composition of APPCs can bene�t from
the composition ideas already developed for SOP.

Furthermore, the work presented here is related to
the ongoing research on Aspect-Oriented Programming
(AOP) [13]. Aspect-oriented programs are speci�ed by
collaborating building blocks, each one addressing a dif-
ferent concern of the application. The main goal is to
minimize dependencies between the building blocks, so
that modi�cations in one building block has a minimum
impact on the other building blocks. APPCs seem to
be useful building blocks for aspect-oriented program-
ming within the object-oriented paradigm, since they
are designed to support minimizing tangling between
class collaborations and between class collaborations
and class graphs.

The importance of supporting collaboration diagrams
beyond the design phase has been recognized also by
companies specializing in software development tools.
Structure Builder from Tendril Inc. (www.tendril.com),
supports turning interaction diagrams into executable
code, however in a non-adaptive way. Structure Builder
also facilitates object transportation in a similar way as
APPCs.

Finally, component technologies such as Corba, COM
and JavaBeans o�er good facilities to describe compo-
nents but there is not much help in making the collabo-
rations explicit or for making independent components
adaptable to a range of applications and for composing
them together in complex ways.

6 Conclusions

In this paper, we proposed components for express-
ing collaborative behavior in object-oriented programs,
called Adaptive Plug and Play Components (APPC).
Adaptability is achieved by making the class graph of
applications a formal parameter of the APPCs. The col-
laborations are written to this formal parameter rather
than to a concrete application. On the other hand, AP-
PCs are components with a mixin
avor, in that they
de�ne collaborative behavior in terms of \parent" com-
ponents that are left unbound at component de�nition
time. In this way, APPCs do not make any implicit
commitment to a particular structure of composition,
resulting in better reuse.

We demonstrated the bene�ts of APPCs by means of
a simple example. However, we are con�dent that sim-
ilar results can be reported for more complex applica-
tions. Our con�dence is supported by the fact that AP-
PCs were born within the well-developed Demeter/Java

technology. The results with Demeter/Java have been
very encouraging in several commercial projects (see
[3]). We expect that the enhancements provided by
APPCs will lead to even larger productivity.

The design of the APPCs is only the �rst step in
a research path we intend to follow. First, as already
indicated, we are working on separate compilation of
APPCs, which requires some considerations on how to
organize code generation for APPCs. In a more general
context, design tradeo�s in the implementation of an
adaptive software engineering system will be an area of
future work. It is of interest to investigate the design of
a package facility for APPCs collecting several APPCs,
e.g., encoding collaboration diagrams from the same use
case. These APPC packages can be mapped down to
modules of the underlying languages (e.g., Java Pack-
ages). Another interesting area of future work is to de-
velop a methodology for translating use cases from the
analysis to APPC packages and evaluate the adaptive
software engineering system in real applications.

Acknowledgements

Thanks go to the Demeter Seminar participants, espe-
cially M. Wand, D. Orleans, J. Ovlinger, G. Hulten and
L. Blando for being a sounding board for the ideas pre-
sented in the paper, and to Y. Smaragdakis for his feed-
back both on strategies and his work with D. Batory
on mixin layers and their relationship to APPCs. Es-
pecially, D. Orleans and J. Ovlinger provided valuable
ideas that went into this paper.

This work has been partially supported by the De-
fense Advanced Projects Agency (DARPA), and Rome
Laboratory, under agreement number F30602-96-2-0239.
The views and conclusions herein are those of the au-
thors and should not be interpreted as necessarily rep-
resenting the o�cial policies or endorsements, either ex-
pressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Govern-
ment.

References

[1] K. Beck and W. Cunningham. A Laboratory for
Teaching Object-Oriented Thinking. In Proceedings
of OOPSLA '89, ACM SIGPLAN Notices, Vol. 24,
No. 10, pp. 1{6, 1989.

[2] G. Bracha and W. Cook. Mixin-Based Inheritance.
In Proceedings of OOPSLA-ECOOP '90, ACM SIG-
PLAN Notices, Vol. 25, No. 10, pp. 303{311, 1990.

[3] Demeter Research Group. Online Material on
Adaptive Programming, Demeter/Java, and AP-
PCs. http://www.ccs.neu.edu/research/demeter/

[4] M. Fowler. UML distilled. Prentice Hall, 1997

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[6] W. Harrison and H. Ossher Subject-Oriented Pro-
gramming (A Critique of Pure Objects). In Proceed-
ings of OOPSLA '93, ACM SIGPLAN Notices, Vol.
28, No. 10, pp. 411{428, 1993.

[7] R. Helm, I. Holland, and D. Gangopadhyay Con-
tracts: Specifying Behavioral Compositions in
Object-Oriented Systems. In Proceedings of OOP-
SLA '90, ACM SIGPLAN Notices, Vol. 25, No. 10,
pp. 303{311, 1990.

[8] I. Holland. Specifying Reusable Components Using
Contracts. In Proceedings of ECOOP '93, LNCS
615, pp. 287{308, 1992.

[9] I. Holland. The Design and Representation of
Object-Oriented Components. PhD Thesis, North-
eastern University, 1993.

[10] P. Jansson and J. Jeuring. PolyP - a Polytypic
Programming Language Extension. In Proceedings
of ACM Symposium on Principles of Programming
Languages, pp. 470{482, Jan. 1997.

[11] R. Johnson and B. Foote. Designing Reusable
Classes. In Journal of Object-Oriented Program-
ming, 1(2), pp. 22-35, June/July 1988.

[12] R. Johnson. Frameworks = (Components + Pat-
terns). In Communications of ACM, Vol. 40, No.
10. 1997

[13] Kiczales G., Lamping J., Mendhekar A, Maeda
C., Lopes C. V., Loingtier J. M., Irwin J. Aspect-
Oriented Programming. Invited Talk. In Proceedings
of ECOOP '97, LNCS 1241, pp. 220{243, 1997.

[14] S. Lauesen. Real-Life Object-Oriented Systems.
IEEE Software, pages 76{83, March/April 1998.

[15] K. J. Lieberherr and I. Holland. Assuring Good
Style for Object-Oriented Programs. IEEE Soft-
ware, pages 38{48, September 1989.

[16] K. J. Lieberherr and D. Orleans. Preventive
Program Maintenance in Demeter/Java (Research
Demonstration) In Proceedings of the ICSE, 1997,
pp. 604{605, ACM

[17] K. J. Lieberherr and B. Patt-Shamir. Traversals of
Object Structures: Speci�cation and E�cient im-
plementation. TR NU-CCS-97-15, College of Com-
puter Science, Northeastern University, 1997.

[18] M. Mezini. Dynamic Object Evolution Without
Name Collisions. In Proceedings of ECOOP '97,
LNCS 1241, pp. 190{219, 1997.

[19] M. Mezini. Maintaining the Consistency of Class
Libraries During their Evolution. In Proceedings of
OOPSLA '97, Sigplan Notices Vol. 29, No. 10, pp.1{
22, 1997.

[20] M. Mezini. Variation-Oriented Programming Be-
yond Classes and Inheritance PhD Thesis, Univer-
sity of Siegen, Germany, 1997.

[21] J. Palsberg, B. Patt-Shamir, and K. Lieberherr.
A New Approach to Compiling Adaptive Programs.
Science of Computer Programming, 29(3):303{326,
1997.

[22] J. Palsberg, C. Xiao, and K. Lieberherr. E�cient
Implementation of Adaptive Software. ACM Trans-
actions on Programming Languages and Systems,
17(2):264{292, Mar. 1995.

[23] T. Reenskaug et al. OORASS: Seamless Support
for the Creation and Maintenance of Object Ori-
ented Systems. In Journal of Object-Oriented Pro-
gramming, Oct. 1992.

[24] Y. Smaragdakis and D. Batory. Implementing Lay-
ered Designs with Mixin-Layers. In Proceedings of
ECOOP '98. To appear.

[25] L. M. Seiter. Design Patterns for Managing Evolu-
tion. Ph.D. Thesis, Northeastern University, 1996.

[26] P. Steyaert, W. Codenie, T D'Hondt, K. De Hondt,
C. Lucas, and M. Van Limberghen. Nested Mixin-
Methods in Agora. In Proceedings of ECOOP '93,
LNCS 707, pp. 197{219, Springer-Verlag, 1993.

[27] C. A. Szyperski. Import is not Inheritance { Why
We Need Both: Modules and Classes. In Proceed-
ings of ECOOP '92, LNCS 615, pp. 19{32, Springer-
Verlag, 1992.

[28] M. VanHilst and D. Notkin Using Role Iomponents
to Implement Collaboration-Based Designs. In Pro-
ceedings of OOPSLA '96, ACM SIGPLAN Notices,
Vol. 28, No. 10, 1996.

[29] M. VanHilst. Role-Oriented Programming for Soft-
ware Evolution. PhD thesis, University of Washing-
ton, 1997.

[30] N. Wilde, P. Matthews and R. Huitt. Maintaining
Object-Oriented Software. In IEEE Software, 10(1),
pp. 75-80, Jan. 1993.

[31] N. Wirth and J. Gutknecht. The Oberon System.
In Software{Practice and Experience, Vol. 19, No. 9,
Sept. 1989.

