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ABSTRACT
Despite the ready availability of digital recording
technology and the continually decreasing cost of digital
storage, browsing audio recordings remains a tedious task.
This paper presents evidence in support of a system
designed to assist with information comprehension and
retrieval tasks from a large collection of recorded speech.
Two techniques are employed to assist users with these
tasks. First, a speech recognizer creates necessarily error-
laden transcripts of the recorded speech. Second, audio
playback is time-compressed using the SOLAFS technique.
When used together, subjects are able to perform
comprehension tasks with more speed and accuracy.
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INTRODUCTION
Browsing, searching, and retrieving information stored in
textual format has been a well-studied area for many years
[12]. As multimedia collections have become more
widespread, there is an increasing need to browse and
search non-textual data. This paper focuses on audio.

Retrieving information from audio collections has
applicability to several areas. Examples include reviewing
recorded lecture material, recorded meetings, searching the
web for audio recordings, and retrieving information from
one’s personal recordings. Furthermore, projects aiming to

store one’s life experiences for later analysis and retrieval
have been gaining momentum [6,7,9,10]. Audio is among
the proposed data types recorded by such systems and our
attempt to build an audio-based personal memory aid
motivates the desire to create improved audio-retrieval
systems. Despite the current interest in personal data
accrual, less attention has been paid to what to do with
these data once collected. This paper examines two
technologies in support of searching and browsing
collections of audio recordings: automatic large-vocabulary
speech recognition and audio time-compression, in regard
to their interaction.

Audio presents unique challenges. The average speech rate
of an English speaker is 180 words per minute while the
reading rate is 400 words per minute [14]. This large
disparity suggests that automatically transcribing audio and
then accessing it as a written document would be most
effective for information retrieval tasks. However, in
reading a transcript, the prosodic cues, which make speech
rich in meaning and subtlety, are lost. Additionally,
automatic transcription of natural speech remains extremely
difficult. Computer speech recognizers attempt to transform
speech to the corresponding text. When generated, such
transcripts almost always suffer from poor recognition
accuracy, are difficult to read, can confound readers, and
can waste their time [22].

Despite these shortcomings, speech recognizers have been
making incremental improvements to the point where it is
no longer uncommon to encounter commercial versions in
daily life. However, only a limited set of applications are
currently viable due to poor recognition accuracy.
Successful systems tend to achieve better accuracy when
limiting vocabularies, speakers, speech style, and acoustic
conditions. These constraints are slowly loosening as the
technology improves. Although we are still far from the
panacea of high-accuracy, speaker-independent, large-
vocabulary recognition systems that would enable a vast
array of speech applications, the state of speech recognition
is nearing the point in which a limited set of new
applications would benefit from speech recognition even
with the limited accuracy found in today’s recognition
systems.
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An example of both the utility as well as limitations of
speech-recognizer-generated transcripts can be seen in
studies of voicemail transcription [22]. Research-lab-quality
speech recognition (which typically perform better than
commercial systems) using the known identity of the caller
to improve recognition accuracy was required to achieve
acceptable transcripts of voicemails. Despite this effort for
recognition accuracy, some recipients of the transcribed
voicemails tended to commit more errors in summarizing
and information extraction tasks when relying too heavily
on these error-laden speech-recognizer-generated tran-
scripts.

In a related user evaluation, subjects performed question-
answer tasks using error-laden speech-recognizer-generated
transcripts with simultaneous audio playback. Results
suggest that higher-quality transcripts lead to a reduction in
solution time, less recorded-speech played, and less time
spent reading [17]. However, there was no evidence that
higher-quality transcripts produced better answers. Finally,
subjects tended to abandoned lower-quality transcripts more
quickly.

Techniques to improve information-retrieval performance
for recorded-speech collections have been studied in detail
as part of the TREC Spoken Document Retrieval (SDR)
track [5]. TREC SDR has ceased since researchers claim
success at the task of using a large-vocabulary speech
recognizer for audio broadcast-news information-retrieval
tasks. In fact, [23] suggests no degradation in information
retrieval tasks even with 25% word error rate (WER) and a
linear performance decay as WER increases.  It is important
to understand that despite examples such as these, high-
quality transcription (a task different from information
retrieval) of recorded audio is not possible today, and
remains a difficult problem.

Another approach to improving user experience and
performance when browsing and searching collections of
audio recordings is to reduce the time needed to listen to the
audio. Audio time-compression techniques attempt to play
recorded speech in less time while maintaining
intelligibility. There are many approaches to this [1] and
one such technique, SOLAFS, presents audio at higher rates
without modifying the pitch [8]. High-rate non-pitch-
adjusted speech is sometimes described as sounding like
chipmunks because the pitch of the speaker increases as
playback rate increases. Since SOLAFS time-compression
maintains the pitch of the original speaker, listeners are able
to comprehend speech played at higher rates compared to
without time-compression [4]. Furthermore, once
accustomed to time-compressed speech, people prefer it
over uncompressed speech [3]. Another demonstrated
success for time-compression includes the following
example: when presented with audio of teaching materials,
subjects who listened to a time-compressed recording twice
at twice-normal rate performed better than counterparts
who listed to the same recording once a normal rate [16].

Projects employing time-compression to achieve shorter
audio playback times include SpeechSkimmer [2].
SpechSkimmer employed time-compression as well as
other audio summarization and navigation techniques, but
did not provide any corresponding visual representation of
the audio. Audio Notebook [15] offered additional cues by
linking the recording with marks that a listener made on
paper while hearing a lecture for the first time (this
technique assumes the listener was present). Additionally,
Audio Notebook analyzed acoustical cues in the recorded
speech to attempt to identify new topics introduced in the
recording; these were used to assist with skimming the
recording by, for example, playing introductory snippets
rapidly as part of a search strategy.

Experiences with these projects suggest a strategy of using
both transcript and time-compression together in the
listening user interface, if a screen is available. Indeed,
SCANMail [22] provided such a visual interface, in which
audio was correlated with the text transcript, but users
rarely employed time-compression of the audio playback
[21].

In this study, we consider the interaction between audio
time-compression and the error-laden transcripts generated
by a commercially-available speech recognizer. We wish to
determine whether and how effectively transcripts dis-
played in synchrony with time-compressed audio playback
improves the utility of playback at higher and higher
speeds, as measured by playback rate versus comprehen-
sion. The remainder of the paper describes experiments
conducted in which subjects were tested on their ability to
understand time-compressed speech combined with error-
laden speech-recognizer-generated transcripts.

DESIGNING THE USER INTERFACE
The present experiment was designed to test if the
combination of time-compression and speech-recognition
can reduce the time it takes to listen to recorded speech
without sacrificing the listener’s ability to understand what
was said. To conduct the experiments, a computer program
was constructed that allowed playback of time-compressed
audio while visually presenting an error-laden speech-
recognizer-generated transcript of the same recording.

For the experiment, recordings from a series of conference
talks were collected. An off-the-shelf version of IBM’s
ViaVoice speech-recognition software [18] was used to
convert recorded speech to text. Along with each
recognized word, ViaVoice reports a “phrase score,” which
is documented as follows: “[it] is not a confidence… it is an
average acoustic score per second. The acoustic score
depends on the quality of the match and the length of the
speech aligned with the word.” [19] To better understand
the meaning of phrase score in relation to the speech
recordings used in the evaluation, the recordings were
hand-transcribed. These transcripts were then compared
with the speech-recognizer-generated ones. Figure 1
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illustrates the correlation between phrase score and
recognition rate (rs=0.9385, p<0.0001).

The program plays SOLAFS time-compressed audio at
arbitrary speeds while displaying a transcript of that audio.
The transcript appears as 18-pt. white text over a black
background. While the audio plays, the program draws a
line through words that have been played and highlights the
current word in green. Similar to  [13], the brightness of
each word in the speech-recognizer-generated transcripts
are rendered proportional to its phrase score. Figure 2
shows the interface.

To test hypotheses pertaining to the subjects’ comprehen-
sion of time-compressed audio with associated transcripts,
five different transcript presentation styles are used:

C1: Human-constructed “perfect” transcript with uniform
word brightness.

C2: Speech-recognizer-generated transcript with word
brightness proportional to phrase score.

C3: Speech-recognizer-generated transcript with uniform
word brightness.

C4: Completely incorrect transcript with uniform word
brightness.

C5: No transcript. Audio only.

It should be noted that style C4 transcripts are not random
words. Instead, speech-recognizer-generated transcripts
from sections of audio not corresponding to the recording
are used. Next, when style C5 is presented, the program
displays a string of dots whose length is proportional to the
length of the audio recording and the program shows
progress of audio-playback with these dots.

Word error rate (WER) for speech-recognition systems is
defined as the sum of insertion, deletion, and substitution
errors divided by the number of words in the perfect
transcript. For the present recordings, the speech recognizer
was not trained to the speakers’ voices. The speech-
recognizer-generated transcripts in the present data set have
WERs ranging between 16% and 67% with a mean of 42%
and s = 15%. Despite the wide range and fairly uniform
distribution of sample WER, it was decided not to “adjust”
transcripts to a narrower band or fixed WER since it was
not clear what strategy to employ to either perturb a good
transcription or to correct a bad one. Furthermore, this
variability seems to be an intrinsic property of large-
vocabulary speech-recognition systems.

HYPOTHESES
The experiment presented in this paper is designed to test
the effectiveness of combining speech-recognizer-generated
transcripts in conjunction with pitch-normalized time-
compressed speech. In particular, the following hypotheses
are examined:

H1. Variation in comprehension is expected when time-
compressed speech is presented in conjunction with
each of the different transcript styles (C1–C5).
Specifically, the transcript styles, in decreasing order of
expected comprehension are C1, C2, C3, C5, and C4.

H2. The comprehension of speech played in conjunction
with speech-recognizer-generated transcripts is
expected to be inversely proportional to the WER of
that transcript.

H3. Comprehension of SOLAFS time-compressed audio is
expected to be inversely proportional to the overall
speech rate expressed as words per minute (WPM).

H4. Native speakers of English are expected to be able to
comprehend time-compressed audio at higher speech
rates compared to non-native speakers.

The comprehension of the speech is chosen as the metric to
assess these hypotheses. In the study of time-compressed
audio, “‘comprehension’ refers to the understanding of the
content of the material.”[1] Both objective and subjective
measures are used to estimate this. First, a subject’s
subjective assessment of when they can understand a
speaker under different transcript styles and time-

Figure 1: Percent of words recognized correctly at each
recognizer-assigned “phrase score” (~2,300 words, minimum

10 words per score).

Figure 2: User interface showing brightness of individual
words proportional to its phrase score.
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compression rates is measured. Second, a more objective
question-answering task in which subjects are tested on the
contents of speech under different styles and compression-
factors is performed. The next section describes this in
more detail.

EXPERIMENTAL SETUP
The experiment has two phases. In Phase 1, subjects are
presented with three different audio samples, each taken
from a single conference talk given by a single speaker.
Each sample is associated with transcript style C1, C2, or
C5. The order in which the samples are presented is
randomized between subjects. The speech rate for all three
samples averages 148 words per minute.

Subjects are presented with an interface similar to the one
shown in Figure 2. When the subject presses the “PLAY”
button, the transcript appears (or no transcript with style
C5) and the audio begins playing at normal speed. The
speed incrementally increases over time by increasing the
SOLAFS time-compression factor. Subjects were instructed
to press a “TOO FAST” button whenever they felt the
playback speed was too fast to “generally understand” what
was being said. This exact phrase was used so subjects
would not stop simply because they missed an individual
word, but would wait until the speech, in general, could not
be understood. When the “TOO FAST” button is pressed,
the time-compression factor is immediately reduced by 0.5
and then begins to slowly increase again. After the subject
presses the button three times, playback is stopped. The
software records the time-compression-factor every time
the subject presses the “TOO FAST” button and averages
the results.

One of the purposes of Phase 1 is to acclimate subjects to
time-compressed audio in preparation for Phase 2. Previous
studies suggest naïve listeners can understand pitch-
normalized time-compressed audio up to a compression-
factor of 2.0 and this ability improves with more exposure
[11]. Subjects typically completed Phase 1 in 10–15
minutes, which is far short of the 8–10 hours prescribed by
[11].

For Phase 2, subjects are presented with a series of 38 short
clips of recorded speech and were tested on their under-
standing of those clips. To quantify subject comprehension,
fill-in-the-blank style questions are asked. This provided a
more objective metric compared to the self-reported com-
prehension assessment of the subjects in Phase 1.

The clips, when played at normal speed, have a mean
duration of 20.6 seconds with s = 5.8. Longer clips were
avoided in order to minimize primacy and recency effects.
As mentioned earlier, the clips were collected from a series
of conference talks spanning a wide range of speakers;
speakers who enunciated clearly and whose recording-
quality was good were preferred. The content of the talks is
mostly academic research and computer technology. The
specific audio samples were selected such that there was

little to no domain-specific language, jargon, and no prior
knowledge was needed to understand them.

The 38 clips were presented in random order and with a
random transcript style among C1 to C5. Each sample was
played at a fixed time-compression-factor. Audio playback
speed is expressed as a time-compression factor. For
example, audio played at compression 2.0 will complete in
half the time of the original recording, a factor of 3.0 will
complete in one-third time, etc. The first three samples
were presented at factor 1.0 (i.e. original speed), the next
three samples at 1.5, and in sequentially increasing factors,
four samples at 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25 and 3.5.
Figure 3 shows an example distribution of the 38
sample/transcript-style pairs that might be given to a
subject. Samples were presented in increasing compression-
factors in order to minimize effects related to the subjects’
limited exposure to time-compressed audio.

1.0 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5

C1 x x x x x x x x

C2 x x x x x x x

C3 x x x x x x x

C4 x x x x x x x x

C5 x x x x x x x x

Phase 2 was limited to 38 samples since pilot studies
suggested subjects could complete a set of this size within
our desired subject time-commitment limit. Fewer
questions were assigned to the 1.0 and 1.5 compression-
factors primarily due to previous results suggesting naïve
listeners can understand time-compressed speech up to
factor 2.0 [11].

The interface seen in Figure 2 was used. When the subject
presses the “PLAY” button, the transcript appears (or a
string of dots if transcript style C5) and the audio begins
playing. When the sample finishes playing, the transcript
disappears and is replaced by one to three questions about
that sample. The questions ask simple, unambiguous facts
about what the speaker said and do not require any
interpretation or specialized knowledge. Each subject is
given two practice samples and corresponding questions
before the test.

Speech-rate variation among speakers suggests that time-
compression factors should be normalized by a more
standard speech-rate metric: words per minute (WPM).
Specifically, when played at their original speeds, the audio
samples in the present collection were spoken between 120
to 230 WPM with a mean of 174 and s = 29.

RESULTS
Two out of 34 subjects who participated stated they had
previous exposure to time-compressed audio similar to

Figure 3: Example of sample distribution for a single subject .
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SOLAFS. Four others said they had experience with high-
speed audio, but cited examples were limited to the fast-
forward feature of an analog audio-tape player, fast speech
in television commercials, and some videos airing on the
“MTV” television channel. Eleven subjects stated they had
previous experience with speech-recognition technology,
seven said they had a little experience, and 15 subjects
correctly recognized the identity of at least one speaker
among the recorded speakers.

Phase 1 examined subjects’ self-reported maximum time-
compression factor for three of the transcript styles. Figure
4 shows the average maximum time-compression-factor for
each transcript style. Using a repeated measures, one-way
ANOVA, the mean time-compression factors for all Phase
1 transcript styles were found to be different and, more
precisely, C1 > C2 > C5 (p<0.01 for each relation). This
suggests that, using the Phase 1 subjective comprehension
metric, part of Hypothesis H1—which posits differences in
subject comprehension among transcription styles—is
confirmed.

Seven of the 34 subjects were non-native speakers of
English. Across all Phase 1 transcript styles, non-native
speakers averaged a maximum compression-factor of 2.47
while native speakers achieved 2.88. This difference was
found to be significant (p=0.015) and confirms the
subjective aspect of native versus non-native
comprehension difference (Hypothesis H4).

In the Phase 2 question-answering task, answers were
judged to be correct if they indicated a subject’s basic
understanding of the sample’s content, and incorrect
otherwise. Table 1 shows a summary of the aggregate data
for all subjects in Phase 2. The scores indicate the
percentage of questions answered correctly. At
compression-factors 1.0 and 1.5 each cell represents 20 to
21 data points. At all higher compression-factors, each cell
represents 27 or 28 data points. These numbers do not apply
to the totals, which contain the aggregate data of an entire
row, column, or, in the case of the lowest-rightmost box, all
1290 data points. For samples that had more than one
question, only the question subjects attempted to answer the
most is included in the data. The average WPM for each
cell in Table 1 was computed (after accounting for rate
increases due to time-compression) and Figure 5 shows
subjects’ question-answering accuracy for each transcript
style when normalized by WPM.

Adjusting for speech-rate increases due to time-
compression, the range for all samples actually played to all
subjects during Phase 2 was 120 to 810 WPM. Figure 6
shows the fraction of all questions answered correctly
across all transcript styles at each WPM decile. Significant
correlation was found between WPM and subjects’
question-answering accuracy (r=-0.429, p<0.0001). Hence,
Hypothesis H3, which posits degradation of subject
comprehension with increasing speech rate, is confirmed.

C1 C2 C3 C4 C5 Total

1.0 80 85 75 90 85 83

1.5 95 90 67 81 90 84

1.75 89 79 74 81 67 78

2.0 78 78 78 74 61 73

2.25 61 81 59 59 59 64

2.5 67 59 63 46 63 60

2.75 63 55 54 37 41 50

3.0 70 54 48 15 18 41

3.25 48 22 26 11 4 22

3.5 36 26 37 7 7 23

Total 68 62 57 48 47 56
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Figure 4: Phase 1 subject self-reported maximum time-
compression-factors for transcript styles C1, C2, and C5 with

95% confidence intervals.

Table 1: Percentage of questions answered correctly at each
style for each time-compression factor in Phase 2.

Figure 5: Subjects’ question-answering accuracy at
varying speech rates.
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C4 - ns
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Using the data from the Phase 2, question-answering task, a
two-way ANOVA was conducted in which transcript style
and WPM were used as independent variables and
percentage of questions answered correctly was used as the
dependent variable. Both transcript style and WPM showed
significant variation (p<0.0001 for both), while the
interaction between them did not (p=0.373). A one-way
ANOVA was conducted using just transcript style as the
independent variable and percentage of questions answered
correctly as the dependent variable (p<0.0001). The data for
this test was paired by subject. Each subject had five
measures corresponding to the average number of correctly
answered questions under a given transcript style. The
questions for each measure were not perfectly distributed
by speed and some questions were more difficult to answer
than others. However, normalizing the data for speed and
difficulty had a negligible effect on the overall results and
such normalization has been left out of this analysis. Table
2 shows the p-values obtained by comparing the
comprehension scores under each transcript style with a
Student-Newman-Keuls post test. Tukey and Bonferroni
tests did not find a significant difference between C3/C4
and C3/C5, but otherwise yielded similar results. Figure 7
displays the means and 95% confidence intervals for the
percentage of questions answered correctly under each of
the transcripts styles.

While these results do not confirm every aspect of
Hypothesis H1, they do confirm several subcomponents.
Specifically, subject comprehension of audio presented
with a perfect transcript (C1) was found to be better than
C3, C4, and C5 and the comprehension of C2 and C3 was
found to be better than C4 and C5. No significant difference
was found between completely wrong transcripts (C4) and
no transcript (C5). C4 scored 0.96% higher than C5, which
translates to about three questions out of 258.

In order to evaluate hypothesis H2, correlation tests were
performed comparing the WER of a given audio sample to
the percentage of times subjects answered the associated
question correctly across all speeds. As previously
mentioned, the WER distribution across all samples was
fairly uniform. Correlations were found for transcript styles
C2 (r=–0.44, p=0.01) and C3 (r=–0.34, p=0.04). To ensure
there were no effects related to the quality of the
recordings, correlation tests were performed with styles C1
(perfect transcript, r=–0.06, p=0.73) and C5 (no transcript,
r=–0.04, p=0.81). Surprisingly, a correlation was found
with the C4 transcript style (wrong transcript, r=–0.39,
p=0.02).

Finally, with respect to the differences between native and
non-native English speakers (Hypothesis H4) in the Phase 2
question-answering task, Figure 8 shows the percentage of
questions answered correctly by each group under each
transcript style with p<0.005 for all native versus non-
native comparisons at each style. These results suggest
confirmation of Hypothesis H4.

Figure 6: Percentage of questions answered correctly at each
decile of words per minute (minimum 10 samples per decile).

Table 2: p-values associated with each pairwise comparison
between transcript styles for Phase 2 question-answering task.
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Figure 7: Percentage of questions answered correctly for each
transcript style averaging across all time-compression factors.
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Figure 8: Comparison of question-answering performance for
native versus non-native English speakers with 95% confidence

intervals.
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Phase 1: Subjective Phase 2: Objective

H1 Confirmed for transcript
styles C1, C2, and C5

Partially confirmed

H2 Not tested Confirmed for C2, C3
and C4

H3 Not tested Confirmed

H4 Confirmed Confirmed

Table 3: Summary of hypothesis testing

Table 3 summarizes hypothesis testing for both the Phase 1
subjective tests and Phase 2 question-answering tests.

DISCUSSION
The perfect transcript style (C1) is tantamount to reading
and, not-surprisingly, results from both Phase 1 (self-
reported maximum) and Phase 2 (question-answering task)
suggest this style is the best supplement to improving
comprehension of speech playback. However, generating
such transcripts is costly, time-consuming, and must be
done manually. Using a computer speech-recognizer to
generate lower-quality transcripts, like C2 and C3, can be
done cheaply, quickly, and in an automated fashion.

To date, the poor transcript quality of large-vocabulary,
speaker-independent recognizers has hindered more wide-
scale adoption of this technology. Despite this shortcoming,
the present experiment provides evidence suggesting
comprehension improvements when using speech-
recognizer-generated transcripts, even when laden with
errors, and especially when rendered in the C2 transcript
style. Specifically, comprehension of transcript style C2
was found to be better than both audio alone (C5) and a
completely wrong transcript (C4). Differences between
Style C2 and C3 were not confirmed to be significant, so it
is not yet clear how much Style C2’s confidence-based text-
brightness-rendering contributed to this, if at all.

In a worst-case scenario, a speech-recognizer may generate
a completely-incorrect transcript (C4). Part of Hypothesis
H1 posits speech presented in conjunction with a style C4
transcript is expected to reduce comprehension compared to
no transcript (C5). The supposition is that a transcript with
many errors will tend to distract subjects and result in fewer
correct answers. However, Phase 2 results could not con-
firm any significant difference between styles C4 and C5.
Consequently, no evidence was found suggesting a
completely-wrong transcript would worsen comprehension
compared to audio only. One possible explanation is that
subjects ignored bad transcripts. Similar to the low-quality
transcript abandonment results found in [17], some subjects
in the present experiment stated that they would read a tran-
script for a few seconds, and elect whether or not to con-
tinue reading it based on its quality. In fact, several subjects
looked away from the computer display and stated they did
so to avoid the distraction of a faulty transcript.

Unexpectedly, the difference between the perfect transcript
style (C1) and the brightness-coded speech-recognition
style (C2) was not found to be significant in the Phase 2
objective question-answering task (though a significant
difference was found in the Phase 1 subjective task). In
Phase 2, a significant difference was found between C1 and
the uniform-brightness speech-recognition style (C3).
While it is premature to conclude that style C2 is better than
C3, the evidence suggests there is some utility to
visualizing text in this manner, but further investigation is
needed to understand the role of brightness-coded text.

Hypothesis H1 posits comprehension variation among all
transcript styles. While some aspects of this were confirmed
(as detailed in Table 2), the trend suggests some of the un-
confirmed H1 parts (specifically, C1 vs. C2 and C2 vs. C3)
may achieve statistically significant variation with addi-
tional subjects.

Hypothesis H2 posits that comprehension of audio pre-
sented with a transcript will increase as the WER of the
transcript decreases.  This correlation was observed with
the two transcript styles that had variable WER, C2 and C3.
Surprisingly, comprehension of audio played with the com-
pletely wrong transcript style (C4) was correlated to the
WER of the corresponding speech-recognizer-generated
transcript of that audio. This non-intuitive result cannot be
explained. The fact that style C1 (perfect transcript) and
style C5 (no transcript) showed no correlation with WER
suggest audio quality across samples was even. Results for
this hypothesis remain inconclusive and more work is
needed to understand the nature of the relationship between
WER and comprehension.

Evidence for Hypothesis H3, which posits that comprehen-
sion decreases with increasing speech rate, was clearer and
in agreement with [4]. Differences between native and non-
native speakers (Hypothesis H4) were also found.

Collectively, these results paint an optimistic picture. De-
spite the fact that comprehension of time-compressed
speech decreases as compression-factors increase [4],
speech-recognizer-generated transcripts used in conjunction
with such speech improve comprehension. In effect, the
results suggest people can either save time or improve their
understanding when reading error-laden speech-recognizer-
generated transcripts in synchrony with time-compressed
speech. The cost to provide speech-recognizer-generated
transcripts is low and since very bad transcripts do not seem
to confuse users, there is no apparent downside.

Searching large collections of personal audio recordings
intended as a personal memory aid is of particular interest.
The authors are cautiously optimistic that, based on the
results described herein, users of an audio-based memory
aid will better utilize archives of their recorded past.

CONCLUSIONS
Results of an experiment comparing comprehension of
time-compressed speech presented in synchrony with
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transcripts of varying qualities and presentation styles were
presented. Motivating this experiment is the desire to
construct improved audio browsing and searching tools by
minimizing the time needed to review time-compressed
audio and improving the comprehension of audio presented
in this manner. Results suggest a speech-recognizer-
generated transcript, despite having errors, aids in
improving comprehension of time-compressed speech.
Similarly, comprehension can be maintained at slightly
higher time-compression factors (i.e., faster) when
accompanied with a speech-recognizer-generated transcript.

No evidence was found suggesting a completely-wrong
transcript has different comprehension compared to no tran-
script. Consequently, it does not seem harmful to provide a
poor speech-recognizer-generated transcript. Rendering
transcripts with word-brightness proportional to the speech-
recognizer-assigned “phrase score” improved comprehen-
sion compared to no transcript, but it is not clear how im-
portant the brightness-rendering contributes to this im-
provement.

In confirmation of previous studies [4], comprehension
decreased with speech rate.  This study presents evidence
that comprehension also decreases with increasing word
error rate of speech recognizer-generated transcripts,
although this hypothesis is not yet confirmed.

The authors are optimistic on the use of these methods to
improve browsing and searching of personal recordings
intended as part of an audio-based personal memory aid.
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