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Knowledge partitioning is a theoretical construct holding that knowledge is not always integrated and
homogeneous but may be separated into independent parcels containing mutually contradictory infor-
mation. Knowledge partitioning has been observed in research on expertise, categorization, and function
learning. This article presents a theory of function learning (the population of linear experts model—
POLE) that assumes people partition their knowledge whenever they are presented with a complex task.
The authors show that POLE is agenera model of function learning that accommodates both benchmark
results and recent data on knowledge partitioning. POLE also makes the counterintuitive prediction that
a person’s distribution of responses to repeated test stimuli should be multimodal. The authors report 3

experiments that support this prediction.

The learning of concepts by induction from examples is funda-
mental to cognition and “. . .basic to all of our intellectua activi-
ties’ (Estes, 1994, p. 4). Many concepts are categorical: for ex-
ample, when a paleontologist learns to classify dinosaurs as bird-
hipped or lizard-hipped, when an infant learns to label furry
four-legged animals as cats or dogs, or when a physician learns to
categorize a nevus as benign or potentially cancerous. In these
cases, responses are limited to a nominal scale, often consisting of
binary response options such as “Category A” or “Category B.”

However, people often also learn function concepts, in which a
continuous stimulus variable is associated with a continuous re-
sponse variable. For example, one may learn how long to water the
lawn as a function of the day’s temperature, how driving speed
affects stopping distance, what his or her blood alcohol level will
be depending on the number of cocktails consumed, and so on.
Function concepts thus subsume category concepts as the small
subset of cases in which the response scale is nominal rather than
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continuous. Remarkably, cognitive psychology to date has devoted
far more empirical and theoretical attention to categorization than
to function concepts as a whole.

The purpose of this article is twofold. First, we seek to raise the
profile of function concepts by presenting a computational theory
of function learning that is based on the idea that people simplify
a complex learning task by partitioning it into multiple indepen-
dent modules. The theory, known as POLE—for population of
linear experts—is shown to handle most existing data on function
learning. Three new experiments explore some of POLE's coun-
terintuitive predictions and provide additional support for the
theory. We show that when people are confronted with uncertainty
about which of several competing functions applies to a test
stimulus, responding alternates between different learned functions
rather than relying on a blend of existing knowledge, thus giving
rise to multimodal response distributions.

The second purpose of this article is to evaluate an overarching
framework for learning and knowledge acquisition, known as
knowledge partitioning (e.g., Lewandowsky, Kalish, & Ngang,
2002; Lewandowsky & Kirsner, 2000; Yang & Lewandowsky,
2003, in press). Knowledge partitioning holds that people’ s knowl-
edge is often heterogeneous and divided into independent parcels
that may contain mutually contradictory information. Knowledge
partitioning has been identified in experts (Lewandowsky &
Kirsner, 2000) as well as in nonexperts in category learning
(Lewandowsky, Kalish, & Griffiths, 2000; Yang & Lewandowsky,
2003, in press) and function concept acquisition (Lewandowsky et
a., 2002). Here, we show that knowledge partitioning not only is
a phenomenon in its own right but also is fundamental to function
learning.

We proceed as follows: We first provide a brief overview of
function learning before turning to a discussion of knowledge
partitioning and its differentiation from empirical precursors. This
leads us to present the new theory of function learning, POLE. The
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fundamental assumption of POLE is that people partition their
knowledge into numerous independent components; we show that
the model can quantitatively account not only for the partitioning
phenomena that stimulated its development but also for all bench-
mark results in the function-learning literature. This identifies
knowledge partitioning as being fundamental to function concept
learning, which extends a similar conclusion reached in the context
of category learning by Y ang and Lewandowsky (in press; see aso
Erickson & Kruschke, 1998). We conclude the article with three
experiments that provide strong support for one of POLE’'s most
counterintuitive predictions, namely, that people in situations of
uncertainty alternate between different learned functions.

LEARNING FUNCTION CONCEPTS

In the domains that are commonly studied by cognitive psychol-
ogists, functions play at least a supporting role in much of decision
making. For example, on a recent trip by the authors to the Black
Forest in Germany, the water main broke in our street. The
experienced repair worker arrived with a large wrench, one end of
which he placed on the broken pipe's valve, through which the
leaking water was flowing. The other end he put to his ear,
explaining that he could tell the distance to the bresk from the
frequency of the sound. True to his word, his excavation of the
street was within 1 m of the break, over 6 m from his listening
post. His estimate of the function relating frequency to distance
was learned over many years experience in the field. In the
laboratory, the nature of continuous judgments of this type is best
examined with a function-learning methodol ogy.

In a function-concept learning paradigm, people learn the rela-
tionship between continuous stimulus and response dimensions
from a set of discrete training items. On each learning trial, the
magnitude of the stimulus dimension is presented, and the partic-
ipant’s task is to predict the associated response magnitude. Each
response is followed by corrective feedback. Typicaly, stimulus
magnitudes are coded graphically and without any explicit nu-
meric coding, for example, by a horizontal arrow of varying
lengths (Lewandowsky et al., 2002). Response magnitudes can be
variously provided by response keys that are labeled with discrete
numbers (Kruschke, 2001a), written or verba responses (Birn-
baum, 1976; Mellers, 1986), typing of numeric values (Reed &
Evans, 1987), the elapsed time between two key presses (Koh &
Meyer, 1991), and graphical means (e.g., participants might have
to adjust a vertical dlide rule with the mouse, with corrective
feedback being presented on the same slide rule; Lewandowsky et
al., 2002).

The learning of function concepts shares a certain similarity
with the learning of sensory and motor functions (Rosenbaum,
Carlson, & Gilmore, 2001). In prism adaptation experiments, for
example, participants might be presented with a visual target and
asked to touch it or throw an object at it, thus learning to com-
pensate for the distortion by prism goggles (Martin, Keating,
Goodkin, & Bastian, 1996; Welch, Bridgeman, Anand, & Brow-
man, 1993). Dynamic touch (Turvey, 1996), vestibulo-ocular re-
flex gain adaptations (Crawford & Guitton, 1997), depth cue
integration (Atkins, Fiser, & Jacobs, 2001), motor field adaptations
(Conditt, Gandolfo, & Mussa-lvaldi, 1997), and adaptation to
visuomotor distortions (Ghahramani & Wolpert, 1997) all appear
to involve rapid learning of continuous input—output mappings.
However, al these cases differ from function learning in two
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important ways. First, whereas function concepts involve highly
abstract knowledge that can be tested and used in a variety of
response modes, most sensory-motor functions are highly response
specific (e.g., an acquired adaptation to a visual distortion cannot
be reported verbally or by pressing keys). Second, all research on
sensory-motor adaptations involves preexisting functions, based
on life-long practice, that may be modulated during an experiment
but are not learned de novo. Here, we focus on abstract function-
concept learning and only briefly point to possible connections
between function concepts and motor learning later in the article.

With sufficient practice, people are remarkably adept at learning
avariety of function concepts (e.g., Busemeyer, Byun, DelL osh, &
McDaniel, 1997). The discrete stimuli presented during training
are generalized into a continuous function embodying the under-
lying relationship. This is evident during a transfer phase when
novel stimuli are presented and participants must produce the
associated response value. If those novel stimuli fall within the
range of training values, performance is typically highly accurate
(see Busemeyer et a., 1997, for a review). If novel stimuli are
presented outside the range of training values, participants are
capable of extrapolation, albeit at a lower level of accuracy than
interpolation (Del osh, Busemeyer, & McDaniel, 1997). Although
it is possible for people to learn functions that map multiple
stimulus dimensions onto a single response dimension (e.g., Koh,
1993; Roe, Barkan, & Busemeyer, 2001), most research to date has
been conducted with one-dimensional functions in which a single
stimulus property determines each response. This articleis primar-
ily concerned with one-dimensional function learning.

Because the human ability to use concepts of any type rests on
the kind and structure of knowledge that is acquired during train-
ing, we consider additional related areas of research in the context
of our second goal— demonstrating that contrary to much consen-
sus, knowledge is not always integrated and homogeneous.

HOMOGENEITY VERSUS HETEROGENEITY OF
KNOWLEDGE

There are many and varied theories of knowledge acquisition
and representation. Notwithstanding their theoretical diversity, we
suggest that at least one common theme can be identified: On
balance, current views of knowledge tend to emphasize integration
and homogeneity, rather than leaning toward contradiction, idio-
syncrasy, and heterogeneity. Lewandowsky et al. (2002) explored
this theme in some detail, noting in particular the common tenet
that expert knowledge is highly organized and integrated (e.g.,
Bédard & Chi, 1992; Ericsson, 1996; Glaser, 1996) and the nearly
uniform view among theories of categorization that all available
knowledge enters into classification decisions (either because all
disparate experiences have been combined into a single integrated
rule or prototype—Ashby & Gott, 1988; Homa, Sterling, & Tepel,
1981— or because al remembered instances are considered during
classification—Kruschke, 1992; Nosofsky, 1991).

Lewandowsky et al. (2002) additionally identified a pervasive
boundary to this integration theme: Most theorists agree that
knowledge is specific to a domain or situation and that it may
become inaccessible through context shifts or when a domain-
relevant problem is made atypical. Hence, chess masters recall
randomly arranged chess boards with great difficulty, relative to
midgame positions (e.g., Gobet & Simon, 1996), and people con-
sistently fail to apply a known solution strategy if a problem
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isomorph is presented in a novel context (e.g., Gick & Holyoak,
1980; Holyoak & Koh, 1987). Likewise, the integration assump-
tion acknowledges the coexistence of several complementary rules
or strategies that may tap the same knowledge (e.g., Erickson &
Kruschke, 1998; Lovett & Schunn, 1999; Shrager & Siegler,
1998). In the perceptual domain, people are able to learn multiple
(correct) visuomotor mappings, cued, for example, by the presence
or absence of either a tone (Kravitz & Yaffe, 1972) or prisms
(Martin et al., 1996).

However, the integration assumption does entail the expectation
that alternative strategies cooperate rather than compete, irrespec-
tive of the context in which performanceis observed. Accordingly,
the pervasive, if often tacit, expectation of much current theorizing
is that athough performance on a given problem may differ
between contexts, responses should nonetheless remain relatively
free of contradiction.

Violations of Homogeneity: Expertise

There are, however, strong reasons to question the integrality
and homogeneity of knowledge. We consider evidence from the
domains of expertise, categorization, and function learning in turn.

Given the emphasis on knowledge integration within the exper-
tise literature, the occurrence of contradictory behavior among
experts is particularly striking (e.g., Carraher, Carraher, &
Schliemann, 1985; Lewandowsky & Kirsner, 2000; Nunes,
Schliemann, & Carraher, 1993; Schliemann & Carraher, 1993).
For example, Lewandowsky and Kirsner (2000) asked experienced
fire commanders to predict the spread of simulated wild fires from
a set of physical predictors. When the two key predictors (wind
and slope of terrain) were in opposition—thus making direction of
spread uncertain—the experts' predictions depended on the phys-
ically irrelevant problem “context”: namely, the origin of the fire.
When fires were presented as to be controlled, experts uniformly
expected them to spread with the wind, whereas physically iden-
tical fires presented as back burns (i.e., fires lit by fire fighters as
a countermeasure ahead of the to-be-controlled fire) were expected
to spread into wind. These contradictory responses ignore the fact
that back burns obey the same laws of physics as any other fire.

To facilitate understanding of the remainder of this article, we
must differentiate the finding of Lewandowsky and Kirsner (2000)
from conventional context effects. This differentiation rests on the
following criteria:

1. The nature of the problem and its surface structure did
not differ between contexts.

2. The domain relevance of the problem was equal across
contexts as both types of fire are routinely considered
during training.

3. The change in context was a mere change of a verbal
label accompanying the problem that did not ater the
surface structure of the problem itself. (We consider only
this local meaning of context from here on.)

4. The context shift did not merely impair performance but
engendered a qualitative reversal of the response. That is,
the same problem yielded two mutualy exclusive and
contradictory predictions, each of which was consistent
with application of a domain-relevant predictor variable.
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5. The test context was objectively irrelevant and did not,
by itself, predict fire spread on the basis of any physical
laws.

6. Most criticaly, a single unified functional relationship
existed that predicted the problem outcome in both con-
texts and that the experts explicitly learned during their
extensive training.

7. All predictor variables of this unified mechanism were
equally valid in both contexts.

The preceding criteria clarify that earlier demonstrations of
context specificity of knowledge did not represent partitioning: For
example, the lack of transfer between isomorphs observed in
problem solving (e.g., Holyoak & Koh, 1987) does not meet
Criteria 1-4; the disruption of expert performance with random-
ized chess boards (e.g., Gobet & Simon, 1996) does not satisfy
Criteria 2 and 3; context-specific gaze adaptations to different
prisms (Welch et a., 1993) do not meet Criteria 1, 2, 3, and 5; and
SO on.

Lewandowsky and Kirsner (2000) explained their finding that
experts would make two mutually opposing predictions for the
same problem in two domain-relevant contexts by postulating the
concept of knowledge partitioning. According to this framework,
knowledge may be divided or modularized into independent “ par-
cels” with the strong possibility that inconsistent or mutualy
exclusive information persistently coexists. Criticaly, those di-
verse knowledge components may be brought to bear on the same
invariant problem.

There is, however, at least one potential alternative explanation
for the results of Lewandowsky and Kirsner (2000). Fire expertsin
thefield are statistically more likely to encounter wind-driven than
slope-driven to-be-controlled fires (and vice versa for back burns).
In consequence, notwithstanding its physical irrelevance, context
is a psychologically valid probabilistic predictor of fire spread.
Using a categorization analogue of the fire prediction task, Le-
wandowsky et al. (2000) showed that this probabilistic mapping
between context and outcome may engender the appearance of
contradiction without, however, mandating the assumption critical
to knowledge partitioning: namely, that a nonpredictive context
cue selectively gates access to independent and mutually contra-
dictory knowledge parcels. We next turn to experimental support
for the knowledge partitioning framework that has addressed this
issue and that also returns us to the function concept arena.

Heterogeneity in Function Learning and Categorization

Lewandowsky et al. (2002, Experiments 1 and 2) implemented
an analogue of fire prediction in a function-learning task, using a
function that related speed of fire spread to (downhill) wind speed
for a particular constant slope. The function was an upward con-
cave quadratic and, athough arbitrarily parameterized, captured
the true physical situation. The vertex of the function represented
the wind speed at which the direction of the fire reverses: Above
that point, the force of wind is sufficient to overcome the effect of
slope, thus blowing the fire downhill with increasing speed. Below
that point, the wind is insufficient to blow the fire downhill, and
speed of spread uphill increases with decreasing wind strengths.

Components of this common to-be-learned function were pref-
erentially shown in two different contexts during training, by
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labeling each stimulus as either a back burn or a to-be-controlled
fire. In a randomized condition, training stimuli across the entire
range of the function were presented in both contexts, whereas in
a partitioned condition most back burns were associated with low
wind speeds (and hence the decreasing component of the quadratic
function) and most to-be-controlled fires with high wind speeds
(and hence the increasing component). In both conditions, how-
ever, context was uncorrelated with the correct magnitude of the
response variable, speed of fire spread.

At a subsequent transfer test, all stimuli were shown in both
contexts. Responses reveaed that participants in the randomized
condition learned an integrated quadratic function, whereas par-
ticipantsin the partitioned condition, by contrast, appeared to learn
the two segments of the function separately, as indicated by their
context-specific extrapolations. These context-specific extrapola-
tions, moreover, were highly correlated with the responses of
people in two control conditions who learned only one segment of
the quadratic function. The high correlations suggest that peoplein
the partitioned condition had mastered each segment of the func-
tion in its preferential context as though the other had never been
presented.

Yang and Lewandowsky (2003, in press) recently reported
corresponding results in category learning: Context again identi-
fied component boundaries of the category space, without however
being predictive of category membership itself. People’s general-
izations to novel transfer items were found to be context specific
and, within each context, much like those of people who had
learned only one or the other component boundary. This under-
scores the generdity of the partitioning observed in function
learning by Lewandowsky et al. (2002).

In interpreting the results of Lewandowsky et al. (2002; see also
Yang & Lewandowsky, 2003, in press), we must reiterate some of
the earlier factors that are particularly crucial to identifying knowl-
edge partitioning: (a) Context, by itself, was not a direct predictor
of the outcome; (b) a common context-invariant solution existed
that people were demonstrably able to learn when context was
randomly assigned to stimuli; and (c) al relevant variables were
equally predictive in both contexts, and it was only their relation-
ship to the outcome that changed with context. These factors, plus
the additional fact that participants had no prior knowledge about
the functions or categories, differentiate the results of Lewan-
dowsky and colleagues from otherwise loosely related precedents
in the domain of perceptual learning (e.g., Atkins et al., 2001;
Ghahramani & Wolpert, 1997; Jacobs & Fine, 1999; Martin et al.,
1996; Vetter & Wolpert, 2000).

The data of Lewandowsky et al. (2002; see aso Yang &
Lewandowsky, 2003, in press) are therefore arguably unique in
suggesting that context can serve to gate a relevant parcel of
knowledge that is learned independently of competing knowledge
held elsewhere. We now take the idea of knowledge partitioning to
its extreme, by postulating that partitioning is at the heart of all
learning of function concepts.

FROM PARTS TO THE WHOLE: POLE, A NEW
THEORY OF FUNCTION LEARNING

We propose that people, when faced with learning a complex
prediction task, seek to break the problem down into simple
constituent components and then learn those components indepen-
dently and without attempts at cross-referencing or integration. We
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explore this view by presenting a new model of function learning,
called POLE, which postul ates that people respond by selecting the
output of one of many possible component simple functions. No
integration across those component functions is assumed to take
place. This core property differentiates POLE from existing theo-
ries of function learning.

Models of function learning have been variously based on pure
parametric function estimation (Koh & Meyer, 1991), on pure
instance-based learning (ALM; Busemeyer et a., 1997), and on a
combination of linear regression and instance-based learning. This
last model, EXAM (for extrapolation—association model), has ac-
counted for a wider range of data than either pure rule-based or
pure instance-based alternatives (DelLosh et al., 1997). We there-
fore consider EXAM to be a standard against which al new
theories must be evaluated. However, as developed to date by
DelLosh et a. (1997), EXAM is not suitable for fitting the parti-
tioning results of Lewandowsky et al. (2002) because it cannot
handl e the presence of abinary context variable without significant
modifications.

Elements of a New Theory

We propose that each training stimulus is associated not directly
with aresponse, asin EXAM, but with a function that predicts the
target magnitude. We propose furthermore that stimuli presented
in different contexts can be selectively associated with different
functions. For example, participants in the Lewandowsky et al.
(2002) paradigm might learn one function (fire speed o wind
speed) for one context and another function (fire speed o 1 — wind
speed) for the other context.

POLE assumes that people are predisposed to expect a new
function to be amaximally simple positive linear function (Y o« X).
This predisposition is subject to modification by experience; peo-
ple may learn to use a function other than the one initialy pre-
ferred, or if necessary, they may break the concept into component
functions based on the values of one or more dimensions of the
stimulus. The assumption of POLE isthat, in al cases, stimuli are
associated with simple candidate response functions (which, for
parsimony only, are assumed to be linear), only one of which is
chosen to provide aresponse on any given trial. POLE thus rejects
the idea that people blend, average, or otherwise integrate infor-
mation held in different components of knowledge.

Recent models in machine learning (Schaal & Atkeson, 1998),
motor learning (Haruno, Wolpert, & Kawato, 2001), and category
learning (Erickson & Kruschke, 1998), all based on the mixture-
of-experts approach (Jacobs, Jordan, Nowlan, & Hinton, 1991),
share some properties with POLE; we explore these relations
further in our General Discussion.

Population of Linear Experts (POLE)

POL E models the psychological processes that take a potentially
multidimensional stimulus x and produce a one-dimensiona nu-
meric response; the model learns by comparing the value of its
current response, ¥, to the target value, y. We implement the model
as a connectionist network, paraleling a related model of catego-
rization, ATRIUM (Erickson & Kruschke 1998, 2002; Kruschke &
Erickson, 1994), that introduced the mixture-of-experts formalism
(Jacobs et al., 1991) to category learning. An important conceptual
difference between POLE and ATRIUM is that POLE generates a
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response by selecting just one expert on any given trial, whereas
ATRIUM uses aweighted mixture of the predictions of all experts.

The basic structure of the network is presented in Figure 1.
When astimulusiis presented, it activates a set of nodes (“Instance
Nodes” in Figure 1) that represent memory of previously encoun-
tered stimuli. Instances are arrayed according to their magnitude
and may optionally be separated along a second, nominal context
dimension. Instances have overlapping receptive fields and are
activated proportionally to their similarity to a presented stimulus.
In addition to activating instances, a presented stimulus also elicits
a set of potential responses from an entire population of preexist-
ing linear response functions (“Experts’ in Figure 1), each with a
unique slope and intercept. Although each function computes a
candidate response, only one is selected as the network’s output.

The choice of function is determined by a gate placed on each
expert's output, whose value depends on two factors: (a) the
activation of the instance nodes and their learned associations with
each expert (solid linesin Figure 1) and (b) the strength of the bias
(“Biases” in Figure 1) associated with each function. Each instance
is connected to each function’s gate such that positive connections
indicate an increased probability that the function will be chosen to
govern the output of the network. Conversely, negative connec-
tions indicate an increased probability that the function’s predic-
tions will be ignored. The bias term associated with each function
reflects the model’s instance-independent global preference for
that function.

Learning takes place on any trial on which feedback about the
correct response is available. Learning is not restricted to the
function that was selected for the response. Instead, all candidate
functions are evaluated, and the connections from instances to the
gates of those functions whose predictions were more accurate
than the average prediction (weighted by their choice probabilities)
are strengthened, whereas connections to functions that made
worse-than-average predictions are weakened. Biases for each

Output

>

Biases

Instance
Nodes

Input

Figure 1. Architecture of POLE (population of linear experts model).
Activation in the model flows from the inputs, via learned dimensional
attention (not shown), to instance nodes. In parallel, each expert computes
a possible response. Learned weights (open circles) connect al exemplars
and expert-specific biases to gate nodes. The gates select one expert
prediction to become the output, on the basis of the weighted activation
from exemplars and biases.
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function are also adjusted during this step. Once changesin choice
probability are determined, the model then adjusts attention to the
stimulus dimensions so as to maximize activation of the instance
nodes responsible for selecting the correct experts.

The model thus embodies several hypotheses about the psycho-
logical processes responsible for function learning. Chief among
these are dimensional attention, stimulus-specific knowledge,
probabilistic selection of competing representations, and error-
driven learning. We now present a more detailed description of
each of these processes.

Dimensional Attention

Dimensiona attention refers to the relative amount of process-
ing given to each component of a stimulus. In categorization,
attention can be readily conceptualized as the weighting of each
dimension. If a dimension attracts attention, its values are more
easily discriminated; if a dimension does not attract attention
because it is irrelevant or redundant, values aong that dimension
become more difficult to discriminate. There is now much evi-
dence to support the existence of dimensiona attention and the
long-term learning of such attention in category learning (Gold-
stone & Steyvers, 2001; Kruschke, 1992, 2001a, 2001b; Nosofsky,
1986). Accordingly, POLE also relies on the concept of dimen-
sional attention.

In POLE, stimuli are represented by a vector X, whose elements
are restricted to the unit interval (0, 1). For the one-dimensional
function-learning situations considered in this article, when a
context-free stimulus is presented, x is one-dimensional, and its
single dimension x,, represents numeric magnitude using an inter-
val scale or better. In the one-dimensional case, there is no mean-
ingful sense of dimensional attention; the magnitude dimension
gets all attention devoted to the stimulus. In cases in which a
stimulus is presented in an explicit context, as in the earlier
experiments of Lewandowsky et al. (2002), x additionally includes
anominal dimension that codes context (represented here by 0 and
1 throughout). Dimensional attention then serves to weight the
relative importance of context and numeric magnitude, thus trans-
lating the physical stimulus into a psychological representation
(Nosofsky, 1986).

Each dimension i in X = (Xq, Xy, . - ., X,,) iS assigned an initial
salience or baseline attraction, denoted X;. The common assump-
tion that attention is of limited capacity implies that there is
competition between dimensions, such that their attractions trade
off against each other. This is implemented by normalizing the
attractions to determine the final dimensional attention values,
denoted «;. Thus, the dimensional attention value for a given
dimension | (we follow the convention that uppercase subscripts
represent a fixed index for which a computation is completed and
lowercase subscripts denote a varying index over which summa-
tion occurs) is given by

a; = exp(N)/ Y, exp(R)). 1)

Note that « is necessarily equal to unity for the single dimension
in x if one-dimensional stimuli are presented.
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Instance Representations

Dimensional attention contributes to determining the activation
of the instance nodes (a/""), whose overall profile of activation
constitutes the representation of stimulus x:

ajmst = exp(—c 2 % — M«ji|): @

where ¢ is a free parameter determining the specificity of the
activation and w;; is the location of instance node j aong dimen-
sion i. Locations of instance nodes are assumed to cover the entire
stimulus space uniformly.

Conceptually, Equation 2 states that an instance is maximally
activated by a stimulus of identical magnitude. Activation declines
exponentially with an increase in the distance between the stimulus
and the instance, where the steepness of that decline is determined
by the specificity parameter c. The relative weighting of dimen-
sions (e.g., context vs. magnitude) is a function of the distribution
of attention as determined by Equation 1. Thus, a dimension that
receives little attention will not cause activation to drop off as x
and w move away from each other, consistent with the basic
assumption that ignored dimensions cannot influence discrim-
inability of stimuli.

Population of Experts

The stimulus, represented by the activated instance nodes, pro-
vides a basis for choosing which of the possible linear response
functions (experts) will be used on a given trial. Each of the k
experts makes a prediction based on the simple function

Y = Bok T BuXm €))

where X, is the value of the magnitude dimension in x and the
elements of B are the slope and intercept parameters.

These experts form the core of POLE's architecture. In the
simulations reported below, there were 64 unique preexisting
experts, each with a predetermined constant slope (3,) and inter-
cept (Bo). Slopes and intercepts were chosen subject to two con-
straints: First, for any magnitude of the stimulus x, there had to be
a sufficiently large number of experts to cover the entire range of
possible response magnitudes at a satisfactory resolution. Second,
as many experts as possible were to be consistent with any given
response magnitude for each stimulus value. These constraints
were met by dividing the range of y into a number of intervals and
mapping linear functions so that they intercepted the y-axis at x =
0 and x = 1 at these intervals. For example, if there were 64
experts, the ordinate was divided into eight intervals from —0.5 to
1.5 (the intervals exceed the range so that linear functions that
cover only part of the function space can be used as experts). At
each of these eight points along the ordinate (i.e., x = 0), eight
functions were drawn whose f(x) was equal to the same eight
y-values when x = 1. This ensured that the 64 experts covered the
entire function space by symmetrically fanning out from the same
y-valuesat x = 0Oand at x = 1.

Choice of Expert

The probability that any particular expert is chosen is deter-
mined jointly by two factors. First, each expert has some stimulus-
independent probability of being chosen, reflected by a set of
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biases that embody a priori expectations combined with learned
preferences. We chose to represent people’s a priori expectations
with an exponential gradient, centered on the experts with unit
dlope (i.e., y = By + X) and decaying as the slope diverged from
unity. This gives an initial bias for each expert:

Wi = o X exp(—&|M — my), (4

where o is the maximum initial bias and ¢ is the rate of decrease
in bias as the slope of the expert (m,) diverges from the preferred
slope, M. On the basis of relevant data (Busemeyer et a., 1997),
the preferred slope (M) was set to unity in all simulations below.
Second, each instance node (y;;) is connected to each expert k by
a weighted connection. The product of these two factors deter-
mines the strength of each expert. Similar to dimensional attention,
final strength values are normalized. Before normalization,
strength s, of an expert is given by

S = Wio exp( Y, wid™), ®)

J

where w,,, is the bias for expert k and w,; is the weight to expert k
from instance node j.

In POLE, the strength of an expert is interpreted as the proba-
bility of selecting that function’s output as the response, and for
this reason, strengths must always sum to unity, which is achieved
by normalizing the s, values. According to this constraint, the final
strength S, of an expert K is given by

P(KIX) = S = % ()
k

Equation 6 also clarifies that the final normalized strength of an
expert (S¢) is identical to the probability of that expert being
chosen for the overt response when the stimulus x is presented. If
an expert K is chosen to respond on a given trial, the output of the
model, ¥, will be §,. as defined by Equation 3.

The discrete choice of an expert on each trial impliesthat, across
replications, POLE predicts a distribution of responses for a given
stimulus. The nature of that distribution is determined by the
output (§,) of each expert and the probability P(K|x) of it being
chosen. The ability to predict response variability, and the shape of
the response distribution, is one of the crucia properties of POLE
that we examine in detail later in three experiments. This discrete
choice of expert on each trial most clearly distinguishes POLE
from other models such as EXAM and ATRIUM, in which the
output of the model is computed by averaging the potentia re-
sponses of many instance nodes, weighted by the probability of
each node's response being chosen (see Appendix A, here, and
Equation 14 in DeLosh et al., 1997, and Equation 6 in Erickson &
Kruschke, 1998).

In summary, the predictions of the model are determined by four
factors: the attention to individual stimulus dimensions «;, the bias
toward each individual expert w,,, the item-specific attention
weights connecting instance nodes to experts (w;), and the spec-
ificity of instance nodes c. The first three factors are all adjusted
dynamically to reduce error during learning, and the last factor is
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represented as a free parameter.* The remaining free parameters of
the model govern the error-driven learning processes.

Error Reduction During Learning

Although the output from only one expert is chosen on each
trial, POLE learns by adjusting its entire response distribution to
reduce error. In POLE, the error (E) for expert K is taken to be the
squared difference between the target (y) and that expert's re-

sponse (ic):
Ec = ¥2(y — %% ()

The %2 in Equation 7 is a convenience to simplify the derivatives
of the parameters with respect to error.

We then compute a strength-weighted average, or mixed, error
(Emix) from dl of the individual expert’s errors:

Evix = 2, SEe (8)

When a participant receives corrective feedback, expert strengths
are adjusted to reduce this mixed error to as small a value as
possible. In practice, because several experts may make similar
predictions for any single stimulus, a number of experts may retain
their strengths. As presented in Equation 6, final expert strength is
normalized, and it is the prenormalized strengths that are adjusted
to reduce error for a given expert K:

A _ (EMix - EK)
S = UST1 9
k

where 7 is the shift rate (derivations of this and all other learning
rules are presented in Appendix B). Because of the inherent
nonlinearity in the relationship between these strengths and the
average error, this shift is repeated 10 times per tria in the
simulations reported below. With thisin mind, we introduce a new
notation for the strengths, so that s indicates the initial values
given by Equation 5 and ™™ are the strengths at the end of the
shifting process but still before normalization. Essentially the shift
ensures that on each learning trial, experts that are producing
smaller errors than average receive a boost in strength and experts
that are making larger errors have their strengths reduced as a
result of each shift. Iterating ensures a closer approximation to this
gradient descent.

The shifted strength values are then learned, so that the same
stimulus presented again will benefit from the shift and elicit a
more accurate response distribution. The shifted strength values
serve as targets for the initial strengths, so that POLE can learn by
doing gradient descent on this difference for both the bias strengths
(which have a stimulus-independent effect on choice probabili-
ties)—

AWy = Ao = SMexp( D, wea™) (10)
j

—and for the weights associating specific instance nodes to the
experts—

Aij — )\W(S?hm _ S’(nit)s'(nitajlnst’ (11)
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where A, and A,, are the bias and associative weight learning rates,
respectively. The learning of biases enables the model to develop
general preferences for certain functional relations, and the learn-
ing of weights enables the model to associate specific response
functions with certain stimuli.

The final step on each tria is for the model to adjust dimen-
sional attention (as opposed to the strengths of the experts, which
was done using Equations 10 and 11). Conceptualy, thisis simply
a case of descending the gradient of the dimensiona attentions
with respect to error; practicaly, the derivative is somewhat com-
plex. For any dimension I, the change in (prenormalized) dimen-
sional attractiveness is

AR = = Agm 2, (" — M SMwal™ % — il (kg — a)a, (12)

kj.i

where k;, is the Kronecker delta; hence k;, equals 1if i = 1 and O
otherwise, and Ay, is the learning rate for dimensional attractive-
ness. Attention is thus transferred between dimensions following
each trial on which feedback reveals the model’s output to be
erroneous, the dimensional attention values, «;, were defined in
Equation 1. For simplicity, we have assumed here that attention
learning is a one-step process; a more complex but possibly more
accurate approximation may be obtainable by first shifting dimen-
sional attention (much as expert strengths were shifted in Equation
10) and then learning dimensional attractiveness (e.g., Kruschke,
2001b; Kruschke & Johansen, 1999).

Summary

On each trial, astimulusis presented and the experts each voice
an opinion about their preferred response. In parallel, instances in
memory are activated on the basis of the extent of their (dimen-
sional attention-sensitive) similarity to the stimulus. The response
of one expert is chosen on the basis of stimulus-independent biases
and stimulus-specific weights from the activated instances. No
blending or averaging of candidate responses takes place. When
feedback is made available, the extent of error between each
expert’s candidate response and the target value is used to adjust
the relative strengths of all experts and expert-specific biases and
weights between instances and experts.

APPLICATION OF THE THEORY TO DATA
Knowledge Partitioning

Because it was devel oped to account for knowledge partitioning
during function learning, we first apply POLE to the data from
Lewandowsky et a. (2002). Figures 2A and 2B show the results of
their Experiment 2. As discussed above, in the randomized con-
dition (see Figure 2A), participants mean responses corresponded
to the U-shaped training function, whereas in the partitioning
condition, people produced the context-specific extrapolations
(and hence the cross-over X pattern) shown in Figure 2B.

According to POLE, participants must partition their knowledge
in order to learn any nonlinear function. On that basis, participants
in the randomized condition appeared to partition the task accord-

1 The choice of ¢ as a fixed rather than learned value is arbitrary; it
would have been possible to derive a learning rule for ¢ from the overall
error gradient.
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Figure2. Thefit of POLE (population of linear experts model) to Experiment 2 of Lewandowsky et al. (2002).
Observed responses (A and B) and POLE's predictions (C and D). A and C are for the random context; B and

D are for the systematic context.

ing to stimulus magnitude, whereas those in the partitioning con-
dition used the context dimension. To fit these data, POLE was
presented with the same random training sequences seen by par-
ticipants in the experiment. Both stimuli and responses were
rescaled to a unit interval. There were 19 test stimuli presented in
each of the two contexts, and the mean response across participants
was recorded for each stimulus. The model’s mean response was
computed analogously, and goodness of fit was determined by the
mean-squared deviations between the predicted and the observed
means. The model had five free parameters, held constant across
conditions; specificity of instance nodes (c); the shift rate for the
expert strengths (ng); and the three learning rates for bias, asso-
ciative weights, and dimensional attention (A,, A, and Ag,,
respectively). Because of the small number of test items, POLE
was fit to the group data rather than to individua responses.
Figures 2C and 2D show that the model reproduced the knowl-
edge partitioning in the data, accounting for 87% of the variancein
the observed mean responses. The best-fitting parameter estimates

for this simulation, and al others reported in this article, are
presented in Table 1. More important than the variance accounted
for, the model captured the critical qualitative form of the data
Participants in the randomized condition learned a single quadratic
concept, which POLE represents as a piecewise linear function,
whereas participants in the partitioning condition learned two
distinct function concepts. POLE correctly segregates the stimuli
according to context in this condition, producing two distinct
quadratic response functions.

The model accounts for the data by relying on three principles.
First, the instance-based representation allows attention to be dy-
namically reallocated between dimensions during learning. Thisis
necessary for the model to be able to differentiate between stimuli
presented in the two training contexts. Second, an entire function,
rather than a particul ar response magnitude, is associated with each
stimulus during training. This allows the model to capture the fact
that context does not merely shift a learned response but instead
alters the relationship between stimulus and response. Third, the
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Table 1
The Parameters of POLE for All Experiments
Fit
c Ns Ay Ao Adim ) € R? B

Knowledge partitioning (Lewandowsky et al., 2000) 7.85 6.37 0.26 0.40 176 0.77 0.29

Random .900

Systematic .860
Delosh et al. (1997)

Linear 100.00 0.07 0.00 1.01 — 0.40 3.97 .988

Quadratic 727 1.09 1.56 1.00 — 155 9.88 .968

Exponential 90.00 3.06 3.23 0.11 — 1.24 2.25 .984
Experiment 1 40.97 29.02 0.10 0.36 — 0.01 1.02 38.87%
Experiment 2 19.50 30.50 0.11 0.11 — 0.13 18.40 31.80°
Experiment 3 32.47 242 0.60 0.10 — 0.01 8.34 34.15°

Note. Dashes indicate the attention learning parameter was not applicable because stimuli were one-dimensional. POLE = population of linear experts

model.
agd =511, PO =533 °SD = 7.38.

model selects responses probabilistically, rather than by blending
candidates. This final property is critical to the predictions tested
by the three experiments below.

We next address the question of whether the architecture of
POLE, stimulated by knowledge partitioning, can accommodate
benchmark results in function learning. If so, then it may be that
function learning in general involves not the integration of knowl-
edge but instead its progressive partitioning.

Assessing the Scope of the Model: Benchmark Results

Busemeyer et al. (1997) identified 10 fundamental empirical
principles of function learning that any model must address:

1. Arbitrary associations are harder to learn (i.e., take
longer and leave more residual error after fixed training)
than are systematic continuous functions.

2. Positive (increasing) functions are easier than negative
(decreasing) functions.

3. Strictly monotonic functions are easier than nonmono-
tonic functions.

4. Cyclic functions, in which more than 1/2 cycle is to be
learned, are more difficult than noncyclic functions with
only a single inflection point.

5. Linearly increasing functions are easier than nonlinearly
increasing functions. Linearity is defined in the psycho-
logical similarity space of the stimulus dimensions.

6. People expect functional relationships to be linear, as
revealed by the responses made early in training.

7. Interpolation between training stimuli is nearly as accu-
rate as performance on trained stimulus magnitudes.

8. Extrapolation performance is worse than interpolation.

9. The cue labels with which a function is presented for
training affect ease of learning: Functions are learned

more slowly if labels are incongruent with expectation
(e.g., a negative function is difficult to learn if x and y
are labeled as“number of drinks consumed” and “blood
alcohol level,” respectively).

10. Learning of difficult functions (i.e., nonmonotonic or
cyclic) is facilitated if stimuli are presented in system-
atic order, for example from smallest to largest
magnitudes.

Benchmark Results: POLE’s Account

To examine POLE's inherent ability to predict the known or-
dering of difficulty among the various functions, we trained ran-
domly parameterized POLE models on seven different functions
and analyzed the frequency distribution of the predicted rank
orderings of difficulty of the functions. The seven functions were
(a) arandom mapping between stimuli and responses, chosen such
that each value of x had a unique y in the range 0-100; (b) a
linearly increasing function (y = X); (c) a linearly decreasing
function (y = 100 — X); (d) a monotonic increasing function (y =
.01 X x3); (e) a monotonic nondecreasing cubic function [y =
50 + (x — 50)%/2,450]; (f) anonmonotonic quadratic function [y =
1+ .04 X (50 — x)?]; and finally, (g) a cyclic function [y = 50 +
8.03 X sin(x + 7)].

Sixty stimuli with x ranging from 21 to 80 were generated from
each function for use as training instances. Each stimulus was
presented four times. The final block was a transfer test, which
included a subset of the training items with x ranging from 22 to
80 in steps of two, along with new extrapolation items from the
ranges 1-20 and 81-100 and new interpolation items ranging from
21.5t0 79.5in steps of two. Each simulated experiment, defined as
one set of parameter values, involved 10 “participants’ trained on
the same stimuli but with different random sequences.

We simulated 20,000 experiments by selecting random values
for the six model parameters from the following ranges: ¢ € (1,
100), ns € (0, 20), A,, € (0, 2), A\, € (0, 2), e € (0, 10), and w €
(0, 10). Because the to-be-learned functions were al one-
dimensional, there is no dimensional attention learning parameter.
For each experiment, the mean absolute error at transfer was
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computed for each of the three classes of test stimuli (old training
instances, novel interpolation instances, and novel extrapolation
instances). Performance on the old instances represented difficulty
of learning and was used to rank order the seven functions. There
are 5,040 different possible orderings of the seven functions, of
which 360 were observed in the simulations. Analysis of Principles
1-6 focused on the frequency distribution of those 360 orderings
among the 20,000 simulated experiments.

Principles 1 and 4

Cyclic functions are harder than any save random; on only 2.1%
of parameter settings was any function other than random harder to
learn than the cyclic. On 76.5% of cases, the cyclic was learned
better than the random function. The difficulty with cyclic and
random functions is due to the graded similarity of the instance-
based representations POLE uses to choose among the experts. It
is much easier for the model to learn functions where y changes
smoothly as x varies (and adjacent stimuli thus tend to reinforce
each other), than the random function and, to a lesser extent, the
cyclic function (where adjacent stimulus magnitudes may require
competing responses).

Principles 2 and 6

Positive linear functions are easier to learn than negative linear
functions. This is true for the model only if the preferred slope is
positive and if the initial bias and the bias decay (w and € in
Equation 4) are both large. The preferred slope was aways set to
1.0, and when all other parameters were freely manipulated, just
over 92% of replications showed a preference for positive over
negative functions.

Principle 3

A total of 98.5% of parameters resulted in nonlinear, monoton-
ically increasing functions being easier than nonmonotonic (but
noncyclic) functions. This difference is due both to the rate-of-
change sensitivity that captures Principles 1 and 4 and to the
strength of initial biasesin favor of positive linear functions, which
are more similar to the monotonically increasing functions than to
the nonmonotonic functions.

Principle 5

People find linear functions easier to learn than nonlinear func-
tions. This was captured by POLE, as revealed by the following
pairwise partial orderings: The positive linear function was easier
to learn than was the (nonlinear) monotonically increasing func-
tion in over 98.9% of all parameter settings; it was easier than the
(nonlinear) monatonically nondecreasing function 92.7% of the
time, easier than the nonmonotonic in 99.3% of all cases, easier
than the cyclic in 99.98%, and easier than the random in 99.97%
of all parameter settings.

The most common 5 of the 360 observed orderings accounted
for 71.7% of al results, and al of these 5 subsumed the ordinal
relationships observed in the data: namely (positive linear) <
(negative linear) < (monotonic increasing M monotonic nonde-
creasing N nonmonotonic) < (cyclic N random).

1081

Principles 7 and 8

Analysis of the smulated experiments confirmed Principle 7 (in-
terpolation accuracy equals that for trained items) and Principle 8
(extrapolation is not as accurate as interpolation). Extrapolation was
better than interpolation on only 4.25% of all cases, with most (85%)
of these being for the negetive linear function. Similarly, interpolation
accuracy could not be reliably distinguished from accuracy on old
instances; on 56% of cases accuracy was better on old items, and 44%
of the time it was better on interpolation items. The mean advantage
in accuracy for old items was only 0.05 points (responses were
measured on a 100 point scale), with a variance of 0.09 points.

Summary

Our simulation analysis of the model’ s parameter space suggests
that POLE generaly makes the correct qualitative predictions
about function learning across a range of experimental conditions
(different sequences, functions, and parameters). It follows that
POLE’s basic model architecture, and not its parameters, permits
it to handle many of the existing empirical principles.

It appears that these empirical principles reflect two underlying
regularities. First isthat difficulty of learning is strongly correlated
with a function’s complexity. POLE learns complex (nonlinear)
functions by piecewise linear approximation. The more pieces are
required, the longer learning will take. The second regularity is
that people are predisposed to learn some functions (positive
linear) faster or better than others (negative linear) even when
complexity is equivalent. This is embodied in the way POLE
begins each experiment with a distribution of bias strengths that
favor positive linear functions. In the General Discussion, we take
up Principles 9 and 10 in relation to this aspect of POLE.

Benchmarks: Specific Experiments

Although POLE quditatively captures the benchmark results of
function learning, it does not necessarily follow that POLE is equally
suited for quantitative modeling of detailed existing results. Del_osh et
a. (1997) presented severa experiments that emphasized Principle 8
(the difference between interpolation and extrapolation) and that were
accompanied by a successful application of the EXAM model. Could
that account be rivaled by POLE?

Delosh et a. (1997) trained groups of participants on linearly
increasing, nonlinearly increasing (exponentia), or nonmonotonic
(quadratic convex) functions. The average responses to extrapolation
items tended to resemble linear extrapolation from the nearest two or
three training items, as shown in Figures 3A-3C. Figures 3D-3F dso
show that EXAM, with its assumption of linear extrapolation from
closest trained neighbors, fit these data quite well. We obtained the
EXAM predictions reported in this figure by fitting the model to the
transfer data because we did not have the tria-by-trial learning data
used by Del.osh et . EXAM was trained on a set of 25 randomly
generated training sequences, and the model’ s performance index was
the average of these 25 replications.

We fit POLE to the data in the same way, with 25 participants
per function, optimizing parameters for each function separately
by reducing the difference between obtained and predicted (trans-
fer) responses. POLE accounted for all aspects of the data, includ-
ing the generally linear extrapolation performance and the more
accurate learning of the linear function as compared with the other
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Figure 3. The results of Delosh et a.’s (1997) experiments, fit by EXAM (extrapolation—association model)
and POLE (population of linear experts model). A—C: Observed responses after training with linear, exponential,
and quadratic functions, respectively. D—F: EXAM'’s predicted responses. G-I: POLE’s predicted responses.

two function concepts (see Figures 3G-3l for predictions and
Table 1 for parameter values).

POLE: A Quantitative Account of the Existing Literature

POLE accounts for a wide range of function learning phenom-
ena. POLE handles benchmark results because of its basic archi-
tecture rather than specific parameter values, and it can quantita-
tively capture crucial experimental results (e.g., DelLosh et a.,
1997). Moreover, unlike EXAM, POLE handles the knowledge
partitioning observed by Lewandowsky et al. (2002). POLE also
makes novel predictions about function concepts; having under-
scored the model’s utility, we now explore some of these
predictions.

PARTITIONING WITHOUT CONTEXT:
ENGENDERING MULTIMODAL RESPONSES

The principa assumption of POLE, that people learn to associ-
ate purely linear response functions with partial stimulus ranges,
gives rise to a counterintuitive prediction. Because partitioned

learning always occursin POLE—unlessasingle linear functionis
adopted—any uncertainty about which expert should be used to
generate a response will express itself as multimodality of the
response distribution.

For example, when a quadratic function is learned, uncertainty
about the appropriate expert might arise at the boundaries between
linear segments. In most cases, including the ones considered thus
far, this uncertainty escapes experimental detection because the
alternative functions provide very similar response magnitudes in
the vicinity of their splice. However, if uncertainty about the
appropriate expert could be experimentally induced in regions of
the stimulus space in which candidates yield widely divergent
responses, then response magnitudes should exhibit systematic
multimodality. That is, for an identical stimulus, response magni-
tudes should cluster around the values provided by the various
competing experts. This prediction is unique to POLE and, as we
confirm by simulation later, cannot be handled by EXAM. We
now report three experiments that sought to induce multimodality
by introducing various discontinuities into the to-be-learned
function.
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Experiment 1

The to-be-learned function in the first experiment consisted of
two linear segments with different intercepts but equal slope,
spanning different ranges (see Figure 4). For the lower component,
X € (20, 45); for the upper component, x € (55, 80).

The two linear segments were separated by a set of stimulus
magnitudes that were not shown during training and were pre-
sented for the first time during atransfer test. One possible transfer
pattern would be for people to interpolate linearly between the
closest training stimuli, thus giving rise to a quasi-sigmoid and
relatively smooth overall function. The response pattern predicted
by POLE, conversely, is that the absence of training in the gap
between linear segments causes uncertainty about which response
function to choose. In consequence, for each such stimulus, people
would be expected to choose one or the other learned linear
response segment, either at random or on some other preferential
basis. Across repeated presentations of a given stimulus, the inde-
pendent and parallel extrapolations of each linear segment should,
in turn, produce distinct bimodality.

Method
Participants

Participants were 39 members of the campus community at the Univer-
sity of Western Australia (n = 13) and Indiana University (n = 26) who
participated voluntarily. Participants either received course credit or were
remunerated at the rate of $5/hr.

Apparatus and Stimuli

The experiment was controlled by a PC-compatible computer that pre-
sented stimuli and collected responses. The to-be-learned function shown
in Figure 4 was arbitrarily parameterized asy = .7 x (for 0 < x < 50) and
y = 30 + .7 x (for 50 < x < 100). In this study, as in al remaining
experiments, both variables (x and y) were scaled to range from 0 to 100
logica units. All stimuli and analyses refer to logical units. Owing to the
standard aspect ratio of the monitor, the physical lengths of the response

Response

10 45 55 90
Stimulus

Figure4. Observed frequency distribution (contour plot) of responses for
the last block (including both training and transfer items) and training
stimuli (thick lines) for Experiment 1. Both parts of the to-be-learned
function were presented with equal frequency during training. Results are
aggregated across all 30 participants and transformed into relative frequen-
cies. Note the bimodality of responsesin the central (45 < x < 55) transfer
region. In this and all subsequent plots of conditional frequency distribu-
tions, isocontours are marked at .05, .10, .20, .40, and .80.
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scale (which was verticaly oriented) differed from that of the (horizontal)
stimulus scale. On a 15-in. monitor, 100 units of x subtended 15.66 cm,
whereas 100 units of y corresponded to 12.25 cm.

Training stimuli were al integer values of x in the ranges 20—45 and
55-80, resulting in a total of 52 unique training items. Transfer stimuli
were al integer values of x within the ranges 619, 46-54, and 8095,
resulting in a set of 39 transfer items.

Each stimulus involved graphical elements only, without any numeric or
textual labeling. The stimulus variable (x) was represented by the length of
ared horizontal bar at the top of the screen. The 12.25 cm high response
scale was located below and to the right of the stimulus bar and appeared
simultaneously with it. To select a response magnitude, participants ad-
justed a scrollbar using the mouse from a point of origin at the midpoint of
the scale. Once a value was selected, participants clicked on a button to
register their response. No time limit was imposed on selecting a response.

On training trias, if the response was within = 4 units of the correct
value for y, no explicit feedback was presented, and the next trial com-
menced after a delay of 2 s. If a response deviated by more than 4 units
(approximately 0.5 cm on a 15-in. monitor), the correct value of y was
indicated by a vertical bar that appeared next to the response scale.
Participants then had to adjust the scrollbar in response to the feedback
until they indicated the correct value. The next trial commenced after a
delay of 2s. On transfer trials, aresponse was followed by the message “no
feedback available,” which remained on the screen for 2 s until the next
trial commenced.

Procedure

The experiment consisted of four blocks of trials. The first three blocks
involved only training trials, and the final block involved both training and
transfer trials. All 52 training items were presented once within each block,
and each of the 39 transfer items was presented twice during the final
block, yielding a total of 286 experimental trials. The order of trials was
random within each block, and a different random sequence was used for
each participant.

Instructions to participants emphasized that the relationship between x
and y was arbitrary and that the experimental task required learning of that
relationship. Participants were informed before the final block that some
trials would not include feedback. Experimental sessions lasted about 40
min.

Results and Discussion

Training Performance

Training performance was measured by the average absolute
deviations between the true function values and response magni-
tudes to the 52 training stimuli across the four blocks. For each
participant, deviations were averaged across training stimuli within
each linear segment separately. The means of those deviations are
shown in Table 2 as a function of blocks of trials.

It is clear from the data that people very rapidly learned to
produce the correct response magnitude for both function seg-
ments with little error. This was confirmed by a 2 (function
segment) X 4 (training block) within-participants analysis of vari-
ance (ANOVA), which yielded a highly significant main effect of
training block, F(3, 114) = 29.39, MSE = 3.24, p < .01, no main
effect of function segment, F(1, 38) = 2.63, p > .10, and a
margina interaction between the two factors, F(3, 114) = 2.53,
MSE = 1.54, p = .06. The marginal interaction reflected the slight,
selective decrease in performance during the final block for the
lower function segment. We do not pursue this result further.
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Table 2
Performance During Training, Measured as Mean Absolute
Error, for Participants in Experiments 1-3

Experiment
and condition Block 1 Block 2 Block 3 Block 4
1
Upper half 6.61 4.23 3.89 5.15
Lower half 6.18 4.14 4.00 4.24
2
Positive 8.55 7.13 6.15 6.81
Negative 3181 29.31 25.88 27.07
3
Positive 8.84 7.47 7.31 7.15
Exceptions 30.58 25.87 24.04 25.81

Transfer Performance

Of greatest interest here was the predicted occurrence of bimo-
dality in the transfer region between the two linear segments. The
transfer data are shown in Figure 4 as a frequency contour plot of
al responses made by participants in the last block of the exper-
imental session. The critical transfer items were only presented in
the last training block. The pattern in the figure remains largely
unchanged if the first three training blocks are included.

The figure suggests considerable heterogeneity among re-
sponses in the critical central transfer region with little evidence
for a smooth or consistent interpolation between the two linear
segments. The remaining analyses focused on statistical confirma-
tion of the multimodality of the transfer data. The data were
analyzed first at the aggregate level and then at the level of
individual participants.

Aggregate analysis.  The aggregate analysis was performed by
considering al participants' responses in the central transfer re-
gion. There were 699 such responses (3 observations were miss-
ing). To permit aggregation across magnitudes of X, we rescaled
each response as a residual from the y value obtained from the
lower linear segment.? The cumulative frequency distribution of
those residuals, with 64 bins of unit width, was subjected to a dip
test for bimodality (Hartigan & Hartigan, 1985). The value of the
dip statistic (0.078) was found to be highly significant at p < .01.
The significant effect confirms the pattern suggested in Figure 4,
in that responses do not occur in the region between the two
dominant responses, and establishes the presence of bimodality in
the transfer data, as predicted by POLE.

Analysis of individual participants. One limitation of the pre-
ceding analysis is that it cannot determine whether the observed
bimodality reflects different participants or different responses by
the same individuals. The bimodality may have arisen because
some participants exclusively used the lower function segment to
extrapolate into the transfer region and others exclusively used the
higher function. The unique prediction of POLE, aternatively, is
that the same individual may, on different occasions, choose one or
the other expert to make a response to the same test item.

The presence of bimodality within participants was confirmed
by acomparison of the consistency of a person’stransfer responses
between the critical central region (i.e, 46 < x < 54) and the
extrapolation regions at the lower (x < 20) and upper (x = 80)
extremes. For each participant, differences were computed be-
tween response magnitudes across the two repeated presentations
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of each transfer stimulus. These differences were averaged sepa-
rately across the 9 transfer items within the critical central region
and across the 30 transfer items in the extreme extrapolation
regions. The mean difference across participants was 12.34 units
for the critical central region and 4.64 units for the extreme
extrapolation regions. The effect of transfer region was found to be
highly significant, t(38) = 8.14, p < .0L.

Because this analysis contrasted participant’s transfer responses
between two situations, only one of which involved uncertainty
about the choice of expert, the outcome confirms that bimodality
is not an inherent characteristic of any set of transfer responses but
is limited to those situations in which it is predicted by POLE.
Figure 5 shows 4 representative participants' responses during the
experiment. We now examine the ability of EXAM and POLE to
account for the responses of those individuals.

Theoretical Analysis
Fit of EXAM

EXAM was implemented as described in Appendix A. The
model was applied to the data from Experiment 1 in three stages.
First, EXAM was fit separately to the trial-by-trial responses of 2
representative participants by minimizing the root-mean-squared
deviations (RMSDs) between the model’s mean predicted re-
sponse (see Equation A10) and each participant’s responses. Fit-
ting of 2 participants, 1 of whom was strikingly multimodal, was
considered sufficient because if EXAM cannot produce multimo-
dal responses for that participant, it would be pointless to consider
others. All weights were initialized to O at the outset.

The results are shown in Figure 6. Figure 6A shows data and
predictions for 1 of the few participants (Participant 1 from Figure
5) who was visually identified as interpolating smoothly between
function segments. Figure 6B shows the corresponding results for
a participant (Participant 4 from Figure 5) who exhibited bimo-
dality in the central transfer region. It is clear from Figure 6 that
EXAM provided a very satisfactory account (RMSD = 5.16) for
the smoothly interpolating participant with two parameters. (The
best-fitting parameter values were y = 054, n = 0.05; see
Appendix A for an explanation of parameters.) However, it is also
clear that EXAM cannot handle the bimodality exhibited by the
other participant, as reflected by the larger RMSD of 9.89 (y =
0.99, n = 0.01).

Exploration of the parameter space confirmed that EXAM could
not accommodate the bimodal participant across a wide range
(0.01-2.00) of settings of the generalization parameter y. The only
way EXAM can produce different responses to the same stimulus
is if training trials intervene and learning were to change the
association weights within the model. Thus, EXAM’s failure to
produce systematic bimodality is perhaps not surprising.

To give EXAM every possible opportunity to generate multi-
modality, we modified it (see Appendix A) to respond to the same
stimulus with any of a number of different response magnitudes,
each with a predicted probability of occurrence. We then fit the
data of the representative bimodal participant using the probability
distribution of possible responses introduced in Appendix A asthe

2 The choice of the lower linear segment for computation of residualsis
arbitrary. The results are unchanged if the upper segment is used instead as
all this does is recenter the distribution on a different mean.
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Figure5. Responses of 4 participants in Experiment 1, showing the diversity of response patterns to the final
block of stimuli. The dashed vertical lines mark the bounds of the training stimuli; stimuli between the lineswere
presented without feedback only. Dip scores were 0.17, 0.21, 0.13, and 0.11 for Participants 1-4 (shown in

A-D), respectively.

model’ s predictions (see Equation A10). The badness-of-fit index,
B, used to fit response distributions is defined in Appendix C; see
in particular Equation C2. Figure 7A shows a probability-contour
plot of the best-fitting predicted distribution of response magni-
tudes (B = 432.03, v = 1.98, n = 0.05). It is clear that EXAM
does not reproduce the bimodality exhibited by the participant

Repsonse

0 \ \ \ — ‘
0 10 20 30 40 50 60 70 80 90 100

Stimulus

(whose data are replotted as a frequency-contour plot in Figure
7D), even when provided with the opportunity to nominate mul-
tiple response candidates.

Further exploration of the parameter space revealed that EXAM
could predict alimited extent of bimodality only when the slope of
the Gaussian generdlization gradient was extremely shallow (y =

100 -
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60
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20 1
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0 10 20 30 40 50 60 70 80 90 100
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Figure 6. The best fit of EXAM (extrapolation—association model) to 2 participants from Figure 5. Dashed
vertical lines mark the bounds of the training stimuli. A: Participant 2. B: Participant 4. The fit to each participant
is based on root-mean-sgquared deviation between mean response and data.
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Figure 7. EXAM (extrapolation—association model) cannot produce appropriate bimodality, whereas POLE
(population of linear experts model) can (data from Participant 4 of Figure 5). A: A contour plot of EXAM’s
predicted response probabilities produced from the best fit using log-likelihoods. B: The maximum obtainable
bimodality. C: The best-fitting predicted response probabilities with preloading of weights. D: The datareplotted
as a frequency-contour plot for comparison. E: POLE’s best-fitting predicted probabilities.

0.01). Thislimited bimodality was stable across two settings of the
learning parameter, n = 0.05 and n = 0.10. Figure 7B shows the
predicted probability contour for n = 0.05.

We argued earlier that people’s prior expectations of a positive
linear function might be critical to certain aspects of knowledge
partitioning, by providing competition between preexisting and
learned response tendencies. Appendix A describes how EXAM
was provided with preinitialized weights to reflect this prior ex-
pectation. Figure 7C shows the best-fitting probability contour for
this three-parameter model (B = 187.31, y = 0.03, 7 = 0.27, B =
1.81). Although the modeling of prior expectations reduced the
badness of fit considerably, the figure shows that EXAM was
unable to predict the observed bimodality despite the inclusion of
a third free parameter.

Fit of POLE

POLE was fit to the responses from each individual in the same
manner as EXAM. In sharp contrast to EXAM, the model captured
the diversity of response types quite well, producing predictions of
both multimodal and unimodal responses for different participants.
Figure 7E shows the response probabilities predicted for Partici-
pant 4 by the best-fitting parameters of POLE (c = 13.99, ng =
4.19, A, = 0.31, A, = 0.001, w = 0.21, € = 0.00, and B = 23.57).
The panel clearly demonstrates that multimodality in the central
region is quite within POLE’s predictive ability.

The individual-participants analysis is necessary because of our
concern with intraparticipant variability. However, the fits also
identified significant commonalities between participants as re-
vealed by a principal-components analysis of the 39 sets of esti-
mated parameter values. The principal-components solution dis-

covered only two components with eigenvalues greater than one,
which together accounted for over 70% of the variance. A parallel
cluster analysis revealed only a single dominant cluster.

Thus, despite clear individual differences, it appears as though
the mean parameter values might represent a good approximation
of the parameters estimated for each participant. When fit to each
participant separately, the mean B was 38.00 (SD = 5.30). Given
the coherence of the distribution of parameter values, we chose to
follow the individual-participants analysis with a constrained op-
timization of the model, which provided POLE with only six free
parameters total, rather than six per participant. These parameters
were optimized against the trial-by-trial responses of each individ-
ual participant, as described in Appendix C. The best-fitting six
parameters (listed in Table 1) produced a mean B of 38.87 (SD =
5.11). Thisimplies that constraining POLE to have six parameters
total instead of six per participant (for atotal of 228) reduced fit by
only 2.3%, or only 17% of astandard deviation. Figure 8 showsthe
predicted frequency distribution derived from the single parameter
set. Again, bimodality in the central region is clearly present,
whereas responses are otherwise largely governed by the two
dominant response functionsy = .7x and y = 30 + .7x.

Experiment 2

The first study inserted a gap between two vertically offset
linear function segments to induce uncertainty about the choice of
response function. The second experiment extended this approach
by presenting people with a positive linear function that contained
three gaps. Each gap, in turn, included one training stimulus in its
center that was presented repeatedly and that required an excep-
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tional response not accommodated by the linear function. The
resultant to-be-learned function is shown in Figure 9.

The to-be-learned function has three critical features. First,
because the x values of the exception stimuli differed from their
closest neighbors on the linear function by severa units, the
overdl function was in principle learnable given sufficient dis-
crimination among stimulus magnitudes. Second, the three excep-
tion stimuli jointly defined their own negative linear function.
Third, and perhaps most important, the training stimulus with the
largest x value required an exceptional response, thus posing a
particular challenge during extrapolation. In particular, the local
slope estimates that underlie extrapolation in EXAM are aways
dominated by the training item most similar to any given test item.
Visually, the to-be-learned items suggest a positive linear function.
EXAM, however, learns only associations of response magnitudes,
not functions, and so the final exception item must cause EXAM
to always extrapolate off the dominant training function. POLE, by
contrast, predicts that under these circumstances people learn the
two opposing functions simultaneously, either by associating each
with a different set of stimulus magnitudes or by adopting one
function as a default and learning the other by association with
exception items.

Method
Participants

Participants were 32 members of the campus community at the Univer-
sity of Western Australia (n = 7) and Indiana University (n = 25) who
participated voluntarily. Participants either received course credit or were
remunerated at the rate of $5/hr.

Apparatus and Stimuli

The experiment was controlled by a PC-compatible computer that pre-
sented stimuli and collected responses. The positive to-be-learned function
shown in Figure 9 was arbitrarily parameterized asy = x.

Training stimuli consisted of two sets. First, al integer values of x within
the ranges 6—20, 30—45, and 5570 were sampled from the functiony =
x to form the set of 48 positive training items. In addition, there were three

50

Response

25+t

10 45 55 90
Stimulus

Figure 8. The predicted distribution of response frequencies for the last
block of trialsin Experiment 1, as the result of the single best-fitting set of
parameters for POLE (population of linear experts model; see Table 1).
The bimodality in the central region is similar to that seen in the data (see
Figure 4).
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Figure9. Observed frequency distribution (contour plot) of responses for
the last block (including both training and transfer items) and training
stimuli (thick lines) for Experiment 2. Training items on the negative
diagonal (shown as solid circles) were presented with higher frequency
than items on the positive diagonal. Results are aggregated across all 32
participants. Note the strong bimodality in the transfer region (x > 80).

exceptional stimuli with x values of 25, 50, and 75, with associated
response magnitudes of 87, 62, and 37, respectively. Exception stimuli thus
fell on the negative linear functiony = 112 — x.

Transfer stimuli were all integer values of x within the range 81-94, thus
resulting in 14 transfer stimuli.® Stimulus presentation and response details
were the same as in Experiment 1.

Procedure

The experiment consisted of four blocks of trials. The first three blocks
involved only training trials, and the final block involved both training and
transfer trials. The 48 positive training items were presented once within
each block, and the three exceptional stimuli were presented 8 times each,
yielding 72 training trials per block. The final block additionally included
two presentations of each of the 14 transfer items, yielding a total of 316
experimental trias. Order of trials within each block was randomized anew
for each participant. All remaining procedural details were the same as in
Experiment 1.

Results and Discussion
Training Performance

The analysis considered the 48 positive training stimuli and the
3 exceptional stimuli separately. Table 2 shows average perfor-
mance for both classes of stimuli across blocks.

The datareveal several clear findings. First, there is evidence of
learning for both classes of stimuli. Second, and not unexpectedly,
performance on the exceptional stimuli remained vastly inferior to
performance on the predominant positive training items. Both of
these effects were confirmed by the 2 (type of stimuli) X 4
(training block) within-participants ANOVA, which revealed a
main effect of type of stimuli, F(1, 31) = 163.14, MSE = 179.00,

®The University of Western Australia participants actually received 15
transfer trias (including x = 80). However, because the x = 80 stimulus
was lost because of a file transmission error and Indiana participants thus
only received 14 transfer trials, we restrict analysis to those 14 trials
experienced by all participants.
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p < .01, and training block, F(3, 93) = 9.05, MSE = 22.82, p <
.01, but no interaction between the two variables, F(3, 93) = 1.55,
p > .10. The reduced extent of learning on the exceptional items
is consonant with related research in categorization, which aso
shows that a small number of exceptions to a rule are classified
less well than rule-conforming items, even when memorization of
the few exceptions could have led to perfect performance (e.g.,
Lewandowsky et al., 2000).

To examine whether participants learned anything about the
exception items, we calculated the mean response to these itemsin
each block of training. We aso calculated the response that would
be expected for those items in each block on the basis of what
people had learned about the positive stimuli aone. Thus, the
responses to the positive items were regressed onto stimulus mag-
nitudes in each block, and the regression equation was used to
predict what performance would have been on the exception
instances had people applied the same response function that they
were using for the positive items. Table 3 shows the results of this
analysis: It is clear that responses to the exception items increas-
ingly diverge from the responses to other items and move toward
the correct responses. This indicates that although participants
were not as accurate with exception items as they were with
rule-consistent items overall, they were clearly not ignoring the
exceptions during learning.

Transfer Performance

The transfer data are shown in Figure 9, which presents a
frequency-contour plot of all responses to the final block of the
experiment. Statistical support for multimodality was again pro-
duced at the aggregate level as well for individual participants.

Aggregate analysis.  The available 885 transfer responses from
all participants (11 observations were missing) were rescaled as
residuals from the positive (y = x) function. The cumulative
frequency distribution of those residuals, with 97 bins of unit
width, was subjected to the dip test. The value of the dip statistic
(0.208) was found to be highly significant at p < .01, which
confirms the bimodality that is evident in Figure 9.

Individual-participants analysis. To confirm the presence of
bimodality within participants, the dip test was applied separately
to each individual’s 28 transfer responses. Of the 32 tests, 15 were
significant at the .05 level with adip statistic in excess of the cutoff
of 0.089 (n = 28). Thus, nearly half of all participants exhibited
statistically detectable bimodality in their transfer responses. Rep-
resentative individual responses are shown in Figure 10: Figures
10A and 10B show the responses of participants who exhibited the

Table 3
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least bimodality, whereas the responses in Figures 10C and 10D
are from the participants who exhibited the greatest extent of
bimodality.

Thereisclear evidence, therefore, that avery large proportion of
participants responded bimodally at transfer. Moreover, as sug-
gested by Figures 10C and 10D, those participants who exhibited
bimodality clearly alternated between use of the positive (y = X)
and exceptional (y = 112 — x) function.

Theoretical Analysis
Fit of EXAM

EXAM was again fit to the responses of a representative par-
ticipant (Participant 4 from Figure 10) who exhibited strong bi-
modality. The fit minimized the deviations between the predicted
probability distribution of responses and the participant’s re-
sponses. Figure 11A shows EXAM’s best-fitting predicted prob-
ability contour (B = 102.30, y = 0.005, n = 0.08). Figure 11C
shows the responses of the participant replotted from the earlier
figure as a frequency-contour plot for visual comparison. Figure
11A clearly shows that EXAM’s extrapolations were entirely
based on slope estimates that involve the last exception (x = 75).
Accordingly, EXAM failed to predict the majority of observed
extrapolations, which fell along the positive function. The contour
plot also clarifies that EXAM cannot predict bimodality at any
stimulus magnitude, either within or outside the training range.

Figure 11 also shows that EXAM, with this set of best-fitting
parameter estimates, could not predict mean responses for the
outlying training stimulus at x = 25 (y = 87). This occurred
because the generalization gradients were extremely wide, thus
precluding the acquisition of a single outlying response among
neighboring stimulus magnitudes. In confirmation, the outlying
response at X = 25 could be learned by EXAM if the generaliza-
tion gradients were narrowed. Specifically, with parameter values
v = 0.97 and ) = 0.04, EXAM was able to predict mean responses
for all three outlying training stimuli; however, under those pa-
rameter settings, EXAM also predicted unimodally negative re-
sponse magnitudes for all extrapolations beyond the training range.
Given that participants could not register responses less than 0,
these predictions were considered implausible.

The failure of EXAM to handle crucia aspects of these data
may have arisen because weights were initialized to 0 at the outset,
thereby conceivably preventing use of the positive function for
extrapolation. This possibility was ruled out by a fit of the three-
parameter version, in which weights were preinitialized to capture

The Prediction Equation and the Difference Between Responses to Exception Items and

Prediction in Experiment 2

Block Equation Exception 1 Exception 2 Exception 3

1 y = 13.65 + .73x 32.6 (31.9) 52.1(50.2) 66.4 (68.4)

2 y = 891 + .82x 35.4(29.4) 52.5(49.9) 59.6 (70.1)

3 y = 7.40 + .84x 42.9 (28.4) 52.2 (49.4) 58.3 (70.4)

4 y = 6.95 + .86x 43.3 (28.5) 52.1 (50.0) 59.7 (71.5)
Training values y =X 87 (25) 62 (50) 37 (75)

Note. Vauesin parentheses are predicted values based on the regression equation.
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Figure 10. Responses of 4 participants in Experiment 2, showing the diversity of response patterns to the final
block of stimuli. The dashed vertical line in each panel marks the boundary of the training stimuli; items to the
right of the line were presented without feedback only. The three small arrows on each x-axis mark the locations
of the high-frequency exception items. Dip scores are 0.047, 0.020, 0.073, and 0.173 for Participants 1—4 (shown

in A-D), respectively.

the expected positive linear function. The best-fitting results (B =
97.19, y = 0.005, n = 0.08, B = .03), shown in Figure 11B,
continue to be unimodal, show no learning of the outlying training
stimulus, and exhibit no extrapolations along the positive function.

Fit of POLE

POLE was again fit to each participant individually The mean
goodness of fit was B = 30.96 (SD = 5.21). POLE’s predicted
response distribution for 1 participant (with parameters ¢ = 16.72,
ns = 1.00, A, = 0.95, A, = 0.10, w = 0.12, ¢ = 10.00, and B =
26.45) is shown in Figure 11D. Unlike EXAM, POLE clearly
accommodates the bimodality in the transfer region.

When each participant’s data were predicted with only six
overall parameters, rather than six for each participant, we ob-
tained a mean fit of 31.80 (SD = 5.33). Thus, the loss of 186 free
parameters reduced fit only by 2.6%, or 16% of a standard devi-
ation. The best-fitting six parameters (listed in Table 1) produce a
clearly multimodal distribution during the final block, which is
shown in Figure 12.

Experiment 3

The second experiment demonstrated clear evidence of bimo-
dality at transfer when people were presented with two interleaved

but conflicting functions. The final experiment examined the ef-
fects of presenting exceptional training stimuli that did not fall
aong alinear function. The to-be-learned function for Experiment
3 is shown in Figure 13.

Method

Participants

Participants were 45 members of the campus community at the Univer-
sity of Western Australia (n = 14) and Indiana University (n = 31) who
participated voluntarily. Participants either received course credit or were
remunerated at the rate of $5/hr.

Simuli, Apparatus, and Procedure
The only difference to the previous experiment was that the y values for
two exceptional stimuli were swapped. The new exceptional stimuli were
Xx=25y=62x=50y=87andx=75y= 37
Results and Discussion
Training Performance

Table 2 shows average performance for positive and exceptional
stimuli across blocks. The training data resembled those of the
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Figure 11. The best-fitting predictions of EXAM (extrapolation—
association model) and POLE (population of linear experts model) to the
bimodal response distribution of Participant 4 from Figure 10. A: EXAM
with weights initialized to O at the outset. B: EXAM with preloading of
weights. C: The participant’s responses replotted as a frequency-contour
plot for comparison. EXAM cannot produce bimodality in the transfer

region. D: POLE’s predicted distribution of responses.

previous experiment. The 2 (type of stimuli) X 4 (training block)
within-participants ANOV A again revealed main effects of type of
stimuli, F(1, 44) = 243.38, MSE = 131.89, p < .01, and training
block, F(3, 132) = 16.67, MSE = 16.93, p < .01. Unlike the
previous study, the interaction between both variables was aso
highly significant, F(3, 132) = 5.66, MSE = 17.37, p < .01. The
interaction likely reflected the greater improvement with training
for the exceptional stimuli than for the positive set.

As in the previous experiment, the responses of participants to
the positive items were used to predict, via linear regression, the
responses to the three exception items if their exception status had

Response

25 50 75
Stimulus

Figure12. The predicted distribution of response frequencies for the last
block of trialsin Experiment 2, as the result of the single best-fitting set of
parameters for POLE (population of linear experts model; see Table 1).
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Response

25 50 75
Stimulus

Figure 13. Observed frequency distribution (contour plot) of responses
for the last block (including both training and transfer items) and training
stimuli (thick lines and solid circles) for Experiment 3. Results are aggre-
gated across all 45 participants. Note the bimodality in the transfer region
(x > 80).

been ignored. Table 4 shows the observed mean responses to the
exception items along with the responses predicted by the regres-
sion. As in the previous experiment, responses to the exception
items changed during training, away from the response predicted
by the positive stimuli and toward the correct magnitudes.

Transfer Performance

Figure 13 shows al responses made during the last block of the
experiment. The most striking aspect of the data is that people
again appeared to learn severa conflicting functions simulta-
neously. This occurred even though the three exceptional stimuli
did not lie on a single simple function. There again appeared to be
considerable multimodality during transfer, which was statistically
explored at the aggregate and individual participants’ level.

Aggregate analysis. A total of 1,251 transfer responses were
available for the aggregate analysis (9 missing observations). The
cumulative frequency distribution of the residualized responses (in
103 bins of unit width) gave riseto a highly significant dip statistic
(0252, p < .01), once again confirming the presence of
bimodality.

Individual-participants analysis. As in the previous study,
separate dip tests were applied to the 28 transfer responses of each
participant. Of those 45 tests, 23 were found to be significant at the
.05 level, confirming that a sizeable proportion of participants
aternated between different response functions. The nature of the
observed bimodality is illustrated in Figure 14, which shows
responses of 4 representative participants. Figures 14A and 14B
show the responses of participants who exhibited least bimodality,
whereas the responses in Figures 14C and 14D are from the
participants who exhibited the greatest extent of bimodality.

Theoretical Analysis

Fit of EXAM

EXAM was fit to the data from a single participant (Participant
4 from Figure 14) who exhibited strong bimodality. The results
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Table 4
The Prediction Equation and the Difference Between Responses to Exception Items in
Experiment 3
Block Equation Exception 1 Exception 2 Exception 3
1 y = 12,51 + .77x 33.1(31.8) 55.1 (51.0) 65.0 (70.3)
2 y = 751 + .86x 31.8(29.0) 64.4 (50.5) 58.0 (72.0)
3 y = 557 + .90x 34.0(28.1) 68.9 (50.6) 59.7 (73.1)
4 y = 5.99 + .89x 34.0(28.3) 69.8 (50.5) 60.3 (72.7)
Training values y =X 62 (25) 87 (50) 37(75)

Note. Vauesin parentheses are predicted values based on the regression equation.

resemble those obtained for Experiment 2. As shown in Figure
15A, the two-parameter version failed to provide any extrapola-
tions along the positive function (B = 180.33, y = 0.03, , = 0.07)
and also exhibited no bimodality for any of the trained magnitudes.
The model furthermore consistently underpredicted response mag-
nitudes for the outlying training stimulus at x = 25.

The performance of the three-parameter version, with preinitial-
ized weights, was little better. As shown in Figure 15B, EXAM’s
predictions for the extrapolation region were all unimoda and
included implausible negative magnitudes for all test stimuli with
x> 88 (B = 171.58, y = 0.05, n = 0.08, B = .49).
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Fit of POLE

POLE was fit to each participant individualy, resulting in a
mean fit of B = 33.71 (SD = 7.29). Figure 15D shows POLE’s
predictions (with best-fitting parameters ¢ = 35.00, n, = 22.19, A,,
= 0.70, A, = 0.30, = 1.81, € = 24.80, and B = 71.39) for the
same participant that EXAM failed to model. The empiricaly
observed bimodality for training and transfer stimuli is clearly
captured in these predictions.

We again constrained POLE to fit the data with a single set of
parameters. The best-fitting six parameters (listed in Table 1)
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Figure 14. Responses of 4 participants from Experiment 3, showing the diversity of response patterns to the
final block of stimuli. The dashed vertical line in each panel marks the boundary of the training stimuli; items
to the right of the line were presented without feedback only. The three small arrows on each x-axis mark the
locations of the high-frequency exception items. Dip scores are 0.040, 0.042, 0.074, and 0.255 for Participants

1-4 (shown in A-D), respectively.
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Figure 15. The best-fitting predictions of EXAM (extrapolation—
association model) and POLE (population of linear experts model) to the
bimodal response distribution of Participant 4 from Figure 14. A: EXAM
with weights initialized to O at the outset. B: EXAM with preloading. C:
The participant’s responses replotted as a frequency-contour graph for
comparison. EXAM cannot produce bimodality in either the transfer or
training regions. D: POLE’s predictions.

produced amean fit of B = 34.15 (SD = 7.38), an increase of only
1%, or 6% of a standard deviation. Figure 16 shows the predicted
frequency distribution for the final block of the experiment, which
is again clearly multimodal. Asin Experiments 1 and 2, the data
from Experiment 3 strongly support POLE's core prediction of
competitive selection of simple response functions when learning
a complex function concept.

GENERAL DISCUSSION

This article has been organized around the central theme of
knowledge partitioning. We presented a computational model of
function learning, POLE, which assumed that all function learning
relies on the splicing of partitioned knowledge. POLE accounted
for the knowledge partitioning seen in previous experiments (Le-
wandowsky et al., 2002) and also captured benchmark results in
function learning. In addition, the model’s predictions concerning
multimodality within the responses of individual participants were
confirmed in three experiments.

We now take up these points in reverse order. We first analyze
our empirical contribution, we then explore POLE further (in
particular its relation to empirical and theoretical precursors), and
we conclude with a discussion of the relationship between our
results and the general framework of knowledge partitioning.

Empirical Contribution

Our three experiments converged on a single strong conclusion:
In situations of uncertainty people select very different responses
to the same stimulus on different occasions. There was little if any
evidence that people ever averaged or blended competing re-
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sponses. Instead, multimodality was present in all three experi-
ments notwithstanding considerable variability among the to-be-
learned functions. Experiment 1 presented participants with two
linear segments differing only in their intercept, Experiment 2
presented one dominant increasing function and three outliers that
together formed a decreasing linear function, and Experiment 3
presented the same increasing function but used outliers that were
not linearly related. The generality of multimodality is further
supported by the fact that in Experiments 2 and 3, participants
exhibited multimodality during training as well as on novel trans-
fer items.

Multimodality similar to that observed here was also reported by
Kruschke (2001a) in a study that sought evidence for the presence
of blocking and highlighting (i.e., the inverse base rate effect) in
function learning. Kruschke showed that both blocking and high-
lighting occur in function learning much like they do in categori-
zation (e.g., Kruschke, 1996). Kruschke (2001a) additionally dis-
covered that responses were bimodal. That is, people selected one
or the other of two functions when responding, on the basis of two
competing cues, without any evidence of averaging of the implied
responses.

The observed multimodality underscores the diagnosticity of
function learning in general, particularly in comparison to category
learning. At first glance, the differences between categorization
and function learning appear to be fairly small: Whereas responses
in category learning are nominal, involving arbitrary labels without
any implied order or numeric magnitude, responses in function
learning are explicitly ordered along a magnitude axis. In all other
respects, the learning of categorical and function concepts share
much in common; there are predictors whose relationship to the
responses must be learned from a set of training instances; after
ample training, people are asked to generalize or extrapolate their
knowledge to new test items; and people are remarkably adept at
such extrapolation and generalization. Accordingly, the EXAM
(DeLosh et al., 1997) theory of function learning explicitly ac-
knowledges a theory of categorization (ALCOVE; Kruschke,
1992) among its conceptual antecedents, just as POLE does
(ATRIUM; Erickson & Kruschke, 1998).

However, the surface similarity and theoretical linkage between
categorization and function learning obscures a significant differ-

Response

25 50 75
Stimulus

Figure 16. The predicted distribution of response frequencies for the last
block of trialsin Experiment 3, as the result of the single best-fitting set of
parameters for POLE (population of linear experts model; see Table 1).
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ence in potential diagnosticity (cf. Kruschke, 2001a). The multi-
modality revealed in the present experiments could not have been
observed in categorization because the nominal response scale
lacks potential intermediate response aternatives. There is no
sense in which we can inspect a response and see whether it is the
average of two nominal responses. It must aways be one or the
other. Because multimodality is a sign of knowledge partitioning,
it follows that the partitioning of knowledge in the present exper-
iments may also routinely occur in categorization, although it may
not be readily identifiable by behavioral means. In support, Yang
and Lewandowsky (in press) showed that a mixture-of-experts
model (ATRIUM) accounted for learning of a complex categori-
zation task by partitioning the underlying representation into mul-
tiple independent modules.

The occurrence of bimodality also serves to differentiate
function-concept learning from results of loosely related motor-
sensory adaptation paradigms. For example, Vetter and Wolpert
(2000, their “rotation experiment”) trained people to reach out and
touch a single target under one of two feedback conditions: veridi-
cal and rotated (so that the finger and target did not appear to the
participant to be where they realy were). Participants initially
learned to move accurately under each condition separately. At a
subsequent test, limited information was provided about the con-
dition of a given movement. This uncertainty caused participants
to execute the average of the two movements, rather than alter-
nating between them (see also Ghahramani & Wolpert, 1997;
Scheidt, Dingwell, & Mussa-lvaldi, 2001). The absence of bimo-
dality under those circumstances may suggest that different learn-
ing systems underlie motor and concept learning, or it may reflect
differences in the experimental paradigms. It remains for future
research to elaborate on a possible empirical linkage between
function learning and motor learning.

Theoretical Contribution: POLE, a New Theory of
Function Learning

Like category learning, function learning results in the forma-
tion of anew concept. The theory proposed in this article identifies
several mechanisms thought to underlie this concept formation:
error-driven learning, instance-based representations, prior expec-
tations, dimensional attention, and competition between existing
candidate functions. These last two features distinguish this theory
from its predecessors and are essential to its success.

POLE accurately predicted both the presence and absence of
knowledge partitioning under different training conditions re-
ported by Lewandowsky et al. (2002). Dimensional attention and
competition between experts were central to these predictions.
When function segments were correlated with different contexts,
error could be rapidly reduced by shifting attention to the context
dimension and dividing the to-be-learned function into approxi-
mately linear components for each context. When context was
random, a common nonlinear function had to be learned, which
POLE achieved by carefully balancing the weights from many
similar stimuli to switch between competing experts as the stim-
ulus went through small changes.

Principles of Function Learning and POLE

POLE’ s underlying mechanisms were also sufficient to account
for 8 of 10 principles of function learning identified by Busemeyer
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et a. (1997). We now turn to a more speculative discussion of the
last two principles.

Principle 9 states that functions are easier to learn if the cue
labels are congruent with expectations (e.g., severity of car acci-
dents would be expected to increase with driving speed). A plau-
sible interpretation of the role of cue labels is that they determine
the nature of people’s a priori biases, expressed within POLE by
Equation 4 as a positive unit slope (i.e.,, M = 1). Thus, |abels that
indicate an inverse rel ationship (such as between fatigue and hours
of sleep) may simply change the sign of M without any further
effect within the architecture. For labels that indicate a more
complex relationship, such as between date and fullness of the
moon, we offer two suggestions. The first is that people construct
aderived stimulus representation. In the lunar example, if the date
were presented as day of the year (1-365), people might take the
modulus of 28 and so transform the complex cyclic function into
a simpler function with only a single cycle. As suggested by our
analysis of learning different function types, POLE with its stan-
dard preferred slope can learn such single-cycle functions quite
well, at least within the limits of the training stimuli. The second
suggestion is that people, if absolutely necessary, may use nonlin-
ear experts. We thus remain open to the possibility that the linear
experts in POLE may sometimes be replaced or augmented by
nonlinear ones, although we do not explore this possibility here.

Principle 10 captures the fact that learning is accelerated if
training stimuli are presented in systematic order, for example
from smallest to largest magnitudes. We identify three ways in
which this effect might be captured by POLE. First, neighboring
instancesin POLE are activated jointly, to an extent determined by
their specificity (c in Equation 2). Specificity determines how
learning generalizes between stimuli, and systematic presentation
may inform participants about the optimal value for ¢ more rapidly
than random presentations. The second reason has to do with
short-term memory, a process not explicitly considered in most
models of category or function learning. If participants can re-
member which stimuli were presented on the last few trias and
what responses were correct for those items, then the rate of
learning can be improved through rehearsal strategies. Finally, in
line with our conjecture about Principle 9, systematic presentation
may provide abetter environment for the extraction of higher order
stimulus properties that could, in turn, simplify the task.

POLE's Theoretical Neighborhood

Although POLE is a new theory, it has a close connection to
existing approaches to concept formation. Within the field of
function learning, it shares with EXAM an instance-based ap-
proach, and it shares with Koh and Meyer's (1991) adaptive
regression model the use of parametric functions (albeit only linear
ones) and an initial bias toward certain functions. It isimportant to
note that unlike Koh and Meyer’'s model but like EXAM, POLE
uses the error from each trial as the impetus for changing internal
parameters (weights and strengths). Koh and Meyer's model in-
stead uses a set of internal parameters that is optimal for the entire
set of presented trials (subject to certain constraints). A new
technique in adaptive regression, using an instance-based mixture
of experts (Schaal & Atkeson, 1998), shares many of POLE's
properties and might provide an interesting contrast were it to be
developed into a psychological model of human learning.
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POLE isalso closely related to models of category learning that
are based on the mixture-of-experts framework. Most notable
among these is ATRIUM (Erickson & Kruschke, 1998, 2002;
Kruschke & Erickson, 1994). In ATRIUM, instance-specific
weights are combined with nonspecific weights to determine the
relative strength of different experts. The expertsin ATRIUM are
single-dimensional response rules, which are analogous to the
experts in POLE. ATRIUM additionally uses collective instance
memory as an expert in its own right, which is an aspect of the
model that has no analogue in POLE. Moreover, the nonspecific
weights in ATRIUM are tied to stimulus dimensions, whereas in
POLE each expert has a single bias that is not tied to a particular
stimulus dimension (e.g., context vs. magnitude). Finaly, and
most important, ATRIUM computes predictions by blending to-
gether the output from various experts, rather than probabilistically
choosing a single expert to govern responding on each trial.
Empirically, blending of experts can be differentiated from prob-
abilistic choice in afunction-learning paradigm (through multimo-
dality) but, for the reasons discussed earlier, not in category
learning.

Finally, we return to the suggested connection between function
learning and perceptual-motor learning (Rosenbaum et al., 2001).
In this vein, we note that several recent theoretical developments
in motor learning bear some resemblance to POLE. People’'s
ability to learn complex visuomotor mappings (Shadmehr &
Mussa-Ivaldi, 1994) has been attributed to the acquisition of new
“internal models’ (Conditt et al., 1997) that have been conceived
to be “experts’ much like in POLE, but with complex nonlinear
properties (Ghahramani & Wolpert, 1997; Haruno et al., 2001).
The MOSAIC model (Haruno et a., 2001) uses multiple experts
(one for each stimulus) to explain the ability of people to interpo-
late between learned stimuli and to switch between experts when
the stimulus changes. MOSAIC differs from POLE in many ways,
it is not constrained to linear experts, it blends rather than chooses
experts, it does not use instance information to weight experts prior
to mixing them, and it has no conception of dimensional attention.

Limitations and Possible Extensions

Throughout this article, we compared POLE with EXAM, the
hitherto most successful model of function learning. This compar-
ison revealed that POLE fits our individual-participants data con-
siderably better than does EXAM, although at the expense of
having three more parameters. It is therefore appropriate to ask
whether these additional parameters yield a sufficiently large in-
crease in explanatory power. Visual analysis of the behavior of the
two models (i.e., fitsto Experiments 2 and 3) clarifiesthat there are
no parameter values that can lead even the extended version of
EXAM to predict a substantial number of bimodal responses and
still retain any accuracy on the training stimuli. In contrast, POLE
makes this prediction by virtue of its basic architecture, across a
range (but not the whole range) of parameter values. The addi-
tional three parameters in POLE yield a qudlitative increase in
explanatory power; a quantitative comparison is unnecessary to
distinguish the models.

Despite its additional parameters, the current instantiation of
POLE rests on afew parsimonious assumptions: Experts constitute
a population that is linear and one-dimensional with fixed slopes
and intercepts. Further, selection of experts depends only on as-
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sociations with stored instances and nonspecific biases. These
assumptions entail several limitations.

Thefirst limitation is a practical one; although the theory makes
reference to a population of experts, in the present simulations that
population was restricted to 64 candidate functions. However,
anecdotal simulations suggested that the precise number does not
matter qualitatively, so long as the experts span the function space
with reasonable density.

The second limitation is the functional form, and flexibility, of
the experts. Appendix B shows that fixed slopes and intercepts is
not a necessary constraint, and indeed, Schaal and Atkeson's
(1998) algorithm combines learning of expert’s internal parame-
ters with instance-specific changesin sensitivity. To date, we have
not explored situations in which it may be necessary for people to
adjust the slopes and intercepts of their experts. Similarly, the
decision to include only linear functions could be relaxed because
what counts as simple may be a task-dependent decision by the
individual (e.g., in some contexts, cyclical functions may be
simple).

The third potential limitation of the model is the nature of the
expert selection process. As suggested earlier, more complex stim-
ulus representations, such as recoding of cyclic functions to re-
move periodicity, may be required in certain situations. There is
good reason to believe that people are able to adapt their repre-
sentation of stimuli to suit the concept being learned (Goldstone,
Lippa, & Shiffrin, 2001; Schyns, Goldstone, & Thibaut, 1998), but
these processes are not currently formalized in POLE.

Knowledge Partitioning

POLE represents a specific computational instantiation of
knowledge partitioning in function learning and assumes that
partitioning underlies all function learning. However, the present
results and modeling have wider theoretical implications.

Related Previous Findings

Research on mental arithmetic has aso uncovered a prolonged
coexistence of alternative strategies and forms of knowledge that is
reminiscent of partitioning in function learning. Reder and Ritter
(1992) and Schunn, Reder, Nhouyvanisvong, Richards, and Stof-
folino (1997) presented participants repeatedly with two-digit X
two-digit multiplication problems (e.g., 43 X 19). Prior to answer-
ing a problem, participants had to rapidly indicate whether they
could retrieve the correct answer from memory (which they then
had to do within a short time) or whether they would need to
compute the answer (in which case extratime was allotted). Across
repeated presentations of a given problem, people were found to
switch strategies not just once but between two and three times,
and switches were separated by up to 50% of al learning trials
(reported in Delaney, Reder, Staszewski, & Ritter, 1998), suggest-
ing that both forms of knowledge—retrieval and computation—
continued to coexist throughout the training sequence. Prolonged
coexistence of aternative arithmetic knowledge has also been
observed at a much larger time scale, across grades in primary
school (e.g., Shrager & Siegler, 1998; Siegler, 1987).

These findings have been echoed at atheoretical level by Lovett
and Schunn (1999) in a general model of choice during problem
solving, known as RCCL (pronounced “ReCyCLe"). Central to
RCCL is the availability of a set of alternative strategies to solve
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acommon problem. RCCL posits that people choose a strategy for
each trial on the basis of the past success of the available alterna-
tives. In support, Lovett and Schunn reported two experiments in
which people repeatedly switched between strategies when no one
strategy was particularly successful; conversely, people tended to
persist with a successful strategy.

In contrast to the present results and the general knowledge
partitioning framework, none of the preceding studies—and other
context effects surveyed at the outset—showed that these coexist-
ing strategies could engender contradictory behaviors. That is, the
solution to 19 X 23 can be obtained by direct memory retrieval or
by computation, and the two strategies may entail different com-
pletion times (e.g., Delaney et al., 1998; Schunn et a., 1997), but
they both lead to the same correct answer. Indeed, there is every
reason to expect that people would rapidly abandon any strategy
that gives rise to errors that are avoided by use of an aternative
(Lovett & Schunn, 1999). Thus, the contradictory multimodality of
our results, and others within the knowledge partitioning frame-
work, remains a unique empirical contribution.

Continued Partitioning Versus Incremental Transition

By itself, the idea that different forms of knowledge can support
performance on the same task is not new. For example, the
instance theory of automaticity (e.g., Logan, 1988) postulates that
acquisition of a cognitive skill consists of the transition from an
initial slow algorithm to the fast retrieval of memorized solutions
to previously encountered problems (see also knowledge compi-
lation, Anderson & Fincham, 1994, and component power law,
Rickard, 1997).

Common to these views is the unidirectionality and finality of
the transition between different forms of knowledge: It is assumed
that people gradually abandon their initial approach to the task in
favor of a maturing alternative that eventually provides the ongo-
ing and sole basis for task performance. Knowledge partitioning,
by contrast, holds that different parcels of knowledge can simul-
taneously emerge during skill acquisition and, importantly, con-
tinue to coexist and compete during task performance.

This longevity of partitioning was observed in the present ex-
periments, the function learning experiments reported by Lewan-
dowsky et al. (2002), and the category learning studies by Yang
and Lewandowsky (2003, in press). Indeed, the contradictory
nature of expert knowledge reported by Lewandowsky and Kirsner
(2000) and Schliemann and Carraher (1993) is compatible with the
basic assumption of knowledge partitioning that independent par-
cels of knowledge may coexist in perpetuity. POLE’s account of
partitioning assumes that it occurs to achieve rapid error reduction.
Indeed, partitioning may be a prerequisite to automaticity: Auto-
maticity relies on consistent stimulus—response mappings (Schnei-
der & Shiffrin, 1977), and partitioning of acomplex problem space
may be the only way to achieve such mappings in practice.

CONCLUSION

Function learning provides a uniquely powerful tool for the
examination of concept learning. Three experiments showed that
people produced bimodal responses in situations of uncertainty; in
a categorization experiment, the partitioning underlying this mul-
timodality would have gone unnoticed. Inspired by recent results
in diverse areas, we presented a model of function learning that
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simplifies difficult problems through the partitioning of the stim-
ulus space into simpler regions. The model, POLE, provided a
good quantitative account of knowledge partitioning. The model
aso predicted basic properties of function learning and the quan-
titative results of specific studies. POLE proved to be the only extant
model of function learning able to predict the bimodality observed in
our experiments because of its unique combination of psychological
principles, including the learned probabilistic, exemplar-specific,
selection of competing, and simple response alternatives.
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Appendix A

Implementation Details of EXAM

This appendix summarizes the description of EXAM provided by De-
Losh et a. (1997) along with two novel extensions. one necessary to
predict a probabilistic set of responses for each stimulus and the other
needed to capture preexperimental biases in responses. Because this de-
scription follows that of Delosh et d., we have tried to keep our notation
as close to theirs as possible. This necessarily introduces differences with
the notation used to describe POLE in the body of the article.

Architecture and Learning Rule

EXAM can be considered as a connectionist network, with a large
number of instance nodes representing both stimuli and responses. Each
unique stimulus—response pair presented during training is represented by
apair of input and output nodes at the corresponding locations (denoted X
and Y, respectively) on the real number line. All M of these input and
output nodes are fully interconnected by a single layer of learned weights.

Presentation of a stimulus of magnitude X activates each input node i
according to a Gaussian distance function:

a(X) = exp —y(X = X)?, (AD)
where vy is a scaling parameter that determines the steepness with which
activation declines as a function of the distance between the presented
stimulus magnitude, X, and the location of the node, X;. Each training
stimulus maximally activates the input node closest to its location on the
number line but also contributes to the activation of neighboring nodes.

Activation passes through the layer of weights to the output nodes,
where it is summed to form the activation of an output unit j:

0(X) = >, wa(X), (A2)

where w;; represents the weight between input unit i and output unit j. Inthe
simulations reported by DelLosh et a. (1997), all weights were initialized
to 0. Unless noted otherwise, we follow the same practice here.

Learning takes place on the basis of afeedback signal that considers the
difference between obtained and desired activations of all output units.
Regardless of how weights are initialized, they were adjusted during
training using conventional error-driven learning:

W = w;; + Ay, (A3)

where m represents a learning rate parameter and 4;; is the weight update
given by

Aji = (5(2) — o(X)a(X), (A4)

where f;(2) is the feedback signal for output node j provided by the target
magnitude Z. The feedback signal mirrored the activation function of the
input nodes by including a Gaussian similarity gradient:

fi(2) = exp — y(Z— )% (A5)

Thus, the feedback signal was maximal for the output unit at the location
of the target magnitude (Z), but feedback generalized to neighboring nodes
as well.

Response Generation: Interpolation and Extrapolation

When presented with a stimulus, a pure exemplar memory (e.g., EXAM
as described so far) computes its output on the basis of the average
response given to similar instances in memory. This simple response rule
has been shown to be insufficient to account for people’s performance in

function learning tasks (Busemeyer et a., 1997). For this reason, EXAM
departs from a pure instance-based representation by implementing a more
complex response rule. When atest stimulus is presented, it is matched to
a trained instance with a probability determined by the psychological
similarity (i.e., magnitude difference) of the stored instances to the test
stimulus. The matched instance is then used as a cue to retrieve three
previously learned response magnitudes: that associated with the matched
instance and those of the two immediate neighbors to either side. These
three response magnitudes, in turn, are used to produce a local slope
estimate for interpolation (or extrapolation, if the stimulus is outside the
trained range).

In practice, EXAM generates overt responses by a sequence of proba-
bilistic matching steps that implement this response rule. First, the pre-
sented test stimulus X is matched to each input node i with a probability
given by Luce's choice rule:

P(i|X) = M"’hi . (A6)

> aX
k=1

Given that X is matched to node i, the next step involves retrieval of
mean output values for that node plusitsimmediate neighborsto either side
(i.e,i—landi + 1;iisusedif itis either the lowest or highest stimulus
value encountered during training). These mean output values, denoted
m(X;), m(%; _ ), and m(X; . ,), are used for alocal slope estimate which
in turn alows extrapolation (or interpolation) from those trained response
magnitudes to the test stimulus X. Mean output values are given by

mX) = > YP(|X), (A7)

j=1
where P(j|X;) is provided by Luce's choice rule:

X
P(j|X>=7MO‘() : (A8)

> X

k=1

with o,(X) as defined by Equation A2. Hence, the activation profile across
all output units maps into the probabilities with which all potentia re-
sponse magnitudes (i.e., the Y;s) contribute to the mean output in response
to a particular stimulus X;.

The mean output values given by Equation A7 are then incorporated into
a response:

mX +1) —mX - 1)
X+ -*X-1

The right-hand side of Equation A9 contains two distinct components: The
first, m(X;), represents the output value associated with the training item
matched to the test stimulus. The remaining component provides linear
interpolation from that training item to the test stimulus using a slope
estimate provided by the output values retrieved for the neighboring
instances.

Finaly, the model’s overt response to X is given by summing the
responses provided by Equation A9 across al input units to which the test
stimulus might be matched:

E(YIX) = m(X) + X=X).  (A9)

M
E(YIX) = >, PG[X)EY]X). (A10)

i=1

(Appendixes continue)
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The mean response provided by Equation A10 constitutes EXAM’s pre-
dictions. All fits reported by DelLosh et a. (1997) and some of the fits
reported in this article minimized the root-mean-sgquared deviations be-
tween these predicted mean responses and the empirically obtained re-
sponse magnitudes.

Modifications to EXAM

We made two modifications to EXAM to improve its chance of fitting
our data. First, EXAM does not explicitly predict a distribution of response

KALISH, LEWANDOWSKY, AND KRUSCHKE

magnitudes. However, it is possible to consider the terms entering into the
summation in Equation A10 as components of a distribution of predicted
responses. Thus, each possible response magnitude E(Y]X;) has some
probability P(i|X) of occurrence that can be compared to the empiricaly
obtained values.

Second, for some of the simulations reported in this article, we initial-
ized the weightsthat directly connected input and output nodes (i.e., al w;;s
fori =1,2,..., M) to some constant value specified by the (third) free
parameter 3. This captured people's known (e.g., Busemeyer et a., 1997)
expectation that al functions are linearly positive.

Appendix B

Derivation of POLE's Learning Rule

Shifting Response Strengths Between Experts

To begin the derivation of learning rules, we recall from Equation 8 that
error is defined by

Buix = >, SEc (B1)
k
For the distribution of expert strengths to be shifted so as to reduce error,
the change must be in the direction of the negative gradient:

8EMix
(BN

ASK = T Ms

0
—ﬂsg Ekg

= —m > ki — SI D, §
k j
= B — B/, § - (B2)
]

Learning Within Each Expert

There is nothing to prevent the intercept and slope parameters within
each expert from being learned, athough in the current formulation they
remain constant. We derive the rules for the linear experts here for
completeness:

aEMix
m am,

Ame= -\ = AnSLY — $iXe, (B3)

which would adjust the slope of each expert, and

6EMi><
aby

which would adjust the intercept to reduce error.

Abc= =Xy = Sy — W, (B4)

Learning of Strength Node Weights

The weight update mechanism defined by Equation 10 derives from the
fact that error can be conveniently defined at the level of the strength nodes
by taking the difference between the shifted strengths and the initial
strengths:

1 ) -
ESlrength = E E (Sihm - S<ml)2- (BS)
k

Thisisthe same asthe error at the level of the output nodes, because the
shifted strengths were driven from their initial values by the output error.
The local computation of this error improves the approximation to the true
error gradient, because the strengths have shifted iteratively.

From this definition of error, we can derive the gradient of error with
respect to the weights from exemplar nodes to strength nodes and adjust the
weights accordingly:

9 Estrength

Aw = —Ay e
J

— )\W(ihift _ S’(nit)sKnitajlnst. (BB)

Similarly, the gradient of the error with respect to bias weightsis given by

I
Ao = =Xy aw:;n
= (@™ — oM™ G o, (B7)
KK

exp(Zwar)

with the expression in the underbrace being the preferred computational
form because the bias weight may happen to be 0. In the simulations, if
learning drives the bias weight to a negative value, it is clipped at 0.

Learning Dimensional Attention

The propagation of error down to the input dimension attractions is a
more complicated calculation. As an initial step, it is useful to determine
the derivative of the dimensional attention with respect to the attraction.
Recall that Equation 1 specifies this relation. Differentiation yields

d 2 exp(N))
daj .9 exp(Xy) N i
aN E exp(N)) oy exp(N)) TN,
j

[> exp(X)T?
j

=, exp(X)exp(X)k; — exp(R)exp(R)1/[ >, exp(X)]?

i i
= 0K T oy

= (ki — ). (B8)
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Applying the chain rule, we can now derive the error at the expert strength
nodes with respect to the dimension attractions. Boldface variables denote
the vector with the corresponding variable as its components:

ad EStreng!h
aN,

AR = —Agim

dEsiengn 0S™ @™ da
asmt 9a™ ga 9N,

= gl = (&= 4]

X[ - }

= —Adim
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X [ s a,“‘s’(fc):\xi -l ]
X |: a|(Ki|.* @) :|
— 7)\dim E (ihift _ sKni!)g'Knn
ki
X ija]!”S‘c|xi - I‘le‘(Kil - wa,. (B9)

Appendix C

Details of Model Fitting Procedures

To fit POLE and EXAM to the observed response frequency distribu-
tions in our three experiments, we discretized both X and Y into a number
of bins. Thus, on each trial, a participant was presented with a stimulus in
bin X and gave a response in bin Y. We found that 25 bins provided
satisfactory stability in the optimization process.

The badness of fit on any given trial t was measured as

B~ [logPOYX) S log(L — P(BinX)], (€1

bins#Y

where P(bin|X) is the predicted probability of producing aresponse in a given
bin on that particular trial. This statistic must be computed trial by trial because
of the nature of the experiment, which provides feedback after each trial and
which therefore allows the predicted probabilities to change over trids.
Although badness of fit must be measured trial by tria, there isno reason
why each trial must be weighted equally during optimization. In particular,

one might be especially concerned with people's responses to transfer
items, which are both novel and presented without feedback or with
training items. The total badness of fit for any experiment was therefore
computed as the weighted sum of the fit to transfer and training items:

B= > B+ > (1-7B (e7)

tEtraining tEtransfer

In practice, we set = = .5 for al fits reported in this article. Badness of
fit was minimized using an iterative hill-climbing algorithm, with multiple
attempts made from a variety of different initial parameter values.
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