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ABSTRACT
Motivation: A large volume of experimental data on protein
phosphorylation is buried in the fast-growing PubMed literature. While
of great value, such information is limited in databases owing to
the laborious process of literature-based curation. Computational
literature mining holds promise to facilitate database curation.
Results: A rule-based system, RLIMS-P (Rule-based LIterature
Mining System for Protein Phosphorylation), was used to extract
protein phosphorylation information from MEDLINE abstracts. An
annotation-tagged literature corpus developed at PIR was used to
evaluate the system for finding phosphorylation papers and extract-
ing phosphorylation objects (kinases, substrates and sites) from
abstracts. RLIMS-P achieved a precision and recall of 91.4 and 96.4%
for paper retrieval, and of 97.9 and 88.0% for extraction of substrates
and sites. Coupling the high recall for paper retrieval and high precision
for information extraction, RLIMS-P facilitates literature mining and
database annotation of protein phosphorylation.
Availability: The program is available on request from the authors.
The phosphorylation patterns and datasets used in this study are
available at http://pir.georgetown.edu/iprolink/
Contact: zh9@georgetown.edu

1 INTRODUCTION
Phosphorylation is one of the most common post-translational
modifications (PTMs) for proteins and is involved in numer-
ous biological processes (Cohen, 2002). Detection of the
dynamic phosphorylation state of the cellular proteome is essen-
tial for understanding the regulatory network of biological
pathways. Protein phosphorylation information is provided in
several protein databases, including UniProt Knowledgebase—
the central database of protein sequence and function (Apweiler
et al., 2004), as well as specialized databases, such as Phos-
pho.ELM (Diella et al., 2004) and Phosphorylation Site Database
(http://vigen.biochem.vt.edu/xpd/xpd.htm). Phospho.ELM contains
556 eukaryotic protein entries, covering 1703 experimental phos-
phorylation sites manually curated from literature; while Phos-
phorylation Site Database consists of 97 prokaryotic protein entries
compiled from literature. Overall, such experimental data are limited
in databases which have not kept up with the fast-growing literature.
With an ever-increasing volume of scientific literature now available
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electronically, there is both a pressing need and a great opportunity
to develop more efficient ways for literature data mining. Indeed,
in recent years, natural language processing technologies are being
utilized for biological literature mining and information extraction
(Hirschman et al., 2002), such as the PreBIND system for mining
protein–protein interactions from literature (Donaldson et al., 2003).

Recently, our group has developed a resource for literature min-
ing, iProLINK, which provides a bibliography system and curated
data sources for training and benchmarking text mining algorithms
(Hu et al., 2004). In particular, it includes literature corpora that
are tagged with experimental features annotated in the PIR–PSD
database (Wu et al., 2003a). Literature tagging is part of the
evidence attribution mechanism at Protein Information Resource
(PIR) (Wu et al., 2003b), which is being integrated into the Uni-
Prot Knowledgebase. The attribution distinguishes experimental
from computational annotations, and provides both citation map-
ping (finding citations from the Reference section that describe the
given experimental feature) and evidence tagging (tagging the sen-
tences providing experimental evidence in an abstract and/or full text
article). There are nearly 10 000 experimental features annotated
in PIR–PSD, including over 2000 corresponding to five common
PTMs—phosphorylation, acetylation, glycosylation, methylation
and hydroxylation. Another work that systematically utilizes literat-
ure from the curated protein database for benchmarking text mining
techniques is the BioMINT (http://www.biomint.org/) biological text
mining system.

Here we report literature mining for protein phosphorylation
using RLIMS-P (Rule-based LIterature Mining System for Protein
Phosphorylation), a rule-based system developed based on the
algorithm of Ravikumar et al. (2004). The system utilizes shal-
low parsing and extracts phosphorylation information by matching
text with manually developed patterns. Similar rule/pattern-based
approaches have been used in information extraction (Blaschke et al.,
1999; Ng and Wong, 1999; Pustejovsky et al., 2002; Rindflesch
et al., 1999; Sekimizu et al., 1998). Other approaches employed for
extracting protein–protein interactions have been based on detect-
ing co-occurring proteins (Proux et al., 2000; Stapley and Benoit,
2000; Stephens et al., 2001) in literature or using a parser tailored
for the specialized language typically found in the biology literature
(Friedman et al., 2001; Yakushiji et al., 2001; Park et al., 2001).
The RLIMS-P literature mining system was benchmarked using the
iProLINK annotation-tagged corpus as a benchmark standard, and
the results were evaluated by PIR curators.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 2759

http://pir.georgetown.edu/iprolink/
http://vigen.biochem.vt.edu/xpd/xpd.htm
http://www.biomint.org/


Z.Z.Hu et al.

Substrate
(e.g., cPLA2)

phosphorylated-cPLA2

Enzyme
(e.g., MAP kinase)

<THEME> Substrate (protein being phosphorylated) 

<AGENT> Enzyme (kinase catalyzing the phosphorylation) 

Phosphorylation

P-site

(e.g., Ser505)

P-group

<SITE>P-Site (amino acid residue being phosphorylated) 

Ser-P

Fig. 1. Objects in the phosphorylation process.
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Fig. 2. System architecture of the RLIMS-P literature mining system.

2 SYSTEMS AND METHODS

2.1 Phosphorylation objects
Information extraction and database annotation of protein phosphorylation
require the identification of three objects that play key roles in the phos-
phorylation process (Fig. 1): ‘enzyme’ (kinase that phosphorylates pro-
teins), ‘substrate’ (protein that is phosphorylated) and ‘site’ (phosphorylated
residue). Correspondingly, the RLIMS-P system is designed to detect and
extract these three types of objects from MEDLINE papers, and assign them to
argument roles named <AGENT>, <THEME> and <SITE>, respectively.

Below is an example text from a MEDLINE abstract that describes the
three objects (italicized) of the phosphorylation process (Fig. 1):

Full-length cPLA2<THEME> was phosphorylated stoichiometrically
by p42 mitogen-activated protein (MAP) kinase<AGENT> in vitro . . .

and the major site of phosphorylation was identified by amino acid
sequencing as Ser505<SITE>. [PMID: 8706669]

2.2 The RLIMS-P architecture
Figure 2 shows the overall architecture and system components of the
RLIMS-P literature mining system. During preprocessing, the text is first
split into sentences and tokenized into words and punctuation; the words are
then assigned part-of-speech (POS) tags (adverbs, verbs, adjectives, etc.).
The system currently uses the Brill’s tagger (Brill, 1995). This tagger makes
a few types of mistakes in the biology domain that are corrected by our sup-
plemental rules. For example, one common error was to tag words ending
with ‘ed’ (e.g. ‘conserved’ in the noun phrase ‘highly conserved regions’)
or ‘ing’ (e.g. ‘splicing’ in ‘alternative splicing factor’) as verbs in past-tense
or gerundive even though the context suggested the adjectival sense. We
added a rule that changes such verb tags to adjectival whenever we find a
sequence of a determiner followed by zero or more adjectives/adverbs fol-
lowed by such a (mis)tagged word ending with ‘ed’ or ‘ing’. In addition, since
many words in biology domain are not found in Brill tagger’s training corpus

(of business newspaper articles), it sometimes mistagged as plural nouns or
present-tense verbs words ending with ‘s,’ e.g. ‘phosphorylates’ as a plural
noun and ‘kinases’ as a present-tense verb.

The system component for named entity recognition includes acronym
detection and term recognition, as described previously (Narayanaswamy
et al., 2003).

2.3 Phrase detection
The ‘phrase chunker’ identifies various phrases within a sentence including
the so-called BaseNP—simple noun phrases that do not include another noun
phrase. BaseNP detection involves using the POS tags of words that usually
appear at the boundaries. The system also detected other types of phrases to
match text with patterns at a higher level of syntactic abstraction than many
other pattern-matching methods. For instance, the phrase ‘was found to be
able to phosphorylate’ in the following sentence was detected as a sequence
of verb group chunks. The sentence can then be matched with a simple pattern
‘<AGENT> phosphorylate <THEME> at <SITE>’ (the three arguments
are italicized).

Active p90Rsk2 was found to be able to phosphorylate histone H3 at Ser10.
RLIMS-P treats all words between ‘p90Rsk2’ and ‘phosphorylate’ as part

of a verb group sequence and, hence detects p90Rsk2 as the subject. Similar to
the grammar/parser-based approaches, this syntax recognition allows one to
succinctly capture the patterns between the verb and its subject. Furthermore,
‘was found,’ ‘to be able’ and ‘to phosphorylate’ were individually detected
allowing the detection of the voice of ‘to phosphorylate’—that it is in active
form, not in passive form. Therefore, the syntactic subject corresponds to the
<AGENT>, rather than the <THEME> (the phosphorylated protein).

Other syntactic constructions related to noun phrases are recognized,
including entity coordination and appositives. The detection of these con-
structs serves mainly to correctly identify the location of the arguments.
Consider the following sentence, where identifying appositives helps find
the right arguments, as with relative clauses.

In the yeast Saccharomyces cerevisiae, Sic1, an inhibitor of Clb-Cdc28
kinases, must be phosphorylated and degraded in G 1 for cells to initiate
DNA replication, . . .

Here, ‘Sic1’ must be extracted as the <THEME>, which requires the
recognition that the noun phrase ‘an inhibitor of Clb-Cdc28 kinases’ is in
apposition to ‘Sic1’ and hence must be skipped over when matching with a
pattern.

Using such phrase chunking and syntax processing, the system is able to
obtain many of the advantages of a full-parsing approach without using a com-
plex grammar. Similar approaches are employed in well-known information
extraction systems like FASTUS (Hobbs et al., 1997) to develop general-
purpose, domain-independent information extraction tools. As in FASTUS,
we use a few standard patterns of POS tags for sequences of tokens in order to
detect BaseNP chunks, Verb group chunks and phrases in apposition. These
patterns were tested for their effectiveness using several MEDLINE abstracts
that we had previously marked up for such chunking.

2.4 Semantic type classification
One of the key components of the RLIMS-P system is the assignment of
semantic types to noun phrases. Semantic type assignment which was also
employed in information extraction systems as outlined in Rindflesch et al.
(1999, 2000), Pustejovsky et al. (2002), simplifies pattern specification and
improves the precision. Consider the following:

(1) ATR/FRP-1 also phosphorylated p53 in Ser 15 . . .

(2) Active Chk2 phosphorylated the SQ/TQ sites in Ckk2 SCD . . .

(3) cdk9/cyclinT2 could phosphorylate the retinoblastoma gene (pRb) in
human cell lines

While all three examples match this same syntactic pattern ‘X phos-
phorylated Y in Z’, the relation extracted will depend on what matches Y

and Z (the italicized phrases). These would correspond to the <THEME>
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and <SITE> in the first example, <SITE> and <THEME> in the second
example and only <THEME> in the third example. If the patterns were
merely syntactic and did not include type information, then the relation
extracted would be correct in only one example.

These examples indicate that noun phrases (NP) must be classified as
to whether they are of type protein (appropriate for the role of enzyme
<AGENT> or substrate <THEME>), amino acid residue (for <SITE>)
or cells, tissues, etc. (for source). In the RLIMS-P system, NPs are classified
into these types or ‘others’. Based on our previous work (Narayanaswamy
et al., 2003), the classification uses lexical information in the form of inform-
ative words that appear as head words (e.g. ‘mitogen activated protein kinase’
is classified as a protein because of its head word ‘kinase’), suffixes and
nearby phrases. The manually selected list of such words/suffixes/phrases
(Narayanaswamy et al., 2003) has been augmented by the method described
in Torii et al. (2004). Additional rules and heuristics are employed based on
detecting acronym–full form pairs where the full form often contains lexical
information pertinent to classification (e.g. ‘mitogen activated protein kinase’
and ‘MAPK’ pair), appositives and conjunction of entities. More details on
the use of both clues, internal to the name and contextual words for type
assignment, can be found in Narayanaswamy et al. (2003).

2.5 Rule-based relation identification: pattern
templates and argument mapping

Pattern templates were manually created after examining a development text
corpus of 300 MEDLINE abstracts and 10 journal articles and observing the
different forms used to describe phosphorylation interactions.

2.5.1 Verbal forms The verbal inflected forms ‘phosphorylate/
phosphorylated/phosphorylating/phosphorylates’ are captured in various
patterns. Below are example patterns that illustrate the different orders and
optionality of the three arguments <AGENT>, <THEME> and <SITE>.

Pattern 1: <AGENT> <VG-active-phosphorylate> <THEME> (in/at
<SITE>)? where ‘VG’ denotes verb group and ‘?’ denotes optional
argument.

This pattern is read as requiring an NP of the type appropriate for
<AGENT> appearing to the left of verb groups. The head of the main verb
group must be in the inflected form ‘phosphorylate’ or ‘phosphorylated’ and
have an active voice. Furthermore, it requires that an NP of type appropriate
for <THEME> appears to the right of this verb group. Finally, an NP with
type appropriate for <SITE> in a prepositional phrase with ‘in’ or ‘at’ can be
‘optionally’ matched. Clauses matched by this pattern include ‘ATR/FRP-1
also phosphorylated p53 in Ser 15’ as well as ‘The recombinant protein was
shown to phosphorylate Kemptide’ but not ‘Active Chk2 phosphorylated the
SQ/ TQ sites in Ckk2 SCD’. The order of <SITE> and <THEME> in the
latter is captured by another pattern.

When a clause matches the pattern, the phrases that match the arguments
<AGENT>, <THEME> and <SITE> are extracted and assigned to the
corresponding argument slots.

Pattern 2: <THEME> <VG-passive-phosphorylated> by <AGENT>

This is a commonly observed pattern, in which ‘phosphorylated’ appears in
passive form.

Several patterns for the passive usage capture the situation where the
<THEME> and/or the <SITE> can appear in the syntactic subject position.
The inflected form ‘phosphorylated’ appears quite often as a noun modifier
(as in ‘the phosphorylated protein’, ‘the phosphorylated site’ or even with the
amino-acid as in ‘tyrosine-phosphorylated pRb’).

2.5.2 Nominal form While many previous information extraction
projects have concentrated only on the verbal forms of interactions, patterns
for the nominal form in the case of ‘phosphorylate’ interactions is needed.
Indeed, ‘phosphorylation’ was the most frequent inflected form. Furthermore,
the patterns of occurrences of the arguments are most varied for this form.

The <THEME> can appear before ‘phosphorylation’ as in ‘vitronectin
phosphorylation by the kinase’. When an argument appears before ‘phos-
phorylation’, typically it is the <THEME>. When <AGENT> appears
before ’phosphorylation’, its role is normally indicated clearly with the
<THEME> appearing after ‘phosphorylation of’ as in:

Pattern 3: [<AGENT> phosphorylation]NP of <THEME>

The <AGENT> and <THEME> can also appear after ‘phosphorylation’
as captured by the following pattern:

Pattern 4: phosphorylation of <THEME> (by <AGENT>)? (in/at
<SITE>)?

Some patterns for phosphorylation are even more complicated, such as:

Pattern 5: <AGENT> <VG-active> <THEME> by/via phosphoryla-
tion at (<SITE>)?

The pattern matches with ‘Both kinases also inactivate spinach sucrose
phosphate synthase via phosphorylation at Ser-15’, capturing the fact that
‘inactivation’ and ‘phosphorylation’ have the same arguments (i.e. both
kinases) because inactivation is the result of phosphorylation. (A simple
anaphora resolution program has been implemented that will attempt to
resolve anaphoric expressions, such as ‘both kinases’).

3 IMPLEMENTATION

3.1 Datasets
The datasets for testing and benchmarking the RLIMS-P literature
mining system were derived from data sources in iProLINK. Spe-
cifically, we used the annotation-tagged literature corpora that were
developed for evidence attribution of experimental phosphorylation
features annotated in PIR–PSD (Fig. 3). There were two types of
data corresponding to the two tasks for evidence attribution—citation
mapping and evidence tagging. Citation mapping involves finding
the specific paper(s) describing a given phosphorylation feature of
a protein entry from a list of papers in the PSD Reference section
(Fig. 3A). Evidence tagging involves tagging the sentences providing
experimental phosphorylation evidence in the abstract and/or full-
text of the paper, which may include information of <THEME>,
<SITE> and <AGENT> (Fig. 3B).

Here, the tagged sentence:

‘Phosphorylation of bovine brain PLC-beta by PKC in vitro
resulted in a stoichiometric incorporation of phosphate at serine
887, without any concomitant effect on PLC-beta activity’.

contains information on <THEME>bovine brain PLC-beta,
<AGENT>PKC and <SITE>serine 887, thereby, providing evid-
ence for the experimental feature line where the site is phosphate
(Ser) at sequence position 887, the enzyme is protein kinase C
(i.e. PKC) and the feature is for the PIR ‘ENTRY A28822’
for ‘1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase I’
(also known as Phospholipase C-beta-1) from ‘bovine’ (i.e. brain
PLC-beta).

The citation mapping data were used to evaluate the ability of
the system to identify papers describing phosphorylation informa-
tion, i.e. performance for ‘information retrieval’ (IR). The dataset
provides a direct mapping of protein IDs, phosphorylation fea-
tures and the PubMed ID (PMID) of papers describing experimental
phosphorylation features (positive papers). All other papers in the
Reference sections of the corresponding PIR entries not describing
phosphorylation features were flagged as negative papers.
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>A28822
FT - binding site | phosphate (Ser) (covalent) (by protein kinase C) | 887 (all)
TI - Feedback regulation of phospholipase C-beta by protein kinase C.
AB - Treatment of a variety of cells and tissues with
12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase
C (PKC) results in the inhibition of receptor-coupled inositol
phospholipid-specific phospholipase C (PLC) activity. To determine whether
or not the targets of TPA-activated PKC include one or more isozymes of
PLC, studies were carried out with PC12, C6Bu1, and NIH 3T3 cells, which
contain at least three PLC isozymes, PLC-beta, PLC-gamma, and PLC-delta.
Treatment of the cells with TPA stimulated the phosphorylation of serine
residues in PLC-beta, but the phosphorylation state of PLC-gamma and
PLC-delta was not changed significantly. Phosphorylation of bovine brain
PLC-beta by PKC in vitro resulted in a stoichiometric incorporation of
phosphate at serine 887, without any concomitant effect on PLC-beta
activity. We propose, therefore, that rather than having a direct effect
on enzyme activity, the phosphorylation of PLC-beta by PKC may alter its
interaction with a putative guanine nucleotide-binding regulatory protein
and thereby prevent its activation.
SO - J Biol Chem 1990 Oct 15;265(29):17941-5.
PMID- 2211670

B

A

Fig. 3. Evidence attribution of PIR–PSD experimental features. (A) Citation
mapping from referenced papers to features; (B) Evidence tagging of features
in abstracts.

In this study, we used only MEDLINE abstracts (titles included)
obtained using PMIDs in the datasets. Note that positive papers
contain information on the phosphorylation process along with at
least one of the three arguments (<AGENT>, <THEME> and
<SITE>). Therefore, abstracts mentioning kinases or phosphopro-
teins without associating with the process of phosphorylation did not
constitute positive papers. For example, abstract describing ‘growth-
associated protein (GAP)-43 is a neuron-specific ‘phosphoprotein’
whose expression is associated with axonal outgrowth’ [PMID:
2153895], was not considered as positive paper. Furthermore, papers
containing no relevant phosphorylation information in the abstracts
regardless of information in full-text were regarded as negative data
for program evaluation (as RLIMS-P was applied only to abstracts
in this study).

The evidence-tagged abstracts were used to evaluate the ability of
the system to extract specific phosphorylation annotation, i.e. per-
formance for ‘information extraction’ (IE). Specifically, individual
phosphorylation site features that have been tagged in abstracts were
positive features.

3.2 System implementation and performance
measure

The RLIMS-P system is implemented in the PERL programming
language and runs in a Linux operating system with a Pentium 3
processor, 40GB disk and 256MB RAM. The program runs fast—for
processing 1000 abstracts, the real time was 5 min 3.24 s.

The system was evaluated based on the following performance
measures:

precision = TP/(TP + FP); recall = TP/(TP + FN)

where TP is true positive FP is false positive and FN is false
negative.

3.3 IR evaluation: retrieval of protein
phosphorylation papers

The RLIMS-P system was evaluated for IR performance in two
stages, a preliminary study using a small dataset to refine the sys-
tem, followed by a benchmarking study using a larger dataset. The
preliminary study was conducted using a dataset of 146 abstracts,
consisting of 56 positive papers and 90 negative papers. The pro-
gram identified 44 true positive and 9 false positive papers, giving
a precision of 83.0%. It missed12 papers (false negative), giving a
recall of 78.6%.

The false positive and negative cases were analyzed to identify
areas for system improvement. Common false positives include
detection of phosphorylation of non-proteins (e.g. ‘domain respons-
ible for mannitol phosphorylation’ [PMID: 1946374]) or detection of
dephosphorylation (e.g. ‘dephosphorylation of the diphosphorylated
peptide on threonine and tyrosine residues’ [PMID: 7876121]). The
major false negative pattern was specific phosphorylated residues
of a phosphoprotein, such as phosphoserine or phosphothreon-
ine (e.g. ‘a phosphoserine at residue 2’ [PMID: 2229609]). These
phospho-residue patterns were later added to the rules.

For the benchmarking study, a larger dataset with 370 abstracts
was used, including 110 positive and 260 negative papers. One
hundred and sixteen abstracts were detected, with 106 true posit-
ives, giving a precision of 91.4% (Table 1). Four positive papers
were missed, yielding a recall of 96.4%. The major improvement
of system performance over the preliminary study was mainly
because of the addition of new patterns, especially those containing
phospho-residues.

The analysis of the false positive cases indicates that they often
involve texts that describe general consensus sequence or predicted
sites of protein phosphorylation. Examples are:

(1) [PMID:2223773] ‘ADF contains a sequence similar to . . . a
calcium/calmodulin-dependent protein kinase II phosphoryla-
tion consensus sequence’; or

(2) [PMID:8179334] ‘. . . Exon 15 is a unique exon for
. . . and contains the phosphorylation sites for protein
kinases A and C’.

These false positives may result from a condition used in the system
that focuses on finding all potential phosphorylation site informa-
tion. The condition allows site information extraction (therefore
retrieval of phosphorylation papers), even when the <SITE> argu-
ment does not fit any pattern if the site information lies within the
same sentence of ‘phosphorylation’.
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Table 1. RLIMS-P system performance for retrieving phosphorylation papers (IR) and extracting phosphorylation site information (IE)

Benchmark Standard RLIMS-P
Positive data Negative data True positive False positive False negative Recall (%) Precision (%)

IR: Paper retrieval
(No. of abstracts)

110 260 106 10 4 96.4 91.4

IE: Theme/site
extraction (No. of sites)

108 n/a 95 2 13 88.0 97.9

n/a - not assessed.

The improved system missed only four phosphorylation papers,
which contained texts with some unusual patterns, such as:

(1) [PMID:2755948] ‘the appearance of a phosphate group on
75 Ser’,

(2) [PMID:3944083] ‘digestion with carboxypeptidase A . . .

where Pse represents phosphoserine’, and,

(3) [PMID:8647113] ‘The two proteins are targets for Cdc2
kinase in meiotic maturation’.

(4) [PMID:6311252] ‘an N-tetradecanoyl (myristyl) group block-
ing the NH2 terminus and phosphate groups at threonine-197
and serine-338’.

However, the fourth false negative above could have been avoided.

3.4 IE evaluation: extraction of phosphorylation
information

To better evaluate how the RLIMS-P system can assist database
annotation of phosphorylation features, we further analyzed the per-
formance of the program on phosphorylation information extraction
using the PIR evidence-tagged abstracts as the benchmark standard.
As shown in Figure 3, the tagged sentences provide experimental
evidence for the corresponding features—kinases (<AGENT>)
and phosphorylated residues and their positions (<SITE>)—in
the feature lines of the PIR–PSD protein entries (substrates or
<THEME>).

Since positive abstracts may not always provide information on all
three phosphorylation objects, the system extracted varying degrees
of phosphorylation information from the abstracts. The following are
three classes of annotation information extracted by RLIMS-P.

Case 1: Complete phosphorylation information on all three
objects. This is the perfect case when information on the kinase,
the protein substrate, and the phosphorylation residue and position
are all available and extracted from the abstract by RLIMS-P (Fig. 4).

Case 2: Phosphorylation information on <THEME> and
<SITE>, but not <AGENT>. Frequently, the kinases respons-
ible for the phosphorylation are not known or not mentioned in the
abstracts. Indeed, only 47 (43%) of the 110 positive abstracts from
the benchmarking dataset contained the kinase information. From
the 47 abstracts, the program correctly extracted the kinase inform-
ation from 44 abstracts (94%). In the absence of <AGENT>, the
<THEME> and <SITE>, information is still sufficient for protein
feature annotation.

Case 3: Phosphorylation information on <THEME> and/or
<AGENT>, but not <SITE>. When there is no explicit site inform-
ation in the abstracts, annotators need to examine full-length article

B

A

Fig. 4. RLIMS-P extraction of protein phosphorylation information.
(A) Curated PIR-PSD experimental features; (B) Automated extraction and
tagging of <AGENT>, <THEME> and <SITE>.

or additional papers because <SITE> is needed for position-specific
feature annotation.

In this IE performance evaluation, we focused on <SITE> and
<THEME>, with information on both amino acid residues and their
sequence positions in the context of protein substrates.

Among the 110 positive papers used in the IR benchmarking study,
59 abstracts were tagged for experimental site features, covering site
residue and sequence position information for a total of 129 sites.
Among the tagged sites, the positions of 21 sites were based on
implicit information, such as sequence patterns rather than explicit
residue numbers. Examples of derivable residue position information
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in tagged sentences include:

• sequence patterns, such as ‘phosphopeptide AT(P)S(P)NVFA-
MFDQSQIQEFK’ (which indicates phosphorylation of both
threonine and serine residues) or

• N-terminal amino acid, such as ‘phosphorylated on the amino-
terminal residue, N-acetyl-serine’.

In such cases, annotators need to verify sequence positions of the
phosphorylated residues by mapping the sequence patterns onto the
protein sequences in the database. Such implicit phosphorylation
positions were excluded for IE evaluation because current version of
the program does not provide sequence mapping.

Thus, the benchmark standard to evaluate RLIMS-P for site feature
extraction consists of tagged abstracts for 108 sites (i.e. <SITE>–
<THEME>pairs), where explicit sequence position is given for each
site residue in the substrate. The results showed that 95 of the 108
phosphorylation sites were extracted for site residues and positions
as well as the protein substrates, giving a recall of 88.0% (Table 1).
The analysis of false negative results showed that the program some-
times missed multiple sites in one sentence. The current program
extracted all sites in sentences if the residues are linked by conjunc-
tions as in ‘serine residues 972, 985 and 1007 are phosphorylated
by phosphorylase kinase’. But, it missed the second site (Ser-311)
in ‘phosphorylation occurs at Ser-315 in the myosin IB heavy chain,
Ser-311 in myosin IC’. Other false negatives include cases where
correct sites were extracted but the <THEME> was not identified.

The RLIMS-P system had a high precision (97.9%) with only two
false positives. The robustness of the system is illustrated below
where the protein substrate and all six site residues were correctly
extracted in addition to the kinase.

(1) [PMID:2500966] ‘. . . we attempted to identify the sites of
vimentin phosphorylated by each protein kinase. Sequen-
tial analysis of the purified phosphopeptides . . . revealed
that Ser-8, Ser-9, Ser-20, Ser-25, Ser-33, and Ser-41 were
specifically phosphorylated by protein kinase C’.

The two false positive sites occurred in sentence 2 where
the text does not indicate phosphorylation of Ser24 and Thr25.

(2) [PMID:7615564] ‘HeLa cells, transfected with either chick
wild-type ADF cDNA or a cDNA mutated to code for Ala
in place of Ser24 or Thr25, express and phosphorylate the
exogenous ADF’.

4 DISCUSSION
We present here a rule-based system, RLIMS-P, for mining and
extracting protein phosphorylation information from MEDLINE
abstracts. The system has several special features that result in per-
formance advantages over other text mining systems: it provides
semantic type assignment to simplify pattern specification and
improve precision; it provides phrase detection for pattern match-
ing at a high level of syntactic abstraction; it uses patterns for
both verbal and nominal forms, which are common for describing
PTMs; it focuses on the specific interaction of protein phos-
phorylation and extracts not only the proteins involved but also
the target sites. Such a special-purpose, custom-tailored approach
allows the system to capture many specialized patterns and words
(e.g. ‘phosphoserine’).

The RLIMS-P system takes advantage of the PIR annotated
literature dataset for benchmarking of the system’s performance. The
system achieves an overall recall of 96% in information retrieval and
precision of 98% in information extraction. The high recall of cita-
tion mapping will ensure minimal ‘loss’ of phosphorylation papers
and result in significant time saving for annotators to find relevant
phosphorylation citations from long lists of papers in given protein
entries. For example, among the 59 tagged abstracts from the 110
positive papers in the IR benchmarking dataset, 57 were detected by
the program during citation mapping. On the other hand, the high
precision of annotation extraction from retrieved phosphorylation
papers will ensure minimal effort in manual checking to validate the
annotation. Indeed, RLIMS-P extracted several site features from
non-tagged abstracts that were later validated by annotators as true
positives. These include cases where evidence of experimental fea-
tures is found in more than one abstract but only tagged in one, or
where evidence is found in both abstract and full-length text but only
tagged in the latter. A few site features detected by RLIMS-P are
missed by curators. Given the excellent performance of the system
in both IR and IE, we have already applied the program to provide
computer-assisted evidence attribution at PIR for experimental fea-
tures still awaiting retrospective attribution. RLIMS-P will also be
employed to extract new phosphorylation information from PubMed
literature for site feature annotation in the UniProt Knowledgebase.

Whereas the evaluation study conducted herein focuses on mining
MEDLINE abstracts, the program is generally applicable to phos-
phorylation information extraction from full-length articles. Future
enhancements of the RLIMS-P system will include: (1) adding more
phospho-residue rule patterns using chemical synonyms for phos-
phorylated amino acids, such as ‘phosphonoserine’, (2) coupling
the rule patterns with short sequence patterns to recognize phos-
phorylated residues from sequence patterns and (3) fusing inform-
ation from multiple sentences, especially when <THEME> and
<SITE> are described in separate sentences. The system can also
be adapted to mine other PTMs, such as methylation and acetylation.
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