
Adaptive Real-time Particle Filters for Robot
Localization

Cody Kwok† Dieter Fox† Marina Meil ă‡

†Dept. of Computer Science & Engineering,‡Dept. of Statistics
University of Washington

Seattle, WA 98195
{ctkwok,fox }@cs.washington.edu, mmp@stat.washington.edu

Abstract— Particle filters have recently been applied with
great success to mobile robot localization. This success is
mostly due to their simplicity and their ability to represent
arbitrary, multi-modal densities over a robot’s state space.
The increased representational power, however, comes at
the cost of higher computational complexity. In this paper
we introduce adaptive real-time particle filtersthat greatly
increase the performance of particle filters under limited
computational resources. Our approach improves the effi-
ciency of state estimation by adapting the size of sample
sets on-the-fly. Furthermore, even when large sample sets are
needed to represent a robot’s uncertainty, the approach takes
every sensor measurement into account, thereby avoiding
the risk of losing valuable sensor information during the
update of the filter. We demonstrate empirically that this new
algorithm drastically improves the performance of particle
filters for robot localization.

I. I NTRODUCTION

Mobile robot localization is the problem of estimating
the location of a robot based on a map and sensor data
collected by the robot. Most successful approaches to
robot localization are variants of Bayesian filtering, where
the robot’s location is represented by posterior densities
over the space of all locations [1], [6], [9], [7]. Particle
filters represent these posteriors by sets of random samples
(see [4] for a recent overview). Due to this representation,
particle filters are optimal estimators even for non-linear,
non-Gaussian dynamic systems [3]. Furthermore, particle
filters can solve the global localization problem,i.e. they
can estimate a robot’s position without knowledge of its
start location [6], [9], [7].

Unfortunately, the sample-based representation of parti-
cle filters comes at increased computational requirements,
especially compared to closed-form solutions such as the
Kalman filter and its extensions [1], [9], [7]. Computation
resources available for an autonomous robot are typically
very limited, resulting in common situations wherethe
rate of incoming sensor data is higher than the update rate
of the particle filter.The prevalent solution is to update the
filter as often as possible and to discard sensor information
that arrives during the update process. Obviously, this
approach is prone to losing valuable sensor information.

In [8] we introduced real-time particle filters to deal
with such situations. Instead of discarding sensor readings,
this technique distributes the samples among the different
observations arriving during a filter update. Hence pos-
teriors are represented bymixtures of sample sets. By
weighting the different sets in the mixture, the approach
focuses computational resources (samples) on valuable
sensor information. In this paper, we enhance real-time
particle filters byadapting the size of the mixture using
KLD-sampling [5], a technique that determines the num-
ber of samples based on statistical bounds on the sample-
based approximation quality. We empirically demonstrate
that this approach is superior to alternative algorithms
using particle filters for robot localization.

The remainder of this paper is organized as follows: In
the next section we outline the basics of particle filters and
their extensions to real-time domains and adaptive sample
sets. Then, in Section III, we present our novel approach
to adaptive real-time particle filters. Finally, we present
experimental results followed by a discussion.

II. PARTICLE FILTERS

Particle filters are a sample-based variant of Bayes
filters, which recursively estimate posterior densities, or
beliefsBel, over the statext of a dynamic system [6]:

Bel(xt) ∝ p(zt |xt)
∫

p(xt |xt−1, ut−1)Bel(xt−1)dxt−1

Here zt is a sensor measurement andut−1 is control
information describing the dynamics of the system.
Particle filters represent beliefs by setsSt of N weighted
samples〈x(i)

t , w
(i)
t 〉. Each x

(i)
t is a state, and thew(i)

t

are non-negative numerical factors calledimportance
weights, which sum up to one. The basic form of the
particle filter realizes the recursive Bayes filter according
to a sampling procedure, often referred to as sequential
importance sampling with resampling (SISR):

1. Resampling:Draw with replacement a random statex
from the setSt−1 according to the (discrete) distribution
defined through the importance weightsw

(i)
t−1.

Robot position

Start (a)

Robot position

(b)

Robot position

(c)

Fig. 1. Map of the UW CSE Department along with a series
of sample sets representing the robot’s belief during global
localization using sonar sensors (samples are projected into 2D).
The size of the environment is 54m× 18m. Figures a) – c) show
the sample sets after moving 5m, 35m, and 55m, respectively.

2. Sampling:Use x and the control informationut−1 to
samplex′ according to the motion modelp(x′ | x, ut−1),
which describes the dynamics of the robot.

3. Importance sampling:Weight the samplex′ by the
observation likelihoodw′ = p(zt | x′). This likelihood is
extracted from a model of the robot’s sensors (e.g.sonar,
laser range-finder, camera) and a map of the environment.

Each iteration of these three steps generates a sample
〈x′, w′〉 drawn from the posterior. AfterN iterations the
sample set is complete and the importance weights are
normalized so that they sum up to one. In contrast to the
extended Kalman filter [1], particle filters can be shown
to converge to the true posterior even in non-Gaussian,
non-linear dynamic systems [4].

Figure 1 illustrates the application of particle filters
to mobile robot localization. Shown there is a map of
a hallway environment along with a sequence of sample
sets during global localization. The pictures demonstrate
the ability of particle filters to represent a wide variety
of distributions, ranging from uniform to highly focused.
While a large number of samples might be necessary
to accurately represent the belief during early stages of
localization (cf. 1a), it is obvious that only a small fraction
of this number suffices to track the position of the robot
once it knows where it is (cf. 1c). Therefore, the efficiency
of particle filters can be greatly increased by adapting
the number of samples during the localization process,
as demonstrated in [5]. When a large number of samples
is required, however, another issue arises.

S4

S4

S4

 z1 4 z

 u123

(a)

(b)

(c)

 z z

S1

 z 1 z 2 z 3
 z 4.

S1

 z 1

S1

 z 3

S3

 z 2

S2

 u123

 z 4

32

 u 1
 u 2 3 u

Fig. 2. Different strategies for dealing with limited computational
power. All approaches process the same number of samples per
estimation interval (window size three). a) Skip observations,i.e.
integrate only every third observation. b) Aggregate observations
and integrate them in one step. c) Reduce sample set size so that
every observation can be integrated.

A. Limited computational power

An important assumption underlying particle filters is
that all N samples can be updated before new sensor
information arrives. However, in early stages of global
localization, it is possible that the update cannot be com-
pleted before the next measurement arrives. In this paper
we present an approach that improves the performance of
particle filters by concurrently addressing the following
two questions:

1) How can we deal with situations in which the update
rate of the filter is lower than the rate of incoming
sensor observations?

2) How can we adapt the number of samples on-the-fly
so as to optimally use computational resources?

Before we focus on the first question, let us introduce
some notation. We assume that observations arrive at fixed
time intervals. LetN be the number of samples required
by the particle filter. Anestimation windowcomprises the
time required to update allN samples. We measure the
duration, orsize, of estimation windows by the number of
observations arriving during the window. Hence, a window
size of k means thatk observations arrive during the
update of the requiredN samples.

As noted above, particle filters typically assume that
all samples can be processed between two observations,
i.e. estimation windows of size one. Fig. 2 illustrates
different approaches to dealing with window sizes larger
than one (see [8] for a more detailed discussion). The
simplest and most common approach is shown in Fig. 2a).
Here, observations arriving during the update of the

α1
α2 α3

S4 S5 S6

Estimation window 1 Estimation window 2

S1 S2 S3

α4
α5 α6

 z 6 5 4 z zzz1 2 3z

Fig. 3. Real time particle filters. TheN samples are distributed
among the observations within one estimation interval (window
size three). The resulting belief is a mixture of the individual
sample sets. For each window the weightsαi of the mixture
components are chosen so that the approximation error intro-
duced by the mixture is minimal.

sample set are discarded, which has the disadvantage
that valuable sensor information might get lost. The ap-
proach in Fig. 2b) overcomes this problem by aggregating
multiple observations into one, and then integrating the
aggregated observation. This technique avoids the loss
of sensor information and it should be applied whenever
possible. Unfortunately, it is based on the assumption that
observations can be aggregated optimally, and that the
integration of an aggregated observation can be performed
as efficiently as the integration of individual observations.
While these assumptions are reasonable for linear sensor
models, they do not hold for arbitrary dynamic systems.
The third approach, shown in Fig. 2c), stops generating
new samples whenever an observation is made. Hence, for
a window of sizek, each sample set contains onlyN/k
samples. While this approach takes advantage of the any-
time capabilities of particle filters, it is susceptible to filter
divergence due to an insufficient number of samples (note
that N is chosen to be the number of samples required
for successful filtering) [5], [4].

B. Real time particle filters

In this section we review real-time particle filters
(RTPF), a novel approach to dealing with limited com-
putational resources [8]. The key idea of RTPF is to
considerall sensor measurements by distributing the sam-
ples among the observations arriving during an estimation
window. Fig. 3 illustrates the approach. As can be seen,
RTPF represents the belief within an estimation window
by a mixture of k smaller sample sets, one for each
observation1. At the end of each estimation window,
RTPF determines the weights of the mixture belief such
that the approximation error relative to the optimal filter
process is minimal. Error is determined by the Kullback-
Leibler distance (KL distance), a measure of the difference
between probability distributions [2]. The optimal belief
is the belief we would get if there was enough time to
generate allN samples for each observation. In [8] we
show how to efficiently compute these mixture weightsαi

1The mixture components represent the state of the system at different
points in time. However, the complete belief can be generated by keeping
track of the control informationu between the individual sets.

using a gradient descent approach based on Monte Carlo
estimates. Once the next estimation window is started, the
number of samples drawn from each sample set in the
previous window is proportional to the mixture weights.

Compared to the first approach discussed in the previous
section, our method has the advantage of not skipping
any observations. In contrast to the approach shown in
Fig. 2b), RTPF does not make any assumptions about the
nature of the sensor data,i.e. whether it can be aggregated
or not. The difference to the third approach (Fig. 2c) is
more subtle. In both approaches, each of thek sample sets
within one estimation window contains onlyN/k samples.
While the approach in Fig. 2c) represents the belief at each
point in time byN/k samples, RTPF represents the mix-
ture belief byk timesN/k samples drawnindependently
from the previous estimation window. Hence, in contrast to
the alternative approach, the mixture belief is represented
by a sufficient number of independent samples.

Formally, suppose we have one estimation window con-
sisting of k observations. The optimal beliefBelopt(xk)
at the end of an estimation window results from iterative
application of the Bayes filter update [6]:

Belopt(xk) ∝
∫
. . .

∫ ∏k
i=1 p(zi | xi) p(xi | xi−1, ui−1)

Bel(x0)dx0 . . . dxk−1. (1)

HereBel(x0) denotes the belief generated in the previous
estimation window. In essence, (1) computes the belief by
integrating over alltrajectoriesthrough the estimation in-
terval, where the start position of the trajectories is drawn
from the previous beliefBel(x0). The probability of each
trajectory is determined using the control information
u0, u1, . . . , uk−1, and the likelihoods of the observations
z1, . . . , zk along the trajectory. Now letBeli(xk) denote
the belief resulting from integrating only thei − th
observation within the estimation window. RTPF computes
a mixture ofk such beliefs, one for each observation. The
mixture, denotedBelmix(xk | α), is the weighted sum of
the mixture componentsBeli(xk), whereα denotes the
mixture weights:

Belmix(xk | α) ∝
k∑

i=1

αi

∫
. . .

∫
p(zi | xi) ·

k∏
j=1

p(xj | xj−1, uj−1)Bel(x0) dx0...dxk−1(2)

whereαi ≥ 0 and
∑

i αi = 1. Here, too, we integrate over
all trajectories. In contrast to (1), however, each trajectory
selectively integrates onlyoneof thek observations within
the estimation interval2.

The mixture weightsαi reflect the “importance” of the
respective observations for describing the optimal belief.

2Note that individual predictionsp(xj | xj−1, uj−1) can be “con-
catenated” so that only two predictions for each trajectory have to be
performed, one before and one after the corresponding observation.

The idea is to select weights that minimize the approxi-
mation error introduced by the mixture distribution. Here,
error is measured by the KL distance betweenBelmix

andBelopt. We obtain these weights by using a gradient
descent procedure, where the gradients are estimated using
a Monte Carlo method (see [8] for details). Note that
this procedure determines the weights with an overhead
of only 1% of the total estimation time.

To summarize, the sizek of the estimation window
is determined by the numberN of samples needed to
represent the belief, the update rate of incoming sensor
data, and the available processing power. Given a win-
dow sizek, RTPF represents the belief by a mixture of
k independent sample sets. By weighting the different
samples sets within an estimation window, our approach
focuses the computational resources (samples) on the most
valuable observations. Extensive experiments show that
RTPF significantly increases the performance of particle
filters in cases of insufficient computational resources [8].
So far, however, RTPF assumes that the number of samples
and hence the window size are determined beforehand.
Before we show how to increase the efficiency of RTPF by
changing the window size during the estimation process,
let us briefly review KLD-sampling, a statistical approach
to adapting the size of sample sets for particle filters [5].

C. Adaptive particle filters

The key idea of KLD-sampling is to determine the
number of samples at each iteration of the particle filter
such that, with probability1−δ, the error between the true
posterior and the sample-based approximation is less than
ε. Here, error is measured by the KL-distance between
the sample-based maximum likelihood estimate and the
current approximation of the true posterior, thus the name
KLD-sampling.

More specifically, KLD-sampling assumes that the true
posterior is given by a discrete, multinomial distribution.
Suppose this distribution hasb bins. For fixed error bounds
ε and δ, the following formula computes the required
number of samplesN as a function ofb [5]:

N
.=

b − 1
2ε

{
1− 2

9(b − 1)
+

√
2

9(b − 1)
z1−δ

}3

(3)

where z1−δ is the upper1 − δ quantile of the standard
normal distribution. We see that the required number of
samples is proportional to the inverse of the error bound
ε, and to the first order linear in the numberb of bins with
support. KLD-sampling estimatesb by the number of grid
cells that contain at least one particle.

KLD-sampling can be integrated efficiently into the
standard particle filter algorithm. The approach uses a
coarse, fixed grid to approximate the multinomial distribu-
tion. During the prediction step of the particle filter (Step
2 in Section II), the algorithm determines whether a newly

generated sample falls into an empty cell of the grid or not
(the grid is reset after each filter update). If the grid cell is
empty, the number of binsb is incremented and the cell is
marked as non-empty. After each sample, the number of
required samples is updated using Equation (3) with the
updated number of bins. We stop adding samples when no
new empty bins are filled, sinceb does not increase and
consequentlyN stabilizes.

KLD-sampling automatically chooses large sample sets
during global robot localization, when the samples are
spread through major parts of the free-space, and uses
small sample sets for position tracking, when samples are
focused around the robot location. See [5] for details.

III. A DAPTIVE REAL-TIME PARTICLE FILTERS

In this section we introduce a new algorithm called
adaptive real-time particle filter(ARTPF) that makes even
more effective use of limited computational resources
under real-time constraints. The key idea is to combine
adaptive sampling with RTPF, thereby enabling real-time
particle filters to change the window size on-the-fly. As
mentioned in Section II-B, RTPF represents the posterior
by a mixture of sample sets. Given fixed computational
resources and a fixed rate of incoming sensor information,
the window size solely depends on the numberN of sam-
ples. Therefore, reducing the number of samples during
the localization process also allows to reduce the window
size, which results in better estimation performance.

Unfortunately, it is not immediately obvious how one
can apply KLD-sampling to RTPF. Recall that KLD-
sampling determines the required number of samples by
counting the non-empty cells of a grid representing the
underlying posterior belief. Letb denote the number of
non-empty cells. In the case of RTPF, the posterior is
a mixture of samples sets, with each set representing
the belief at a different point in time. Unfortunately, the
union of these sets cannot be modeled by a single grid
since the robot moves between the individual sample sets.
One approach to determineb might be to synchronize the
sample sets by “shifting” them to the same point in time.
Technically this could be done by applying the appropriate
motion to the samples in the different sets.b could then
be computed at the synchronization time. Unfortunately,
such an approach is prohibitively expensive in real-time
settings.

Our solution to this problem is to use only thefirst set
in the estimation window to estimateb. Obviously, the
number of cells filled during the generation of the first
sample set underestimatesb, since the next observation
might arrive before the number of non-empty cells con-
verges. Fortunately, even after only a rather small fraction
of samples has been generated, the number of cells filled
so far can be used to predictb. More specifically, we
estimateb by a functionG(m, b̃), wherem is the number

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000N
um

be
r

of
 n

on
-e

m
pt

y
ce

lls
 a

fte
r

co
nv

er
ge

nc
e

Number of non-empty cells after m samples

m = 500
m = 1000
m = 2000

Fig. 4: The functionG for m = 500, 1000 and 2000. The
x−axis represents̃b, the number of bins filled afterm samples
have been generated. They−axis plotsb, the number of cells
filled after convergence. Error bars indicate 95% confidence
intervals for theb values, based on the training data. On many
data points the intervals are too small to be visible.

of samples generated so far andb̃ is the number of bins
filled by these samples.

The functionG can be learned beforehand from local-
ization data. This data is obtained by performing multiple
global localization runs using the adaptive particle filter
on data sets collected in different environments. Figure 4
shows the function we have learned for three different
values ofm.

Armed with G, we can now estimate the number of
required samples for adaptive real-time particle filters. As
we generate samples for the first sample set within a
window, we update the number of non-empty cellsb̃ based
on the firstm samples.G(m, b̃) gives usb, the expected
number of non-empty cells after convergence. Usingb,
Equation (3) gives us the numberN of samples required
to accurately represent the current belief. Whenever a
new observation arrives, we generate a new sample set
within the estimation window until the total number of
samples reachesN . Hence small number of samples result
in short estimation windows. Once enough independent
samples are generated, the estimation window is finished,
the approach determines the weights for the different
sample sets within the window, and starts a new estimation
window. Note that the computational overhead of this
procedure is negligible (≈ 1%).

IV. EXPERIMENTS

We evaluated the effectiveness of our new approach,
called ARTPF, against the alternatives using data collected
from a mobile robot in a real-world environment. The
task of the robot was to determine its position within
the map in Figure 1, using data collected when moving
around the loop on the left. To test the algorithms under
extreme conditions, the robot moved approximately 70cm
between each observation, and we only used data collected
by two laser-beams, one pointing to the robot’s left, the
other pointing to its right. Thus, localization was only
based on the distance to the walls on the robot’s left

and right (see [6] for details on our sensor model). Note
that the loop in the environment is symmetric except
for a few “landmarks” along the walls of the corridor.
Localization performance was measured by the average
distance between the samples and the reference robot
positions, which were computed offline.

In the experiments, our adaptive real-time algorithm,
ARTPF, is compared to standard particle filters with
skipping observations and fixed number of samples per
update, called SkipData (Figure 2a), to adaptive particle
filters with skipping observations (labeled Adaptive, [5]),
and RTPF with fixed number of samples (Figure 3, [8])3.

The comparison is performed as follows. First, the
sample set size is fixed toN = 20,000 which is
sufficient for the robot to globally localize itself. We
then vary theprocessing power, where each approach
is given the same amount of processing power. For ex-
ample, a processing power of 100% refers to the ability
to update all20,000 samples between two observations,
and a processing power of 25% refers to the ability to
update only a quarter of the required samples. For RTPF,
lower processing power means larger estimation windows.
For SkipData, on the other hand, 25% processing power
results in skipping 3 observations during each integration.
Adaptive corresponds to SkipData with varying number
of skipped observations, and ARTPF is similar to RTPF
with varying window sizes.

Figure 5 shows the evolutions of average localization
errors over time using processing powers of 25% and
12.5%. Both graphs additionally include a BaseLine er-
ror, which is the error resulting from 100% processing
power. Fig. 5a) shows that at 25% processing power,
ARTPF localizes the robot significantly faster than the
other methods. Furthermore, the two adaptive approaches
ARTPF and Adaptive converge to the same error level
as the Baseline approach. This is due to the fact that,
as soon as the robot is localized, the number of samples
drops enough to allow both approaches to integrate all
observations,i.e. window size one for ARTPF. SkipData
and RTPF, on the other hand, cannot reduce the number
of samples, thereby skipping 3 (SkipData) or mixing 4
(RTPF) observations even when the robot is localized.

At processing power 12.5% (Fig. 5 b), the advantage
of ARTPF becomes even more prominent. SkipData has
to skip 7 observations and thus fails to localize the
robot. RTPF is clearly superior to SkipData, but still fails
to reach an acceptable error level. Adaptive skips too
many observations in the beginning and thus converges
very slowly. After 450 seconds of localization, however,
Adaptive outperforms RTPF since Adaptive can decrease
the sample set size, thereby achieving higher update

3Sensor aggregation as shown in Fig. 2b) is not applicable to our
sensor model, and the insufficient performance of the approach shown
in Fig. 2c) has already been demonstrated in [8].

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 L
oc

al
iz

at
io

n
er

ro
r

[c
m

]

Time [sec]

Baseline
SkipData

RTPF
Adaptive

ARTPF

(a)
 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

A
ve

ra
ge

 L
oc

al
iz

at
io

n
er

ro
r

[c
m

]

Time [sec]

Baseline
SkipData

RTPF
Adaptive

ARTPF

(b)

0

10

20

30

40

50

60

70

80

01020304050

Lo
ca

liz
at

io
n

er
ro

r
re

du
ct

io
n

%

% processing power

RTPF
ARTPF

Adaptive

(c)

Fig. 5: Performance of the different algorithms for a) 25% and b) 12.5% processing powers. Thex-axis represents time elapsed since
the beginning of the localization experiment. They-axis plots the localization error measured in average distance from the reference
position. Each point is averaged over 20 runs, and error bars indicate 95% confidence intervals. Both figures include the performance
achieved with 100% processing power as the “Baseline” graph. Note that thex- andy-scales in a) and b) are different. c) Error reduction
over SkipData for the same range of processing powers.

rates. ARTPF clearly outperforms all other approaches
by combining the advantages of real-time particle filters
with adaptive sample sets. In the beginning, when the high
uncertainty requires large sample sets, the error drops at
the same rate as RTPF. After 150 seconds, however, the
window size starts to decrease, thereby giving ARTPF a
clear advantage over the other approaches.

Figure 5c) summarizes the performance of the ap-
proaches for different processing powers. It plots theerror
reduction achieved by each approach, compared to the
vanilla particle filter (SkipData). Error reduction is mea-
sured by averaging the relative differences in localization
errors. For example, at 15% processing power, ARTPF
reduces the error by 77%, which means on average its
localization error is less than one quarter of SkipData. The
results show that ARTPF is the best among the algorithms,
followed by Adaptive in the 15-50% processing power
range. Below this level, however, RTPF outperforms
Adaptive due to its better ability to handle insufficient
computational resources. Adaptive finally degenerates into
SkipData since it skips too many observations at the be-
ginning of localization and thus cannot focus the samples
properly.

V. CONCLUSIONS

In this paper we introduced adaptive real-time particle
filters, a novel particle filter approach to dealing with
limited computing resources. Our approach combines the
advantages of dynamic sample set sizes with real-time
particle filters. To implement adaptive sampling, we use a
learned mapping to obtain an estimate of the number of
required samples. We demonstrated empirically that our
technique produces significant performance improvements
for robot localization under computational limitations. We
expect our approach to be most useful in situations in
which the complexity of the distribution changes over time
and in which the stream of sensor data contains sparse,
highly informative sensor readings.

Despite these encouraging results, our approach has sev-
eral limitations that warrant future research. The current

method does not take the dependencies between adaptive
sampling and mixture weighting into account,i.e. it does
not consider the fact that extreme mixture weights reduce
the number of independent samples in a mixture. In
future work, we want to use our method to determine the
maximum travel speed of a mobile robot. For example, a
robot should move slowly if it is highly uncertain about its
location, since the update rate of the particle filter is rather
low. When tracking its location, however, it can move at
high speeds due to small sample sets.

VI. A CKNOWLEDGEMENTS

This research is sponsored in part by the National
Science Foundation (CAREER grant number 0093406)
and by DARPA (MICA program).

VII. REFERENCES

[1] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan.Estimation
with Applications to Tracking and Navigation. John Wiley,
2001.

[2] T. M. Cover and J. A. Thomas.Elements of Information
Theory. Wiley, 1991.

[3] P. Del Moral and L. Miclo. Branching and interacting
particle systems approximations of Feynman-Kac formulae
with applications to non linear filtering. InSeminaire
de Probabilites XXXIV, number 1729 in Lecture Notes in
Mathematics. Springer-Verlag, 2000.

[4] A. Doucet, N. de Freitas, and N. Gordon, editors.Sequential
Monte Carlo in Practice. Springer-Verlag, New York, 2001.

[5] D. Fox. KLD-sampling: Adaptive particle filters. InAd-
vances in Neural Information Processing Systems 14, 2002.

[6] D. Fox, S. Thrun, F. Dellaert, and W. Burgard. Particle filters
for mobile robot localization. In Doucet et al. [4].

[7] P. Jensfelt, O. Wijk, D. Austin, and M. Andersson. Fea-
ture based condensation for mobile robot localization. In
Proc. of the IEEE International Conference on Robotics &
Automation, 2000.

[8] C.T. Kwok, D. Fox, and M. Meil̆a. Real-time particle filters.
In Advances in Neural Information Processing Systems 15,
2003.

[9] S.I. Roumeliotis and G.A. Bekey. Bayesian estimation and
Kalman filtering: A unified framework for mobile robot
localization. InProc. of the IEEE International Conference
on Robotics & Automation, 2000.

