
Codata and Comonads in Haskell 1

Richard B. Kieburtz

Oregon Graduate Institute
Portland, Oregon, USA
dick@cse.ogi.edu

1 Introduction

Haskell, a wide spectrum, functional programming
language, provides means to de�ne and use an ex-
tremely rich variety of data including free, polymor-
phic datatypes, type classes, and data with addi-
tional computational structure abstracted by mon-
ads. Somewhat less attention has been given to sup-
porting abstract data types, which we shall call co-
data types. Monomorphic, parameterless versions of
codata types can be de�ned by modules, but Haskell's
module system is not comparably powerful with the
class system.

Through a relatively innocuous and well under-
stood extension, namely rank 2 polymorphic types,
Haskell can provide �rst-class codata types. This sug-
gestion has precedents. L�aufer and Odersky [LO94]
have advocated �rst-class abstract data types as an
extension of algebraic data types and have suggested
existential type quanti�cation as a means of hiding
representations. Their suggestions were �rst imple-
mented in the hbc compiler for Haskell and in an
undistributed version of Caml-Light. Subsequently,
rank 2 polymorphism has been implemented as a
Haskell extension in Hugs versions 1.3 and Hugs98
and in the ghc compiler. Simon Peyton Jones has
suggested that with the ability to hide a representa-
tion type, Haskell's modules permit the declaration of
abstract objects (without an inheritance mechanism)
[Jon99].

The second topic of the paper is comonads in
Haskell. Monads are by now well known and have
been found to be extremely useful in programming.
Monads serve several purposes:

� they integrate semantic e�ects into an otherwise
purely functional framework [Mog91];

� they provide easily interchangeable semantic in-
terpretations of a common program framework
[Wad92];

� they suggest type system extensions that can
enforce static encapsulation of state [LP95] and
other e�ects [Kie98].

1
The research reported in this paper was supported by

the USAF Materiel Command.

Monads account for computational e�ects of exe-
cuting a program segment. Many computational ef-
fects can be restricted to a segment of a program in
which the e�ect is visible. To encapsulate an e�ect,
there must be a means to initialize the e�ect mech-
anism and to recover a pure value from a program
segment that relies upon the e�ect. The use of a lo-
cal state variable in a computation is an example of
an encapsulatable e�ect mechanism.

Every monad provides a polymorphic combinator
that injects a value into an e�ect-dependent computa-
tion (the unit of the monad, called return in Haskell).
The bind combinator extends e�ect-dependent func-
tions to functions that take e�ect-producing compu-
tations as arguments, so they may be composed.

However, monads do not account as naturally for
e�ects that derive from the context in which a pro-
gram segment is executed. A program can always
project a value from a computation passed to it from
its context. Otherwise, the imported computation
would have no interaction with the program. How-
ever, not every value can be injected into a compu-
tation meaningful in the context. Some types de-
�ned within the program may be unknown in the con-
text. This is complementary to the circumstance of
a monadic e�ect, where a computation in the monad
can be constructed with the return combinator at
every type, but the ability to extract a value from a
monadic computation is not universal.

Take monadic input/output, for instance. Con-
ceptually, the IO monad encapsulates e�ects in which
the Haskell program's evaluation may \change the
world". However, the IO operations of a program do
not so much change the world as they allow a pro-
gram to respond to a changing world. The IO system
is provided by the context in which a Haskell program
is executed; it is not de�ned by Haskell's semantics.
We note that an IO subsystem is not initialized by a
Haskell program. The Haskell implementation does
not determine the representation of its objects, and
its e�ects cannot be restricted to just those e�ects
manifested by executing a Haskell program.

To further support this point of view, note that
when a program reads or writes to a �le other than the
standard input or output, a �le handle is required as
an argument of the functions; the basic IO operations
to a �le are typed as:

hGetChar :: Handle -> IO Char

hPutChar :: Handle -> Char -> IO ()

If the type constructor IO is interpreted to designate
a computation manifesting a side e�ect of an IO sys-
tem, these types are unintuitive. It is surprising that
the Handle type, which is associated only with the
�le system and whose semantics is said to be \imple-
mentation dependent", does not appear under the IO
type constructor.



A more intuitive typing for these operators might
be:

hGetChar' :: IO Handle -> Char

hPutChar' :: IO Handle -> IO Char -> ()

With this typing, it is more natural to associate the
e�ect of the IO subsystem with the environment in
which a program is run, a concept that seems better
aligned with reality than is the view that IO is an
e�ect determined by Haskell semantics.

The types suggested here for hGetChar' and
hPutChar' are typical of functions typed in a
comonad, the mathematical structure dual to a
monad. This paper suggests that a useful interpre-
tation of comonads in programming is that they ac-
count for e�ects originating in the context of a pro-
gram fragment, e�ects to which the program frag-
ment may react and which it may further propagate.
We shall see several examples in a later section.

2 Codata types and modules

Codata is an appropriate name for objects that have
historically been called abstract data types. These
objects di�er from data in several, fundamental re-
spects:

� The structure of a data object is exposed, while
the structure of a codata object is hidden.

� Unlike a data object, a codata object does not
have the attributes ordinarily associated with a
\value". The show function is not de�ned on a
codata object; codata cannot belong to the Eq

class; there are no derived methods on a codata
object.

� A data object has open access, as its structure
is visible. A codata object has only the ac-
cess methods speci�ed by its declaration. These
methods comprise a set of typed functions, some
of which yield data values when invoked, and
some of which may yield a new codata object.

� Data objects are usually �nitary (lazily evalu-
ated recursive data structures are an exception
to this rule) while codata objects are usually in-
�nitary (�nite records are an exception to this
rule).

2.1 Streams

There are many familiar examples of codata objects
in programming. In�nite streams furnish a particu-
larly simple example. A stream is a sequence whose
elements are only accessible in order. A stream co-
data type is characterized by two access methods:

shd :: Stream a! a

stl :: Stream a! Stream a

The access methods of any codata object are total
functions. Since the stl function can be iteratively
applied without bound, a stream is seen to be an
in�nitary object.

Haskell programmers often make use of streams,
encoded as lazy lists. The functions shd and stl are
represented by functions hd :: List A ! A and tl ::
List A ! List A which can be de�ned in terms of
pattern matches on the structure of a list argument.
However, hd and tl are partial functions which may
raise a pattern match exception if applied to an empty
list. A lazy list representation simulates a stream, but
lazy lists are not isomorphic to streams.

Furthermore, the stream codata type does not im-
ply that an evaluated stream segment is automati-
cally cached, as does the lazy evaluation of a segment
of a list. While the caching of values provided by
lazy evaluation is often important2 , its bene�t is not
without cost in time to access a value. If a function
over stream data can be computed synchronously and
scheduled deterministically, then uncached elabora-
tion of a stream could be more economical.

Other examples of codata in programming are the
\objects" of languages such as Java, Smalltalk, Ei�el
and C++. Of course, these object-oriented languages
provide stateful objects rather than functional ob-
jects as their default. They also support inheritance
among object classes, which is a notion orthogonal
to that of codata. However, the notion of objects re-
stricted to abstract data types has a long history in
programming, and was found in early versions of the
functional language, ML.

2.2 Modules declare codata types

Module declarations are the mechanism provided in
Haskell to hide representation while exporting access
methods. Modules should provide the means to de-
�ne new codata types, but unfortunately, standard
Haskell modules are not equipped with a su�ciently
expressive type structure. Suppose, for instance, that
we wish to de�ne a Haskell module to export the op-
erators of a polymorphic stream type. We would like
to write a module declaration such as:

module Stream

(Stream,

shd,

stl,

mkStream

)

where

data Stream a = S b (b -> a) (b -> b)

2When a program is written as a set of recursive equations
over streams [LLC99], failure to cache evaluated stream seg-
ments can cause the time complexity of an algorithm to grow
from linear to exponential, if a stream is duplicated in the
computation.



shd :: Stream a -> a

shd (S x f g) = f x

stl :: Stream a -> Stream a

stl (S x f g) = S (g x) f g

mkStream ::

b -> (b -> a) -> (b -> b) -> Stream a

mkStream x f g = S x f g

in which the type variable b occurring in the decla-
ration of the data type Stream a designates a hid-
den representation type (this is the carrier type of
a stream coalgebra). However, this type variable is
unbound in the text given above and the data type
declaration will not be accepted. The type variable
b could be bound along with the type parameter a

of the Stream data type declaration, but this would
reveal the representation type, as the exported type
would be Stream a b. If this binding was adopted,
the representation type would be visible in the type
of each instance of a stream.

A solution that preserves the stream abstraction
is furnished by rank 2 polymorphism (universal quan-
ti�cation over types, nested within type expressions)
which has been implemented as an extension to stan-
dard Haskell in the ghc and hbc compilers and the
Hugs interpreter. The syntax we use here is valid
in Hugs version 1.3 and Hugs98, when run in Hugs-
extensions mode. The keyword forall can be used
to bind a type variable within a declared type expres-
sion. Using this facility, the data type declaration
within the module above can be written as

data Stream a =

forall b. S b (b -> a) (b -> b)

In this declaration, the type variable b is in scope only
in the domain type of the signature of the unexported
data constructor, S.

The declaration above uses universal quanti�ca-
tion over a type variable that occurs in the domain
type of a constructor to realize an existential type
quanti�cation. The logical equivalence on which this
trick relies is (8b: P ) Q) � ((9b: P ) ) Q), when
b has no free occurrence in Q. The apparently su-
peruous data constructor, S, in the type declaration
of Stream a e�ectively represents the leftmost impli-
cation in the formula above, when P stands for the
type (b, (b -> a), (b -> b)) and Q stands for the
type Stream a. In each instance of an expression of
the declared datatype, the bound type variable may
be independently instantiated to a speci�c type.

When the declaration above is substituted for the
datatype declaration in the module Stream, the mod-
ule declaration is accepted by the Hugs98 interpreter
and exports the type constructor Stream along with
the signatures of the three operators shd, stl and

mkStream. The data constructor S and the repre-
sentations of the exported functions remain hidden
to users of the module. To create an instance of a
stream, a program invokes mkStream applied to three
appropriately typed arguments. For example,

let fibs = mkStream (1,1)

snd

(\(j,k) -> (k,j+k))

in ...

speci�es the Fibonacci sequence as a stream of inte-
gers.

A potential drawback of including the \forall"
quanti�er in Haskell data types is that a pattern
match on a data value constructed in a type whose
constructors take arguments of a quanti�ed type
might then escape its intended scope (and the scope
of the module). A potential escape of scope can easily
be detected if type quanti�cation is restricted to dec-
larations of data constructors that are not exported
from a module declaration. Encapsulation of a quan-
ti�ed type can be enforced by type checking if the use
of explicit type quanti�cation is so restricted.

2.3 A theory of codata

In this section, we provide a brief, intuitive and en-
tirely descriptive summary of the rich theory that un-
derlies codata objects.

Mathematically, codata objects are structure coal-
gebras. Recall that a coalgebra consists of a type, t,
together with a tuple of one or more total functions,
each of which has t as its domain type. The type, t,
is called the carrier of a coalgebra and the functions
are its access methods.

The \structure" of a coalgebra is speci�ed by the
collection of codomain types in the signature of its
access methods. There may, of course, be many coal-
gebras with the same signature. These constitute a
class, or co-variety, characterized by their common
signature.

If the access methods of a coalgebra are speci-
�ed only up to their signatures, as is the case for the
Stream codata type discussed in the preceding sec-
tion, then the coalgebra is said to be cofree. A cofree
coalgebra is generic in the sense that its theory is also
satis�ed by every other coalgebra in its class. A coal-
gebra speci�cation that was not cofree would include
additional equations relating its access methods.

An abstract codata declaration speci�es an entire
class of coalgebras, each with the structure given in
the speci�cation module. To form an instance of the
coalgebra class it is necessary to give a representa-
tion type and implementations for each of the ac-
cess methods. Notice that the mkStream method for
the Stream codata type requires three parameters: a
value in the representation type that is used to ini-
tialize the stream, and two functions that implement



the shd and stl access methods. The representation
type can be inferred from the �rst argument passed
to mkStream. Thus the parameters of mkStream fur-
nish the data required to form a concrete instance of
the Stream coalgebra class.

When a coalgebra is polymorphic in its represen-
tation type and its access methods are prescribed only
up to their types, it is said to be �nal. A �nal Stream
coalgebra is what remains visible when the represen-
tation of a stream is hidden. The importance of �nal
codata types is that they allow programs to be writ-
ten generically, to operate on any object of the codata
type, whereas a program that relies upon a speci�c
representation, such as the lazy-list representation of
streams in Haskell, must be modi�ed if it is to operate
on other representations of the same class of codata.

A recent series of papers by Bart Jacobs o�ers
a formal theory of objects modeled as coalgebras
[Jac95, Jac96a, Jac96b].

3 Comonads

A comonad is a dual structure to a monad. Formally,
a comonad consists of:

� a type constructor, W , taking a single argument

� a polymorphic function co-eval : Wa ! a,

� a polymorphic function
co-ext : (Wa ! b)! Wa! Wb,

� three laws:

co-ext co-eval= idW (right-id)
co-eval : co-ext f = f (left-id)
co-ext f : co-ext g = co-ext(f : co-ext g) (assoc)

Monads and comonads are intimately related in cat-
egory theory, but we shall not go into that aspect in
this paper.

Monads have been added to Haskell almost exclu-
sively through its libraries. The only syntactic con-
cession to monads in Haskell that could not be re-
alized through de�nitions of classes and operators is
the do syntax. Comonads can similarly be added by
declaring a class

class Comonad w where

(=>>) :: w a -> (w a -> b) -> w b

(.>>) :: w a -> b -> w b

coeval :: w a -> a

The in�x operator =>> is the function co-ext with
its argument positions reversed to correspond to the
\bind" operator of a monad in Haskell. As is the
case with the Monad class, it is the programmer's re-
sponsibility to assure that the functions supplied in
forming an instance of the Comonad class satisfy the

three laws required of a comonad. If these laws are
not satis�ed, then the behavior of the class instance
may not be as expected.

The combinator (.>>) serves to propagate de-
mand to its �rst argument, which otherwise might
not be evaluated by the lazy evaluation rule. It sat-
is�es the equivalence:

e1 .>> e2 = seq e1 e2

3.1 Monads, comonads and functional purity

In Haskell, an expression typed in an e�ects monad,
such as St or IO, signals the possibility of a side e�ect
occurring when a value of the expression is demanded.
Because of the possibility of e�ects, demands for val-
ues of monadically typed expressions are scheduled
statically through the use of a special combinator. To
apply a function typed as a -> m b to an argument
typed as m a, where m is a type constructor belong-
ing to the Monad class, one must use the monad bind

operator (or the do syntax, as shorthand). The bind
operator forces sequential evaluation, to the extent
required by the semantics of a particular monad in-
stance. In the IO monad, whose e�ects may be the
most far-reaching, bind e�ectively implements call-
by-value function application.

3.1.1 Monads encapsulate e�ects

It is impossible to write a side-e�ecting Haskell ex-
pression that isn't typed in a monad without us-
ing an explicitly unsafe coercion operator, such as
unsafePerformIO, to circumvent the normal typing
rules. We shall call programs that use such coercions
\unsafe" Haskell programs; otherwise in our discus-
sion we assume safe Haskell programs.

Note that a function typed as a -> m b (where
m may be a monadic type constructor but a is not
a monadic type) is pure; applying such a function
to an argument of type a can have no side e�ect.
The codomain type, m b, is a poset of computations
in the monad named by m, but any such computa-
tion remains suspended until its evaluation is forced
by a demand for a type b value or for the state of
the monad. Applications of the bind operator force
such evaluations; these are the only sites within a
safe Haskell program at which demands for poten-
tially side-e�ecting computations occur.

An impure function is identi�ed with a type
m a -> b. That is, its domain type is monadic. The
typing assertion unsafePerformIO :: IO a -> a

warns of this function's intrinsic impurity. There are
no impure functions in the Haskell standard prelude,
apart from bind, an operator of the class Monad.

An impure function must either be introduced in
a library extension as an explicitly unsafe operator,



or programmed using one of the existing unsafe coer-
cions (an unsafe programming practice) or it must be
programmed using bind. For example, the monadic
map of a function f :: a -> b is

mapf :: Monad m => (a -> b) -> m a -> m b

mapf f mx = mx >>= \x -> return (f x)

The function mapf f is potentially impure, even if f
is a pure function, because to evaluate an application
of mapf f forces evaluation of its monadically typed
argument.

Haskell's type system assures that an impure func-
tion gotten by safe programming, that is, only with
bind, has its codomain typed in the same monad as its
argument3. This ensures that any application of an
impure function (which may produce a side e�ect) is
typed in a monad that encapsulates the e�ect. Thus,
no expression that is not typed in a monad can evi-
dence a side-e�ect in a safe Haskell program.

Typically, IO operations of a Haskell program are
performed in the main module, which has the type
() -> IO(). This type indicates that it is evaluated
only for its e�ects, which are manifested through the
IO system. One can think of its linkage to the under-
lying runtime system as an implicit bind operation in
the IO monad.

3.1.2 Comonads can also encapsulate e�ects

Projection of a value from an expression typed in the
comonad is not a side-e�ecting computation. The
combinator coeval provides such a projection at ev-
ery type. A potentially side-e�ecting computation
constructs a value typed in the comonad. When
context-dependent e�ects are expressed in terms of
a comonad, a function typed as w a -> b, where w is
a type constructor that belongs to the class Comonad,
is pure|application of the function cannot manifest a
side e�ect. Of course, in a lazy language, evaluating
an application may propagate demand for the con-
struction of a value typed as w a, which can produce
an e�ect.

The key to making comonadic e�ects safe, then,
is to restrict, via the type system, computations of
values of type w a. Since comonads are used to en-
capsulate e�ects de�ned in the context of a program,
an e�ects-safe program can allow comonadic e�ects
to be introduced only by expressions formed by ap-
plications of the 'cobind' operator, (=>>). However,
since there is no Haskell constant of a type w a, there
isn't any initial argument for an application of (=>>).

To remedy this situation yet assure that e�ects-
capable computations are typed in a comonad,
we suggest a top-level program of the form

3Strictly speaking, the codomain could be typed in a com-
posite monad which subsumes the structure of the monad to

which the domain type belongs.

* =>> main(), where '*' represents an unspeci�ed
constant of type w (). This allows main to be typed
as w () -> (), and hence to consist of a series of
comonadic functions composed with (=>>).

With these restrictions, no function with a type
a -> w b can be applied, where a is not a comonadic
type. Thus every function application is safe for
comonadic e�ects.

The suggestion of a top-level program structured
to admit sequential evaluation of expressions that
may produce e�ects is not original. In his seminal
1978 Turing award paper [Bac78], John Backus in-
troduced the functional language FL, but suggested
in a later chapter of the paper that programs that in-
teract with their environments would need imperative
code at the top level. He suggested a language that
he called AST (Applicative State Transitions) which
is imperative at the top level, but relies upon FL to
declare the functions it uses.

3.2 Some useful comonads

Comonads have not been widely recognized in connec-
tion with programming, because attention has been
focused primarily on semantic e�ects of a program
itself. However, the e�ects arising from a program's
context can be equally important. Contextual e�ects
are captured by comonads. In some cases we shall
give explicitly a datatype construction that could rep-
resent the e�ect functionally. In others, such as IO, it
does not seem useful to encode the e�ect mechanism
in a functional representation that we do not consider
to be an accurate operational model.

3.2.1 State in context

For our �rst comonad, let's consider a monad of state,
where the state exists in a context.

Co-Sts a = ((s! a); s)
co-eval (g; x) = g x

co-ext f = (�(g; s):(�s0: f (g; s0)); s)

The functor map is

mapCo-St f = �(g; x): (f : g; x)

This comonad a�ords a di�erent view of state
than does the monad of state. The co-eval opera-
tor projects an observable value from the state com-
ponent. Given a function f :: Co-Sts a ! b, an
application of the co-extension co-ext f yields a com-
putation in the comonad, equipped with a new func-
tion to project an observable value from the state.
Whether and when the state component itself is mu-
tated depends upon the context of the program that
embodies this comonad, not upon the action of the
program.



3.2.2 A comonad of Streams

As a second example, let's consider an abstract view
of streams, one in which the representation type is
opaque.

Stream A = hrepresentation hiddeni

co-eval= shd

co-ext f = �s:mkStream s f stl

The co-extension satis�es a pair of equations:

shd � (co-ext f) = f

stl � (co-ext f) = (co-ext f) � stl

These equations express a universal property; a ho-
momorphism that holds for every Stream object.

The Stream comonad map is an instance of the co-
extension, namely mapStream f = co-ext (f � shd).
Accordingly, mapStream f has the properties:

shd � mapStream f = f � shd

stl � mapStream f = mapStream f � stl

For example, if we reveal the representation used
in the Haskell module Stream of Section 2, it is easily
seen that

co-ext h (S s f g) = S s (�s0

: h (S s
0

f g)) g

satis�es the equations required of the co-extension.
In practice, however, one would not wish to reveal
the representation of a stream object4. Instead, the
Stream comonad should be de�ned in the module
Stream with the functions co-eval and co-ext as ex-
ported functions.

3.2.3 Using streams in programs

Reactive programs produce output events in response
to input events. A reactive program is synchronous
if each output event is produced in response to an
individual input event and is deposited into the pro-
gram's dynamic execution context before the context
changes state or produces another input event. Thus
a synchronous reactive program can be characterized
by an event-transforming function, f :: input event!
output event. The reactive program is mapStream f ::
Stream(input event)! Stream(output event).

In applications such as programming a simulator
for a microprocessor architecture [LLC99] it is neces-
sary to express a stream delayed by some �xed num-
ber of elements. When a stream, s, is represented by
a lazy list, a unit delay is expressed by extending the
list at its front with a new initial value, x 0:s. To
delay an abstract stream, we can write

4We've experimented with programming functions on
streams in a strict language, Caml-Light, which does not sup-

port the rank 2 polymorphic typing used to hide the stream
representation in Hugs. To translate examples, it was neces-
sary to use a revealed representation for streams. Programs
written in terms of explicit representations are not pretty.

mkStream (x_0,s) fst ((pr shd stl).snd)

where pr f g x = f x, g x

A stream can represent the sequence of state valu-
ations of a �nite transition system. The shd function
projects the visible part of the current state value.
The state transition function is stl.

A stateful function over a stream maps input el-
ements to output elements but the map may depend
upon the prior history of it use. The state can be rep-
resented by an internal stream. Suppose Stream a is
the type of inputs, Stream b the type of outputs, and
s the type of the internal state. A stateful streammap
can be programmed as

mapStreamSt :: (a -> s -> b) ->

(a -> s -> s) ->

s -> Stream a -> Stream b

mapStreamSt f1 f2 s0 xs =

mkStream (xs, s0)

(\(x,s) -> f1 (shd x) s)

(\(x,s) -> (stl x, f2 (shd x) s))

3.2.4 A comonad of parallel threads

Parallel evaluation may be supported by the context
of a Haskell program but is not explicit in Haskell se-
mantics. Parallel evaluation is an appropriate mecha-
nism to represent abstractly with a comonad. It will
allow a programmer to specify what segments of a
program should be executed in parallel in the event
that the program is run in an evaluation context that
supports parallelism.

Fine-grained parallel execution is commonly ex-
pressed in terms of parallel threads. A thread exe-
cutes concurrently with other threads without syn-
chronizing its activity with them. Synchronization
can be programmed explicitly by inserting the op-
erator fence, to specify that the results of evaluat-
ing an expression with a cluster of threads are to be
combined before further computation is enabled. The
value computed from the fenced expression is then re-
turned to a single continuation thread in the context
of the expression.

Parallel threads can be expressed in terms of a
comonad,

Par a = hhidden representationi
co-eval= fence
co-ext f = mapPar f :mkThread
where f :: Par a! b

The polymorphic operator mkThread :: Par a !
Par(Par a) starts a new thread. mapPar :: (a !
b)! Par a! Par b is the comonad map for Par . The
e�ect of mapPar f allows an application of f to a suit-
ably typed argument to be evaluated in the presence
of parallel threads of computation. These operations
are related by:



fence � mkThread = id

Keep in mind that satisfaction of the above for-
mula is not a trivial requirement. A multi-threaded
evaluation model that cannot ensure the validity of
this condition does not have the properties of a
comonad for a functional language. This require-
ment can be considered as a correctness condition
for a multi-threaded implementation. Without it,
the operational semantics of programs may be non-
deterministic.

Parallel evaluation of pairs If we designate the
two-threaded, parallel evaluation of an expression e
by (eke), the semantics of fence can be expressed by

fence= �(xky): x t y

To specify the parallel evaluation of two copies of an
expression, we write mkThread e, which is equivalent
to (eke).

A suitable domain for these semantics is a
partially-ordered set in which the values, or com-
putable elements are the prime elements of posets of
approximating elements. An element p is prime with
respect to a poset X if 8x; y 2 X:p � xty) p � x _
p � y. Then Par Q = (fX � Q j X has a supg; �)
and co-evalX = supX and f X �

F
ff Z j Z � Xg.

For a program to invoke parallel evaluation to
speed up its own computation on a platform that
supports parallel threads, it must be possible to eval-
uate the components of a pair in parallel. To spec-
ify parallel evaluation of the components of a pair of
expressions,(e1 ; e2) , we write mkThread (e1; e2). If
the immediate context of this parallel expression is
fence, then an admissible strategy for its evaluation
is to calculate (e1;?)k(?;e2). The presence of ? as
a component of a pair indicates that a thread need
not invest any energy in evaluating that component.
Evaluation of fence (mkThread (e1; e2)) is equivalent
to (e1;?)k(?;e2) = (e1; e2).

The Par comonad does not coexist comfortably
with some other comonads, such as IO, in which the
sequentialized behaviors of a series of interactions of
a program with its environment can be observed.
The type system can be used to identify safe cir-
cumstances in which to invoke parallel evaluation. A
function typed as �1 ! �2, where neither �1 nor �2
contains an occurrence of the type constructor IO,
can be re-written to specify parallel evaluation of the
function body without concern that multiple threads
might interfere by invoking IO actions. The parallel
version acquires the type Par(�1)! �2.

3.2.5 The OI comonad

We have argued previously that input-output oper-
ations �t more naturally in a comonad than in a
monad, because IO e�ects are derived from the con-
text of a program, not from the program itself. These
e�ects cannot be expressed in the semantics of the
programming language because they are manifested
di�erently on various computational platforms. To
avoid confusion with the IO monad in Haskell, we
shall use OI as the name of the comonad. We can
express OI as a comonad with:

OIA = hhidden representationi
co-eval= synchOI
co-ext f = (mapOI f) : enableOI
where f :: OI A! B

The operation synchOI commits all IO activity whose
e�ects may be observed by a program in execution or
visible to its human operator, by ushing bu�ers and
transmitting data. These operations are not directly
controlled by an application program but they may be
requested by a running application through its API.

The combinator mapOI :: (A ! B) ! OIA !
OIB has the operational e�ect of hiding all currently
open �les and bu�ers of the IO system from the func-
tion (program) it receives as an argument. Thus, that
function could be a candidate for multi-threaded, par-
allel evaluation.

The polymorphic combinator enableOI :: OIA!
OI (OIA) has the e�ect of copying pointers to cur-
rently accessible IO resources, in e�ect, duplicating
the current IO environment. The operational e�ect of
co-ext f allows a function f , which accepts arguments
that may depend upon the current IO environment,
to propagate the IO environment as an implicit pa-
rameter along with its result.

An OI comonad in Haskell To experiment with
comonadic input-output, several of the IO primitives
of Haskell have been repackaged in a module that
imports the Haskell IO module and exports a set of
functions that produce the same behaviors but whose
types are compatible with the OI comonad. Some of
these primitives are shown in the module declaration
below.

module OI_comonad

(OI,

coOpenFile,

coGetChar,

coPutChar,

stdGetChar,

stdPutChar,

coClose)

where

import IO

import IOExts



import Comonad

data OI a = D a | forall b. StdOI b

stdOI :: OI a -- this constant provides an

stdOI = StdOI () -- argument to which OI oper-

-- ations can be applied

coOpenFile :: String -> IOMode -> OI () -> Handle

coOpenFile s m stdIO =

unsafePerformIO (openFile s m)

coGetChar :: OI Handle -> Char

coGetChar =

\(D h) -> unsafePerformIO (hGetChar h)

coPutChar :: Char -> OI Handle -> ()

coPutChar =

\c (D h) -> unsafePerformIO (hPutChar h c)

stdGetChar :: OI () -> Char

stdGetChar stdOI = unsafePerformIO getChar

stdPutChar :: OI Char -> ()

stdPutChar = \(D c) -> unsafePerformIO (putChar c)

coClose :: OI Handle -> ()

coClose = \(D h) -> unsafePerformIO (hClose h)

instance Comonad OI where

w =>> f = D (f w)

coeval (D a) = a

A simple program using the OI comonad is:

module Bar

where

import Comonad

import OI

echo :: String -> OI a -> ()

echo s t =

coeval (t =>>

coOpenFile s ReadMode =>>

coGetChar =>>

stdPutChar)

in which the second argument of echo is a token whose
type permits the sequence of (=>>) operations to be
invoked. When this module has been loaded, the ex-
pression echo ``alpha.txt'' stdOI will then open
a �le of the given name, if one is present, read a sin-
gle character from the �le and print it to the standard
output �le.

The OI package should not be taken to indicate
how comonadic IO operations should be implemented
in a compiler, but only to show some operations
and their types. The coercion unsafePerformIO ef-
fectively performs a synchIO operation on each IO
transaction. If the OI module were implemented di-
rectly from system primitives, rather than in terms
of Haskell's monadic IO primitives, it would not be

necessary to design operators that synchronize the IO
system to this degree.

Another concession to expediency is de�nition of
a constant, stdOI, with the polymorphic type OI a.
This was needed to provide an initial argument to the
(=>>) operator. However, the presence of stdOI as
a constant makes the encapsulation of IO operations
by the OI comonad unsafe, as it allows the applica-
tion of an operation of type OI a -> b to produce a
side-e�ecting computation whose type, b, does not in-
dicate that it may have such an e�ect. As mentioned
earlier, a top-level program should provide a unique,
initial application of (=>>) to enforce that IO e�ects
are associated only with expressions typed in the OI

comonad.

3.2.6 The COM comonad

This comonad is a bit more imaginative than are
the others discussed in this paper, yet it seems con-
sistent with the design goals of dynamically linked,
component-based programming. A software compo-
nent is an object characterized by a �nite set of access
methods whose types are given in a signature. The
representation of a component is hidden. This allows
any object with the same signature at its interface to
be substituted for a given component.

Dynamic linking permits a component to be im-
ported from the evaluation context of a program in
execution, giving the program access to the meth-
ods of the components it imports. Dually, a program
might export some objects, along with the signatures
of their visible access methods, as new components.
The mechanisms that support importation and ex-
portation of components should be polymorphic; fur-
thermore they should be related in ways that make
the use of components uniform. If su�ciently well
behaved, these mechanisms can constitute the data
of an instance of a comonad.

A comonad of components is described as:

COM a = hhidden representationi
co-eval= getInterface
co-ext f = (mapCOM f) : buildInterface
where f :: COM a! b

The method getInterface is supported by every
COM object and it always succeeds, yielding the
typed interface of the object5.

5The reader may notice a similarity between the COM

comonad and Microsoft's Common Object Module standard.
While there are similarities, there are also signi�cant di�er-

ences. Most signi�cantly, a Microsoft COM object is not
typed with the signature of an interface, as we have assumed
for objects of the COM comonad. Instead, an MS COM object
can be queried for an interface known to the client program,

which may be one of several supported by the object. If the
object possesses an interface matching the query, a pointer
to that interface is returned; otherwise the query signals its
failure.



The function buildInterface is polymorphic for ob-
jects typed in the COM comonad, i.e.

buildInterface :: COM a! COM (COM a)

and may also be de�ned at some non-COM types.
When buildInterface is applied to an instance of an
object, it constructs a COM interface, including pro-
cedures for marshalling and unmarshalling param-
eters of the types declared in the object's method
signature. Marshalling is only de�ned on types for
which the respresentations of values are �nitary. Mar-
shalling is a strict operation.

The operations getInterface and buildInterface are
related by:

getInterface � buildInterface= id

The signature of an object of type COM a contains
only the method getInterface. The result returned by
this method is an interface whose type is a signature.
The action of buildInterface is uniform at all signa-
ture types. At other than COM types, the action of
buildInterfacemay be speci�c to the type of its argu-
ment.

A function of type COM a ! b is able to access
a COM object passed to it as an argument but un-
able to dynamically create COM objects out of the
values it returns. Such a function is transformed by
the co-ext combinator of this comonad into a fully
COM-capable function that wraps its results in COM
interfaces.

4 Conclusions

This paper suggests that Haskell could have codata
types declared via its module system if it incorpo-
rated a previously suggested extension to its type sys-
tem: restricted rank 2 polymorphism. This extension
presently exists in Hugs98. The codata type most fa-
miliar to Haskell programmers is probably the type
(constructor) of streams, simulated in Haskell pro-
grams by unbounded lists, lazily evaluated. With an
abstract codata type, however, its representation can
be hidden. Also, the evaluated segments of a codata
object are not cached by defaut.

Although streams are the only types of codata
given as examples in this paper, other examples are
not di�cult to imagine. In particular, abstract data
types, as they are usually construed in a functional
programming language, �t the de�nition of codata.
Representation hiding is an essential aspect of ab-
stract data types and should be supported in Haskell.
Restricted rank 2 polymorphism would su�ce.

A second suggestion is to provide comonads in
Haskell by including a Comonad class in the standard
prelude, and providing syntax for a top-level program
to apply the co-extension of a function typed in a

comonad to an implicit argument. This extension
would support comonads whose operational seman-
tics are de�ned in an execution context.

We have argued that comonads provide a natu-
ral abstraction of the e�ects that arise in the context
of a program, such as input/output, component in-
terfaces and parallel evaluation. There are other ex-
amples of comonads which have not been discussed
in this paper because they are less compelling as po-
tential extensions of Haskell. These examples include
concurrent communicating processes, exceptions and
explicit continuations.

Acknowledgments
The author has been inuenced by discussions of the
material presented here with many persons, includ-
ing Jeremy Gibbons, John Hughes, Mark Jones, John
Launchbury, Lennart Augustsson, Eugenio Moggi,
and to Ross Paterson, who pointed out some de�-
ciencies in an earlier version of the paper.

References

[Bac78] John Backus. Can programming be liber-
ated from the von Neumann style? a func-
tional style and its algebra of programs.
Communications of the ACM, 21(8):613{
641, 1978.

[Jac95] Bart Jacobs. Mongruences and cofree alge-
bras. In AMAST'95, volume 936 of Lecture
Notes in Computer Science, pages 245{260.
Springer Verlag, July 1995.

[Jac96a] Bart Jacobs. Coalgebraic speci�cations
and models of deterministic hybrid sys-
tems. In AMAST'96, volume 1101 of Lec-
ture Notes in Computer Science, pages 520{
535. Springer Verlag, July 1996.

[Jac96b] Bart Jacobs. Inheritance and cofree con-
structions. In ECOOP'96, volume 1098 of
Lecture Notes in Computer Science, pages
210{231. Springer Verlag, July 1996.

[Jon99] Simon Peyton Jones. Explicit quanti�cation
in Haskell. URL: research.microsoft.com/
users/simonpj/Haskell/quanti�cation.html,
1999.

[Kie98] Richard B. Kieburtz. Taming e�ects
with monadic typing. In Proc. of 1998
ACM/SIGPLAN International Conference
on Functional Programming, pages 51{62.
ACM Press, September 1998.

[LLC99] John Launchbury, Je� Lewis, and Byron
Cook. On embedding a microarchitectural
design language within Haskell. In Proc. of



1999 ACM/SIGPLAN International Con-
ference on Functional Programming, page
(to appear). ACM Press, September 1999.

[LO94] Konstantin L�aufer and Martin Odersky.
Polymorphic type inference and abstract
data types. ACM Transactions on Program-
ming Languages and Systems, 16(5):1411{
1430, September 1994.

[LP95] John Launchbury and Simon Peyton Jones.
State in Haskell. Lisp and Symbolic Com-
putation, pages 293{351, 1995.

[Mog91] Eugenio Moggi. Notions of computations
and monads. Information and Computa-
tion, 93(1):55{92, July 1991.

[Wad92] Philip Wadler. The essence of functional
programming. In Conference Record of
the Nineteenth Annual ACM Symposium
on Principles of Programming Languages,
pages 1{14. ACM Press, January 1992.


