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Learning Contextual Relationships in Mammograms
Using a Hierarchical Pyramid Neural Network

Paul Sajda*, Member, IEEE, Clay Spence, Member, IEEE, and John Pearson

Abstract—This paper describes a pattern recognition architec-
ture, which we term hierarchical pyramid/neural network (HPNN),
that learns to exploit image structure at multiple resolutions
for detecting clinically significant features in digital/digitized
mammograms. The HPNN architecture consists of a hierarchy
of neural networks, each network receiving feature inputs at a
given scale as well as features constructed by networks lower in
the hierarchy. Networks are trained using a novel error function
for the supervised learning of image search/detection tasks
when the position of the objects to be found is uncertain or ill
defined. We have evaluated the HPNN’s ability to eliminate false
positive (FP) regions of interest generated by the University of
Chicago’s (UofC) Computer-aided diagnosis (CAD) systems for
microcalcification and mass detection. Results show that the
HPNN architecture, trained using the uncertain object position
(UOP) error function, reduces the FP rate of a mammographic
CAD system by approximately 50% without significant loss in
sensitivity. Investigation into the types of FPs that the HPNN
eliminates suggests that the pattern recognizer is automatically
learning and exploiting contextual information. Clinical utility is
demonstrated through the evaluation of an integrated system in
a clinical reader study. We conclude that the HPNN architecture
learns contextual relationships between features at multiple scales
and integrates these features for detecting microcalcifications and
breast masses.

Index Terms—Computer-aided diagnosis, context, hierarchical
pyramid neural network, mammography.

I. INTRODUCTION

COMPUTER-AIDED diagnosis (CAD) can be defined as
a diagnosis made by a radiologist who incorporates the

results of computer analyses of the radiographs [1]. The goal
of CAD is to improve radiologists’ performance by indicating
the sites of potential abnormalities, to reduce the number of
missed lesions, and/or by providing quantitative analysis of spe-
cific regions in an image to improve diagnosis. CAD systems
typically operate as automated “second-opinion” or “double-
reading” systems that indicate lesion location and/or type. Since
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Fig. 1. Processing in a CAD system.

individual human observers overlook different findings, it has
been shown that “double reading” (the review of a study by more
than one observer) increases the detection rate of breast cancers
by 5%–15% [2]–[4]. Double reading, if not done efficiently, can
significantly increase the cost of screening. Methods to provide
improved detection with little increase in costs will have sig-
nificant impact on the benefits of screening. Automated CAD
systems are a promising approach for low-cost double-reading.

Several CAD systems have been in development and the first
have been approved by the U.S. Food and Draug Administra-
tion [5]. Complete systems have been rigorously characterized,
both in retrospective and prospective trials [6]. Though many
have demonstrated clinical utility, there is still a need to re-
duce false positive (FP) rates generated by CAD systems. For
example, prospective clinical studies have shown lower sensi-
tivities and specificities than originally found in retrospective
studies—80% cancers detected with 2.4 FPs per case in prospec-
tive studies versus 85%–90% sensitivity at 1–2 FPs per image
in retrospective studies [7].

A. The Role of Neural Networks in CAD

CAD systems usually consist of two distinct subsystems, one
designed to detect microcalcifications and one to directly detect
masses [8]. A common element in both subsystems is a neural
network, used to improve detection and reduce FP rates. Fig. 1
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shows a typical CAD system processing flowchart, generalized
for either microcalcification or mass detection. The first two
stages of the CAD system increase the overall signal-to-noise
levels in the image and apply rules/heuristics to define a set
of candidate regions-of-interest (ROIs). These stages have ad-
justable parameters that typically are set to produce a very high
sensitivity, usually at a cost of low specificity. The final stage is a
statistical model or neural network, whose parameters are found
using error-based optimization given a set of training data. The
function of this last stage is to reduce FPs (i.e., increase speci-
ficity) without significant loss in sensitivity. Neural networks
are a particularly important class of statistical model in CAD
because they are able to capture complicated, often nonlinear
relationships in high dimensional feature spaces not easily cap-
tured by heuristic or rule based algorithms.

Several groups have developed neural networks architectures
for CAD. Some of these architectures exploit well-known fea-
tures that might also be used by radiologists [9]–[11], while
others utilize more generic feature sets [12]–[15]. The general
performance of these two approaches has been compared, par-
ticularly in the case of microcalcification detection [16]. There
also have been efforts to combine the two approaches, for ex-
ample using a mixed feature neural network [17]. Ultimately,
performance largely depends upon the choice of features—i.e.,
the discriminative information in the features. Much emphasis
has been placed on methods for choosing sets of discriminative
features, whereas less emphasis has been placed on the specific
nature of how features should be integrated. In fact, this has been
a major reason for using neural networks, given they are sta-
tistical classifiers that presumably learn an optimal integration
of features to maximize discrimination. However, prior infor-
mation, incorporated in the architecture and training of the net-
work, can be critical for learning an optimal integration strategy.
Therefore, to maximize CAD system performance there is a
need to co-optimize the feature set together with the training
and architecture of the neural network.

B. Multiscale Approaches to Mass and Microcalcification
Detection

Several groups have investigated using multiscale approaches
for feature extraction in mammographic mass and microcalci-
fication detection. Brzakovic and Neskovic [18] use a fuzzy
pyramid approach for detecting masses while Ng and Bischof
[19] apply a template at a several scales. One advantage of these
approaches is that performance is independent of mass size, as
further demonstrated by Miller and Ramsey [20]. Liet al. [21]
use an oriented wavelet transform to construct features selec-
tive to spicules, thereby creating multiscale signatures for mass
detection. Similarly, Netsch and Peitgen [22] use a Laplacian
pyramid to develop scale-space signatures for detecting indi-
vidual microcalcifications. Though these authors show that the
signatures are useful for detecting individual calcifications, the
signatures do not fully exploit the coarse-scale information that
may be indicative of contextual relationships, critical for deter-
mining clinical significance (e.g., calcification clustering).

A few groups have investigated combining multiscale ap-
proaches and neural networks. te Brake and Karssemeijer [23]
compare several multiscale feature extraction methods against

a single-scale method for detecting mammographic masses.
They use a single neural network (five hidden units, trained to
minimize the root-mean-square error using backpropagation)
to simultaneously integrate the multiscale features. They note
only minor improvements for the multiscale approach over the
single-scale method, given that an optimal scale is chosena
priori . Aghdasi [24] uses a neural network (i.e., single neuron)
to learn the optimal set of weights for integrating wavelet
coefficients as features for microcalcification detection, an
approach similar to that proposed by Yoshidaet al. [25]. In all
cases, integration is done using a single network trained with a
squared error cost function.

C. Exploiting Context in Mammographic Image Analysis

Context can be defined as nearby or surrounding structure
that establishes the meaning or identity of an object. In image
analysis, contextual information is often used to detect and clas-
sify visual objects. For example, detecting a small building in an
aerial image can be facilitated by searching along roads, since
buildings tend to lie in close proximity to roads. Both human ob-
servers and computer vision systems (e.g., [26]) have been de-
veloped to exploit contextual relationships in imagery. The ex-
ploitation of context is consistent with the global-focal models
of visual search proposed by Kundel [27]. Using eye tracking
to monitor gaze, Kundel and colleagues have shown that human
observers search radiographs by alternating between a global
and local feature analysis, integrating both sets of features in
their decision process.

In mammographic image analysis, context is exploited by
radiologists and mammographers for detecting and identifying
breast abnormalities. The clustering of calcifications, their prox-
imity to ductal tissue, the architectural distortion surrounding
potential lesions, are all contextual cues used by radiologists
and mammographers [28]. The predictive value, as determined
by radiologists, of both local and contextual (global) features
for calcification and mass detection has been reported elsewhere
[29].

Contextual relationships can be integrated into mammo-
graphic CAD systems, being made explicit, given known
pathology, through incorporation of preset rules and/or feature
detectors tuned to capture the context. Alternatively, contextual
relationships can be learned from the data, allowing for more
complicated and less obvious contextual cues to be uncovered
by the pattern recognition system.

D. Overview of Hierarchical Pyramid/Neural Network
Architecture

We have developed a pattern recognition architecture that
learns contextual relationships between structure in images
for detection and classification of objects. Fundamental to the
architecture is the multiscale decomposition of an image, via
pyramid transforms [33] and the subsequent integration of
multiscale image features by a hierarchy of neural networks.
These fundamental aspects of the architecture lead to the name
hierarchical pyramid neural networks (HPNN). Several vari-
ants of the HPNN can be defined, dependent upon the direction
of processing in the hierarchy. Fig. 2 illustrates the general
coarse-to-fine and fine-to-coarse architectures. These two
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Fig. 2. Hierarchical pyramid/neural network architectures. (A) Coarse-to-fine and (B) fine-to-coarse. In (A), context is propagated from low to high resolution
via the hidden units of low-resolution networks. In (B), small scale detail information is propagated from high- to low-resolution. In both cases, the output of the
last integration network is an estimate of the probability that a target is present. Arrow shows direction of information flow.

architectures detect small or large target objects by exploiting
coarse-scale (low resolution) or fine-scale (high-resolution)
information associated with the target. For example, in the
coarse-to-fine HPNN networks, operating at low resolution
learn contextual features that are passed to networks operating
at high resolution and integrated to detect the object of interest
(i.e., the contextual inputs condition the probability of target
present). For the fine-to-coarse HPNN architecture, networks
extract detail structure at fine resolutions of the image and then
pass this detail information to networks operating at coarser
scales [see Fig. 2(B)]. For many types of objects, information
about the fine detail structure is important for discrimination
between different classes, i.e., fine resolution structure occur-
ring within the context of the coarse resolution structure is
indicative of an object class.

We have previously reported on how the HPNN architectures
and learning algorithms can improve detection for a general
class of image search/detection problems [30]–[32]. For ex-
ample, we have shown that for the problem of detecting small
buildings in aerial imagery, the coarse-to-fine HPNN architec-
ture has higher accuracy than both conventional neural network
architectures and standard statistical classification techniques
[30]. In this paper, we present our results of applying the HPNN
framework to two problems in mammographic CAD; detecting
microcalcifications and masses in digital/digitized mammo-
grams. The coarse-to-fine HPNN architecture is well suited for
the microcalcification problem, while the fine-to-coarse HPNN
is suited for mass detection. We evaluate the performance
and utility of the HPNN framework by considering its effects
on reducing FP rates in a well-characterized CAD system
developed by The University of Chicago (UofC). In both cases
(microcalcification and mass detection), the HPNN acts as a
postprocessor of the UofC CAD system.

II. M ETHODS

In this section, we describe four critical elements of the
HPNN: 1) integrated feature pyramid representation; 2) neural
network hierarchy; 3) the learning algorithm; and 4) training
procedure.

A. Integrated Feature Pyramids

Image features are extracted and represented as integrated
features pyramids (IFPs) [33]. Multiscale pyramid transforms
are used to construct the IFP, which is the representation that
serves as input into the neural network hierarchy. The pyramid
transformation for the current set of experiments is based on
a general class of filters that measure orientation energy and
image intensity gradients.

For the coarse-to-fine IFP, steerable filters [34] are used to
compute local oriented gradient information across scale. The
steering properties of these filters enable the direct computation
of the orientation having maximum energy. Features are con-
structed which represent, at each pixel location, the maximum
energy (energy at orientation ), the energy at the orienta-
tion perpendicular to ( 90 ), and the energy at the
diagonal (energy at 45). A pyramid decomposition using
steerable oriented filters provides a rather generalized basis for
capturing both coarse and fine scale structure predictive for clin-
ically significant microcalcifications (e.g., calcification shape,
branching, clustering, cluster shape [28], [29]). Fig. 3(A) illus-
trates the form of the IFP input into the coarse-to-fine network
hierarchy.

The IFP for mass detection is slightly different from the
coarse-to-fine IFP for microcalcification detection [Fig. 3(B)].
For mass detection, input to the fine-to-coarse neural network
hierarchy is an IFP having radial and tangential gradient
components at each resolution, relative to the mass center.
The significance of radial and tangential features for mam-
mographic mass detection has been reviewed by Gigeret al.
[8]. The features are filtered versions of the image, with filter
kernels given by

(1)

in polar coordinates, with and
being the Laguerre polynomial [35]. The function

is the normalized solution of Schroedinger’s equation for the
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Fig. 3. IFPs for (A) coarse-to-fine and (B) fine-to-coarse HPNN.

two-dimensional (2-D) harmonic oscillator in polar coordinates.
There are several motivations for this choice. First, the filtering
function is steerable, since steering is simply a multiplication by
a phase factor. Second, the set of functions for alland is com-
plete, in that we can construct arbitrarily complex features, sub-
ject to the finite resolution of the image. Finally, because the har-
monic oscillator also has solutions in Cartesian coordinates, we
can express the steerable solutions in polar coordinates as sums
of a small number of solutions that are separable in Cartesian
coordinates, thereby ensuring computational efficiency. These
filters are steered in the radial and tangential directions relative
to the mass centers, using the real and imaginary components
and their squares and products, as features.1 Features were ex-
tracted at each level of the Gaussian pyramid representation of
the mass ROI, and used as inputs to networks at the same level.

1The center coordinates of the masses are generated by earlier stages of the
CAD system.

B. Neural Network Hierarchy

The neural networks in the HPNN are multilayer perceptrons,
having one hidden layer with between four and eight hidden
units. The number of hidden units is chosen via cross-validation
[36]. All units in a network perform a weighted () sum of their
inputs ( ), subtracting an offset or threshold () from that sum
to get the activation ()

(2)

The activation is transformed into a unit’s output,, by
passing it through a sigmoid function

(3)
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Each network in the HPNN hierarchy receives input from
the integrated feature pyramid and hidden unit input from
networks lower in the hierarchy. Networks are trained either
coarse-to-fine or fine-to-coarse, depending on the architecture.
In the coarse-to-fine HPNN, the network lowest in the hierarchy
is first trained until convergence and then all parameters in
this network are held fixed while the next network on the
hierarchy is trained. Coarse-to-fine training is possible because
the positions of the small objects are well defined when the
resolution is decreased. For the fine-to-coarse HPNN, extended
objects do not have a definite location at high resolution. The
entire hierarchy of networks is, therefore, trained as a single

-layered network ( being a function of the number of layers
per network and the number of networks in the hierarchy).2

Input for both training and testing is raster scanned into each
network so that the output of a network at any level is an image.
For both HPNN architectures, the output of the network is an
image representing the probability that an object is present at
each position. For the coarse-to-fine architecture, each
output pixel represents the probability of a point-like object
(e.g., a microcalcification), while for the fine-to-coarse archi-
tecture each output pixel represents the probability that a large
extended object (e.g., a mass) is within that low-resolution
pixel.

C. Learning Algorithm

The conventional error function for training a neural network
on a binary detection problem is the cross-entropy error func-
tion, which is the negative logarithm of the probability that the
network produces detection decisions that agree with the targets
in the training data. It is given by

(4)

where is the desired output and is the actual
output of the neuron, given by (3). For image-based detection,
since networks are typically applied across a set of pixels, both

and are a function of position; . Thus,
every position in an image is either associated with the presence,

1, or absence, 0, of a target.
In examining the truth data for the mammographic ROI

datasets, we found that radiologists often make small errors
in localizing individual microcalcifications and masses. For
microcalcifications, these errors appear to be within2 pixels
of the correct position. For masses, the positional error also
includes the extent of the mass—masses have ill-defined bor-
ders that are not easily ground-truthed, even by an expert. If the
exact positions of the objects are unknown then the probability
of detecting the objects at the correct positions cannot be
evaluated and using (4) will result in poor performance, as will
be illustrated below.

Consider instead the probability of detecting an object of in-
terest when detection is defined as at least one pixel detected
within a certain region known to contain the object. For a dataset

2Error backpropagation through the pyramid reduction operations is straight-
forward, since this operation is linear.

with a coordinate vector for each object, letrepresent the co-
ordinates of theth object.3 Define a region as set of pixel lo-
cations for theth object that incorporate the known magnitude
of the uncertainty or positional error in the truth data. A single
detection within will represent the detection of theth ob-
ject. Denote the output of the network when applied to the input
vector derived from the neighborhood of to be . The
probability of the network producing at least one detection in

is one minus the probability of producing no detection in,
or . As with cross-entropy, the probability
of not detecting an object at a negative positionis .
If we define as the set of all know negative locations then the
new error function becomes

(5)

We call this theUncertain Object Position (UOP)error function.
The first term of (5) is the probability of detecting at least one
pixel in a positive region while the second term is the probability
of no detection in a negative region. The gradient of with
respect to the network weights is

(6)

which is used in an optimization loop for training.
As an illustration of the utility of the UOP error function,

we compare the detection performance, with a network trained
using cross-entropy, for a “toy problem” as shown in Fig. 4. A
10 10 grid of single-pixel objects was embedded in a noisy
background. Single-pixel objects were assigned a pixel value of
one, while background pixels had a value of one-half or zero
randomly assigned with equal probability. Errors were intro-
duced into the truth data by randomly shifting the truth data
within a 3 3 pixel neighborhood centered around the object’s
true position [see Fig. 5(B)]. A “network” consisting of a single
sigmoidal neuron, with activation and transfer functions as in
(2) and (3), was used to search the image for the objects. At a
given location the inputs to the network are nine
pixel values from a 3 3 window in the input image, centered
on .

In Fig. 4, the truth image shows both the single-point truth
data and the square 33 region around these pixels. The images
in Fig. 4(D) and (E) are the outputs of the network trained using
the cross-entropy error function. The cross-entropy-trained net-
work with the output in Fig. 4(D) was trained using single-point
truth data while the network with the output shown in Fig. 4(E)
was trained using the 3 3 region truth data. Fig. 4(F) is the

3Note that for analysis of 2-D imagery, such as mammograms,~x = fx; yg.
However, the formulation can be extended across an arbitrary coordinate space,
so we use~x for generality.
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Fig. 4. “Toy problem” illustrating performance of UOP error function versus cross-entropy error. (A) Image consisting of 10� 10 grid of white dots in a
background of random binary noise. (B) Single-point truth data with positional error. (C) Truth data created by considering the magnitude of the positional error
(�1 pixel results in 3� 3 regions). (D) Output for network trained using cross-entropy error and truth data in B. (E) Output of network trained using cross-entropy
error and truth-data in C. (F) Output of network trained using UOP error and truth data in C.

output of the network trained using the UOP error function with
positive regions as shown in Fig. 4(C). As is evident from the
figure, the UOP trained network produces qualitatively superior
results.

We measured, quantitatively, the detection performance of
the networks by computing the sensitivity and FP rates on the
data. For the cross-entropy-trained networks, sensitivity was
90% with a 7.5% pixel FP rate. For the UOP trained network,
sensitivity was 100% with a 0% FP rate.

D. Training Procedure

All training was performed with the sequential quadratic pro-
gramming ( ) routine E04UCF of the commercial numer-
ical Fortran subroutine library available from the Numerical Al-
gorithms Group [37]. This routine optimizes a function of sev-
eral variables using a quasi-Newton method, iteratively refining
an approximation to the Hessian of the objective function as
the search proceeds, and using the approximation to guide the
search. For the HPNN, this results in a batch algorithm. The ob-
jective function is the summed error on the training set plus the
regularization term. The SQP routine terminates when it deter-
mines that an acceptable approximation to a minimum has been
reached. The HPNN parameters are initialized to uniformly dis-
tributed pseudorandom values between1.

To avoid “over-training,” we used a “weight decay” regular-
ization term

was adjusted to minimize the cross-validation error, computed
by dividing the training data into disjoint subsets whose union is

the entire set. The network was first trained on all of the training
data, and then, starting from this set of weights, the network
was retrained on the data with one of the subsets left out. The
resulting network was tested on the “holdout” subset. This re-
training and testing with a holdout set was repeated for each of
the subsets, and the average of the errors on the subsets is the
cross-validation error, an unbiased estimate of the average error
on new data.

Using 68 ROIs and a network hierarchy having four networks,
each with a single hidden layer with four hidden units, the time
required for training was typically three to four days (50-MHz
Sun Sparc 10). Note that this time also included training cross-
validation sets to search for an optimal. With tenfold cross-
validation, four pyramid levels in the coarse-to-fine HPNN, and
approximately four values of searched for each network, this
amounts to roughly 160 networks trained or retrained during the
training period.

We also use cross-validation to optimizefor the fine-to-
coarse HPNN. This procedure requires one to three days (200
MHz Sun Ultra Sparc 2), depending on the complexity of the
HPNN. Note that this is a much faster workstation than that
used for the coarse-to-fine HPNN, so the fine-to-coarse HPNN
is more expensive to train, even though the number of param-
eters is comparable. We speculate that there are two main rea-
sons for this. First, the fine-to-coarse HPNN has to be trained
as a single network, so we are searching a higher dimensional
space. Second, the fine-to-coarse HPNN is effectively a feed-
forward network with many layers. It is well known that the
error signal attenuates as one backpropagates from the output
layer through hidden layers, and the training problem is ill con-
ditioned. Training is still effective, but it is somewhat slower.
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Fig. 5. Raw ROC curves for the three networks A, B, and C (HPNN).

Once trained, the HPNN can process images very quickly
(roughly a second for a 100 100 pixel ROI on a 200-MHz Sun
Ultra Sparc 2). This can be made even faster (factor of four) if
the features for each ROI are precomputed by earlier stages of
the CAD system.

III. RESULTS

A. The Experimental Paradigm

We conducted a series of experiments to determine the utility
of the HPNN architecture for mammographic CAD. The goal of
the first set of experiments was to validate our hierarchical net-
work architecture and learning algorithms for capturing contex-
tual information and to demonstrate improved detection perfor-
mance, relative to traditional neural network architectures. The
second set of experiments focused on a quantitative and rigorous
evaluation of the HPNN, in particular evaluation of two archi-
tectures for reducing the FP rate of the state-of-the-art CAD sys-
tems developed by UofC. Finally, as a demonstration of clinical
utility, we integrated the HPNN with a UofC CAD system and
evaluated its performance in a Reader Study.

B. Validation of the Network Hierarchy Architecture

Three neural network architectures were evaluated, each
having one hidden layer with four to eight hidden units.4 A
two level coarse-to-fine IFP was constructed and used as input

4Model complexity was controlled for by adding/subtracting hidden units
using a cross-validation error.

to the different network architectures. As shown in Fig. 5,
network A consists of a single network processing data from
the coarsest resolution of the IFP, network B is a single network
receiving input from all levels of the IFP and network C is a
two-level coarse-to-fine HPNN. The networks had activation
and transfer functions described previously [(2) and (3)] and
were trained using cross-entropy error (4).

We trained the networks on five mammograms. Each mam-
mogram had one or two clusters with approximately 20 micro-
calcifications per mammogram, for a total of 97. The results
given below were measured on five test mammograms with one
cluster each, for a total of 95 microcalcifications.

Results for the three networks are shown as receiver op-
erating characteristic (ROC) curves [38] in Fig. 5. Note the
improvement as finer resolution information is added to the
network (networks A versus B) and especially the very large
improvement when using the hierarchical network architecture
(networks A and B versus C). These results should be con-
sidered within the context of those reported by te Brake and
Karssemeijer [23], who also noted only small improvements
over single-scale features when integrated by a single neural
network. Our results show that the hierarchical architecture
of the HPNN is crucial for the integration of the multiscale
features and, therefore, optimizing a CAD system’s detection
performance.

We considered whether network C was in fact taking advan-
tage of context information by examining the representations
developed by various hidden units in the network. Fig. 6 shows
outputs of two classes of hidden units. The first class [Fig. 6(B)]
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Fig. 6. (A) Original mammogram, (B) hidden unit representations for networks operating at high resolutions, (C) hidden unit representations for networks
operating at low resolutions. Radiologists have noted that some of the structure in C appears to correlate with specific anatomy in the breast (e.g., ducts and/or
blood vessels), indicating that these hidden units may represent contextual information.

Fig. 7. Detecting microcalcifications using UOP error function. The upper row contains reduced resolution images from one full size test mammogram.The
lower row shows a region of interest at full resolution. (A) Image, (B) truth data, (C) output of UOP trained network, (D) output of cross-entropy-trained network.

appears to represent point-like structure, similar to the structure
of an individual microcalcification. The second class of hidden
unit [Fig. 6(C)] has a different representation. In this case, the
unit is selective for long, extended, and oriented structure. When
shown to radiologists, they noted that this hidden unit structure
appeared correlated with the ductal and vascular anatomy. As
mentioned previously, the development of breast cancer is often
correlated with these anatomical structures. Results for this ex-
periment suggest that the coarse-to-fine hierarchical neural net-
work is able to automatically extract information that is consis-
tent with known contextual relationships and that this may result
in the observed improvement in detection performance. These
results are also consistent with our previous work showing that
hidden units in the HPNN learn representations of image context
for object detection (e.g., learning representations of roadways
for building detection in aerial imagery [30]).

C. Validation of UOP for Microcalcification Detection

To validate the utility of our UOP error function (5) for mam-
mographic CAD we conducted experiments comparing detec-
tion performance with the cross-entropy error function (4). We
trained and tested a single neuron network to detect microcal-
cifications, using the dataset described in the previous experi-
ment. Expert radiologists constructed the truth data, however,
inspection of the data indicated positional errors of up to two
pixels. At a given location , the inputs to the network were the
25 pixel values in a 5 5 window in the input, centered on.
We expect that the average local brightness is not related to the
detection problem. Therefore, to enforce invariance to average

local brightness we constrained the weights of the single unit
network to sum to one.

Fig. 7 shows results for a test mammogram. Note that the net-
work trained using UOP generates fewer FPs than the conven-
tional cross-entropy error function. If thresholds are applied to
the networks so that 50% of the true positives (TPs) are detected,
the UOP trained network has 50% fewer FPs that the cross-en-
tropy network.

D. Results on Research Database: Microcalcification
Detection

Given results for the previous two experiments we next eval-
uated the performance of an HPNN architecture trained using
the UOP error. In the remaining experiments described in this
paper, we evaluated the performance of the HPNN as a post pro-
cessor or adjunct for the UofC CAD system.

UofC provided data used for the microcalcification experi-
ments. The first set of data consists of 50 TP and 86 FP ROIs.
These ROIs are 99 99 pixels and digitized at 100-m resolu-
tion. A second set of data from the UofC clinical testing data-
base included 47 TPs and 103 FPs, also 9999 and sampled
at 100- m resolution.

We trained a coarse-to-fine HPNN [Fig. 2(A)], using UOP
error function, to detect individual microcalcifications. Training
and testing were done using a jackknife protocol [39], whereby
one half of the data (25 TPs and 43 FPs)] was used for training
and the other half for testing. Results were compiled for five dif-
ferent random splits of the data. For a given ROI, the probability
map produced by the network was thresholded at a given value
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TABLE I
COMPARISON OFHPNN AND SIANN NETWORKS

to produce a binary detection map. Region growing was used
to count the number of distinct detected regions. The ROI was
classified as a positive if the number of regions was greater than
or equal to a given cluster criterion.

Table I compares ROC results for the HPNN and the shift-in-
variant artificial neural network (SIANN) network that had been
used in the UofC CAD system [15]. Reported are the area under
the ROC curve ( ), the standard deviation of across the
subsets of the jackknife ( ), the FP fraction at a TP frac-
tion of 1.0 ( 1.0) and the standard deviation of
the FPF across the subsets of the jackknife ( ). and

1.0 represent the averages of the subsets of the
jackknife. Note that both networks operate best when the cluster
criterion (cc) is set to two. For this case, the HPNN has a higher

than the SIANN network while also halving the FP rate.
This difference, between the two networks’ and values,
is statistically significant ( test: 0.0018 and
0.000 01).

The second set of data was tested using a coarse-to-fine
HPNN trained on the first dataset. 150 ROIs taken from a
clinical study and classified as positive by the full UofC CAD
system for microcalcification detection (including the SIANN
neural network) were used to test the HPNN. Though the UofC
CAD system classified all 150 ROIs as positive, only 47 were
in fact positive while 103 were negatives—this dataset was
overpopulated with FPs. We applied the HPNN trained on the
entire previous data set to this new set of ROIs. The HPNN was
able to reclassify 47/103 negatives as negative, without loss in
sensitivity, i.e., no false negatives were introduced.

On examining the negative examples rejected by the
coarse-to-fine HPNN, we found that many of these ROIs con-
tained linear, high-contrast structure that would otherwise be
FPs for the SIANN network (see Fig. 8). One possible reason
for this is that the coarse-to-fine HPNN also learns context for
the FPs. SIANN presumably interprets the “peaks” on the linear
structure as calcifications. However, because the coarse-to-fine
HPNN also integrates information from low resolution it can
associate these “peaks” with linear structure at low-resolution
and, thus, determine that these peaks are not microcalcifi-
cations. This is an interesting difference from our earlier
results, in which the networks appeared to learn contextual
relationships associated with positive examples—ductal and
vascular anatomy. Thus, it appears that the HPNN can exploit
contextual relationships to both detect TPs and eliminate FPs.

E. Results on a Research Data Base: Mass Detection

The next set of experiments applied a fine-to-coarse HPNN
architecture to detect masses in digitized mammograms. Radi-

Fig. 8. Typical negative ROI that was eliminated by the coarse-to-fine HPNN
for microcalcification detection. The HPNN is able to associate the intensity
peaks, which in isolation may be interpreted as microcalcfications, with the
coarse-scale linear structure in order to classify the ROI as a negative.

TABLE II
SENSITIVITY AND SPECIFICITY FORFINE-TO-COARSE HPNN FOR

MASS DETECTION

ologists often distinguish malignant from benign masses based
on the detailed shape of the mass border and the presence of
spicules along the border [28]. We evaluate the fine-to-coarse
HPNN, Fig. 2(B), for its ability to integrate high-resolution in-
formation within the context of coarse-scale mass structure.

The experimental paradigm is similar to the microcalcifica-
tion experiments in that we apply the HPNN as a postprocessor
to the UofC CAD system for mass detection. The data in our
study consists of 72 positive and 100 negative ROIs. The nega-
tive ROIs are FPs of the earlier stages of the CAD system. These
are 256 256 pixels and are sampled at 200-m resolution.

Results for the fine-to-coarse HPNN system are shown in
Table II. The value on the test set was 0.85. These results
show a 51% reduction in FP rate of the UofC mass-detection
system without loss in sensitivity.

F. Results in Clinical Evaluation

As a final test of the utility of the HPNN architecture a clin-
ical reader study was conducted to evaluate the performance
of the combined HPNN/UofC system for microcalcification



248 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 3, MARCH 2002

TABLE III
SUMMARY OF READER STUDY PROTOCOL

TABLE IV
FP RATES OFCAD SYSTEM

detection.5 A coarse-to-fine HPNN was integrated as the last
stage of processing in the UofC CAD system for microcalcifi-
cation. The HPNN was trained on a set of TPs and FPs generated
by the UofC system. After training the parameters of the HPNN
were fixed. Integration of the HPNN with the UofC system was
done via a simple UNIX script for exchanging files containing
the ROI data. Additional details of the reader study have been
described previously [40]. In this paper, we summarize the re-
sults.

Table III outlines the protocol. Approximately 900 retro-
spective mammographic cases were collected and read by ten
readers. Five readers were considered experts in mammography
(spent over 50% of their time reading mammograms) and the
other five were general radiologists who were MQSA certified
[41]. Films were read in two conditions; film only (unaided) or
film computer results (aided).

Results of the computer output alone are shown in Table IV.
Note that on this new dataset the HPNN continues to reduce the
FP rate of the microcalcification CAD system.

The clinical utility of the complete system, which includes
the CAD systems for mass detection and the HPNN-enhanced
system for microcalcification detection, is shown in Table V,
comparing reader performance with and without the computer
aid. Expert readers showed a statistically significant improve-
ment when using the CAD system, however, the improvement
was not statistically significant for the general radiologists. One
possible reason is that FPs continue to be an issue, since experts

5In this clinical evaluation, only the coarse-to-fine HPNN for microcalcifica-
tion was integrated with the UofC CAD and evaluated.

are better than general radiologists at negating or ignoring these
FPs. Additional analysis is required to understand the difference
between the two groups. However, the overall results show that
the CAD system, which included the HPNN, can potentially im-
prove performance of mammographic screening, in this case for
more experienced radiologists.

IV. DISCUSSION

In this paper, we have demonstrated coarse-to-fine and
fine-to-coarse HPNN architectures that learn contextual re-
lationships for detecting microcalcifications and masses in
digital/digitized mammograms. Though the architectures are
novel, they bear some resemblance to previous network ar-
chitectures. For example, the fine-to-coarse HPNN is sim-
ilar to the convolution network proposed by Le Cun, [42]
(which has been applied to mammographic image analysis
by [14] and [43]), however, with a few notable differences.
The fine-to-coarse HPNN receives as inputs preset features
extracted from the image (in this case radial and tangential
gradients) at each resolution, compared to the convolution net-
work, whose inputs are the original pixel values at the highest
resolution. Secondly, in the fine-to-coarse HPNN, the inputs
to a hidden unit at a particular position are the pixel values at
that position in each of the feature images, one pixel value per
feature image. Thus, the HPNN’s hidden units do not learn
linear filters, except as linear combinations of the filters used
to form the features. Finally, the fine-to-coarse HPNN is also
trained using the UOP error function, which is not used in the
convolution network.

The two architectures we have described can be combined
into a more general architecture that integrates information
both coarse-to-fine and fine-to-coarse. This bi-directional inte-
gration, shown in the architecture of Fig. 9, is attractive in that
most objects can be considered to have a “natural scale”—typ-
ically some measure of their size. Classification of the object
might be improved through integration of finer and coarser
resolution information, relative to this natural scale. Since size
can vary within a class of objects, it may be worthwhile to
include outputs at more than one level of the HPNN. In this
case, the UOP error (5) needs to be modified to include uncer-
tainty over scale, but this is easily accomplished by changing
the product to range over positions at all output levels. We
can further generalize the architecture by adding connections
between the fine-to-coarse and coarse-to-fine paths, but one
must be careful to avoid loops when deciding where these
connections should be added. We are currently investigating
the application of this generalized HPNN architecture to mass
detection.

Most of our results were reported relative to the UofC
CAD mammographic systems, since they are considered to
be well characterized and state-of-the-art. UofC is continuing
to improve upon their systems and our current results are
only meant as a comparison to a given standard at a given
point in time. An issue in CAD research is the need for
the development of appropriate benchmarks for comparing
different algorithms. Several datasets are being developed
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TABLE V
READER STUDY RESULTSUSING CAD SYSTEM

Fig. 9. Generalized HPNN architecture. Integration is bi-directional with
output networks at the natural scale of the object. The natural scale may be
known a priori or it can be searched for by optimizing over several output
networks (e.g., search for the best one over the two output networks shown
above).

which might eventually support such comparisons though they
have yet to be widely accepted.6

V. CONCLUSION

We have presented the application of hierarchical pyramid
neural network architectures to two problems in CAD; the de-
tection of microcalcifications in mammograms and the direct
detection of masses in mammograms. In the case of micro-
calcifications, the coarse-to-fine HPNN architecture success-
fully discovered large-scale context information that improves
the system’s performance in detecting small objects. We have
demonstrated the performance of the HPNN framework by con-
sidering its utility as a postprocessor for a state-of-the-art CAD
system. In addition, clinical utility has been demonstrated for
a coarse-to-fine HPNN, which has been directly integrated with

6Databases include the Digital Database for Screening Mammography
(DDSM), Mammographic Image Analysis Society (MIAS) database, and
Lawrence Livermore National Laboratories (LLNL)/University of Cali-
fornia at San Francisco (UCSF) database. Information on these and other
databases can be obtained from The Digital Mammography Home Page
http://www.rose.brandeis.edu/users/mammo/digital.html.

the UofC CAD system for microcalcification detection, with the
complete system having been tested in a reader study. In the
case of mass detection, a fine-to-coarse HPNN architecture was
used to exploit information from fine resolution detail in order to
eliminate FPs. One of the unique aspects of our approach which
differentiates it from those that were previously discussed, is
that it provides a single, unified framework for detection of both
mammographic masses and microcalcifications. In general, we
have found that the HPNN is a useful class of network architec-
ture for exploiting context and integrating information at mul-
tiple scales for a variety of image analysis problems.
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