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Learning Contextual Relationships in Mammograms
Using a Hierarchical Pyramid Neural Network

Paul Sajda*Member, IEEEClay SpenceMember, IEEEand John Pearson

Abstract—This paper describes a pattern recognition architec- digital/digitized
ture, which we term hierarchical pyramid/neural network (HPNN) mammogram
that learns to exploit image structure at multiple resolutions
for detecting clinically significant features in digital/digitized *

mammograms. The HPNN architecture consists of a hierarchy

of neural networks, each network receiving feature inputs at a pre-processing
given scale as well as features constructed by networks lower in

the hierarchy. Networks are trained using a novel error function 1

for the supervised learning of image search/detection tasks

when the position of the objects to be found is uncertain or ill
defined. We have evaluated the HPNN'’s ability to eliminate false
positive (FP) regions of interest generated by the University of
Chicago’s (UofC) Computer-aided diagnosis (CAD) systems for
microcalcification and mass detection. Results show that the
HPNN architecture, trained using the uncertain object position

(UOP) error function, reduces the FP rate of a mammographic ¢
CAD system by approximately 50% without significant loss in

feature extraction
& rule-based/heuristic
analysis

sensitivity. Investigation into the types of FPs that the HPNN statistical/NN
eliminates suggests that the pattern recognizer is automatically classifier
learning and exploiting contextual information. Clinical utility is

demonstrated through the evaluation of an integrated system in *

a clinical reader study. We conclude that the HPNN architecture

learns contextual relationships between features at multiple scales suspicious locations
and integrates these features for detecting microcalcifications and

breast masses. Fig. 1. Processing in a CAD system.

Inde_x Terms—Computer-aided diagnosis, context, hierarchical
pyramid neural network, mammography. individual human observers overlook different findings, it has
been shown that “double reading” (the review of a study by more
|. INTRODUCTION than one observer) increases the detection rate of breast cancers

0r 1507 o1 o L
COMPUTER-AIDED diagnosis (CAD) can be defined asby5/° 15% [2]-[4]. Double reading, if not done efficiently, can

a diagnosis made by a radiologist who incorporates tIg(l_:gmﬂcantly increase the cost of screening. Methods to provide

. improved detection with little increase in costs will have sig-
results of computer analyses of the radiographs [1]. The goal . . .

. . ) o - ..~ nificant impact on the benefits of screening. Automated CAD
of CAD is to improve radiologists’ performance by |nd|cat|n%

the sites of potential abnormalities, to reduce the number afstems are a promising approach for low-cost double-reading.

) . - o . Several CAD systems have been in development and the first
missed lesions, and/or by providing quantitative analysis of spe- -

o . . : . . . ave been approved by the U.S. Food and Draug Administra-
cific regions in an image to improve diagnosis. CAD systerqs

typically operate as automated “second-opinion” or “doubl ion [5]. Complete systems have been rigorously characterized,

reading” systems that indicate lesion location and/or type. Si %&%th In retrospective gnq pros.p_ectwe t”als [Gf]' Though many
ave demonstrated clinical utility, there is still a need to re-

duce false positive (FP) rates generated by CAD systems. For
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shows a typical CAD system processing flowchart, generalizadsingle-scale method for detecting mammographic masses.
for either microcalcification or mass detection. The first twdhey use a single neural network (five hidden units, trained to
stages of the CAD system increase the overall signal-to-noisinimize the root-mean-square error using backpropagation)
levels in the image and apply rules/heuristics to define a detsimultaneously integrate the multiscale features. They note
of candidate regions-of-interest (ROIs). These stages have adly minor improvements for the multiscale approach over the
justable parameters that typically are set to produce a very higjhgle-scale method, given that an optimal scale is chasen
sensitivity, usually at a cost of low specificity. The final stage isjriori. Aghdasi [24] uses a neural network (i.e., single neuron)
statistical model or neural network, whose parameters are foundlearn the optimal set of weights for integrating wavelet
using error-based optimization given a set of training data. Theefficients as features for microcalcification detection, an
function of this last stage is to reduce FPs (i.e., increase spegpproach similar to that proposed by Yoshétal. [25]. In all
ficity) without significant loss in sensitivity. Neural networkscases, integration is done using a single network trained with a
are a particularly important class of statistical model in CABquared error cost function.

because they are able to capture complicated, often nonlinear

relationships in high dimensional feature spaces not easily c&p- Exploiting Context in Mammographic Image Analysis

tured by heuristic or rule based algorithms. . Context can be defined as nearby or surrounding structure

Several groups have developed neural networks architectufigst establishes the meaning or identity of an object. In image
for CAD. Some of these architectures exploit well-known feasnaysis, contextual information is often used to detect and clas-
tures that might also be used by radiologists [9]-{11], whilgify visual objects. For example, detecting a small building in an
others utilize more generic feature sets [12]-[15]. The genetalyia| image can be facilitated by searching along roads, since
performance of these two approaches has been compared, Bafigings tend to lie in close proximity to roads. Both human ob-
ticularly in the case of microcalcification detection [16]. Therggryers and computer vision systems (e.g., [26]) have been de-
also have been efforts to combine the two approaches, for gXioped to exploit contextual relationships in imagery. The ex-
ample using a mixed feature neural network [17]. Ultimatelyoitation of context is consistent with the global-focal models
performance largely depends upon the choice of features—i.yjisyal search proposed by Kundel [27]. Using eye tracking
the discriminative information in the features. Much emphasjg monitor gaze, Kundel and colleagues have shown that human
has been placed on methods fo.r choosing sets of dlscnmma@{%er\,erS search radiographs by alternating between a global
features, whereas less emphasis has been placed on the spegjfiCiocal feature analysis, integrating both sets of features in
nature of how features should be integrated. In fact, this has bggsir decision process.
a major reason for using neural networks, given they are staq, mammographic image analysis, context is exploited by
tistical classifiers that presumably learn an optimal integratiQggiologists and mammographers for detecting and identifying
of features to maximize discrimination. However, prior inforpreast abnormalities. The clustering of calcifications, their prox-
mation, incorporated in the architecture and training of the nefity to ductal tissue, the architectural distortion surrounding
work, can be critical for learning an optimal integration strategjotential lesions, are all contextual cues used by radiologists
Therefore, to maximize CAD system performance there iSghd mammographers [28]. The predictive value, as determined
need to co-optimize the feature set together with the trainipg radiologists, of both local and contextual (global) features
and architecture of the neural network. for calcification and mass detection has been reported elsewhere
[29].

Contextual relationships can be integrated into mammo-
graphic CAD systems, being made explicit, given known

Several groups have investigated using multiscale approacpagnology, through incorporation of preset rules and/or feature
for feature extraction in mammographic mass and microcalgietectors tuned to capture the context. Alternatively, contextual
fication detection. Brzakovic and Neskovic [18] use a fuzzyelationships can be learned from the data, allowing for more
pyramid approach for detecting masses while Ng and Bischsdmplicated and less obvious contextual cues to be uncovered
[19] apply a template at a several scales. One advantage of thggene pattern recognition system.
approaches is that performance is independent of mass size, as
further demonstrated by Miller and Ramsey [20] etial.[21] D. Overview of Hierarchical Pyramid/Neural Network
use an oriented wavelet transform to construct features sel@echitecture

tive to .spicuI.eSI, thereby creating mu!tiscale signatures for MasSye have developed a pattern recognition architecture that
detection. Similarly, Netsch and Peitgen [22] use a LaplaCigghms contextual relationships between structure in images
pyramid to develop scale-space signatures for detecting ingir getection and classification of objects. Fundamental to the
vidual microcalcifications. Though these authors show that tBgchitecture is the multiscale decomposition of an image, via
signatures are useful for detecting individual calcifications, th&ramid transforms [33] and the subsequent integration of
signatures do not fully exploit the coarse-scale information thafultiscale image features by a hierarchy of neural networks.
may be indicative of contextual relationships, critical for detefFhese fundamental aspects of the architecture lead to the name
mining clinical significance (e.g., calcification clustering).  hierarchical pyramid neural networks (HPNN$everal vari-

A few groups have investigated combining multiscale agnts of the HPNN can be defined, dependent upon the direction
proaches and neural networks. te Brake and Karssemeijer [@B]processing in the hierarchy. Fig. 2 illustrates the general
compare several multiscale feature extraction methods agaitsarse-to-fine and fine-to-coarse architectures. These two

B. Multiscale Approaches to Mass and Microcalcification
Detection
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Fig. 2. Hierarchical pyramid/neural network architectures. (A) Coarse-to-fine and (B) fine-to-coarse. In (A), context is propagated fronglovesoluition
via the hidden units of low-resolution networks. In (B), small scale detail information is propagated from high- to low-resolution. In bothecasgwytlof the
last integration network is an estimate of the probability that a target is present. Arrow shows direction of information flow.

architectures detect small or large target objects by exploitidg Integrated Feature Pyramids
coarse-scale (low resolution) or fine-scale (high-resolution)
information associated with the target. For example, in tkllg
coarse-to-fine HPNN networks, operating at low resolutio
learn contextual features that are passed to networks opera
at high resolution and integrated to detect the object of inter
(i.e., the contextual inputs condition the probability of targ

Image features are extracted and represented as integrated
atures pyramids (IFPs) [33]. Multiscale pyramid transforms
re used to construct the IFP, which is the representation that
ing, . : . .
Sgrves as input into the neural network hierarchy. The pyramid
{ansformation for the current set of experiments is based on

present). For the fine-to-coarse HPNN architecture, netwo sgene_ral Class of fi_Iters that measure orientation energy and
extract detail structure at fine resolutions of the image and thBA29€ intensity gradients. ,
pass this detail information to networks operating at coarserr ©F the coarse-to-fine IFP, steerable filters [34] are used to
scales [see Fig. 2(B)]. For many types of objects, informati&?mPUte local o_nented grad_lent information across scale. T_he
about the fine detail structure is important for discriminatiofte€ring properties of these filters enable the direct computation
between different classes, i.e., fine resolution structure occ@f-the orientation having maximum energy. Features are con-
ring within the context of the coarse resolution structure Efructed which represent, at each pixel location, the maximum
indicative of an object class. energy (energy at orientatiah,..), the energy at the orienta-
We have previously reported on how the HPNN architecturé§n perpendicular t@,,.. (fmax —90°), and the energy at the
and learning algorithms can improve detection for a geneingonal (energy ., —45). A pyramid decomposition using
class of image search/detection problems [30]-[32]. For esteerable oriented filters provides a rather generalized basis for
ample, we have shown that for the problem of detecting smatpturing both coarse and fine scale structure predictive for clin-
buildings in aerial imagery, the coarse-to-fine HPNN archite@zally significant microcalcifications (e.g., calcification shape,
ture has higher accuracy than both conventional neural netwéanching, clustering, cluster shape [28], [29]). Fig. 3(A) illus-
architectures and standard statistical classification techniqueses the form of the IFP input into the coarse-to-fine network
[30]. In this paper, we present our results of applying the HPNNerarchy.
framework to two problems in mammographic CAD; detecting The IFP for mass detection is slightly different from the
microcalcifications and masses in digital/digitized mammeoarse-to-fine IFP for microcalcification detection [Fig. 3(B)].
grams. The coarse-to-fine HPNN architecture is well suited fepr mass detection, input to the fine-to-coarse neural network
Fhe m.icrocalcification problgm, while the fine-to-coarse HPNMNjerarchy is an IFP having radial and tangential gradient
is suited for mass detection. We evaluate the performanggmponents at each resolution, relative to the mass center.
and utility of the HPNN framework by considering its effectsrne significance of radial and tangential features for mam-

on reducing FP rate_s in_a well—qharacterized CAD SyStemographic mass detection has been reviewed by Giget.
developed by The University of Chicago (UofC). In both caseg) “The features are filtered versions of the image, with filter
(microcalcification and mass detection), the HPNN acts as@rnels given by

postprocessor of the UofC CAD system.

1/2
g —r2/2 7 |pl/ .2\ Lipd
Il. METHODS g p(r, 6 :(—) plele=m /2 LIPl 2y eird (1)
(17])( ) 7r(q+|p|)! q ( )
In this section, we describe four critical elements of the

HPNN: 1) integrated feature pyramid representation; 2) neuralpolar coordinates, witty, p) € {(0, 1), (1, 0), (0, 2)},and
network hierarchy; 3) the learning algorithm; and 4) trainin@l{" being the Laguerre polynomial [35]. The functiey ,
procedure. is the normalized solution of Schroedinger’'s equation for the
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Radial and tangential || | ...l ______.
filter outputs, squares
and products

Fig. 3. IFPs for (A) coarse-to-fine and (B) fine-to-coarse HPNN.

two-dimensional (2-D) harmonic oscillator in polar coordinate®. Neural Network Hierarchy

There are several motivations for this choice. First, the filtering The neural networks in the HPNN are multilayer perceptrons
function is steerable, since steering is gimplyamultiplication tﬁ’aving one hidden layer with between four and eight hidden
a phase factor. Second, the set of functions foy afidp is com- | its The number of hidden units is chosen via cross-validation
plete, in that we can construct arbitrarily complex features, sull%]_ All units in a network perform a weighteeb) sum of their

ject to the finite resolution of the image. Finally, because the h"i‘ﬁ'puts (), subtracting an offset or threshol) from that sum
. . . . . . /)
monic oscillator also has solutions in Cartesian coordinates, Ylﬁeget the activationd)

can express the steerable solutions in polar coordinates as sums

of a small number of solutions that are separable in Cartesian

coordinates, thereby ensuring computational efficiency. These a = Z wiz; — 0. (2
filters are steered in the radial and tangential directions relative i

to the mass centers, using the real and imaginary components

and their squares and products, as featuriésatures were ex-  The activation is transformed into a unit's output, by
tracted at each level of the Gaussian pyramid representatiorp@ésing it through a sigmoid function

the mass ROI, and used as inputs to networks at the same level.

IThe center coordinates of the masses are generated by earlier stages of the . . 1 3)
CAD system. y=ola)= 14¢a
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Each network in the HPNN hierarchy receives input frorwith a coordinate vector for each object, #&trepresent the co-
the integrated feature pyramid and hidden unit input frowrdinates of théth object® Define a region?; as set of pixel lo-
networks lower in the hierarchy. Networks are trained eitheations for theith object that incorporate the known magnitude
coarse-to-fine or fine-to-coarse, depending on the architectunéthe uncertainty or positional error in the truth data. A single
In the coarse-to-fine HPNN, the network lowest in the hierarchdetection withinP; will represent the detection of thigh ob-
is first trained until convergence and then all parameters ject. Denote the output of the network when applied to the input
this network are held fixed while the next network on theector derived from the neighborhood &f to bey(Z#;). The
hierarchy is trained. Coarse-to-fine training is possible becays®bability of the network producing at least one detection in
the positions of the small objects are well defined when th is one minus the probability of producing no detectiodin
resolution is decreased. For the fine-to-coarse HPNN, extenaed — [ . (1 — y(Z)). As with cross-entropy, the probability
objects do not have a definite location at high resolution. Thof not detecting an object at a negative positigns 1 — y(Z;).
entire hierarchy of networks is, therefore, trained as a sindfave define NV as the set of all know negative locations then the
N-layered network & being a function of the number of layersnew error function becomes
per network and the number of networks in the hieraréhy).
Input for both training and testing is raster scanned into ea _ ) -
network so that the output of a network at any level is an imag%op - Z log | 1= H (1-y(@)

For both HPNN architectures, the output of the network is an ‘
image representing the probability that an object is present at — Z log(1—y(Z)). (5)
eachz, y position. For the coarse-to-fine architecture, each FeN

output pixel represents the probability of a point-like object
put p P P y b ) We call this théJncertain Object Position (UOR)rror function.

(e.g., a microcalcification), while for the fine-to-coarse archi- i f (5 is th babilitv of d ) |
tecture each output pixel represents the probability that a Ia(ré;%e irst term of (5) is the probability of detecting at least one

zcr;

extended object (e.g., a mass) is within that low-resoluti xel in a positive region while the second term is the probability
= of no detection in a negative region. The gradienEgtp with

ixel.
P respect to the network weights is
C. Learning Algorithm T (1—y(@)

The conventional error function for training a neural networ Zvor - Z zEr; _ Z M
on a binary detection problem is the cross-entropy error func-9w = I A-y@) -1 = (1-y(@)

tion, which is the negative logarithm of the probability that the weh

network produces detection decisions that agree with the targets n Z 1 Ay (%)
in the training data. It is given by 1—y(Z) Oow

(6)

ZCN

which is used in an optimization loop for training.
E=- Z [dilogyi — (1 — di)log(1 — ;)] ) As an illustration of the utility of the UOP error function,
¢ we compare the detection performance, with a network trained
. . . using cross-entropy, for a “toy problem” as shown in Fig. 4. A
whered; € {0, 1} is the desired output ang is the actual 10 x 10 grid of single-pixel objects was embedded in a noisy
output of the neuron, given by (3). For image-based detectiqgckground. Single-pixel objects were assigned a pixel value of
since networks are typically applied across a set of pixels, bg§Re, while background pixels had a value of one-half or zero
y; andd; are a function of positiony;(x, y), di(z, y). Thus, randomly assigned with equal probability. Errors were intro-
every position in an image is either associated with the presenggeed into the truth data by randomly shifting the truth data
di(z, y) = 1, or absencel;(z, y) = 0, of a target. _ within a 3x 3 pixel neighborhood centered around the object’s
In examining the truth data for the mammographic RQtye position [see Fig. 5(B)]. A “network” consisting of a single
datasets, we found that radiologists often make small errqigmoidal neuron, with activation and transfer functions as in
in localizing individual microcalcifications and masses. FO(rZ) and (3), was used to search the image for the objects. At a
microcalcifications, these errors appear to be withi pixels given locationz = {x, y}the inputs to the network are nine
of the correct position. For masses, the positional error alﬁg(d values from a 3« 3 window in the input image, centered
includes the extent of the mass—masses have ill-defined bgf 7
ders that are not easily ground-truthed, even by an expert. If thgy, Fig. 4, the truth image shows both the single-point truth
exact positions of the objects are unknown then the probabilfi4tz and the squared3 region around these pixels. The images
of detecting the.objects at the correct positions cannot Pﬁ:ig_4(D) and (E) are the outputs of the network trained using
evaluated and using (4) will result in poor performance, as Wijhe cross-entropy error function. The cross-entropy-trained net-
be illustrated below. work with the output in Fig. 4(D) was trained using single-point
Consider instead the probability of detecting an object of ifrth data while the network with the output shown in Fig. 4(E)

terest when detection is defined as at least one pixel detecidk trained using the & 3 region truth data. Fig. 4(F) is the
within a certain region known to contain the object. For a dataset
3Note that for analysis of 2-D imagery, such as mammograins; {z, y}.
2Error backpropagation through the pyramid reduction operations is straightewever, the formulation can be extended across an arbitrary coordinate space,
forward, since this operation is linear. so we user; for generality.
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Fig. 4. “Toy problem” illustrating performance of UOP error function versus cross-entropy error. (A) Image consistingcof@@rid of white dots in a
background of random binary noise. (B) Single-point truth data with positional error. (C) Truth data created by considering the magnitudetimfrtalegoasi

(1 pixel results in 3x 3 regions). (D) Output for network trained using cross-entropy error and truth data in B. (E) Output of network trained using cross-entropy
error and truth-data in C. (F) Output of network trained using UOP error and truth data in C.

output of the network trained using the UOP error function witthe entire set. The network was first trained on all of the training
positive regiong’; as shown in Fig. 4(C). As is evident from thedata, and then, starting from this set of weights, the network
figure, the UOP trained network produces qualitatively superiaras retrained on the data with one of the subsets left out. The
results. resulting network was tested on the “holdout” subset. This re-
We measured, quantitatively, the detection performance tediining and testing with a holdout set was repeated for each of
the networks by computing the sensitivity and FP rates on ttiee subsets, and the average of the errors on the subsets is the
data. For the cross-entropy-trained networks, sensitivity wesss-validation error, an unbiased estimate of the average error
90% with a 7.5% pixel FP rate. For the UOP trained networkn new data.
sensitivity was 100% with a 0% FP rate. Using 68 ROIs and a network hierarchy having four networks,
each with a single hidden layer with four hidden units, the time
required for training was typically three to four days (50-MHz
All training was performed with the sequential quadratic pra&un Sparc 10). Note that this time also included training cross-
gramming §QP) routine EO4UCF of the commercial numervalidation sets to search for an optintal With tenfold cross-
ical Fortran subroutine library available from the Numerical Alvalidation, four pyramid levels in the coarse-to-fine HPNN, and
gorithms Group [37]. This routine optimizes a function of sevapproximately four values of searched for each network, this
eral variables using a quasi-Newton method, iteratively refinirgnounts to roughly 160 networks trained or retrained during the
an approximation to the Hessian of the objective function asining period.
the search proceeds, and using the approximation to guide thgye also use cross-validation to optimixefor the fine-to-
search. For the HPNN, this results in a batch algorithm. The ngarse HPNN. This procedure requires one to three days (200
jective function is the summed error on the training set plus thig4z Sun Ultra Sparc 2), depending on the complexity of the
regularization term. The SQP routine terminates when it det@{pNN. Note that this is a much faster workstation than that
mines that an acceptable approximation to a minimum has begfad for the coarse-to-fine HPNN, so the fine-to-coarse HPNN
reached. The HPNN parameters are initialized to Uniformly d|§; more expensive to train' even though the number of param_

D. Training Procedure

tributed pseudorandom values betweieh eters is comparable. We speculate that there are two main rea-
~ To avoid “over-training,” we used a “weight decay” regularsons for this. First, the fine-to-coarse HPNN has to be trained
Ization term as a single network, so we are searching a higher dimensional
A ) space. Second, the fine-to-coarse HPNN is effectively a feed-
=3 Z Wi - forward network with many layers. It is well known that the

error signal attenuates as one backpropagates from the output
Awas adjusted to minimize the cross-validation error, comput&er through hidden layers, and the training problem is ill con-
by dividing the training data into disjoint subsets whose union @tioned. Training is still effective, but it is somewhat slower.
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Fig. 5. Raw ROC curves for the three networks A, B, and C (HPNN).

Once trained, the HPNN can process images very quickly the different network architectures. As shown in Fig. 5,
(roughly a second for a 100 100 pixel ROl on a 200-MHz Sun network A consists of a single network processing data from
Ultra Sparc 2). This can be made even faster (factor of four)ttie coarsest resolution of the IFP, network B is a single network
the features for each ROI are precomputed by earlier stagesaafeiving input from all levels of the IFP and network C is a
the CAD system. two-level coarse-to-fine HPNN. The networks had activation

and transfer functions described previously [(2) and (3)] and
IIl. RESULTS were trained using cross-entropy error (4).

We trained the networks on five mammograms. Each mam-
mogram had one or two clusters with approximately 20 micro-

We conducted a series of experiments to determine the utilgsicifications per mammogram, for a total of 97. The results
of the HPNN architecture for mammographic CAD. The goal @fiven below were measured on five test mammograms with one
the first set of experiments was to validate our hierarchical nefuster each, for a total of 95 microcalcifications.
work architecture and learning algorithms for capturing contex- Results for the three networks are shown as receiver op-
tual information and to demonstrate improved detection perfarating characteristic (ROC) curves [38] in Fig. 5. Note the
mance, relative to traditional neural network architectures. Tiraprovement as finer resolution information is added to the
second set of experiments focused on a quantitative and rigorpeswork (networks A versus B) and especially the very large
evaluation of the HPNN, in particular evaluation of two archiimprovement when using the hierarchical network architecture
tectures for reducing the FP rate of the state-of-the-art CAD sygetworks A and B versus C). These results should be con-
tems developed by UofC. Finally, as a demonstration of clinicgidered within the context of those reported by te Brake and
utility, we integrated the HPNN with a UofC CAD system an&Karssemeijer [23], who also noted only small improvements

A. The Experimental Paradigm

evaluated its performance in a Reader Study. over single-scale features when integrated by a single neural
network. Our results show that the hierarchical architecture
B. Validation of the Network Hierarchy Architecture of the HPNN is crucial for the integration of the multiscale

Three neural network architectures were evaluated, edERtUres and, therefore, optimizing a CAD system’s detection
having one hidden layer with four to eight hidden unita Performance. _ _

two level coarse-to-fine IFP was constructed and used as inputVe considered whether network C was in fact taking advan-

age of context information by examining the representations

4Model complexity was controlled for by adding/subtracting hidden unitgeveIOped by various h|dd.en units !n the ne_twork' Fig. 6 shows

using a cross-validation error. outputs of two classes of hidden units. The first class [Fig. 6(B)]
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Fig. 6. (A) Original mammogram, (B) hidden unit representations for networks operating at high resolutions, (C) hidden unit representatioreker net
operating at low resolutions. Radiologists have noted that some of the structure in C appears to correlate with specific anatomy in the brezstajedjord
blood vessels), indicating that these hidden units may represent contextual information.

Fig. 7. Detecting microcalcifications using UOP error function. The upper row contains reduced resolution images from one full size test mafineogram.
lower row shows a region of interest at full resolution. (A) Image, (B) truth data, (C) output of UOP trained network, (D) output of cross-entegppetaiork.

appears to represent point-like structure, similar to the structdoeal brightness we constrained the weights of the single unit
of an individual microcalcification. The second class of hiddemetwork to sum to one.

unit [Fig. 6(C)] has a different representation. In this case, theFig. 7 shows results for a test mammogram. Note that the net-
unitis selective for long, extended, and oriented structure. Whemrk trained using UOP generates fewer FPs than the conven-
shown to radiologists, they noted that this hidden unit structutienal cross-entropy error function. If thresholds are applied to
appeared correlated with the ductal and vascular anatomy. the networks so that 50% of the true positives (TPs) are detected,
mentioned previously, the development of breast cancer is oftlie UOP trained network has 50% fewer FPs that the cross-en-
correlated with these anatomical structures. Results for this ésopy network.

periment suggest that the coarse-to-fine hierarchical neural net-

work is able to automatically extract information that is consid?- Results on Research Database: Microcalcification

tent with known contextual relationships and that this may resetection

in the observed improvement in detection performance. TheSQ;iven results for the previous two experiments we next eval-
results are also consistent with our previous work showing thgdted the performance of an HPNN architecture trained using
hidden units in the HPNN learn representations of image contgé UOP error. In the remaining experiments described in this
for object detection (e.g., learning representations of roadwqyéper, we evaluated the performance of the HPNN as a post pro-
for building detection in aerial imagery [30]). cessor or adjunct for the UofC CAD system.

UofC provided data used for the microcalcification experi-
ments. The first set of data consists of 50 TP and 86 FP ROls.

To validate the utility of our UOP error function (5) for mam-These ROIls are 98 99 pixels and digitized at 100m resolu-
mographic CAD we conducted experiments comparing detd®mn. A second set of data from the UofC clinical testing data-
tion performance with the cross-entropy error function (4). Wease included 47 TPs and 103 FPs, alsox999 and sampled
trained and tested a single neuron network to detect microcat-100s:m resolution.
cifications, using the dataset described in the previous experi\WWe trained a coarse-to-fine HPNN [Fig. 2(A)], using UOP
ment. Expert radiologists constructed the truth data, howeverror function, to detect individual microcalcifications. Training
inspection of the data indicated positional errors of up to twand testing were done using a jackknife protocol [39], whereby
pixels. At a given locatior®, the inputs to the network were theone half of the data (25 TPs and 43 FPs)] was used for training
25 pixel values in a 5 5 window in the input, centered afi  and the other half for testing. Results were compiled for five dif-
We expect that the average local brightness is not related to theent random splits of the data. For a given ROI, the probability
detection problem. Therefore, to enforce invariance to averagep produced by the network was thresholded at a given value

C. Validation of UOP for Microcalcification Detection
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TABLE |
ComPARISON OFHPNN AND SIANN NETWORKS
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to produce a binary detection map. Region growing was usRI
to count the number of distinct detected regions. The ROl w
classified as a positive if the number of regions was greater th
or equal to a given cluster criterion.

Table | compares ROC results for the HPNN and the shift-ii

variant artificial neural network (SIANN) network that had bee RH

used in the UofC CAD system [15]. Reported are the area unc e

the ROC curve 4.), the standard deviation of. across the " Peaks

subsets of the jackknifes(y.), the FP fraction at a TP frac- . d H_H““*

tion of 1.0 FPFQTPF = 1.0) and the standard deviation of femnd 7 = \\‘\

the FPF across the subsets of the jackknifepg). A, and
FPF@QTPF = 1.0 represent the averages of the subsets of t
jackknife. Note that both networks operate best when the clus
criterion (cc) is set to two. For this case, the HPNN has a higher , _ o _
A than the SIANN network while also halving the FP ratd® % IAce nesatye RO atues giinated by e comsede e PN
This difference, between the two networks’ andl'PI* values, peaks, which in isolation may be interpreted as microcalcfications, with the
is statistically significant{ test:p,4. = 0.0018 andprpr = coarse-scale linear structure in order to classify the ROI as a negative.
0.00001).

The second set of data was tested using a coarse-to-fine
HPNN trained on the first dataset. 150 ROIs taken from a
clinical study and classified as positive by the full UofC CAD

Limear conlext

TABLE I
SENSITIVITY AND SPECIFICITY FOR FINE-TO-COARSE HPNN FOR
MASS DETECTION

system for microcalcification detection (including the SIANN Sensitivity | Specificity
neural network) were used to test the HPNN. Though the UofC 100% 51%
CAD system classified all 150 ROIs as positive, only 47 were 95%, 57%
in fact positive while 103 were negatives—this dataset was 90% 67%
overpopulated with FPs. We applied the HPNN trained on the 30% 79%

entire previous data set to this new set of ROIs. The HPNN was
able to reclassify 47/103 negatives as negative, without loss in o ) ]
sensitivity, i.e., no false negatives were introduced. ologists oftgn distinguish malignant from benign masses based
On examining the negative examples rejected by & the detailed shape of the mass border and the presence of
coarse-to-fine HPNN, we found that many of these ROIs cofiPicules along the border [28]. We evaluate the fine-to-coarse
tained linear, high-contrast structure that would otherwise B¥’NN, Fig. 2(B), for its ability to integrate high-resolution in-
FPs for the SIANN network (see Fig. 8). One possible reasé®rmation within the context of coarse-scale mass structure.
for this is that the coarse-to-fine HPNN also learns context for The experimental paradigm is similar to the microcalcifica-
the FPs. SIANN presumably interprets the “peaks” on the linet@n experiments in that we apply the HPNN as a postprocessor
structure as calcifications. However, because the coarse-to-finghe UofC CAD system for mass detection. The data in our
HPNN also integrates information from low resolution it castudy consists of 72 positive and 100 negative ROIs. The nega-
associate these “peaks” with linear structure at low-resolutitime ROIls are FPs of the earlier stages of the CAD system. These
and, thus, determine that these peaks are not microcalcifie 256x 256 pixels and are sampled at 2061 resolution.
cations. This is an interesting difference from our earlier Results for the fine-to-coarse HPNN system are shown in
results, in which the networks appeared to learn contextuglble 1. The A. value on the test set was 0.85. These results

relationships associated with positive examples—ductal agbow a 51% reduction in FP rate of the UofC mass-detection
vascular anatomy. Thus, it appears that the HPNN can explgjistem without loss in sensitivity.
contextual relationships to both detect TPs and eliminate FPs.

F. Results in Clinical Evaluation

As afinal test of the utility of the HPNN architecture a clin-
The next set of experiments applied a fine-to-coarse HPNb&l reader study was conducted to evaluate the performance
architecture to detect masses in digitized mammograms. Raufithe combined HPNN/UofC system for microcalcification

E. Results on a Research Data Base: Mass Detection
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TABLE I
SUMMARY OF READER STUDY PROTOCOL

899 cases (4 standard views, original mammograms)
e 501 normals (including 10 atypia)
e 199 benign
e 199 malignant (58 DCIS+141 invasive) (22%)

two reading conditions:
e filmonly
o film + computer results
« films were mounted on alternators
e computer results were shown on CRT monitors

standard observer study protocol
e fraining session randomized reading order, efc.

10 readers:

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 3, MARCH 2002

are better than general radiologists at negating or ignoring these
FPs. Additional analysis is required to understand the difference
between the two groups. However, the overall results show that
the CAD system, which included the HPNN, can potentially im-
prove performance of mammographic screening, in this case for
more experienced radiologists.

IV. DISCUSSION

In this paper, we have demonstrated coarse-to-fine and
fine-to-coarse HPNN architectures that learn contextual re-
lationships for detecting microcalcifications and masses in
digital/digitized mammograms. Though the architectures are
novel, they bear some resemblance to previous network ar-

o 5 specialists (>50% breast imaging)

o 5 general radiologists (MQSA certified) chitectures. For example, the fine-to-coarse HPNN is sim-

ilar to the convolution network proposed by Le Cun, [42]
(which has been applied to mammographic image analysis
by [14] and [43]), however, with a few notable differences.
The fine-to-coarse HPNN receives as inputs preset features
extracted from the image (in this case radial and tangential
gradients) at each resolution, compared to the convolution net-
work, whose inputs are the original pixel values at the highest
resolution. Secondly, in the fine-to-coarse HPNN, the inputs

TABLE IV
FP RaTES OF CAD SYSTEM

CAD Program Number false
positives  per
image (at fixed
sensitivity)

Mass detection _ 1.6 to a hidden unit at a particular position are the pixel values at
Microcale detection (no HPNN) 1.04 that position in each of the feature images, one pixel value per
Microcalc detection (with HPNN) 0.88

feature image. Thus, the HPNN's hidden units do not learn
linear filters, except as linear combinations of the filters used
to form the features. Finally, the fine-to-coarse HPNN is also
detectior. A coarse-to-fine HPNN was integrated as the lagtained using the UOP error function, which is not used in the
stage of processing in the UofC CAD system for microcalcificonvolution network.
cation. The HPNN was trained on a set of TPs and FPs generatetihe two architectures we have described can be combined
by the UofC system. After training the parameters of the HPNfNto a more general architecture that integrates information
were fixed. Integration of the HPNN with the UofC system wagoth coarse-to-fine and fine-to-coarse. This bi-directional inte-
done via a simple UNIX script for exchanging files containingration, shown in the architecture of Fig. 9, is attractive in that
the ROI data. Additional details of the reader Study have beﬁﬂ)st Objects can be considered to have a “natural Sca|e”_typ_
described previously [40]. In this paper, we summarize the rigally some measure of their size. Classification of the object
sults. might be improved through integration of finer and coarser
Table 11l outlines the protocol. Approximately 900 retroresolution information, relative to this natural scale. Since size
spective mammographic cases were collected and read by ¢8R vary within a class of objects, it may be worthwhile to
readers. Five readers were considered experts in mammograpiude outputs at more than one level of the HPNN. In this
(spent over 50% of their time reading mammograms) and thgse, the UOP error (5) needs to be modified to include uncer-
other five were genel’al radi0|OgiStS who were MQSA Certifie&inty over Sca|e, but this is eas“y accompnshed by Changing
[41]. Films were read in two conditions; film only (unaided) okhe product to range over positions at all output levels. We
film + computer results (aided). can further generalize the architecture by adding connections
Results of the computer output alone are shown in Table lijetween the fine-to-coarse and coarse-to-fine paths, but one
Note that on this new dataset the HPNN continues to reduce fi@st be careful to avoid loops when deciding where these
FP rate of the microcalcification CAD system. connections should be added. We are currently investigating

The clinical utility of the complete system, which includeshe application of this generalized HPNN architecture to mass
the CAD systems for mass detection and the HPNN-enhang&§ection.

System for microcalcification detection, is shown in Table V, Most of our results were reported relative to the UofC

comparing reader performance with and without the compuigaAD mammographic systems, since they are considered to
aid. Expert readers showed a statistically significant improvge well characterized and state-of-the-art. UofC is continuing
ment when using the CAD system, however, the improvemegt improve upon their systems and our current results are
was not statistically significant for the general radiologists. Onghly meant as a comparison to a given standard at a given
possible reason is that FPs continue to be an issue, since exggsfgt in time. An issue in CAD research is the need for

the development of appropriate benchmarks for comparing

8In this clinical evaluation, only the coarse-to-fine HPNN for microcalcifica™" | - .
different algorithms. Several datasets are being developed

tion was integrated with the UofC CAD and evaluated.
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TABLE V
READER STUDY RESULTS USING CAD SYSTEM
Reader Specialists General Radiologists
Unaided Aided Unaided Aided
1 0.851 0.878 0.813 0.824
2 0.891 0.911 0.862 0.876
3 0.878 0.898 0.881 0.888
4 0911 0.914 0.876 0.863
5 0.884 0.903 0.899 0.892
avg 0.883 0.901 0.866 0.869
p value 0.01 0.19
] the UofC CAD system for microcalcification detection, with the

i
Lj>—> P(T)

complete system having been tested in a reader study. In the
case of mass detection, a fine-to-coarse HPNN architecture was
used to exploit information from fine resolution detail in order to
eliminate FPs. One of the unique aspects of our approach which
differentiates it from those that were previously discussed, is
that it provides a single, unified framework for detection of both
mammographic masses and microcalcifications. In general, we
have found that the HPNN is a useful class of network architec-

P(T)

N b

(1]
Fig. 9. Generalized HPNN architecture. Integration is bi-directional with
output networks at the natural scale of the object. The natural scale may be
known a priori or it can be searched for by optimizing over several output
networks (e.g., search for the best one over the two output networks showr{2]
above).

[3]

which might eventually support such comparisons though they
have yet to be widely acceptéd. [4]

V. CONCLUSION 5]

We have presented the application of hierarchical pyramid
neural network architectures to two problems in CAD; the de- [6]
tection of microcalcifications in mammograms and the direct
detection of masses in mammograms. In the case of micro-
calcifications, the coarse-to-fine HPNN architecture success-
fully discovered large-scale context information that improves [7]
the system’s performance in detecting small objects. We have
demonstrated the performance of the HPNN framework by con-
sidering its utility as a postprocessor for a state-of-the-art CAD[8]
system. In addition, clinical utility has been demonstrated for

a coarse-to-fine HPNN, which has been directly integrated with
[9]
6Databases include the Digital Database for Screening Mammography
(DDSM), Mammographic Image Analysis Society (MIAS) database, and
Lawrence Livermore National Laboratories (LLNL)/University of Cali-
fornia at San Francisco (UCSF) database. Information on these and othgt0O]
databases can be obtained from The Digital Mammography Home Page
http://www.rose.brandeis.edu/users/mammo/digital.html.

ture for exploiting context and integrating information at mul-
tiple scales for a variety of image analysis problems.
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