
Introduction

It has been frequently observed that in many tables of physical constants and sta-

tistical data, the leading significant digit is not uniformly distributed among the digits

{1, 2, . . . , 9} as might be expected; rather the lower digits appear much more frequently

than the higher ones. Perhaps even more surprising, an exact distribution for this non-

uniformity of the leading digits has been generally asserted. In 1881 Simon Newcomb [9]

stated that “The law of probability of the occurrence of numbers is such that the mantissae

of their logarithms are equally probable,” and concluded that

(1) Prob (first significant digit = d) = log10(1 + d−1), d = 1, 2, . . . , 9.

(For example, (1) predicts that the leading digit is 1 with probability about .301, and at

the other extreme, is 9 with probability .046.)

Although Newcomb offered no statistical evidence for (1), its rediscovery by the physi-

cist Benford [2] some fifty-seven years later was supported by empirical evidence based on

frequencies of significant digits from twenty different tables including such diverse data as

surface areas of 335 rivers, specific heat of thousands of chemical compounds, and square-

root tables. The union of his tables comes surprisingly close to the frequencies predicted

in (1), and, Newcomb’s earlier paper having been overlooked, those frequencies came to

be known as Benford’s Law, or the First Digit Law. In fact, Benford’s data not only came

surprisingly close, it came suspiciously close to the predicted frequencies; Diaconis and

Freedman [5, p. 363] offer convincing evidence that Benford manipulated the round-off

errors to obtain an even better fit. But even the unmanipulated data seems a remarkably

good fit, and the “law” has become widely accepted.

Classical Explanations

Since Benford, numerous “mathematicians, statisticians, economists, engineers, physi-

cists and amateurs” [11, p. 521] have attempted to explain the probabilities appearing

in (1) based on a variety of hypotheses. The classical explanations include: the usual

number-theoretic (or Cesaro) method for assigning densities to the sets in question; con-

tinuous analogs of the Cesaro method based on integration techniques; various probabilistic
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urn-schemes; demonstrations based on assumptions of continuity and scale-invariance (see

below); and statistical descriptive arguments. For an excellent review of these ideas, the

reader is referred to Raimi [11]. (A more recent explanation of Schatte [12] gives Benford’s

Law as a corollary to an unproved ([12, p. 452]) “hypothesis that after a sufficiently long

computation in floating-point arithmetic, the occurring mantissas have a nearly logarithmic

distribution.”)

All of these previous explanations suffer from two substantial shortcomings. First, the

previous methods for prescribing frequencies for such sets as “first significant digit = 1”

are not unique. Such a set does not have a natural density, unlike the set of even numbers,

say, which has density 1/2 among the integers and density 0 among the real numbers, and

in general there are many ways of assigning a number to the set “first significant digit

= d” which are consistent with natural density. The explanations mentioned above simply

single out particular summation or integration techniques that yield the “correct” Benford

frequencies.

The second shortcoming is that, terminology notwithstanding, the past frequency-

assigning functions leading to (1) are not probabilities, at least not in the classical sense.

The standard mathematical definition of probability is a [0,1]-valued function P on a

domain of sets (called a sigma algebra) closed under complements and countable unions,

which assigns 1 to the whole set and assigns measure
∑∞

n=1 P (An) to the set
⋃∞

n=1 An if

the {An} are disjoint. But the methods above necessarily fail to satisfy these conditions, as

will, for example, any reasonable notion of density on the natural numbers which assigns

density 0 to singletons, for then P (IN) =
∑∞ P({n}) = 0 6= 1. (This is exactly the

same reason for the foundational difficulty in making rigorous sense of “pick an integer

at random”; e.g., see De Finetti [4] pages 86, 98–99). For the integer-based models of

Benford’s Law, this difficulty seems insurmountable, and for the above-mentioned real-

number models either a precise domain for the probability in (1) was not specified by

Newcomb et al., or when specified was simply not the appropriate collection A.

2



The Proper Probability Domain

The first step toward making rigorous sense of the First-Digit Law (1) is to identify an

appropriate domain for the probability. A typical set in the desired collection A of subsets

of IR+ is the set of positive reals whose first significant digit (base 10) is 1, namely,

{D1 = 1} :=
∞⋃

n=−∞
[1, 2) · 10n.

This set (along with its analogs from the second, and general nth-digit laws, also known to

Newcomb and Benford) suggests the following natural domain A for a general significant-

digit law.

Definition. A is the smallest collection of subsets of the positive reals which contains all

sets of the form
∞⋃

n=−∞
(a, b) · 10n, and which is closed under complements and countable

unions.

The following properties of A are easy to check:

every non-empty set in A is infinite, with accumulation points at 0 and at +∞;

A is closed under scalar multiplication, i.e., a > 0 and S ∈ A ⇒ aS ∈ A;

A is self-similar, in the sense that if S ∈ A and k ∈ ZZ then 10kS = S.

For each i = 1, 2, . . ., let Di : IR+ → {0, 1, . . . , 9} be the i−th significant digit function,

for example, D1(π) = 3, D2(π) = 1 = D2(10π). It may easily be shown [8] that

D−1
i ({d}) ∈ A for all i and d,

and in fact, A is the smallest such collection (closed under complements and countable

unions) for which this is true. (In measure-theoretic terms, A is the sigma-algebra gen-

erated by D1, D2, ...) This shows that A is precisely the correct domain for a general

significant-digit probability law.
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The General Significant-Digit Law

General Significant-Digit Law [8]. For all k ∈ N , all d1 ∈ {1, 2, . . . , 9} and all dj ∈
{0, 1, 2, . . . , 9}, j = 2, . . . , k,

(2) P
( k⋂

i=1

{Di = di}
)

= log10

[
1 +

( k∑
i=1

di · 10k−i
)−1]

.

Observe that this joint significant-digit law (2) includes the First-Digit Law (1) as a special

case, as well as the other marginal significant-digit laws.

Example. P ((D1, D2, D3) = (3, 1, 4)) = log10(1 + 1
314 )=̃.0014.

A perhaps surprising corollary of (2) is that

the significant digits are dependent

and not independent as one might expect. For example, from (2) it follows that the (uncon-

ditional) probability that the second digit is 2 is =̃.109, but the (conditional) probability

the second digit is 2, given that the first digit is 1, is =̃.115. Similarly, the hundredth

significant-digit is also dependent on the first few significant digits, although the depen-

dency decreases as distance between the digits increases. It also follows easily from (2)

that the distribution of the ith significant digit approaches the uniform distribution (where

each digit {0, 1, . . . , 9} occurs with frequency 1
10) exponentially fast as i → ∞.

What simple hypotheses lead to the General Significant-Digit Law (2)?

Scale and Base-Invariance

One set of hypotheses which has been popular in the past is the notion of scale-

invariance, which corresponds to the following idea. If the first digits obey some fixed

universal distributional law, then this law should be independent of the units chosen (e.g.,

English or metric systems). However, as Knuth pointed out (cf. Raimi [11]), there is no

scale-invariant probability measure on the Borel subsets of IR+, since then the measure of

the set (0, 1) must be the same as the measure of every interval (0, b), which by countable

additivity must be 0.
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The problem is simply that the Borel sets (the smallest sigma-algebra containing all

open intervals) are not the appropriate domain for a significant-digit probability law; using

A instead resolves this problem.

On A, it is easily shown [8] (using the fact that the orbit of every point under irrational

rotation on the circle is dense) that if P is scale-invariant, i.e., if P (bS) = P (S) for all

b > 0 and all S ∈ A, then P satisfies (2). That is, on the correct domain A,

scale-invariance implies Benford’s Law.

One possible drawback to the scale-invariance hypothesis is the special role played by

the constant 1. In most tables of physical constants, the constant 1 simply does not appear,

since the underlying law (say, in f = ma) does not necessitate definition of a constant (as

opposed to e = mC2). If a “complete” table of physical constants included the constant

1, perhaps that special constant would occur with strictly positive frequency. But this

would preclude scale-invariance, since then 0 < P ({1}) = P ({2}) = . . ., contradicting the

additivity of a probability.

As an alternative hypothesis, suppose that any universal significant-digit law were

base-invariant; i.e., carried over to bases other than 10. (As pointed out in [11], all the

classical arguments supporting (1) and (2) carry over mutatis mutandis to other bases such

as 2, or 7 or 100.)

To motivate a formal definition of base-invariance, consider the set of positive numbers

S with first significant digit (base 10) less than 5. Using the decimal notation D1 as above,

and letting D
(100)
1 denote the first significant digit base 100, it is easily seen that

S = {1 ≤ D1 < 5} = {1 ≤ D
(100)
1 < 5} ∪ {10 ≤ D

(100)
1 < 50},

which says that graphically (as a subset of [1, b)), the same set S is

[ ) )
1 ba b

if b = 10

and is [ ) [ ) )
1 ba/2 b1/2 b(1+a)/2 b

if b = 100,
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(where a = log10 5). Hence if a probability P on A is “base-invariant,” the measures of

these two S-representing subsets of [1, b) should be the same, i.e.,

P ([1, ba)) = P ([1, b
a
2 )) + P ([b

1
2 , b

1+a
2 )),

and similarly for higher power bases bn. This suggests the following definition.

Definition. [8] P is base-invariant on A if

P ([1, 10a]) =
n−1∑
k=0

P [10
k
n , 10

k+a
n ) for all n ∈ IN and all a ∈ (0, 1).

Letting PL be the logarithmic probability defined in (2) and P0 be the degenerate proba-

bility which assigns mass 1 to the constant 1 (or formally, to the set
⋃∞

n=−∞{10n} in A),

it now follows [8] using a somewhat deeper result from ergodic theory concerning invariant

measures on the circle, that

P is base-invariant ⇔ P = qP0 + (1 − q)PL for some q ∈ [0, 1].

Corollaries are:

the logarithmic distribution (2) is the unique continuous base-invariant distribution

and

scale-invariance implies base-invariance.

(Observe that base-invariance does not imply scale-invariance, since P0 is base but not

scale-invariant.) Thus, if there is a universal significant-digit law and it is base-invariant,

then the special constant 1 occurs with possibly positive probability q, and otherwise (with

probability 1 − q) the digits satisfy the logarithmic distribution (2).

Applications

Computer design and analysis of roundoff errors

Hamming [6] has given applications of Benford’s Law to the problem of placing the

decimal (binary) point in the number system of a computer in order to minimize the number
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of normalization shifts after the computation of a product, to the problem of estimation of

the representation error of numbers in base 2 and base 16, and to the problem of roundoff

error propagation. Schatte [12] similarly concludes that the choice of a binary-power base

b = 2r can be guided by the hypothesis of logarithmic distribution (cf. Benford’s Law) of

mantissa errors; for example, he argues that base b = 23 is optimal with respect to storage

use.

Statistical Tests for “Naturalness”

Varian [13] has proposed using Benford’s Law as a test of “reasonableness” for data,

by checking forecasts of a mathematical model as to goodness of fit to Benford’s Law. He

used this idea to check specific models for economic production and for forecasts of acres

of land in various use, and Becker [1] used Benford’s Law to check lists of failure rates

to detect systematic errors. The underlying idea in these applications is that if “real life

data” obeys Benford’s Law, then so should good mathematical models.

Making Money in Numbers Games

In the Massachussets Numbers Game [cf. 3], players first bet on a four-digit number

of their choice, next a single four-digit number is generated randomly by an umpire, and

then all players with the winning number share the (tax-reduced) pot equally. In such a

situation it is obviously advantageous to identify numbers which few people choose, since

all numbers are equally likely to be winners and the expected payoff for an unpopular

number is thus higher than that for a number which many people have chosen. Now

if people choose numbers from their experience, and if the numbers in their experience

obey Benford’s Law, then it makes sense to pick numbers inversely to Benford’s Law,

i.e., numbers starting with 9 or 8. Of Chernoff’s [3] 33 statistically-obtained numbers in

his “first system” (numbers with predicted normalized payoffs exceeding 1.0) for playing

the Massachussets Numbers Game, 16 had first significant digit 8 or 9, and only 1 has

first significant digit 1 or 2. (Additional evidence that numbers “randomly” generated by

people tend to start with low digits is found in Hill [7].) Since Chernoff also concluded that

the public learns quickly, this suggests using inverse-Benford as an initial strategy when a

new numbers game is initiated, and then quitting play soon thereafter.
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Outfoxing the Internal Revenue Service

In his Ph.D. thesis, Nigrini [10] has suggested that the IRS use Benford’s Law as a test

for detecting falsification of data by a taxpayer at the time of filing his return. Nigrini’s

hypothesis is that true data gives a rough approximation to Benford’s Law, whereas a

Benford-ignorant cheater tends to concoct numbers according to some other distribution,

say uniform via a standard random number generator, or more likely, a subconscious per-

sonal favorite generated mentally. Nigrini proposes that the IRS simply check for goodness-

of-fit against Benford, and then audit the worst fits. This suggests that a “creative” and

Benford-wise taxpayer should modify (or generate) his fabricated data according to a

Benford-like distribution.

Acknowlegement

The author is grateful to Professors Bob Foley and Ron Fox for several useful sugges-

tions.

References

1. Becker, P. (1982) Patterns in listings of failure-rate and MTTF values and listings of
other data. IEEE Transactions on Reliability, R-31, 132-134.

2. Benford, F. (1938) The law of anomalous numbers. Proc. Amer. Phil. Soc. 78, 551-72.

3. Chernoff, H. (1981) How to beat the Massachusetts Numbers Game. Math. Intel. 3,
166-172.

4. De Finetti, B. (1972) Probability, Induction and Statistics. Wiley, New York.

5. Diaconis, P. and Freedman, D (1979) On rounding percentages. J. Amer. Stat. Assoc.,
359-64.

6. Hamming, R. (1976) On the distribution of numbers. Bell Syst. Tech. J. 49, 1609-25.

7. Hill, T. (1988) Random-number guessing and the first digit phenomenon. Psychological
Reports 62, 967-71.

8. Hill, T. (1993) Base-invariance implies Benford’s Law, to appear in Proc. Amer. Math.
Soc.

8



9. Newcomb, S. (1881) Note on the frequency of use of the different digits in natural
numbers. Amer. J. Math. 4, 39-40.

10. Nigrini, M. (1992) The detection of income evasion through an analysis of digital
distributions. Ph.D. Thesis, Department of Accounting, University of Cincinnati.

11. Raimi, R. (1976) The first digit problem. Amer. Math. Monthly 83, 521-38.

12. Schatte, P. (1988) On mantissa distributions in computing and Benford’s Law. J. Inf.
Process. Cybern. EIK 24, 443-455.

13. Varian, H. (1972) Benford’s Law. Amer. Statistician 26, 65-66.

9



The Significant-Digit Phenomenon1

by
Theodore P. Hill

School of Mathematics
Georgia Institute of Technology

Atlanta, GA 30332

1 Research partly supported by U.S. National Science Foundation Grant DMS-92-03524,
Israel-U.S. Binational Science Foundation Grant 88-00005, and Dutch National Science
Foundation (NWO) Dossier B-61-281.


