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Selected topics in the history of the two-dimensional
biharmonic problem

VV Meleshko
Department of Theoretical and Applied Mechanics, Kiev National Taras Shevchenko
University, 01033 Kiev, Ukraine; meleshko@univ.kiev.ua

This review article gives a historical overview of some topics related to the classical 2D bihar-
monic problem. This problem arises in many physical studies concerning bending of clamped
thin elastic isotropic plates, equilibrium of an elastic body under conditions of plane strain or
plane stress, or creeping flow of a viscous incompressible fluid. The object of this paper is
both to elucidate some interesting points related to the history of the problem and to give an
overview of some analytical approaches to its solution. This review article contains 758
references.@DOI: 10.1115/1.1521166#
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‘‘ Ceux qui, les premiers, ont signale´ ces nouveaux instru
ments, n’existeront plus et seront comple´tement oublie´s; à
moins que quelque ge´omètre archéologue ne ressuscite leur
noms. Eh! qu’importe, d’ailleurs, si la science a marche´!’’
~G Lamé@1#!.

1 INTRODUCTION

There are a great many physical problems concerning be
ing of clamped thin elastic isotropic plates, equilibrium of
elastic body under conditions of plane strain or plane stre
or creeping flow of a very viscous incompressible flu
which can be formulated in terms of the two-dimension
~2D! biharmonic equation for one scalar function with pr
scribed values of the function and its normal derivative at
boundary. Using the words of Jeffery@2# ~p 265!, all these
problems ‘‘seem to be a branch of mathematical physics
which knowledge comes by the patient accumulation of s
cial solutions rather than by the establishment of great g
eral propositions.’’ Nevertherless, the biharmonic proble
was and still is challenging in various divisions of the line
theory of elasticity, low-Reynolds-number hydrodynamic
structural engineering, and mathematics.

In structural engineering, for example, a thin plate rivet
to a rigid frame along its edge and subjected to normal p
sure is one of the most popular elements. The question
how thick the plate has to be in order to withstand the
plied pressure, and where the maximum stresses will be,
of vital interest when designing any engineering structu
Already Barre de Saint-Venant in his extensive comments
the French translation of Clebsch@3# pointed out on p 777:
ASME Reprint No AMR341 $36.00
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C’est un proble`me sur l’importance duquel au
point de vue des applications il convient
d’appeler l’attention des ge´omètres-physiciens,
ainsi que sur la me´thode au moyen de laquelle on
réussira peut-eˆtre à trouver la solution pour
d’autres formes que la circulaire.

In the beginning of his talk read before the Spring Me
ing of the 43rd Session of the Institution of Naval Architec
March 19, 1902, Russian naval architect Lieutenant Ivan
Bubnov~or Boobnoff, according to the French spelling of h
name in the publication! noticed@4# ~p 15!:

I do not know of any question in the theory of
elasticity which should interest the naval archi-
tect to the same extent as that of the flexion of
thin plating. Indeed, the whole ship from keel to
upper deck, consists of plates, which are to fulfil
the most varied purposes and to withstand all
kinds of stresses. Owing to this, naval architects
cannot be satisfied with approximate and rough
practical formulas, which may be regarded as
sufficient by engineers of other branches of en-
gineering profession, and they are bound to ex-
amine and solve this question in detail.

On the other hand, the biharmonic problem provide
number of interesting questions in mathematics as to
solvability of certain functional equations in the compl
plane, convergence of series of the non-orthogonal syst
of complex eigenfunctions, and the uniqueness of the s
tion for specific domains with corner points under gene
boundary conditions imposed on the function and its norm
derivative. Besides, it represents an excellent testing prob
for checking already existing and developing new numer
methods.

Typical examples of the engineering, mathematical, a
historical approaches to the various biharmonic proble
were provided by Biezeno@5# in the general opening lectur
read on April 23, 1924 at the First International Congress
Applied Mechanics in Delft, in the Presidential addresses
Love @6# and Dixon@7# to the London Mathematical Society
and in several talks@4,8–13# delivered at the sessions of th
Institution of Naval Architects.

The historical aspect of the biharmonic problem also p
sents an interest. Already Maxwell deplored the growth o
‘‘narrow professional spirit’’ amongst scientists, and su
gested that it was the duty of scientists to preserve t
acquaintance with literary and historical studies. Thus,
‘‘undue specialization in Science’’ with which we are ofte
charged today is no new thing. In addition to fascinati
historical introductions in the textbooks by Love@14–18#,
Lorenz@19#, and Westergaard@20#, there also exist excellen
books by Todhunter and Pearson@21,22# and Timoshenko
@23#1 specially devoted to the history of theory of elastic
and strength of materials that contain a lot of interest
results on the 2D biharmonic problem.

Numerious data of the solution of the biharmonic proble

1Note the number of reviews of this book in various journals.
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are widely scattered over the literature on the theory of e
ticity, theory of plates, and creeping flow of a viscous flu
The literature of the subject is far too big for an adequ
treatment within a reasonably finite number of pages. T
task is partially addressed in the widely known treatises
courses on theory of elasticity and theory of plates. Even
incomplete list of monographs and textbooks on theory
elasticity and theory of plates published in various countr
and in various languages contains several dozen titles.
can mention~in alphabetical order! widely known treatises
and courses by Barber@24#, Biezeno and Grammel@25#, Cia-
rlet @26#, Coker and Filon@27#, Föppl and Fo¨ppl @28#, Frocht
@29#, Girkmann @30#, Gould @31#, Green and Zerna@32#,
Hahn @33#, Happel and Brenner@34#, Love @14–18#2, Lur’e
@35#, Milne-Thomson@36#, Muskhelishvili @37–39#, Rich-
ards @40#, Sokolnikoff @41#, Southwell @42#, Timoshenko
@43,44#, Timoshenko and Goodier@45,46#, Timoshenko and
Woinowsky-Krieger@47#, Villaggio @48#, Wang @49#, along
with less known~or, at least, less available at present tim!
textbooks and monographs by Agarev@50#, Babuška, Rekto-
rys and Vyčichlo @51#, Belluzzi @52#, Boresi and Chong@53#,
Bricas @54#, Burgatti @55#, Butty @56,57#, Filonenko-
Borodich@58–61#, Galerkin@62#, Godfrey@63#, Grinchenko
@64#, l’Hermite @65#, Hlitčijev @66#, Huber @67#, Kolosov
@68#, Leibenzon@69,70#, Lecornu @71#, Little @72#, Lorenz
@19#, Mansfield@73#, Marcolongo@74#, Morozov@75#, Nádai
@76#, Novozhilov @77,78#, Panc@79#, Papkovich@80#, Savin
@81–84#, Segal’@85#, Solomon@86#, Stiglat and Wippel@87#,
Szilard @88#, Teodorescu@89,90#, Timoshenko @91–93#,
Uflyand @94#, and Westergaard@20#. All these books provide
extensive references and surveys of many other articles
books related to the 2D biharmonic problem in vario
domains.

There exist review articles@95–122# written in the course
of the twentieth century. Further, papers written in the thirt
of the last century were reviewed in full detail inZentralblatt
für Mechanik published from 1934–1941.~It should be
noted that the editorial board of several first volumes w
really international since it consisted of A Betz~Göttingen!,
CB Biezeno~Delft!, JM Burgers~Delft!, R Grammel~Stut-
tgart!, E Hahn~Nancy!, Th von Kármán ~Aachen, Pasadena!,
T Levi-Civita ~Rome!, EL Nicolai ~Leningrad!, L Prandtl
~Göttingen!, GI Taylor ~Cambridge!, and SP Timoshenko
~Ann Arbor!. The later volumes, due to the political issues
that time, were edited only by German editors W Flu¨gge and
O Neugebauer from Go¨ttingen.! Later publications in this
area are extensively reviewed inApplied Mechanics Review
published since 1948~with SP Timoshenko, Th von Ka´rmán,
and LH Donnell as founders and the first editors!. Moreover,
some mathematical review journals such asJahrbuch u¨ber
die Fortschritte der Mathematikpublished from 1875–1942
Zentralblatt für Mathematik und ihre Grenzgebiete~pub-
lished since 1931!, and Mathematical Reviews~published

2There was a favorite saying among graduate students and professors in an earl
that ‘‘All you really need is Love;’’ see@31#, p 107.
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since 1940! also contain sections devoted to the 2D bih
monic equation in various mathematical and mechan
problems.

The main goal of the present article is to elucidate so
interesting points in the historical development of the
biharmonic problem. It is rather a discourse on those asp
of the problem with which I myself have had contact ov
recent years. My choice of topics therefore has a very p
sonal bias, for a special attention is paid to the lesser kno
aspects of mutual interaction of the pure mathematical
engineering approaches to solving the problems in sev
typical canonical domains. For many books and pap
which are in an unfamiliar language, eg, Russian, I ha
given the English translation of the title. The title of period
cals, however, remained in the original language~in English
transliteration!. In such cases, whenever possible, I tried
add the references to English or German reviews~however,
full search of the review journals was not my goal!. In addi-
tion, I have given birth and death dates of authors, where
information was available to me.

2 STATEMENT OF THE BIHARMONIC PROBLEM

The classical biharmonic problem, as stated in@123,124#,
consists of finding a continuous functionU, with continuous
partial derivatives of the first four orders, which satisfies
homogeneous biharmonic equation

DDU50 (1)

at every point inside the domainS and has the prescribe
values of the function and its outward normal derivative,

U5 f ~ l !,
]U

]n
5g~ l ! (2)

on its boundaryL. Here and in what followsD denotes the
2D Laplacian operator.

In the classical theory of thin plates, the differential equ
tion describing the deflectionw of the middle surface of an
elastic isotropic flat plate of uniform thicknessh reads as:

DDDw5p (3)

where the constantD5Eh3/12(12n2) is called the flexural
rigidity of the plate~with E and n being Young’s modulus
and Poisson’s@95# ratio, respectively!, p is the load per unit
area of the plate. Two boundary conditions imposed on
function w and its first, second, or third normal derivativ
must also be satisfied. In various engineering structu
~bulkheads of a ship, for example! the edges of the plate ar
firmly clamped, or attached to angle irons which allow
side motions. The deflectionw must vanish at the edge; an
in addition, the tangent plane at every point of the edge m
remain fixed when the plate is bent:

w50,
]w

]n
50 (4)

at the contourL.
In the theory of elasticity, the determination of stresses

an infinite prism with the surface loads being the same al
the generating line of the prism~the state of plane strain! or
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thin plate under thrust in its own plane~the state of plane
stress! reduces to the solution of the 2D biharmonic proble
Under assumptions of plane strain or plane stress in
(x,y)-plane when no body forces are present, the norm
stressesXx , Yy and shear stressXy5Yx inside the domainS
must satisfy the system of two equations of static equilibri

]Xx

]x
1

]Xy

]y
50,

]Xy

]x
1

]Yy

]y
50 (5)

~Traditionally in the theory of elasticity there exist sever
notations for stresses, see Note A in Love@18# and Sommer-
feld @125# ~Section 8!. For a 2D stress field among them ar
• the normal stressesXx , Yy and shear stressXy5Yx , intro-

duced by Kirchhoff@126# and used in the textbooks by,eg,
Love @14–18#, Timoshenko@91#, Muskhelishvili @37–39#,
and Papkovich@80#;

• the normal stressessx , sy and shear stresstxy5tyx5t,
introduced by Fo¨ppl @127# and used by, eg, von Ka´rmán
@128#, Timoshenko@43#, and Timoshenko and Goodie
@45,46#; now they are generally acceptable, especially
technical literature;

• the normal stressesN1 , N2 and shear stressT, introduced
by Lamé@1,129#;

• the normal stressespxx , pyy and shear stresspxy5pyx ,
introduced by Saint-Venant@130# and used by Rankine
@131#.!

A possible solution of system~5! may be expressed in th
following manner:

Xx5
]2x

]y2 , Yy5
]2x

]x2 , Xy52
]2x

]x]y
(6)

by means of single auxiliary functionx(x,y), called the
~Airy ! stress function. The governing equation for definingx
must represent the condition of the compatibility of deform
tions in the elastic body in accordance with Hooke’s law, a
it is written as the biharmonic equation

DDx50 (7)

If the force (Xldl,Yldl) acts on an elementdl of the
boundary contourL, then the boundary conditions for th
function x can be written as

d

dl S ]x

]y D5Xl ,
d

dl S ]x

]x D52Yl (8)

corresponding to the system of normal and shear forces
plied at the boundaryL which maintain the body in equilib-
rium.

Filon @132#, in his memoir received by the Royal Socie
on June 12, 1902, introduced the notion of what was sub
quently called by Love@16,18# ~Section 94! the generalized
plane stressof a thin elastic sheet. This considers the me
of the displacement and stress components through the th
ness of the sheet; see also@133#. For these mean componen
the stress equations are of the same form as the equation
2D strain or stress and, consequently, the relations~6! and~7!
hold well.
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Two-dimensional creeping flow of a viscous incompre
ible fluid can also be described in terms of the biharmo
problem. If the motion is assumed to be so slow that
inertial terms involving the squares of the velocities may
omitted compared with the viscous terms, the stream fu
tion c satisfies the 2D biharmonic equation

DDc50 (9)

This type of flow is also called the low-Reynolds-numb
flow @34# or slow viscous flow@134#. It is also named the
Stokes flow after the famous Stokes’@135# memoir devoted
to estimation of the frictional damping of the motion of
spherical pendulum blob due to air resistance.

The velocity componentsu andv in the Cartesian (x,y)
coordinates are expressed as

u5
]c

]y
, v52

]c

]x
(10)

If a flow in a cavityS is produced by applying a tangenti
velocity Ut( l ) along its boundary contourL, then the bound-
ary conditions for the stream function are:

c50,
]c

]n
5Ut~ l ! (11)

The biharmonic equations express, in the most gen
and most concise manner, the necessary relations of num
cal analysis to a very extensive class of mechanical phen
ena. It remains now to discover the proper treatment of
these problems in order to derive their complete soluti
and to consider their applications.

Comparing Eqs.~3!, ~7!, and ~9! one may conclude tha
three independent mechanical phenomena are found t
expressible in an identical mathematical form: the homo
neous or inhomogeneous 2D biharmonic equation with n
zero or zero boundary conditions for the functions the
selves and their first normal derivatives. This analogy w
pointed out a long time ago and since then it has been u
widely. The stream functionc and the Airy stress functionx
as functions of two variables define surfaces, certain g
metrical properties of which are a measure of quantities
interest in the particular mechanical problem. For exam
the component slopes of the stream-function surface are
portional to component velocities, while the curvatures of
Airy surface give the elastic stresses. The stream and A
functions define mathematical surfaces, whereas the de
tion of a clamped plate presents a real physical surfa
which may be studied quantitatively.

The analogy between the slow 2D motion of incompre
ible viscous fluid between rigid boundaries and transve
flexure of an elastic plate clamped along the same bounda
was first pointed out by Lord Rayleigh@136# and mentioned
by Sommerfeld@137# and in the classical textbook of Lam
@138#.

Klein and Wieghardt@139# pointed out the analogy be
tween the deflection of a clamped plate and the 2D A
function in following words:
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Um die Spannungsverteilung zu finden, welche
in einer einfach zusammenha¨ngenden, homoge-
nen elastisch-isotropen Platte durch ein am
Rande angreifendes Gleichgewichtssystem von
Kräften erzeugt wird, konstruiere man zuna¨chst
diejenige, bis auf eine beliebig hinzuzufu¨gende
Ebene vo¨llig bestimmte abwickelbare Fla¨che,
welche Spannungsfla¨che der durch das Kraftsys-
tem definierten Streifenfolge ist, und sodann die-
jenige Fläche, welche sich u¨ber dem Plattenrand
überall ohne Knick an diese abwickelbare Fla¨che
anschliesst und u¨ber dem Inneren der Platte u¨ber-
all die Differentialgleichung¹¹z50 befriedigt.
Ist z5F(x,y) diese Fla¨che, so sind die gesuchten
Spannungen selbst durch die Gleichungen~6!
gegeben.

Wieghardt3 was the first who used@141# the analogy be-
tween the deflection of a clamped plate and the 2D A
function to study experimentally the distribution of stress
in some elastic structures.~This study had already been re
ported @142# at the AachenBezirksverein Deutscher Ing
enieureon May 1905.!

Since these pioneering works, these analogies were u
in many further studies@143–154#. For example, Southwel
@153# used a problem in the bending of plates to reso
Stokes’s paradox in fluid motion, while Richards@154# pre-
sented interesting tables and figures of correspondence
tween analogous quantities for flexure and extension o
plate and fluid flow for several typical geometrical regio
including stress concentration problems.

2.1 Derivation of biharmonic equation
in theory of thin plates

Equation~3! has been known since 1811~before establishing
the general laws of the theory of elasticity! and its derivation
was connected with the names of the French scien
Lagrange ~1736–1813!, Sophie Germain ~1776–1831!,
Navier ~1785–1836!, and Poisson~1781–1840!. In 1808 the
FrenchInstitut ~Academy of Sciences! proposed as a subjec
for a prize:

De donner la the´orie mathe´matique des vibration
des surfaces e´lastiques, et de la comparer a`
l’expérience.

The prize~of a medal of one kilogram of gold! was offered
by the Emperor Napoleon who, being deeply impressed
Chladni’s experiments on sand figures on a vibrating pla
had added 6000 francs to the 3000 francs of the stand
award, see Chladni@155#. In fact, the subject was propose
three times with dates for receiving the essays of candid
by October 1, 1811, 1813, and 1815.

Most mathematicians did not attempt to solve the pro
lem, because Lagrange had said that the mathematical m
ods available were inadequate to solve it. Sophie Germ
however, spent a lot of time attempting to derive a theory

3Trefftz @140# published a short obituary note for Karl Wieghardt~1874–1924!, who
was a student of Felix Klein, and after his dissertation in Go¨ttingen in 1903, worked as
professor at various technical schools in Germany.
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elasticity, competing and collaborating with some of t
most eminent mathematicians and physicists, namely, Na
and Poisson. Germain was the only entrant in the contes
1811, but her work did not win the award. She had not
rived her hypothesis from principles of physics, nor cou
she have done so at the time because she had not had tra
in analysis and the calculus of variations. In her first ess
the right hand side of Eq.~3! contains the erroneous term
]6w/]x4]y2 1 ]6w/]x2]y4. Lagrange in 1811, who was on
of the judges in the contest, corrected the errors in a refer
note ~published posthumously@156#! and came up with an
equation that he believed might describe Chladni’s patte
Only at the third attempt did Germain gain the prize~she did
not attend the award ceremony, however!, and later on the
winning essay was published@157#; see also@158#. ~Consid-
ering the contemporary state of knowledge in elasticity a
differential geometry Truesdell@159# came to rather negativ
conclusions with regard to Germain’s contribution to t
theory of elasticity.!

The fascinating story of the derivation of Eq.~3!, full of
controversies and discussions between Germain, Fou
Navier, and Poisson, is presented in the book@160#, and the
review articles@161–164#, and it was also briefly addresse
in the books@23# ~Section 29!, and@21,165#.

2.2 Airy stress function in 2D elasticity

The reduction of the 2D elastic problems under plane st
or plane stress conditions to the statement of the biharm
problem is usually associated with the name of the Astro
mer Royal George Biddel Airy~1801–1892! who during his
long life occupied positions of Lucasian Professor at Ca
bridge, President of the Royal Society of London, and Pr
dent of the British Association for Advance Sciences. In
paper@166#, which was received by the Royal Society on
November 1862, and read on 11 December 1862, Airy c
sidered a flexure of a finite rectangular beam as a 2D p
lem in the theory of elasticity. Because of the prevaili
tradition of the Royal Society at that time, the extended
stract of the paper was published separately@167#. In fact,
the results were reported before as a talk@168# at the 32nd
meeting of the British Association for Advancement of S
ences held at Cambridge in October 1862.

The reason why the Astronomer Royal~Airy occupied
this position from 1835 until 1881!! and well-known scholar
in mathematics and astronomy~he improved the orbita
theory of Venus and the Moon, made a mathematical st
of the rainbow and computed the density of the Earth
swinging a pendulum at the top and bottom of a deep min!,
and fluid dynamics~the theory of waves and tides! consid-
ered elastic problems was partially explained by Acade
cian Krylov in the preface to the first Russian edition
Muskhelishvili @37#. In the English translation@39# ~p
XVIII !, it reads:

One might usefully remember that the stress
function itself was introduced into the theory of
elasticity by the famous Astronomer Royal Sir
James@sic, in Russian only G.# Biddel Airy who,
I believe, was director of Greenwich Observatory
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for more than 50 years. At the beginning of the
1860’s, he built for the Observatory a new large
meridian line with a telescope having an 8-inch
object lens. He had to count with the flexure of
the telescope under the weight of the lens and
ocular and of other devices, a fact which had
caused errors up to 2 arc seconds at the Paris
Observatory, errors which are inadmissible in
such accurate observations with significant mea-
surements in decimal seconds.

Airy introduced one functionF and represented the stress
~or ‘‘strains,’’ as he called them! in the beam, as the solutio
of the equilibrium equations

d

dx
pxx1

d

dy
pxy50

d

dx
pxy1

d

dy
pyy1g50 (12)

with account of gravity forces, as

pxx5
d2F

dy2 , pyy5
d2F

dx2 2gy, pxy52
d2F

dxdy
(13)

Here, Rankine’s@131# notationspxx , pxy , pyy for the pres-
sure parallel tox, the shearing force and the pressure para
to y, respectively, instead of Airy’s unusual notationsL, M ,
2Q, are used. Next,g represents the gravity force and tot
derivatives (d) instead of now traditional partial~]! ones are
used.

Airy considered a few practically important cases: a be
clamped by one end, a beam under its own weight suppo
on two piers and unloaded, centrally loaded or eccentric
loaded, a beam fixed at both ends, and a beam fixed at
end and supported at the other. For all these cases, the a
assumed an expression forF containing a sufficient numbe
of terms of powers and products ofx and y. Tables were
given, showing the values of principal stresses at selec
points, and diagrams were added showing the direction
stresses at every point of the beam in each of these cas

The Secretary of the Royal Society George Gabriel Sto
~1819–1903!, then age 43, sent the paper for review to Jam
Clerk Maxwell ~1831–1879!, then age 31, on December 1
1862, and to William JM Rankine~1820–1872!, then age 42,
on December 31, 1863. Rankine raised no objections
Airy’s paper, and in his report, dated January 26, 1863,
served that ‘‘the introduction of that functionF leads to re-
markably clear, simple, and certain methods of solving pr
lems respecting the strains in the interior of beams,’’ a
concluded that the paper is ‘‘theoretically interesting, a
practically useful, in the highest degree, and well worthy
being published in the Transactions.’’

In contrast, Maxwell@169# considered the paper ver
carefully, and he noticed that the 2D equations of equilibriu
~12! can be also satisfied by choosing a more general t
~13! representation:

pxx5
d2F

dy2 1Y~y!, pyy5
d2F

dx2 1X~x!2gy,
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pxy52
d2F

dxdy
(14)

Next, Maxwell considered two cases: 1! a very thin
lamina free from the pressure along thez-axis, 2! a very thin
plank unable to expand in thez direction, ~plane stress and
strain, respectively, in modern terminology!. For both of
them, by applying the laws of elasticity connecting displa
ments and stresses, Maxwell obtained the additional equa

d

dy E pxxdx22pxy1
d

dx E pyydy2ghx50 (15)

whereh52n or h51/(12h) for the first and second case
respectively.

Maxwell found that Airy’s solution F5(r 2x)(3sy2

22y3)/2s2 for the case of the beam clamped atx50 does
not satisfy this equation, and he suggested his own exp
sion for the stresspxx . However, Maxwell positively esti-
mated Airy’s approximate solution:

If any one can work out theexactsolutions, he
will have performed a mathematical feat, but I do
not think he will have added anything to our
practical knowledge of the forces in a beam not
near the ends or the points where pressures are
applied. For all such points the formulas ob-
tained in this paper are quite satisfactory and as
far as I know they are new.

~In his covering letter to Stokes, Maxwell@170# was more
cautious: ‘‘I am not enough up in the literature of the subj
to say whether it is quite new. I have not Lame´’s Leçons to
refer to and there may be something of the kind in the Jo
nal de L’École Polytechnique.’’!

At the same time, Maxwell gave the following commen
‘‘The objection which I have to the method of investigatio
is that the conditions arising from the elasticity of the be
are not taken account of at all or even mentioned.’’

In the letter February 22, 1863 to Stokes~who was also
the Editor of thePhilosophical Transactions of the Roy
Society of London!, having been sent Maxwell’s report, Air
responded:

This remark astonishes me. The elasticity and its
law, are the foundations of every one of my ap-
plications of the new theory.̂. . . & In every in-
stance, the value of the function@F# is found
from a process which restsENTIRELY on the
theory of elasticity.̂ . . . & If Professor Maxwell
on further consideration should see reason for
making other remarks, I shall be delighted to see
them in the form of Appendix to the paper, if
approved by the President and Council of the
Royal Society.

Stokes, in his letter of February 26, 1863 to Airy a
swered:

I have not as yet myself read your paper, and
therefore cannot fully enter into the report and
your letter; but unless I greatly mistake I catch
e-
tion
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his @Maxwell’s# meaning—that your investiga-
tion takes account ofsystems of forces onlynot
entering into displacements; that your result is
therefore necessarilyFROM THE VERY PRINCIPLE

OF THE PROCESS, indeterminate.

In the response letter of February 27, 1863, Airy wro
‘‘Pray send my letter for Prof Maxwell’s reading, if you
think there is nothing in it which he can take the slighte
umbrage.’’ In his reply dated March 18, Stokes mention
that ‘‘I have not yet written to Prof Maxwell about you
paper, because there was no hurry about it.’’

Later Stokes sent these letters to Maxwell who respon
on June 9, 1863 in length@171#:

Dear Stokes
I have received your letter and that of the As-
tronomer Royal. Perhaps I ought to have ex-
plained more distinctly what I meant by the con-
ditions arising from elasticity.

There are three separate subjects of investiga-
tions in the theory of Elastic Solids.

1st Theory of Internal Forces or Stresses their
resolution and composition and the conditions of
equilibrium of an element.

2nd Theory of Displacements or Strains their
resolution and composition and the equation of
continuity ~if required!.

3rd Theory of Elasticity or the relations be-
tween systems of stresses and systems of strains
in particular substances.

Airy’s conclusions are all deducible from the
conditions of equilibrium of theForces or
Stressesfor although he has introduced into his
calculation considerations arising from the ob-
served uniformly varying strain and stress be-
tween the top and bottom of the beam~see top of
p 3 of his letter and his paper Art 15!, yet I have
shown that on his own principles these assump-
tions are not required, for the results may be got-
ten from the conditions near the end of my report
namely that the pressure all over the surface is
zero. Now we know that without any theory of
elasticity and any application of elastic principles
which tells us no more than this may in a math-
ematical paper be treated as an episode an illus-
tration or instructive consideration but not a nec-
essary part of the investigation~just as many
mechanical experiments help us to see the truth
of principles which we can establish otherwise!.

What I meant by the conditions arising from
the elasticity of the beam may perhaps be more
accurately described as ‘‘Conditions arising from
the beam having been once an unstrained solid
free from stress.’’

That is, the stresses must be accounted for by
displacements of an elastic solid from a state in
which there were no forces in action.

I think what you and the author intend is that I
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should state the result of the above assumption
instead of that of the paper. The mode of getting
complete solutions I have only partially worked
out. It depends on expanding the applied forces
in Fouriers series the terms are of the form
A sin(nx1b)e6ny. I shall send you the note or ap-
pendix when I can write it I hope before Thurs-
day.

~Airy’s paper had reached revised proofs by June 1863 an
did not contain an appendix by Maxwell.!

Nevertheless, it was none other than Maxwell@172# who
referred to ‘‘important simplification of the theory of th
equilibrium of stress in two dimensions by means of t
stress function’’ and suggested the name ‘‘Airy’s Function
Stress.’’ The governing equation for defining this functionF
Maxwell presented not in form~15!, but in the explicit form
of the biharmonic equation:

DDF50, (16)

which can be obtained from~15! by substitution~13! in the
absence of body forces. This equation represents the co
tion of the compatibility of deformations in the elastic bod
in two dimensions expressed in terms of the stresses.

Later Maxwell@173,174# suggested the geometrical inte
pretation of the stress function:

If a plane sheet is in equilibrium under the action
of internal stress of any kind, then a quantity,
which we shall call Airy’s Function of Stress, can
always be found, which has the following prop-
erties.

At each point of the sheet, let a perpendicular
be erected proportional to the function of stress
at that point, so that the extremities of such per-
pendiculars lie in a certain surface, which we
may call the surface of stress. In the case of a
plane frame the surface of stress is a plane-faced
polyhedron, of which the frame is the projection.
On another plane, parallel to the sheet, let a per-
pendicular be erected of height of unity, and
from the extremity of this perpendicular let a line
be drawn normal to the tangent plane at a point
of the surface of stress, and meeting the plane at
a certain point.

Thus, if points be taken in the plane sheet,
corresponding points may be found by this pro-
cess in the other plane, and if both points are
supposed to move, two corresponding lines will
be drawn, which have the following property:
The resultant of the whole stress exerted by the
part of the sheet on the right hand side of the line
on the left hand side, is represented in direction
and magnitude by the line joining the extremities
of the corresponding line in the other figure. In
the case of a plane frame, the corresponding fig-
ure is the reciprocal diagram described above.

From this property the whole theory of the
distribution of stress in equilibrium in two di-
d it

he
of

ndi-
y

r-

mensions may be deduced.^ . . . & These equa-
tions are especially useful in the cases in which
we wish to determine the stresses in uniform
beams. The distribution of stress in such cases is
determined, as in all other cases, by the elastic
yielding of the material; but if this yielding is
small and the beam uniform, the stress at any
point will be the same, whatever be the actual
value of the elasticity of the substance.

Hence the coefficients of elasticity disappear
from the ultimate value of the stresses.

In this way, I have obtained values for the
stresses in a beam supported in a specific way,
which differ only by small quantities from the
values obtained by Airy, by a method involving
certain assumptions, which were introduced in
order to avoid the consideration of elastic yield-
ing.

Thus, already in 1870 Maxwell anticipated the Le´vy @175#–
Michell @176# theorem on independence of stress in 2D el
ticity upon elastic moduli. However, until his prematu
death in 1879 Maxwell did not publish any more on th
subject.

It seems instructive to consider a reception that the A
stress function had received among early researchers in
eral leading scientific countries of that time. In England,
the fundamental treatise by Todhunter and Pearson@22#
which dealt in detail with even minor contributions in th
theory of elasticity, Airy’s paper was discussed only brie
in Section 666, occupying only a half page! The biharmo
Eq. ~16! was not explicitly mentioned. In contrast, in a rath
popular at the time textbook by Ibbetson@177#, Airy’s stud-
ies were reproduced on 10 pages. But at the last mom
Ibbetson added a short note in small letters

307 bis Important Addition and Correction .
The solutions of the problems suggested in the
last two Articles were given—as has already
been stated—on the authority of a paper by the
late Astronomer Royal, published in a report of
the British Association. I now observe,
however—when the printing of the Articles and
engraving of the Figures is already completed—
that they cannot be accepted as true solutions,
inasmuch as they do not satisfy the general Eq.
~164! of Section 303. It is perhaps as well that
they should be preserved as a warning to the stu-
dent against the insidious and comparatively rare
error of choosing a solution which satisfies com-
pletely all the boundary conditions, without sat-
isfying the fundamental conditions of strain, and
which is therefore of course not a solution at all.

Love in all editions of his famous treatise@14–18# besides
historical introduction chapter mentioned Airy’s name on
once, in connection with the more general Maxwell approa
based upon the 3D stress functions. However, in@16–18#
~Section 144! Love expressed the displacement compone
corresponding to plane strain in terms of Airy’s stress fun
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tion. Filon @132# chose a similar way for considering in th
Cartesian coordinates several benchmark problems for a
finite elastic layer or long rectangle. At the same time, Mic
ell mentioned at the beginning of his important paper@176#
that ‘‘Airy did not consider the differential equation satisfie
by his function,’’ and constructed the representation of
stress function in polar coordinates. Later, Michell@178,179#
used it to study some elementary distribution of stress in
elastic plane and wedge.

In Germany, Venske@180# and Klein and Wieghardt@139#
were the first scientists who attracted attention to the A
stress function, and this approach was widely develope
dissertations of Timpe@181# and Wieghardt@141#. Sommer-
feld @182,183# considered some specific problems for
elastic layer by means of the stress function. Later this s
ject has received sufficient attention in review artic
@95,98,184#.

In Italy at the turn of the ninetienth-twentieth centuri
there was a strong group of mathematicians, Alma
@185,186#, Boggio @187–189#, ~see, also, recollections@190#
written more than half a century later!!, Levi-Cevita
@191,192#, Lauricella @193#, and Volterra@194#, who were
interested mainly in solution of the classical biharmon
problem~1!, ~2! for some canonical domains. These resu
were summarized in@74,196–198#.

In France, Mathieu@123# studied general mathematic
properties of the biharmonic functions, the uniqueness of
solution of the classical biharmonic problem~1!, ~2! for gen-
eral domains, the Green’s function, and, finally, the solut
@199–201# of the basic problem for a rectangular prism
Goursat@202# presented a complex representation of the
lution of Eq. ~1! which finally led to the effective method o
complex variables for solving the biharmonic problem. Le´vy
@175# introduced a system different from~7! for the stress
componentsN1 , N2 , T ~in Lamé’s notations!

]N1

]x
1

]T

]y
50,

]T

]x
1

]N2

]y
50,

]2~N11N2!

]x2 1
]2~N11N2!

]y2 50 (17)

The third equation expresses the continuity of the body un
deformation. Thus the sum of the normal stressesN11N2

represents a harmonic stress function. The whole system~17!
is often called the ‘‘Maurice Le´vy equations’’ for the 2D
elastic problems. It is readily seen by means of substitu
~6! that the third equation in~17! is reduced to~16!. Based
upon this system, Mesnager@203,204# presented the stres
distribution in specific rectangular and wedge geometrie
the form of finite polynomials.

In Russia, Abramov, Kolosov~or Kolossoff, according to
the French spelling of his name in some publications! and
Gersevanov in their dissertations@205–207# used the Airy
stress function to solve various specific problems. A syste
atic usage of the solution of the biharmonic problem in re
angular and polar coordinates was given in the textbook
Timoshenko@91#.
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3 GENERAL METHODS OF SOLUTION
FOR AN ARBITRARY DOMAIN

3.1 General representations of solution
of the biharmonic equation

Searching for more simple representations of the displa
ment vector and the stress tensor from the general Lame´ and
Beltrami-Michell equations of the theory of elasticity has
longstanding fascinating history which is represented
@117,208#. However, one must remember that the main di
culty in solving the biharmonic problem consists of satis
ing the prescribed boundary conditions. According
Golovin @209# ~p 378! a similar opinion had already bee
expressed by Kirchhoff and Riemann; see also Muskhel
vili @39# ~Section 105! for further discussion.

3.1.1 Representations of solutions of the
biharmonic equation in Cartesian coordinates
Joseph Valentin Boussinesq~1842–1929! @210# considered
in detail several forms of the general solution of the bih
monic equation, mainly for the 3D case, but of course,
these results can be easily transformed into the case of
dimensions. The main idea of Boussinesq entailed the us
of simpler harmonic functions~the ‘potentials’ in his termi-
nology! in order to obtain general solutions of the biha
monic equation. First of all, it is obvious that any harmon
function f(x,y) with Df50 automatically satisfies the bi
harmonic equationD Df50. Next, Boussinesq proved tha
if f1 , f2 andc are harmonic functions, then the function
xf1 , yf2 , (x21y2)c are biharmonic. Finally, combining
these types of solutions, he established that the funct
xf11c, yf21c, f11(x21y22a2)]c/]x , f21(x21y2

2a2)]c/]y, with a an arbitrary constant, are biharmon
functions. Boussinesq widely used these combinations
solve the now famous problem of normal loading of an el
tic halfspace~or a halfplane!. Similar representations wer
independently obtained by Almansi@186#; see also@74,211–
213# for further mathematical details.

Biezeno and Grammel@25# presented an extensive colle
tion of these types of biharmonic functions useful for co
sidering the biharmonic problem in some canonical doma
They pointed out that for any analytic functionf (z) with z
5x1 iy, the real functions Ref(x6iy) and Imf(x6iy) are
harmonic. This circumstance considerably simplifies
search for suitable biharmonic functions. An extensive list
of functions which can be used for solution of the biha
monic equation is given in@214,215#.

Papkovich@80# and Biezeno and Grammel@25# simulte-
neously and independently posed an interesting ques
about the number of independent harmonic functions that
needed to represent an arbitrary 2D biharmonic functi
They established thatany biharmonic function can be repre
sented by means oftwo arbitrary independent harmoni
functions in one of the following formsxf11c1 , yf2

1c2 , (x21y2)f31c4 , with f i and c i being harmonic
functions. In fact, the similar question has been addresse
Chaplygin already in 1904, see@216#.

Love @14# see, also,@18#, ~Section 144!, was the first au-
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thor who addessed an important question of determinatio
the components of displacementu and v via a biharmonic
stress functionx. On the other hand, Papkovich@80,217#
established the relation between the biharmonic Airy str
functionx and harmonic functionsf0 , f1 , f2 in his famous
general solution for the displacement componentsu andv.

3.1.2 Representations of solutions
of the biharmonic equation in polar coordinates
Although Clebsch@3,218# and Venske@180# constructed so-
lutions of the biharmonic Eq.~1! written in the polar coordi-
natesr , u in form of Fourier series while looking for the
~nonaxisymmetric! Green’s function of a clamped circula
plate, John H Michell~1863–1940! @176# ~p 111! was the
first author who presented, without any derivation, the g
eral form of solution of the biharmonic Eq.~1! as

f5A0r 21B0r 2~ ln r 21!1C0 ln r 1D0u

1~A1r 1B1r 211B18ur 1C1r 31D1r ln r !cosu

1~E1r 1F1r 211F18ur 1G1r 31H1r ln r !sinu

1 (
n52

`

~Anr n1Bnr 2n1Cnr n121Dnr 2n12!cosnu

1 (
n52

`

~Enr n1Fnr 2n1Gnr n121Hnr 2n12!sinnu

(18)

with arbitrary constantsA0 , . . . , Hn . Later, a similar solu-
tion was derived by Timpe@181,219#. Timoshenko@43,91#
added to the solution~18! the termd0r 2u and he, Coker and
Filon @27#, and Papkovich@80# discussed in full details the
mechanical meaning of each term in this representation.

Filonenko-Borodich@59# pointed out the possibility of ex
istence of the termsur 2 ln r, u ln r, r ln ru cosu, r ln ru sinu
in the general solution of the biharmonic equation, but
explained that these terms lead to multivalued stresses i
coordinates’ origin is located inside the body. They can
important for the elastic dislocation theory@220#. It is inter-
esting to note that 20 years later exactly the same solut
were derived@221# that led to short comments@222–224#.
These latter authors have mentioned not only the Eng
translation of Filonenko-Borodich@61#, but also a rather for-
gotten paper by Sonntag@225#. It should be mentioned tha
Filonenko-Borodich@59# himself attributed these additiona
solutions to Biezeno and Grammel@25#. These authors pre
sented the most complete set of solutions of the biharmo
Eq. ~1! which also include the termsr l coslu, r l12 coslu,
cos(l ln r)coshlu, r 2 cos(l ln r)coshlu ~and corresponding
terms with sin and sinh! with an arbitrary value ofl.

3.2 Green’s function for the biharmonic problem

The French mathematician Emile Leonard Mathi
~1835-1890!4 was the first who addressed in full the mat
ematical properties of the biharmonic equation in a sin
of
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connected 2D domainS enclosed by a contourL. In an
elaborate memoir, Mathieu@123# developed the theory of the
so-called ‘‘second’’ potential, obtained the analogy
Green’s formulas for biharmonic functions, proved som
theorems concerning the existence and uniqueness of th
lution of the biharmonic Eq.~1! with either boundary condi-
tion ~2! or with prescribed values of the function and i
Laplace operator at the boundary. Although his four m
theorems describe the properties of the 3D biharmonic fu
tions, similar results for the 2D case were also stated.

First, Mathieu established the generalization of Gree
formulas, namely, for any two functionsu andv continuous
with their third derivatives inS, the following relation holds

E
S
~uDDv2vDDu!dxdy5E

L
S v

dDu

dn
2u

dDv
dn Ddl

1E
L
S Dv

du

dn
2Du

dv
dnDdl

(19)

where d/dn denotes the derivative in the direction of th
inner normal to the contourL.

Next, Mathieu introduced two biharmonic functions

v~x,y!5E
L
r8~a,b!ln

1

r
dl , r 25~x2a!21~y2b!2

w~x,y!5E
L
r~a,b!S r 2 ln

1

r
1

1

2
r 2D dl , (20)

called the first~logarithmic! and second potentials, respe
tively, for some smooth functionsr8(a,b) andr(a,b) on the
contourL.

Mathieu developed a theory of this second potent
Based upon relation~19!, he proved that inside the simpl
connected domainS there exists a unique, continuous in i
third derivatives, functionu with prescribed values ofu and
du/dn on L, and this function can be expressed as a sum
first and second potentials,

u~x,y!5v~x,y!1w~x,y! (21)

By using in ~19! the biharmonic functionP5r 2 ln r,
Mathieu established the relation

u5
1

8p E
L
FP dDu

dn
2u

dDP

dn
1DP

du

dn
2Du

dP

dn Gdl (22)

This equation provides the value of the biharmonic funct
at any point inside the domainS by means of the valuesu,
du/dn, Du andd(Du)/dn given on the contourL.

These results were proven in another way in the docto
thesis by Koialovich@229# defended on February 2, 1903
St Petersburg University as a consequence of his more
eral relations for linear partial differential equations wi
constant coefficients.~These results were first announce
@230,231# on December 28, 1901 at the XIth Congress
Russian Natural Scientists and Physicians which by tradi
took place at the very end of the year.! It should be noted,
however, that in the committee report@232# on this thesis,
4Biographical data and a short survey of his scientific works can be found in@226–
228#.
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signed among others by prominent Russian mathematic
Korkin and Markov, these results were mentioned o
scarcely in one short paragraph.

Further discussion of Green’s function for clamped elas
plates can be found in@233–240#.

For the Stokes flow, Green’s function was imployed
great Dutch physicist Hendrik Antoon Lorentz~1853–1928!
who considered@241# the action of a force in an interior of
viscous incompressible fluid with negligible inertia force
By using the well-known device of surrounding the po
where the force acts by a small sphere and then allowing
radius to vanish, he derived the now famous integral eq
tion for slow viscous flows which relates the velocity vect
at any point inside the fluid to a boundary integral whi
involves the stresses and the velocities on its boundary.
formula has been used extensively in the past two decade
so in the so-called boundary-element method.

Lorentz@241#, and later independently Hancock@242#, in-
terpreted the well-known Stokes@135# solution for the slow
flow induced by a sphere moving through a highly visco
fluid as the sum of two solutions which are singular at
center of the sphere. One of these is a doublet which is
present in an inviscid flow. The second one, according
@242# ‘‘is a singularity peculiar to viscous motion, which wi
here~for want of a better word! be called astokeslet.’’ For
the 2D case this term~a more appropriate name according
@243# could belorentzlet! coincides with the second Green
function of the biharmonic problem.

3.3 Method of complex variables

The idea of application of complex variable theory to so
the biharmonic equation looks very natural in view of t
great success attained by such an approach for harm
functions. Goursat@202# established that arbitrary biha
monic functionU can be represented via two analytic fun
tions f(z) andx(z) of the complex variablez5x1 iy as

2U5 z̄f~z!1zf̄~z!1x~z!1x̄~z!, (23)

where the bar sign indicates a complex conjugate. Ano
version of the derivation of this important formula is give
by Muskhelishvili @244#.

In the theory of elasticity for 2D plane stress or pla
strain problems the idea of application of complex varia
traces back to Clebsch@218# and Love @14#; see, also,
Tedone and Timpe@95# ~p 163! for details. Clebsch@218#
~Section 31! derived the representation of the functionsXx

1Yy andXx2Yy12iXy via one function ofz and the same
function of z̄. These expressions, see also Kolosov@245#,
were rather cumbersome and contained some combina
of Lamé’s constantsl andm. Clebsch did not use them fo
solving any specific problem for plane stress.

Love @14#, following Lamé @1#, wrote the 2D equations
for the Cartesian componentsu and v of the displacemen
vector in a form

~l12m!
]Q

]x
22m

]v

]y
50, ~l12m!

]Q

]y
12m

]v

]x
50

(24)
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with Q5 ]u/]x 1 ]v/]y , 2v5 ]v/]x 2 ]u/]y, and estab-
lished that the expression (l12m)Q12m iv is an analytic
function of the complex variablez.

The same approach was developed by Chaplygin@246#
around 1900, but he did not pursue further this avenue. L
Filon @132# established rather complicated complex rep
sentations and used them for construction of various
expressions for displacements and stress components
finite rectangle in form of Fourier series and in finite pol
nomial terms.

Kolosov @247,248# was the first author who develope
and systematically applied the complex variables metho5.
Based upon Maurice Le´vy’s Eqs. ~17!, with the first two
rewritten in the form,

]~2T!

]y
1

]~N12N2!

]x
52

]~N11N2!

]x

]~2T!

]x
2

]~N12N2!

]y
52

]~N11N2!

]y
(25)

Kolosov derived the following relations

N11N25
1

2
$F~z!1F~ z̄!%

2T1 i~N12N2!5 i~a1 ib!
dF~z!

dz
1F~z! (26)

whereF and F are arbitrary complex functions of their a
guments,a(x,y) andb(x,y) are real functions representin
any solutions of the system

]a

]x
2

]b

]y
521 ,

]a

]y
1

]b

]x
50 (27)

Therefore, the solution of the 2D problem is completely d
fined if two analytic functionsF(z) andF(z) can be found
based upon the prescribed boundary conditions at the
tour.

Kolosov @248# also provided the analog of~26! for any
curvilinear orthogonal isothermic coordinate system.
chosing some concrete expressions forF(z) and F(z) he
obtained anew the already known results@209,219# for cir-
cular domains. In addition, he solved some typical bound
problems for a halfplane, a circle, and a plane with circu
and elliptical openings. The results were presented@255# at
the IV International Mathematical Congress in Rome~Italy!,
section of Mechanics and Mathematics, on April 11, 190
Hadamard was the chairman of the session, and Runge,
gio, and Volterra participated in discussion.

More then one and a half years later, Kolosov presen
two talks @256,257# at the XII Congress of Russian Natur
Scientists and Physicians, held in Moscow from Decem

5Gurii Vasili’evich Kolosov ~1867–1936! ~or Kolossoff in the French spelling of his
name! graduated from St Petersburg University where he did his master’s dissert
on a solid body rotation with one fixed point. From 1902 till 1913 he worked at Yur
@Tartu# University. After 1913, he worked at the Electrotechnical Institute and
University in St Petersburg~Leningrad! where he spent the rest of his career. In 19
upon a suggestion by Academicians Krylov and Chaplygin he was elected a c
sponding member of the Academy of Sciences of the USSR. A more detailed biogr
of Kolosov and discussion of his scientific works can be found in@249–254#.
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28, 1909–January 6, 1910~according to the Julian calenda
which was in usage in Russia that time!. Renowned Russian
mathematicians and mechanicians Steklov, Joukow
Chaplygin, and Timoshenko participated in the discuss
and made some comments. In the first talk@256#, Kolosov
suggested an interesting method of solution of the bih
monic problem~1!, ~2! based upon searching for the seco
derivativesUxx , Uyy , and Uxy , instead of the functionU
itself. After some transformations this reduces the problem
that of finding two analytic functionsF(z) andF(z) under
the condition that along the boundary the functiona
1 ib)dF(z)/dz2 iF(z)1 1

2exp(22iu)(F(z)1F( z̄)) is
given. Hereu denotes the angle between the normal at
boundary at the point (x,y) and the positivex-axis. Finally,
the problem is reduced to the known Riemann-Hilbert pr
lem. The method was generalized to arbitrary orthogonal
vilinear coordinates and then applied to some specific c
tours: a line, a circle, an ellipse, and even a rectangle
seems that this method remains unnoticed and it dese
further elaboration.

In the second talk@257#, Kolosov repeated the derivatio
of his main formulas~26! and provided an expression fo
components of the displacement vector. He also derived
integral Fredholm equation, but he did not investigate
properties. Later, a similar approach was essentially de
oped by Fok@258,259#.

All these results entered in Kolosov’s doctoral dissertat
@206#6. The defense took place at St Petersburg University
21 November 1910, and Academician Vladimir Andreevi
Steklov~1863–1926! and Professor Dmitrii Konstantinovic
Bobylev ~1842–19170! were the official opponents. Accord
ing to @250,251# Kolosov had some troubles during the d
fense. The matter was that Academician Steklov, who imm
diately understood and appreciated the main idea of usag
two analytical functions, had noticed some fault in formu
~26! when in Section 12 Kolosov applied them to an ar
trary isothermic coordinate system. His concern was that
right hand side does not generally represent an analytic fu
tion. From February–April 1910, Steklov exchanged seve
letters with Bobylev and Kolosov, see@254# for full texts.
Kolosov had to accept these comments and he include
Appendix into his dissertation with a long quotation fro
Steklov’s letter. That is why the date on the title page of
printed dissertation does not correspond to reality—the en
work had been bound after April 1910. Later Koloso
@260,261# referred to the year 1910 as the date of publicat
of his dissertation.

Kolosov7 @68# summarized his studies on the solution
the biharmonic problem by means of the complex variab
method of finding two analytic functionsF(z) and F(z)
based upon prescribed boundary conditions at the contou
addition to already existing approaches, he developed@262#
the method of ‘‘complex compensation.’’ This method w
based upon application of the Schwarz integral~a represen-
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tation that gives the analytic complex function under p
scribed value of its real part at some closed contour!. This
method, being rather powerful and straightforward, rema
rather unnoticed and it deserves further elaboration.

The method of complex variables in 2D elasticity pro
lems developed by Kolosov was successfully follow
@263,264# by Muskhelishvili,8 a pupil of Kolosov at St Pe-
tersburg Electrotechnical Institute. Later Muskhelishv
@244,265–270# considerably extended the method by addi
the idea of the Cauchy integral and conformal mapping, a
solved a large number of specific problems summarized
his remarkable treatise@37–39#. Additional references and
detailed exposition of the complex variables method can
found in @33,271#.

It is worthwhile to note that a similar complex variable
method has been also suggested by Stevenson@272,273# and
Poritsky@274#, with Kolosov’s formulas being derived anew
without any references to his works. This circumstance
ceived severe critique from Muskhelishvili in the third ed
tion of his treatise@38# ~Section 32!. Radok in a translator’s
note in@39# ~p 115! mentioned that he received some exp
nations from both authors. Stevenson wrote that in the ye
1939–1940 when he worked on his paper he was admitte
ignorant of prior works in that area. However, later Steve
son acknowledged the priority of Kolosov and Muskhelis
vili by referring to six papers by Kolosov, dating as far ba
as 1909, of four papers by Muskhelishvili, the first of whic
appeared in 1919, and to the joint paper by both auth
published in 1915. Poritsky indicated that he deduced
formulas in 1931, although his paper was not published u
1945. By that time, the Russian works had been given a
amount of publicity in the USA and therefore he quoted on
one paper@392#, merely for the purpose of acknowledgin
that he had been anticipated; see@275,276# for further de-
tails.

Another usage of complex variables was suggested
Nikolai Mikhailovich Gersevanov~1879–1950! in his mas-
ter’s dissertation@207#. Considering the inhomogeneous b
harmonic Eq.~3! for bending a plate with linearly distribute
loading p(x,y)5Px1Qy1R ~for example, for a sluice
gate!, he presented the general solution in the form

.
itle

8There are different spellings, Muschelisˇvili, Muskhelov of this Georgian name in
various publications in French and German~and even in Russian!! journals. Nikolai
Ivanovich Muskhelishvili ~1891–1975! graduated in 1915 from the Physico
Mathematical Faculty of St Petersburg University, and on presentation of a dipl
thesis he was retained by the Department of Theoretical Mechanics for preparatio
an academic career. From 1917–1920 he taught at Petrograd University and a
other higher educational institutions of Petrograd. In 1920, Muskhelishvili moved
Tiflis @Tbilisi#, where he worked at Tbilisi University and Tbilisi Politechnic Institut
In 1939, he was elected as a Academician of the Academy of Sciences of the U
and in 1941 he was elected as a President of the Georgian Academy of Science
the Director of the Georgian Mathematical Institute. Muskhelishvili’s fundamen
monograph@37# was honored in 1941 with the Stalin Prize of the first order; it has be
translated into English, Chinese, and Roumanian and is widely known among sp
ists. In 1945, Muskhelishvili was awarded the title of Hero of Socialist Labor. He w
a deputy of the Supreme Soviet of the USSR of all councils.
6The dissertation has also been printed in parts in several issues of theScientific Notes
of Yur’ev [Tartu] Universityin 1911 with two additional pages with main statement
7It is interesting to note that the book had slightly different titles on the cover and
pages; this leads to somewhat confusing references in the literature.
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w5
1

2
@f1~x2 iy!1f2~x1 iy!#

1 iy@f18~x2 iy!2f28~x1 iy!#

1@f3~x2 iy!1f4~x1 iy!#1
Py4x

24
1

Qy5

120
1

Ry4

24

(28)

where four continuous functionsf1(x2 iy), f2(x1 iy),
f3(x2 iy), f4(x1 iy) are defined from four functiona
equations corresponding to the boundary conditions~4! for
the clamped plate. The author derived that these funct
fq(z) can be presented in the form of Taylor series exp
sions

fq~z!5fq
IV~0!

z4

4!
1fq

V~0!
z5

5!
1 . . .

and provided an algorithm for finding the values of the c
efficientsfq

IV(0), fq
V(0), . . .

Gersevanov@207# himself did not consider any numerica
example of application of the developed scheme. For so
reasons~not clear now! Bubnov, who in 1910 was one of th
chief designers of the Russian Imperial Navy, suggeste
Fridman,~the future renowned expert in the dynamical m
tereology and general cosmology, who had just gradua
from St Petersburg University! to make some practical ca
culations based upon that method. In June 1910, Fridm
wrote a letter@277# to Steklov ~probably, his scientific ad-
viser at the University!

Some days ago after sending a letter to AN Kry-
lov I received from Mr Bubnov some informa-
tion about the project. It appears neccesary to
solve by the method of N Gersevanov the equa-
tion DDv5a for boundary contours consisting
of two parabolas of then-th order. This approach
theoretically looks highly cumbersome; I don’t
know yet how it will work numerically. Anyway
that project is very timely and I thank you very
much for your help.

and some time later in the second letter

The matter with calculations based upon Gerse-
vanov’s method is very bad; Gersevanov did not
prove either the convergence of the Taylor’s se-
ries or the possibility of finding the coefficients
at all. I have tried to apply this method to a sim-
pler Dirichlet problem for a halfplane; it does not
work. I am going to discuss this issue with Bub-
nov.

Later Gersevanov@278# also presented the general int
gral for the componentsN1 ,N2 ,T of the stress tensor in th
Maurice Lévy Eqs.~17!

N15 iyf18~z!2 if2~z!,

N252f1~z!2 iyf18~z!1 if2~z!,

T52 if1~z!2yf18~z!1f2~z! (29)
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wherez5x1 iy andf1 andf2 are two arbitrary functions.
Previously Gersevanov@207,279# used more complicated ex
pressions that contain four arbitrary functions~and even the
Lamé constantsl and m, which however can be easily ex
cluded!. Gersevanov@278–280# considered by this approac
some problems for an elastic halfplane and found sim
closed form expressions for various given boundary con
tions at the surface. He pointed out a mistake in the solu
by Puzyrevskii@281# connected with an~apparent! nounique-
ness of the solution. In my opinion, this method for the ca
of the halfplane~as an alternative approach to Fourier tran
forms! is rather useful and it deserves further elaboration

Sobrero@282# suggested the method based upon usag
the so-calledhypercomplex functionswhich was developed
in @283,284# for the representation of the stress functio
However, this approach appeared to be much less effec
for solution of specific problems.

4 THE PRIX VAILLANT COMPETITION

The engineering problem of bending of a clamped, rectan
lar, thin plate by normal pressure constantly attracts the
tention of mathematicians. As the famous Russian scien
and naval architect Academician Alexei Nikolaevich Krylo
~1863–1945! ~or Kriloff in French spelling of his name! rec-
ollected,@285#:

In the summer of 1892 I worked in Paris on the
project of the Drzewiecki’s submarine. Before
leaving for Paris, I received from Professor Ko-
rkin several of his articles and a letter for Her-
mite. Upon arrival in Paris, I went to Hermite
and was received very warmly. Hermite asked
me about Korkin, the Naval Academy,etc. Then
I said to Hermite that it would be very important
for shipbuilding to obtain a solution of the dif-
ferential equation with the boundary conditions
being that the contour of the plate is fixed. Her-
mite called his son-in-law Picard and said to
him: ‘‘Look, Captain Kriloff suggests an excel-
lent topic, which can be used for theGrand Prix
des Mathe´matiques. Think about this.’’ Approxi-
mately a year later this topic was suggested by
the Paris Academy of Sciences.

This recollection does not seem to be completely corre
In 1894, the journall’Intermédiare des Mathe´maticienswas
founded with an original idea of providing room for the e
change of opinions among professional mathematicians
interested people by stating questions and~possibly! getting
answers. In the first issue of this journal, Picard@286# put the
question No 58 in the following words:

Le problème de l’équilibre d’une plaque rectan-
gulaire encastre´e revient a` l’intégration de
l’équation

DDu5a
~a étant une constante, etD f représentant
]2f /]x2 1]2f /]y2), u s’annulant sur le pe´rimè-
tre du rectangle, ainsi que la de´rivée du/dn prise
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dans le sens de la normale. La solution de ce
problème peut-elle eˆtre obtenue par des se´ries ou
des intégrales de´finies?

As the index to the first 20 volumes for the years 1894–19
shows, this question remained without answer. A sim
question~not related to the rectangle only! was repeated ten
years later; it received short replies by Boggio with a fe
Italian references and Maillet with reference to Flaman
textbook@287#.

Only in 1904 did the French Academy of Sciences s
gest that topic for the competition of thePrix Vaillant ~and
not theGrand Prix Mathématique! for the year 1907, with a
prize of 4000 francs. The condition for the competition w
first announced in Comptes rendus des se´ances de
l’Académie des Sciences1904,139, 1135:

PRIX VAILLANT (4000 f r).
L’Académie met au concours, pour l’anne´e

1907, la question suivante:
Perfectionner en un point important le prob-

lème d’Analyse relatif a` l’équilibre des plaques
élastiques encastre´es, c’est-a`-dire le problème de
l’intégration de l’équation

]4u

]x4 12
]4u

]x2]y21
]4u

]y4 5f~x,y!

avec les conditions que la fonction u et sa de´-
rivée suivant la normale au contour de la plaque
soient nulles. Examiner plus spe´cialement le cas
d’un contour rectangulaire.

Les Mémoires devront eˆtre envoye´s au Secre´-
tariat avant le1er janvier 1907.

Poincare´ ~1854–1912!, Picard~1856–1941!, and Painleve´
~1863–1933! were namedles rapporteurs, that is, it was
their task to judge twelve memoirs submitted for consid
ation. They presented extended reports@288–290#, and in
December 1907, the authoritative commission consisting
Jordan, Appell, Humbert, Maurice Le´vy, Darboux, and
Boussinesq decided to share the prize~asking for additional
money for that purpose! between Jacques Hadamard~1865–
1963! ~three quarters of the value!, Arthur Korn ~1870–
1945!, Giuseppe Lauricella~1868–1913!, and Tommaso
Boggio ~1877–1963!,9 and gave a special notice to the wo
by Stanislaw Zaremba~1863–1942!.

In the memoirs awarded thePrix Vaillant, Hadamard
@291#, Korn @292#, Lauricella @293–295#, Boggio @189#,10

and Zaremba@296,297# considered mainly the biharmoni
problem for a singly connected interior with a smoo
boundary contour. In all cases, some integral equations e
for the original biharmonic function or for some auxiliar
harmonic functions were written down. By means of the j
ial
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established Fredholm integral equation theory, it was pro
that under rather general conditions a unique solution to
problem under consideration exists.

The main goal of Hadamard’s@291# rather voluminous
memoir ~of 128 pages! is to study ‘‘fonction de Green
d’ordre deux,’’GA

B , of the biharmonic problem~3!, ~4! for
the clamped elastic plate, that is, to investigate the gen
properties of the deflectionw(B;A) at an arbitrary pointB
inside the domainS with a smooth boundaryL under the
action of a unit normal force applied at a pointA. Hadamard
showed that the value ofGA

A is finite and positive and the
inequality (GA

B)2<GA
AGB

B holds well. He considered the inter
esting problem of how the biharmonic Green’s functi
changes under a small deformation of the domain, and
derived the nonlinear integro-differential equation for t
variation of the Green’s function mentioning that ‘‘it is in n
way an exception in mathematical physics.’’ He also stud
the variational properties of the Green’s function and p
forward the isoperimetric conjecture that the maximum va
of the functionalG(P,P) considered on the set of domain
with a prescribed perimeter, is attained for a circular dom
with a center atP. This has an important connection with th
solution of extreme problems and problems related to c
formal mapping; see@298# for further mathematical details.

Another question addressed in@291# was the so-called
‘‘Boggio’s conjecture.’’ Boggio@188# had put forward a con-
jecture that the biharmonic Green’s function is alwaysposi-
tive inside a convex domain. In other words, the deflection
any point of a clamped plate coincides with the direction
an applied concentrated force. Boggio proved this conjec
for a circular domain by means of some obvious inequalit
applied to the explicit expression of the Green’s functio
Hadamard @291# suggested another ‘‘physically evident
conjecture that the value of the Green’s function increa
with decreasing domain. In the talk presented at IVth Int
national Congress of Mathematicians in Rome in Septem
1908, Hadamard@299# ~p 14! stated that

M Boggio qui a, le premier, note´ la signification
physique deGB

A, en a de´duit l’hypothése queGB
A

était toujours positit. Malgre´ l’absence de de´m-
onstration rigoureuse, l’exactitude de cette
proposition ne parait pas douteuse pour les aires
convexes.

Hadamard, however, mentioned the necessity to put s
additional assumptions on the domain, for the Green’s fu
tion G has an alternating sign for an annulus with a lar
ratio between external and internal radii.~Enliš and Peetre
@300# proved thatG is not positive for an arbitrary ratio o
the radii.!

After Hadamard, the Boggio-Hadamard conjecture
ceived considerable attention, mainly among applied ma
ematicians. It finally appeared that it iswrong! Garabedyan
@301# showed thatG changes sign inside the elliptical do

mainx21( 5
3y

2)<1. Shapiro and Tegmark@302# showed that
non-positivity of G for the elongated ellipsex2125y2<1
can be easily obtained by considering the polynom
P(x,y)5(x2125y221)(12x)2(423x) that satisfies both

illed
here
9Boggio was extremely fortunate to escape with his life as 78,000 people were k
by an earthquake that on December 28, 1908 struck Messina, northeastern Sicily,
he held the position of Professor of Rational Mechanics.
10There were no special publications later on, but Poincare´ in his report@290# presented
a detailed survey of the entrant essay.
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boundary conditions~4!. SinceDDP.0 everywhere inside
the ellipse, then assumingG<0 one arrives atP<0, which
is obviously incorrect. Other~exotic! examples of domains
bounded by analytical curves, for which Green’s functi
changes sign, were provided in@303,304#.

Duffin @305# suggested that Green’s function for a ha
strip x>0, uyu<1 may change sign because of asympto
behavior Cexp(2sx)cos(tx2f) for large x on the line y
50. Following Boggio@188# and Hadamard@299#, he also
formulated two conjectures. First, he supposed that
change of sign occurs for rectangles with a ratio of sid
greater than four. Secondly, he supposed that for a sq
plate the Boggio-Hadamard conjecture holds well.~This
statement is incorrect.!

Another approach to the Boggio-Hadamard conject
was developed by Hedenmalm@306#. He was interested in
additional conditions for the positivity of the biharmon
Green’s function, and he applied the idea of Hadamard
changingG with changing form of a domain. By introducin
into consideration the functionH(P,P0)5DPG(P,P0)
2g(P,P0) with g(P,P0) being the harmonic Green’s func
tion for the Dirichlet problem for the Laplace equation,
proved that for a star-shaped domain with boundary given
analytic curve,G(P,P0)>0 in the domain if and only if
H(P,P0)>0 in the whole domain including the boundary

Lauricella @295# in his winning memoir developed an
other approach to solve the biharmonic problem~1! and~2!.
He introduced two unknown functions

u5
]U

]x
, v5

]U

]y
(30)

with an auxiliary function

u5
]u

]x
1

]v
]y

5DU (31)

Lauricella considered the following equations

]u

]y
5

]v
]x

, Du50 (32)

inside the domainS with boundary conditions

u5g~ l !
dx

dn
1

df

dl

dx

dn
5 f 1~ l !

v5g~ l !
dy

dn
2

df

dl

dx

dn
5g1~ l ! (33)

at the contourL.
After extensive transformations Lauricella reduced

boundary value problem~32!, ~33! to the system of two
Fredholm integral equations with respect to the unkno
functionsu andv. He proved uniqueness of the solution f
the case of a finite domain bounded by a smooth contou

Later Sherman@307# independently established a simil
integral equation for a complex functionv(z) conditions,
which is usually called the Lauricella-Sherman equation
detailed review of Sherman’s numerous articles on this to
as well as other possible types of integral equations can
found in @38,39,106#.
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General approaches based on the integral equations
peared not effective when dealing with the rectangu
domain—the case that was specially mentioned in the c
dition for the Prix Vaillant. Lauricella @295# wrote down at
length the representation for the deflection of the clamp
rectangular plate in terms of functionsu andv. ~The general
case of the inhomogeneous biharmonic equation can be
ily reduced to the homogeneous one by choosing any
ticular solution.! In fact, the infinite system of linear alge
braic equations for the coefficients in the Fourier series
these functions completely concides with one obtained
Mathieu@200,201# for an elastic rectangle. Lauricella did no
provide any numerical results, only referring to Koialovich
@229# ~or Coialowitch, as he wrote! doctoral dissertation.
This approach was further developed by Schro¨der @308,309#
in extensive papers which, however, remained not kno
because of World War II. Later Schro¨der @310# considered
the case of a rectangular domain, where he also used La
cella’s method.

The results of Korn@292# and Zaremba@296,297#, being
interesting at the time, did not have much impact on
further development in the biharmonic problem: referen
to these memoirs are scarce today, both in mathematical
engineering studies. References to these studies in ge
context of thePrix Vaillant competition are given in@37–
39,298#.

I do not know what other eight memoirs submitted for t
Prix Vaillant competition were. It is highly possible that th
manuscript by Haar~1885–1933! @311# ~based upon his Go¨t-
tingen dissertation guided by Hilbert! was among them. In
several publications@11,12,312–314# it was mentioned that
among the twelve memoirs submitted to thePrix Vaillant
competition there was one authored by Walter Ritz. T
epoch-making study was not to be crowned, and it was
even discussed in the commission reports. The reasons
that are not very clear. According to Forman@314# ~p 481!,
Ritz’s manuscript, 38 pages in folio, together with a refere
summary, is in the archives of the French Academy of S
ences~it still would be interesting to find these sheets!,
while the obituary note by Fueter@312# ~p 102! stated that
Ritz presented the memoir in time, but it had been sim
lost. In any case, in April 1908 Poincare´ visited Göttingen
~where Ritz then resided! and expressed his deep regrets th
this very original investigation had not been honored. Po
carémentioned that the Academy would award Ritz anoth
prize. Finally, in 1909 Ritz was awarded~unfortunately, post-
humously! the Prix Leconteof the Academy of Sciences fo
his works in mathematical physics and mechanics as it
stated inComptes rendus des se´ances de l’Acade´mie des Sci-
ences1909,149, 1291. For further discussion of Ritz’s work
see Section 5.6.3 of the present article.

5 METHODS AND RESULTS
FOR SOME CANONICAL DOMAINS

The term ‘‘canonical domain’’ usually refers to the doma
whose boundary~or boundaries! is formed by a coordinate
line ~or lines! of some typical 2D coordinate systems, e
rectangular, polar, elliptical, or bipolar ones. The usage
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these systems can often provide a considerable simplifica
and permit one to obtain an analytical solution of the bih
monic problem. In what follows we restrict our considerati
to the most commonly used canonical domains of finite
mensions: a circle~or ring!, an elliptic region, an eccentri
circular ring, and a rectangle. Out of consideration rema
however, a sector and an annular sector~a curved thick
beam! that also obtained a great deal of attention in the
erature. The biharmonic problem for an infinite wedge re
resents one of the benchmark problems that is extremely
portant for understanding the peculiarities of local behav
of a biharmonic function in a vicinity of a non-smoot
boundary. Besides, we briefly consider the solutions of
biharmonic problems in some outer infinite regions, nam
a plane, a halfplane, and a layer with circular and ellipti
openings, the problems that traditionally have a strong te
nological importance in civil engineering and shipbuildin
~The equally important problems of several nearby openi
remain, however, out of the scope of this review.! The most
typical infinite domains: a plane, a halfplane, and a la
remain out of consideration, too—there exists a great num
of textbooks and monographs already mentioned in the
troduction that contain detailed expositions of the
problems.

5.1 Circle and circular ring

The circular domain is obviously the most common one
solving explicitly the biharmonic problem. This has be
done by many authors in almost innumerable publications
what follows, we restrict our consideration only to the mo
important steps; for sake of uniformity of description of t
results of many authors we will consider the circular dom
0<r<a, 0<u<2p in the cylindrical coordinates (r ,u).

5.1.1 General homogeneous biharmonic problem
The explicit solution of the general biharmonic problem~1!,
~2! was obtained a long time ago in several ways. One w
employed by Venske@180#, consists in using the fact that an
biharmonic functionU can be written in the form

U~r ,u!5u~r ,u!1r 2 v~r ,u! (34)

with u andv being the harmonic functions in the interior o
the circle. By searching for these functions in the form
Fourier series on the complete trigonometric system cosnu,
sinnu with n50,1, . . . and expanding the boundary con
tions ~2! in Fourier series one obtains an independent sys
of equations to determine the Fourier coefficients for ev
numbern. The main question, however, is the convergen
of the Fourier series, and their ability to present t
biharmonic functionU in a form suitable for numerica
evaluation.

Another approach belongs to the Italian mathematici
Almansi @185# and Lauricella@193#. By means of represen
tation ~34! they reduced the problem to two Dirichlet pro
lems in the circle and they represented the solution of
boundary value problem~1!, ~2! in two different forms of
definite integral over the contourr 5a that provide the finite
expression for the above-mentioned Fourier series. In a s
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comment Volterra@194# demonstrated that both these expre
sions can be transformed one into another; see also@195#.

5.1.2 Bending of a clamped circular plate
In his epoch-making memoir Poisson@315# was the first to
consider the bending of a circular thin isotropic elastic pl
of thicknessh and radiusa clamped at the boundaryr 5a
under an action of axisymmetric pressurep(r ) at its top
surface. He got the general solution to the boundary va
problem~3!, ~4! in closed form; see Todhunter and Pears
@21# for this long expression.

For particular cases of uniform loadingp0 and concen-
trated forceP applied at the center of the plate~here, in fact,
Poisson used the notion ofd-function while mentioning that
the load has sensible values only when the values ofr are
insensitive and some integrals then have to be suppresse! he
obtained

w~r !5
p0

64pa2D
~a22r 2!2 (35)

and

w~r !5
P

8pD F2r 2 ln
a

r
1

1

2
~a22r 2!G (36)

respectively.
In 1862, Alfred Clebsch~1833–1872!, then age 29, being

a Professor at the Polytechnic school at Karlsruhe publis
a book@218#, based upon his lectures on the theory of el
ticity. Notwithstanding his position at the technical scho
this book certainly was not suited for the technician—it w
highly mathematical, with a wealth and ingenuity of analy
of the more theoretical parts of elasticity. The chief value
the book lies in the novelty of the analytical methods a
solutions of several new elasticity problems. In the Fren
translation@3#, performed by Saint-Venant~age 86!! and Fla-
mant, there are a lot of amendments which increase the
ume to more than twice the length~as well as the correction
of many of the innumerable errata of the original!. In Sec-
tions 75 and 76 of@218# ~or pp 763–778 of the French trans
lation @3#! the general problem of small deflection of a th
isotropic clamped plate of thicknessh is dealt with. Clebsch
wrote down the general equation for the bending of the p
also subjected to the stretchingT in the middle plate. Sup-
posing the normal loadp(r ,u) to be known in sines and
cosines of multiple angles ofu, and then expressingw in like
form, and assuming for simplicityT50, Clebsch obtained a
set of equations in the form:

S d2

dr2 1
1

r

d

dr
2

n2

r 2 D 2

wn5
pn

D
, n50,1, . . . , (37)

wherewn(r ) is the coefficient of cosnu or sinnu in w(r ,u),
andpn(r ) the coefficient of the like terms inp(r ,u).

Clebsch presented the explicit expression for the part
lar case of a clamped edger 5a under concentrated norma
load P applied at the point (r 0 ,u0), that is the Green’s func-
tion for the biharmonic problem in the circular domain. Th
solution had mainly mathematical interest, for it was rath
difficult to employ it for practical calculations. Howeve
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Clebsch managed to sum the Fourier series and to fin
simple engineering formula for the deflectionf r 0

of the plate
at the point of applied load. This value appeared finite:

f r 0
5

P

8pD S a22r 0
2

2
1r 0

2 ln
r 0

a D (38)

and for the most interesting case of central load,r 050

f 05
Pa2

16pD
(39)

Michell @179# developed an elegant method of inversi
and presented the deflectionw at some pointA under the
concentrated force of valueP applied at some pointC as:

w5
P

8pD F2R2 ln
R8

R
1

1

2
~R822R2!G , (40)

whereR andR8 are the distances from pointA to pointsC
andC8, the inverse toC with respect to the circle of radiu
a; see,@18# ~Section 314b) for further details. This solution
was used in@316# to consider more general cases of loc
loading of a clamped circular plate.

Apparently, being unaware of Michell’s solution Fo¨ppl
@317# considered this problem anew and he obtained the
resentation for deflection in the complicated form of a Fo
rier series. By using bipolar coordinates Melan@318#, Flügge
@319#, and Müller @320# constructed another~more simple!
expression for the deflection in Michell’s solution.

5.1.3 Stresses in a circular plate and a circular ring
Clebsch@218# ~Section 74! also addressed a general soluti
for a circular plate~under conditions of plane stress! sub-
jected to a given system of forces acting parallel to the pl
of the plate, but himself did not provide a discussion of a
specific problem.

Based upon general representation~18! Timpe @181,219#,
Timoshenko@321–323#, Wieghardt@324#, Filon @325#, and
Köhl @326# considered several practical cases of concentra
and distributed loads acting at the surface~s! of a circular disc
~or a ring!. There were some delicate questions concernin
choice of constantsB18 andF18 in order to provide the single
values for not only stresses, but also for the radial and
cumferential components of a displacement vector in a c
plete ring. It appeared that the relations

B18~122n!1H1~222n!50,

F18~122n!1D1~222n!50

must be fulfilled for the case of plane deformation~and with
corresponding change ofn for plane stress!. Therefore, the
stresses in the circular ring will generally depend on Po
son’s rationn. However, if loadings applied to the inner an
outer surfaces of the ring provide separately zero total fo
than the constantsB18 , H1 , F18 , D1 turn to zero. In particu-
lar, Papkovich@80# ~p 506! pointed out the mistakes made
the textbooks by Timoshenko@43# and Filonenko-Borodich
@58# while considering the benchmark problem of conce
trated force acting in an infinite elastic plate as a limiti
case of a plate with a small circular hole under prescrib
d a

n

al

ep-
u-

n

ne
ny

ted

g a

cir-
m-

is-
d
ce,

n

n-
g
ed

nonaxisymmetric load. This problem, in fact, had been c
rectly solved by Michell@178# and cited already by Love
@16–18#.

It should be noted that the problem for the circular d
under action of concentrated forces acting at its surface
been first solved in a closed form by the great German ph
cist Heinrich Hertz~1857–1894! @327# by the method of
images; see@43,80,91# for detailed explanation. The sam
problem by the method of complex variables was solved
Kolosov and Muskhelov@263# and later reproduced by bot
Kolosov @68# and Muskhelishvili@37–39#.

5.2 Ellipse and elliptical ring

Although the biharmonic problem in an elliptic region h
received relatively little attention so far, it provides, how
ever, a wonderful example of a simple closed-form analyti
solution of an important engineering problem.

In his talk communicated to the Summer Meeting of t
34th Session of the Institution of Naval Architects on Ju
13, 1893 Bryan@328# discussed how the general mathema
cal Kirchhoff theory of thin elastic plates could be applied
calculate the stresses in a thin elastic plate that is bent u
pressure. Giving a talk before practical naval engineers,
applied mathematician, as we could call him now, Bryan
not attempt to go through the long and complicated analy
and mentioned that ‘‘at a future I would be prepared to ap
the results to calculate the stresses in a circular, elliptic
rectangular area exposed to fluid pressure, in the hope
such calculations may serve as a basis for future experim
tal or other investigations on the subject.’’ At the very end
his talk, Bryan@328# said:

I find that the solution assumes a very simple
form when the boundary of the plate is elliptical
~or other form of any conic section!, and is built
in, provided that the pressure is either uniform
over the plate, or is hydrostatic pressure propor-
tional to depth.^ . . . & I only regret that it has
been found too late to incorporate into the
present paper the results which I have arrived at
so far; but I trust the delay may allow of this
work being put into a more complete form before
it is published.

Although in 1901 George Hartley Bryan~1864–1928!, the
Fellow of the Royal Society since 1895, was awarded
gold medal of the Institution of Naval Architects for a pap
on the effect of bilge keels on the oscillations of a ship,
scientific interest gradually moved to aviation, to a class
problems known now as ‘‘flutter.’’~For his bookStability in
Aviation published in 1911, Bryan was presented with t
gold medal of the Royal Aeronautical Society.! Bryan had
never published the promised results. Instead, he comm
cated to Love the elegant solution on bending of an ellip
plate x2/a21y2/b251 by uniform normal loadingp. This
solution was immmediately presented in Love@15# ~p 199!
with reference to Bryan:
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w5
p

8DS 3

a4 1
3

b4 1
2

a2b2D S 12
x2

a2 2
y2

b2D 2

(41)

It is easy to check that expression~41! satisfies both the
governing equation~3! and boundary conditions~4! because
]w/]x50 and]w/]y50 at the contour.

Love briefly referred to~41! in subsequent editions of hi
treatise,@16,18# ~Section 310!, without much use of it. In
contrast, this solution was thoroughly discussed in textbo
by Timoshenko@92# ~Section 52!, Timoshenko@44# ~Section
56!, and Timoshenko and Woinowsky-Krieger@47# ~Section
71!. In particular, it appeared that the maximum stresses
at the ends of the short axis. The expressions for distribu
of shear forces and normal pressure on the contour were
provided.

Bubnov @4# ~p 21! used this remarkable solution to a
sume the following postulate:

‘‘If we have four plates of the same thickness, having t
following form of boundaries:
~1! A rectangle with one side 2a, the other being very long
~2! A rectangle with one side 2a, the other 2b (b.a);
~3! An ellipse with the axis 2a and 2b (b.a);
~4! A circle with the diameter 2a;

all subjected to the same pressure, the corresponding str
and strains in the first plate are greater than in second
second greater than in the third, and in the fourth they
least.’’

Therefore, if we denotep1 , p2 , p3 , and p4 the pressures
causing the same maximum bending stresses, we have
plates clamped on the boundaries

p1 :p2 :p45
3

8
:
3

8 S 11
2

3 S a

bD 2

1S a

bD 4D :1

Boggio @188# and Leibenzon@329# considered the prob
lem of construction of the Green’s function~a concentrated
force acting at the center of an ellipse! for a clamped ellip-
tical plate, and Bremekamp@330# considered the classica
biharmonic problem~1!, ~2! in an elliptical region with semi-
axes a and b along x- and y-axes. The solutions wer
searched for in the elliptical coordinates~j, h!, where x
5c coshj sinh, y5c sinhj cosh, c being half the focus dis-
tance, by expansion of two auxiliary harmonic functions in
Fourier series in sinnh and cosnh. The general representa
tion for the biharmonic function consists of four Fourier s
ries, the two pairs of them corresponding to even and
parts on the coordinateh. Finally, two independent recurren
infinite systems were derived. Each equation in them~be-
sides the first two! contains Fourier coefficients with indice
n22, n, andn12. The algorithm of solution based upon
specially constructed Taylor expansion was employed
permitted one to express the coefficients explicitly. Ad
tional references on the general problem of bending of el
tical elastic plates by various loadings can be found
@331,332#.

The elastic 2D problem for an elliptical region was fir
considered by Tedone@333#, but his solution is very difficult
oks

are
ion
also

-

he

sses
, in
the

for

l

to
-
e-
dd
t

s
a
hat
i-
ip-
in

st

to understand. Muskhelishvili@268,334# gave a rather simple
solution, which was later reproduced in@38,39# by the
method of conformal mapping together with his method
complex variables for two complex functions. Instead of
obvious mapping of the ellipse onto a circle~which led to
complications in the solution!, the special mapping of an
elliptic ‘‘ring’’ with an empty region between foci was used
Again, the recurrent infinite system was obtained that c
tains coefficients with indicesk12 andk and their conju-
gates. This system could be solved recurrently, starting fr
two known first coefficients. Sherman@335# employed his
integral equation method to solve the same problem.

The elastic problems for the domain enclosed by two c
focal ellipses~or an elliptic arc clamped at the horizont
plane! were considered by Belzeckii@336#, Timpe @337#,11

and Sheremet’ev@338# by means of the Fourier series expa
sions.

It should be noted that all these studies contain no~or
very little! numerical data for the stress field, which mig
represent a possible engineering interest.

5.3 Stress concentration around openings

For many years engineers have been in doubt as to the e
on distribution of stress, of punching a hole in the center o
tie-bar or other simple tension member. Common sense m
it evident that the resulting distribution of stress in the im
mediate neighborhood of the hole must be far from unifor
but it was not an easy matter to estimate the relative imp
tance of the local increases in stress intensity. That this
crease of stress might well be very considerable was evid
from the fact that Gru¨bler @339# had shown that the piercing
of a small hole in the center of a rotating disc had the eff
of doubling the maximum stress as compared with the st
in an unpierced disc subjected to the same centrifugal for
see also Stodola@340# ~or English translation@341#, p 383!
for an important note of danger of boring a hole for the sha

The stress concentration problems provide a vast are
application of the solutions of the biharmonic problem in t
theory of elasticity; see, for example, fundamental books
Neuber @342# and Savin @81–84#, and review papers by
Biezeno@343#, Timoshenko@344#, Sternberg@345#, and Neu-
ber and Hahn@346# for detailed lists of publications. Below
we present a few typical examples in the history of the
problems.

5.3.1 Stress concentration around a circular opening
It is a common statement that~almost! every textbook on the
theory of elasticity and structural mechanics published in
twentieth century, in a chapter~or chapters! devoted to 2D
problems, contains a section about stress concentra
around a circular opening in an infinitely large elastic pla
subjected to a uniform tension in a certain direction at infi
ity. This problem is traditionally attributed to German scie

11According to@39# ~Section 64! that solution is wrong, because Timpe did not use t
complete system of functions to represent the biharmonic function.
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tist and engineer G Kirsch12 and is usually considered as th
starting point of the vast area of the stress concentra
problems.

But, in fact, the first problem of stress concentration h
been considered by Love@14#, who studied the displacemen
field in an infinite elastic plate with a circular cavity su
jected to a shear displacementU5sy, V50 at an infinite
distancey→`. In terms of stress these conditions meant
application of uniform shearing stress at infinity. By use o
general representation for the displacementsu, v in the cy-
lindrical coordinatesr , u, established by him earlier, alon
with the condition that there is no traction across the surf
r 5a, Love obtained~‘‘the work may be left to the reader,’
as he wrote!

u5S l12m

l1m

a2

r
1

1

2
r 2

1

2

a4

r 3 D s sin 2u

v5S m

l1m

a2

r
1

1

2
r 1

1

2

a4

r 3 D s cos 2u2
1

2
sr (42)

Apparently, this solution has been overlooked by all follo
ers except Suyehiro@348#, and later Fo¨ppl @349#, who ob-
tained it independently. For unknown reasons Love omit
this solution from the subsequent editions@16–18#.

In an extensive talk read before the 39th general mee
of des Vereines deutscher Ingenieurein Chemnitz on 8 June
1898, Kirsch@350# stated that the tangential stresses (t ru in
his notation! at the end points of a diameter of the ho
drawn at right angles to the direction of tension are th
times greater than the applied uniform tensionp. ~At the end
points of the diameter parallel to the direction of tension
tangential stress is equal to the applied tensile stress.! Tradi-
tionally, it is mentioned that Kirsch himself did not provid
any derivation of the final correct analytical expressions
the stress tensor in the polar coordinates (r ,u)

s r

p
5

1

2 S 12
a2

r 2 D1
1

2 S 12
a2

r 2 D S 12
3a2

r 2 D cos 2u

su

p
5

1

2 S 11
a2

r 2 D2
3

2 S 12
3a4

r 4 D cos 2u

t ru

p
52

1

2 S 12
a2

r 2 D S 11
3a2

r 2 D sin 2u (43)

and virtually each author suggested his own~rather simple!
derivation of the Kirsch solution.~In some cases the name
Kirsch was not mentioned at all; for example, Howla
@351# ascribed this solution to Southwell, which, in turn, h
been published in@352#. Love @16,18# in a rather detailed
reference list of authors did not mention Kirsch’s nam
either.!

In fact, Kirsch’s paper@350# contains a few Appendice
and in the second one an analytical representation for
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displacements in the Cartesian coordinates of the infi
elastic body~with a reference to the system of equations
displacements given in the textbook of Fo¨ppl @353#! were
provided without any deviation. How Kirsch managed to fi
these rather complicated expressions for displacements
stress~some parts of them contain terms like (x21y2)23 and
(x21y2)24) really remains unclear. But in the new editio
of his very popular that time textbook, August Fo¨ppl ~1854-
1924! gave an expression@127# ~Section 55!

F5
1

4
pH r 222a2 ln r 2

~r 22a2!2

r 2 cos 2uJ (44)

for the stress function which provides the components~43!
of the stresses. Fo¨ppl also wrote down without derivation th
expressions for displacements in the Cartesian coordin
addressing now the paper of Kirsch@350#!

Apparently independently of Fo¨ppl @127#, Velikhov @354#
and Timoshenko@321# in Russia addressed the same Kirsc
problem. While the first of these studies again contained
tially some empirical expressions for the stress compone
in rectangular coordinates, and then by not very clear pro
dure of fitting it, provided the accurate expressions~with an
extensive experimental verification of results and practi
recommendations for distribution of rivets in an elongat
plate!, the second study provided a strict derivation of t
stress function. The method is based upon considerin
rather extensive circular ring plate with nonuniform norm
and tangential loadings over its large circler 5R. These dis-
tributions correspond to simple expressions for stresses
uniformly loaded plate, written in polar coordinates. The s
lution for the stress function of this auxiliary problem h
been obtained in a closed form by means of two terms of
Fourier series. Finally, by lettingR→` in the final expres-
sions, Timoshenko@321# obtained the results of Kirsch@350#
and Föppl @127# for the stresses and the stress function;
also studies by Timoshenko@43,91,355–357# for further
details.

It might seem strange, but all these solutions remain
unnoticed by naval engineers at the beginning of the twe
eth century. In the September 1, 1911, issue ofEngineering
~p 291!, one of the leading applied journals of that time,
editorial note ‘‘The distribution of stress round dec
openings’’ was published with a brief discussion of the so
tion presented by Dr Suyehiro, of the Department of Na
Architecture, Tokyo Imperial University, in which that autho
had been ‘‘congratulated on a distinct addition to the num
of known solutions in the mathematical theory of elasticity
In fact, Suyehiro’s@358# solution was nothing more than
detailed repetition of Kirsch’s solution13.

In Austria a lot of theoretical and experimental studi
devoted to the Kirsch problem were done by Leon@359–
362#, and Leon and Willheim@363#; see also Leon and
Zidlicky @364# and Preuss@365# for further references.
the
12In @347# there was published a short obituary note for Gustav Kirsch~1841–1901!
who, after graduation from the Gewerbeinsitut in Berlin, studied further at Faculte´ des
Sciences~Sorbonne! and the Eidgeno¨ssischen Polytechnikum in Zu¨rich. After defend-
ing his Doktor promovirt degree in 1869 at the philosophical Fakulta¨t of the Universita¨t
Leipzig, he was almost 30 years in Chemnitz as a Professor of the Gewerbeakad
emie.

13Suyehiro@348# did really make a new contribution to the problem by considering
distribution of stresses near a plugged circular hole.
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There were a lot of experimental studies@366–377# by
the English school of photoelasticity founded and headed
Ernest George Coker~1869–1946!, delivered mainly at the
meetings of the Institution of Naval Architects,~see also
Coker and Filon@27# for a detailed review!, that contained
experimental testing data and a confirmation of the theor
cal results for that important problem.

Having left Kiev in 1920 to go first to Zagreb~Yugosla-
via!, and then to the USA, Timoshenko14 published two pa-
pers@355,356# which contain an approximate solution of th
stress concentration problem in a circular ring of inner a
outer diameterd andD, respectively, loaded at the outer sid
by specially distributed loads corresponding to the uniax
tension in an infinite plate with a hole of diameterd. Pro-
vided thatD is large compared withd, he used the elemen
tary theory of the bending of curved bars and came to
conclusion that for 5,D/d,8 the results obtained agre
closely with the exact Kirsch’s solution. WhenD/d,5, the
hole has an essential effect on the distribution of the for
acting at the external boundary of the ring. WhenD/d.8,
the elementary theory of curved bars when the inner radiu
very small in comparison with the outer one provides ins
ficient accuracy. These results partly entered into an ex
sive talk Timoshenko and Dietz@385# delivered at the Spring
Meeting of the American Society of Mechanical Enginee
Milwaukee, May 16–21, 192515.

Both this talk and the analytical Kirsch solution met
severe reaction from Swain@386# who was at that time a
Professor of Civil Engineering at Harvard University a
one of the leading figures in bridge design. He had just p
lished a textbook@387# in which on pp 121–123 he pointe
out that if the result of threefold increase of the stress on
edge of the hole is independent of the size then it will~as-
suming the material to be perfectly homogeneous and e
tic! be the same if the diameter of the hole be diminished
an infinitesimal size. Based upon ‘‘common sense,’’ the
thor took the illigitimate step of equating this infinitesimal
zero, thus abolishing the hole, with the ‘‘result’’ 351, which
he advanced as a proof of some error in the Fo¨ppl @-Kirsch#
solution~he reproduced, however, the main formulas~43! for
stress! and concluded that ‘‘it is unnecessary to give th
derivation.’’ Further the author provided additional arg
ments based upon elementary strength of materials rea
to support his conclusion, and he noted on p 122:

Perhaps in this may be found the fallacy in the
theoretical demonstration, but the writer has not
gone through with it. He has no time for such
illusory mathematical recreations.
w
i
p

e
o

h

by

eti-

e
nd
e
ial

-
the
e

es

s is
f-

en-

rs,

a

d
ub-

the

las-
to
u-
o

ir
u-
sons

In the discussion, Swain@386# had doubted the Kirsch
solution in the following~rather peculiar! words:

It may be worthwhile to examine first this so-
called exact solution. It is based on two assump-
tions. The first, of course, is that there is a hole.
The second is that the width of the plate is infi-
nite. The last assumption means that there is no
hole at all, because a hole of finite diameterd in
a plate of infinite width is the same as a hole of
no diameter in a plate of finite widthw, since

d

infinity
5

0

w

here we have an instance of the character of
some of the demonstrations that are now being
put forward as founded on the theory of elasticity
and as being ‘‘exact.’’ This one, as above stated,
is founded on the assumptions that there is a hole
and that there is no hole; in other words, that a
thing is and is not at the same time. It gives
results for the stress at the edge of the hole which
are independent of the diameter of the hole. Of
course, it is easy for any practical man to see that
such results are absolutely worthless as applied
to any practical case.

and he concluded

In the judgement of the present author, engineer-
ing today is being and has been demoralized by
the abuse of mathematics and of testing. Math-
ematics is an invaluable tool, a necessary tool,
but it is a dangerous tool, because the tool itself
is so interesting that those who are expert in its
use but do not understand the meaning or the
physical limitations of the problems to which it
is applied will misuse the tool.

Timoshenko@388# in the discussion of the talk retorted

In his discussion Professor Swain makes a refer-
ence to his book on the Strength of Materials in
which the problem on stress concentration is dis-
cussed in an elementary way; but by using a
simple beam formula~see page 123, Eq. 13, of
Professor Swain’s book!, it is impossible to dis-
prove the exact solution. The errors in his rea-
soning have been indicated also by another au-
thor ~seeEngineering, July 31, 1925, page 144!,
and the writer hopes that in the next edition of
his book Professor Swain will give a more satis-
factory discussion of such an important question
as stress concentration produced by notches and
holes.

and he concluded with general comments

In conclusion, the writer desires to make some
remarks in general about analytical and experi-
mental methods in modern technical literature.
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14A detailed account of the life and scientific results of that outstanding scholar
produced a considerable input on the development of the many fields of mechan
solids in many countries can be found in a fascinating autobiography by Ste
Prokopovich Timoshenko~1878–1972! @378,379# and in the introductory article in
@380#; see also@381–383#. The book@384# contains not only a list of Timoshenko’s
numerous books and articles, but a list of references about Timoshenko in num
‘‘Who’s whos’’ and reviews on some of his books and articles published in vari
archival and review journals.
15It seems strange, but this remarkable talk has not been reproduced in Timos
@380#.
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The trend of modern industrial development is
more and more toward the free acceptance and
application of the teaching of pure science. This
general tendency can be seen also in the in-
creased use of the mathematical theory of elas-
ticity for solving technical problems. In many
cases of modern design the elementary solutions
obtained by the application of the theory of
strength of materials are insufficient, and re-
course has to be made to the general equations of
the theory of elasticity in order to obtain satisfac-
tory results. All problems on stress concentration
are of this kind. They involve highly localized
stresses and elementary methods like those given
in Professor Swain’s book, pp. 122 and 123, can-
not give a satisfactory solution. Only a complete
analysis of stress distribution, together with ex-
periments such as discussed in the authors’ pa-
per, can be expected to yield sufficient data for a
practical design.

Later, in his William Murray Lecture presented at the Annu
meeting of the Society for Experimental Stress Analysis
New York, December 1953, Timoshenko@344# gave more
mild reminiscences about this discussion. Swain@389# did
not follow Timoshenko’s suggestion about correction in t
new edition of his book. Anyway, the problem of scalin
stated by Swain is really important; see recent paper@390#
for further discussion.

5.3.2 Stress concentration around an elliptical opening
Kolosov @206# ~Section 5! @260,261#, by using his method
based upon the theory of complex variables solved the
problem of stress distribution produced in an in infinite pla
with an elliptic opening caused by uniform uniaxial tensi
at infinity16. He presented explicit expressions and show
that the maximum stress is especially large if the major a
of the ellipse is perpendicular to the direction of tension
the plate. The maximum stress occurs at the opening bo
ary along this axis and increases with an increase of
major axis to the minor axis ratio of the ellipse. Althoug
one of these studies has been published in German in on
the leading mathematical journals of that time, the res
remained unnoticed by a wide circle of practical enginee
This solution has been reproduced in Kolosov@68#. Kolos-
ov’s solution in terms of complex variables has been sim
fied by Muskhelishvili@244,391,392# and later has been re
produced in@37–39#, and here the solution occupies on
two pages of large print. The same problem has been con
ered by Fo¨ppl @393# as an example of his very complicate
method of conformal mapping. The solution occupied fi
large pages of small print that corresponds to about twe
pages of normal academic typesetting; Muskhelishvili@39#
~p 344! has even admitted that he has not succeeded in
derstanding this method.
h
u

ersity

t

al
in

he
g

2D
te
n
ed
xis
in
nd-
the
h
e of
lts
rs.

li-
-
ly
sid-
d
ve
nty

un-

Independently of Kolosov, Inglis17 addressed@395# the
same problem in a talk read at the Spring Meeting of
54th Session of the Institution of Naval Architects, Mar
14, 1913. In the first part of his talk, he presented a summ
of the more important results and conclusions, with a lot
instructive figures, while in the second part the mathemat
treatment of the problem in the elliptical coordinates
briefly outlined. This was one of the comparatively few a
tempts that have been made at that time to adapt the m
ematical theory of elasticity to the practical problems e
countered in naval architecture. Inglis mentioned that
paper is an endeavor to answer questions concerning
stresses around a crack stated in a lecture of Professor
kinson read before the Sheffield Society of Engineers
Metallurgists in January 1910.

Inglis @395# established that for an elliptical hole in a pla
with the majorOA and minorOB semi-axes being of length
a and b, respectively, subjected to a tensile stressR at the
direction perpendicular to the major semi-axisOA, if the
material is nowhere strained beyond its elastic limit, a ten
stress occurs at the pointA with the valueR(112a/b), and
a compression stress at the pointB of magnitudeR. On
exploring the plate along the major axis, the tensile str
rapidly decreases, and at a short distance attains app
mately its average valueR. Advancing along the minor axis
the compression stress soon changes to a small tensile s
and this gradually tends to zero.

If the major axis of the ellipse makes an anglea with the
direction of the pull, the tensile stress at the ends of this a
is R@a/b2(11a/b)cos 2a#. For such a case, however, th
greatest tension does not occur exactly at these ends, an
value given may be considerably exceeded. The genera
pression for tangential tensile stressQ along the edge of the
hole ~with an angleu from a positive direction of the majo
axis! reads as

Q5R
12m212m cos 2a22 cos 2~u2a!

122m cos 2u1m2 (45)

with m5(a2b)/(a1b).
Inglis @395# extended these results to a few cases imp

tant for shipbuilding, namely the case of a square hole w
rounded corners, the case of a crack starting from the edg
a plate, and the case of a notch which is not necessa
elliptic in form. Viewing a crack as the limiting case of th

ap-
lts

17Sir Charles Edward Inglis~1875–1952! was educated at King’s College, Cambridg
where he gained a first-class mechanical science Tripos in 1898. In 1901, he joine
teaching staff of the Engineering Department of Cambridge University. During Wo
War I, Inglis was able to make an immediate and valuable contribution to milit
engineering and had devised a light portable tubular bridge, which was accept
standard equipment. For this work he received the OBE. On being demobilized,
the rank of Major, he returned to Cambridge University and in 1919 he was appoi
Professor of Engineering—or Professor of Mechanical Sciences, as he was
known—a position in which he served until his retirement twenty-five years later.
great services to the cause of engineering education~Inglis was for a long time Head of
the Department of Engineering at Cambridge University! were recognized by the
Knighthood which he received in the Birthday Honours of 1945. Education at its b
Inglis said, should aim at something much deeper than the memorization of a nu
of facts and formulas and be more lasting. The good of education was the pow
reasoning, and the habit of mind which remained when all efforts of memorization
faded into oblivon. A short account of Inglis’ life with the references to some of
papers devoted to mathematics in relation to mechanical engineering and univ
training of engineers can be found in@394# and in obituary notices published inEngi-
neering, 1952,173, 528, andThe Engineer, 1952,193, 570 where a nice pencil portrai
was supplied.
16In fact, this problem was considered by a similar approach in a draft note by C
lygin @246# written around 1900. Chaplygin, however, did not publish these res
during his life.
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elliptical hole in which the minor axis is vanishingly sma
a@b, he stated that the stress at the end of the crack
arbitrary form is proportional to the square root of the leng
of the crack, and inversely proportional to its radius of c
vature. ~This result was highly appreciated by Hopkins
during subsequent discussion.! In answering the questions i
the discussion which followed, Inglis admitted that ‘‘co
cerning the direction in which a crack will spread, theory
think, tells us little or nothing.’’

Inglis’s solution in elliptical coordinates was obtaine
anew by Po¨schl @396# and repeated with full details in
@27,43,45,46#. Experimental measurements@375,397# based
upon the photoelasticity method provided good agreem
with Inglis’s theoretical expressions for various types
openings and cracks.

5.3.3 Halfplane and layer with a circular opening
The solution for a semi-infinite plate with one circular ho
subjected to the presence of traction either at the edge o
hole or at infinity was obtained by Jeffery@2# using bipolar
coordinates. Gutman@398# applied this solution to calculat
stress distribution around a tunnel. Mindlin@399,400# found
a small mistake in the expression for stresses and prov
the corrected solution. The same elasticity problem and
mathematically similar problem of a slow creeping flow of
viscous fluid over a halfplane with a circular rigid cylind
~either stationary or uniformly rotating! were independently
considered in bipolar coordinates and thoroughly discus
in the dissertation by Krettner@401# and papers of his advise
Müller @402,403#. Apparently, due to the conditions of wa
these studies which contained a lot of numerical data c
cerning distributions of stresses, velocity field and forc
and torque acting at the rigid cylinder and some other in
esting results went almost unnoticed.

Howland@351# considered the more complicated proble
of an elastic infinite layer bounded by two parallel edgesy
56b that contains a circular hole withr 5a midway be-
tween the edges and subjected to tensions at both en
infinity. A solution of the problem was sought by the meth
of successive approximations that is analogous to the a
nating process of Schwarz. The biharmonic stress functiox
was sought as

x5x081x01x11x21 . . . (46)

where the terms of the series are each, separately, solu
of the biharmonic equation and have, in addition, the follo
ing properties:x08 gives the stresses at infinity and none
the edgesy56b; x081x0 satisfies the conditions on the rim
r 5a of the hole and at infinity, but not on the edges, ie, it
the solution for an infinite plane; the termx1 cancels the
stresses due tox0 on the edgesy56b, but introduces
stresses on the rim of the hole;x2 cancels these, but agai
produces stresses on the edges, and so on.

If the series is truncated afterx2r it will give a value ofx
satisfying all the conditions exactly except those on
edgesy56b. If the residual tractions due tox2r are small
enough, this value ofx is adequate for practical purpose
Similarly, if the series is truncated afterx2r 11 the resulting
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value ofx satisfies all the conditions except those at the r
of the holer 5a. If the additional tractions due tox2r 11 are
small enough, the solution is again sufficient in practi
Howland@351# established that ifl,0.5, withl5a/b, it is
never necessary to proceed beyondx8 , while if l,0.25 it is
possible to stop atx2 . Values l.0.5 would lead to very
laborious computations18.

Howland and Knight@404# modified this solution to find
the stream function corresponding to the slow rotation o
rigid cylinder placed symmetrically between parallel u
moved walls in a very viscous flow. In comparison to
infinite plane the influence of walls produces a considera
increase in the torque couple to maintain the same ang
velocity: for l50.5 it increases by 25%.

5.4 Eccentric cylinders

A solution of the 2D biharmonic problem in the domain i
side two eccentric cylinders with coincident axes traditio
ally attracts great interest in engineering. The question
slow motion of an incompressible viscous fluid between t
uniformly rotating cylinders is a key question in the field
tribology when considering the hydrodynamic theory
fluid-film lubrication. The question of what happens in a th
layer between a journal and bearing has a longstanding
tory. Considerable input for this problem was made in t
period 1883–1886 when independently Nikolai Pavlovi
Petrov ~1836–1920! @405# and Osborn Reynolds~1842–
1912! @406# suggested the hydrodynamical theory of lubric
tion. Petrov was mainly interested in experimental verific
tion of the hypothesis of application of the Navier-Stok
equations and especially the non-slip conditions at the r
boundaries for such type of flow. Therefore, he used an
sumption of coincidence of the axis of journal and bear
considering in fact an axisymmetric problem. He provided
engineering formula for the dependence of the friction fo
upon viscosity of fluid~and also the external friction! and
angular velocity. Joukovskii@407# pointed out the necessit
of an eccentricity between axes of the journal and bearin
order to get a supporting force. This problem was thoroug
considered by Reynolds@406# and was first presented in tw
unpublished talks before the 44th meeting of the British A
sociation for the Advancement of Science, Montre
Canada, on August 28 and September 2, 1884 with Sto
Rayleigh, and W Thomson among the listeners; see@408# for
full details. Reynolds established the main equilibrium eq
tions for pressure and torque distribution along the circle a
performed a huge approximate integration in terms of trig
nometric expansion. He expressed the Fourier coefficient
the sine and cosine terms in the form of Taylor series
dimensionless eccentricityc up to c11. ~Later Petrov@409#
extended these expressions up to the termsc29, and he also
pointed out some small mistakes in the previous ones.!

Arnold Sommerfeld~1868–1951! @137# mentioned this

18It is interesting to read now an acknowledgment in the article, ‘‘In making the c
culations we have had the use of two calculating machines. One of these was ob
with a grant from the Government Grant Committee of the Royal Society, to whom
thanks are due. We also gratefully acknowledge the assistance of the Research
mittee of University College, Southampton, who have made possible the hire
second machine.’’
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mammoth and quite unnecessary approximate integra
and developed an accurate theory based upon the Stokes
approximation. He established the biharmonic Eq.~9! for the
stream function (V in his notation!. He also pointed out the
analogy with an elastic problem of bending of a clamp
elastic eccentric circular plate~in fact, at the inner circle a
constant angle of inclination should be given! and mentioned
that the solution of this problem had not been obtained
and it could lead to very complicated expressions. Ba
upon physical reasonings for a velocity field, in a thin lay
between a journal and bearing, Sommerfeld neglected s
terms in the governing biharmonic Eq.~9! ~it is worth noting
that such an approach of neglection of terms in the govern
linear Stokes flow equation has recently been employed
Hills and Moffatt @410# for the much more complicated cas
of the 3D flow in a wedge! and obtained a simple close
form expression

V5
a

2
r2 ln r1~b22a!

r2

4
1c ln r1d (47)

with r being the radial coordinate, anda, b, c, d some~later
defined! functions of a circumferential anglef. Based upon
this approximate solution Sommerfeld@137# discussed some
examples and defined all necessary mechanical quan
important in practical applications of fluid-film lubrication
Anthony GH Michell~1870–1959! @411# extended Sommer
feld’s solution for two inclined planes to the case when o
plane has a finite width. Michell got a patent on this prac
cally important case that appeared to be very successfu

The complete solution of the slow journal bearing flo
2D biharmonic problem for arbitrary thickness of layer a
radii of cylinders was constructed by Nikolai Egorovic
Joukovskii ~1847–1921! and Sergei Alexeevich Chaplygi
~1869–1942! in their joint ~a rather rare case for scientists
that time! paper@412#19. Since then this benchmark paper h
been reprinted 10 times—probably, a record for any sci
tific publication! ~Mercalov @414# provided the detailed ex
position of this article in a review paper for Russian tech
cal encyclopedia20.! In this paper which was based upo
previous studies, Joukovskii@416# and Chaplygin@417#, the
authors made use of Neumann’s bipolar coordinates
which one family of coordinate lines gives two eccent
circles—the boundaries of the cylinders. After a rather in
nious transformation, the stream functionW was obtained
explicitly ~here the uniform distribution of velocities at th
boundaries is essential!. The authors obtained the analytic
expressions for the force and momentum of interaction
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tween the journal and the bearing. In conclusion there w
shown the derivation from these formulas the approxim
Sommerfeld expression for a thin layer.

In spite of an extensive German summary published
Jahrbuch u¨ber die Fortschritte der Mathematik, this study
went almost unnoticed in countries other than Russia~or
USSR!. For example, Mu¨ller @402,403# constructed anew the
solution in the bipolar coordinates and added a lot of figu
showing the distribution of streamlines. Independently, W
nier @418# and Ballal and Rivlin@419# solved the same prob
lem. This journal bearing flow served as one of the fi
examples, Aref and Balchandar@420#, Chaiken, Chevray, Ta-
bor, and Tan@421#, of the chaotic advection paradigm i
Lagrangian turbulence.

A similar elastic problem about stress distribution in
region enclosed by eccentric cylinders~and a limiting case of
a halfplane with a circular hole! was addressed in sever
studies, including Jeffery@2#, Chaplygin and Arzhannikov
@422#, Gutman@398#, Mindlin @399,400#, Müller @320#, and
Ufliand @423#. All these authors used the bipolar coordinat
and constructed the explicit solution. In particular, it w
analytically proven that under uniform normal pressure
plied at either outer or inner cylinder boundaries the ma
mum stresses will occur at the boundary of the inner cylin
at the thinnest part, if the eccentricity is not too high~other-
wise, the maximum appears at the outer boundary!.

5.5 Infinite wedge

Venske@180# was the first who considered the solution of t
biharmonic problem in a sector wedge domain of angleap
defined in the polar coordinates (r ,f) for 0<r ,`,
21

2ap<f<1
2ap. Representing the biharmonic function

the form v5U1r 2V, with U and V being harmonic func-
tions, and seeking the solution forU andV as

U5E
0

`

$~amemf1am8 e2mf!cos~m ln r !

1~bmemf1bm8 e2mf!sin~m ln r !%dm (48)

and a similar expression forV with unknown coefficients
cm , . . . ,dm8 , Venske, in fact, employed the Mellin transfo
mation. He did not, however, present any further details c
cerning determination of the unknown coefficients. Vens
only wrote a final explicit expression for the ‘‘second
Green’s functionv(r ,f,r 0 ,f0) in such a domain withinte-
ger a5n51,2 ~a half-plane or a plane cut along a sem
infinite straight line! when a concentrated force is applied
some inner point.

Maurice Lévy ~1838–1910! @424# considered the problem
of elastic stress distribution in a wedge 0<r ,`, 0<u<b
loaded by uniform or linear normal forces at the sideu50 ~or
y-axis in the Cartesian coordinates!. The representation fo
the ~not mentioned explicitly! biharmonic Airy function was
chosen in the form of polynomials of the second or th
degrees inx and y. The expressions for components of th
stress tensor in rectangular coordinates look rather sim
and Lévy suggested to use this solution in the analysis
stresses in masonry dams.~Galerkin@425# used such a solu
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19Amazingly, this article was first published in 1904 as a separate issue for the X
volume of the journalTrudy Otdeleniya Fizicheskikh Nauk Imperatorskogo Obs
chestva Lyubitelei Estestvoznaniya, Antropologii i Etnographii~see a photocopy of the
title page in@413#, p 45!, and it was really published in the XIIIth volume of tha
journal which appeared only in 1906.
20Krylov @415# pointed out: ‘‘Many of Joukovskii’s works had a practical importanc
if he, like Lord Kelvin, had developed them up to practical applications and had ta
out patents, he would also have had his own yacht, villas, and castles. It’s enou
mention his theory of lubrication—it contains all of Michell’s journal bearing theo
which had brought millions to Michell. Joukovskii never patented anything and
provided all his discoveries for common usage, seeing science not as a mean o
sonal enrichment, but of increasing the knowledge of mankind.’’
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tion for a more general case of a truncated wedge w
studying the problem of stresses in dams and retaining w
with trapezoidal profiles.! Later, these solutions were ob
tained independently by Fillunger@426#. This author noticed,
however, that for the case of uniform loading the stress co
ponents contain in the denominator the term tanb2b which
may turn into zero for some valueb0.p.

Michell @179# considered two particular cases of compre
sion and flexure of a wedge 0<r ,`, 2a<u<a by concen-
trated forcesP or Q applied at the apex of the wedge in th
direction of the axisu50 and in a perpendicular direction
respectively. By usage of his general solution@176# of the
biharmonic Eq.~7! in polar coordinates, Michell chose th
particular expressions for the stress functions

x5Aru sinu, or x5Bru cosu (49)

for the two cases, respectively. For these solutions, only
radial stressess r are nonzero, and they increase indefinite
asr 21 whenr→0. The constantsA andB were defined from
the conditions of equilibrium

E
2a

a

s r cosurdu5P, or E
2a

a

s r sinurdu5Q (50)

for any finite portion 0<r<a, 2a<u<a of the wedge. For
the particular casea51

2p, the normal forceP provides the
solution for a halfplane already obtained by Flama
@427,428#. It is worth noting that same solutions were ind
pendently obtained by Mesnager@204#, and since then thes
solutions have been traditionally included in many textboo
on the theory of elasticity, see,eg, Love @16–18#, Timosh-
enko@43,91#, Papkovich@80#, and Lur’e@35#, to name only a
few.

Action of concentrated forces at some points of the si
of the wedge were considered in detail by Wieghardt@429# in
a far less known paper. This paper was published in Germ
in a journal which later ceased publication and, therefore
was forgotten and did not exert any long-living impact in t
theory of elasticity and fracture mechanics.~Its recent En-
glish translation of 1995 deserves, in our opinion, spe
attention.! Wieghardt @429# used the so-calledSommerfeld
transformationin order to use the Flamant@427# solution.
Several expressions are presented to solve the plane s
problem in elastic wedge shaped bodies under concentr
forces applied at its sides. Wieghardt also considered a
angles of the wedge in order to apply his theory to Bac
problem of roller bearing case fracture, for which he deriv
the first mixed-mode fracture criterion. He described
structure of the stress field for any wedge-type notch, incl
ing the crack as a special case of a plane with a semi-infi
straight cut. The solutions presented are associated with
splitting and cracking of elastic bodies. Wieghardt@429# cor-
rectly stated that ‘‘knowledge of the theoretical stress dis
bution does not allow one to evaluate crack initiation up
exceeding of the loading with certainty; and it is not at
possible to determine the path of further cracking.’’ Final
the differences between the developments presented in
study and the partially incorrect approaches by Venske@180#
regarding wedge domains are emphasized.
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Carothers@430# considered some typical cases of wed
loading bearing in mind the discussion of the technica
important problem of determining the stress in a maso
dam ~see,@18#, Section 151 or@91#, Section 36, for addi-
tional references!. Among others he briefly mentioned an e
ementary solution for an infinite wedge loaded by a conc
trated coupleM at the apex with the stress functionx

x52
M

2

sin 2u22u cos 2a

sin 2a22a cos 2a
(51)

and stresses

s r5
2M

r 2

sin 2u

sin 2a22a cos 2a
, su50

t ru5
M

r 2

cos 2u2cos 2a

sin 2a22a cos 2a
(52)

These stresses satisfy the conditions of equilibrium

E
2a

a

~s r cosu2t ru sinu! r du50

E
2a

a

~s r sinu1t ru cosu! r du50

E
2a

a

t rur 2du5M (53)

for any finite portion 0<r<a, 2a<u<a of the wedge.
However, Fillunger@431# in a completely forgotten pape

constructed exactly the same solution! He observed that
the specific acute angle of the wedge 2a ~or 2F in his nota-
tion! equal to 2F5257°278139, the root of the equation 2F
5tan 2F, the denominator in~51! becomes zero and the so
lution in the form ~52! does not exist. Having pointed ou
this, Fillunger did not discuss in detail this paradoxical r
sult.

Later, all these elementary solutions for concentra
forces and couples at the appex were repeated by Inglis@432#
who wrote that ‘‘the object of this paper is to populariz
certain stress distributions which, in the opinion of the a
thor, ought to be better known than they are at prese
Remarkably, neither Carothers@430# nor Inglis @432# ~and
later Miura@433#, Coker and Filon@27#, Bay @434#, and Pa-
pkovich @80# who also described in detail these solution!
have noticed the specific acute wedge angle 2F when for-
mally the solution for the concentrated couple does not ex

Sternberg and Koiter@435# called attention to the para
doxical result in the Carothers solution for a specific an
2a* . ~They did not mention@431# at all.! Their remarkable
paper on the so-called ‘‘Carothers paradox’’~the name ‘‘Fil-
lunger paradox’’ seems far more appropriate! started an in-
teresting discussion concerning the physical meaning o
concentrated couple applied at the apex of a wedge. T
couple can be considered either~Sternberg and Koiter@435#,
Barenblatt@436#, Harrington and Ting@437#! as a limit as
r 0→0 of loading by antisymmetric normal forcesp(r ) on a
small lateral part 0<r<r 0 provided that
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E
0

r 0
p~r !dr 50, 2E

0

r 0
p~r !rdr 5M (54)

or ~Neuber@438#! as a limit withr 0→0 of a truncated wedge
r 0<r ,`, 2a<u<a with free lateral sides and applied ta
gential force~or displacement! producing the coupleM . In
the first case, it appears that the solution for the wedge a
2a,2a* tends withr 0→0 to the Carothers-Inglis solutio
~51!, while for the wedge angle 2a>2a* the solution cru-
cially depends upon the distribution ofp(r ) even whenr 0

→0 and does not turn into the elementary solution. Here
have an example of the self-similar solution of the ‘‘secon
kind according to Barenblatt@436#. Later, this paradox ha
been addressed anew@439–445#.

Apparently Brahtz@446–448# being engaged in the math
ematical analysys of stresses in the Grand Coulee Dam
the first author who considered by means of the Mellin tra
form the general case of loading of a wedge at its sides.
presented the explicit solution for the stress function a
provided concrete results for the wedge with the angle 3p/2
loaded by a concentrated force. He used the residues me
to calculate the integrals in the Mellin transforms. Indepe
dently, Shepherd@449#, Abramov@450#, and Figurnov@451#
considered by the same approach the general case of loa
of a wedge at its sides. The latter author presented the
plicit solution for the stress function, but he did not provi
any concrete results. All these papers went almost unnot
by the successors, besides@452,453#, see also@40,454#.
~While the third author published his results in a conferen
proceedings, in Russian, this situation seems more stra
for the first two authors who published their studies in we
established American and British journals.! Only Papkovich
@80# repeated briefly the main lines of the Abramov’s so
tion and suggested as problems~!! in his course to conside
ten typical loads, mentioning a possible connection with
practical problem of breaking of ice by an ice-breaker. Lu
and Brachkovskii@455#21 developed a similar solution an
considered the case of a concentrated normal force applie
one side; they applied the residue method to calculate
integrals. The same approach based upon the Mellin tr
form has been developed independently by Sakharov@456#
and Tranter@457#; later it was repeated with full detail in th
books by Sneddon@458#, Ufliand @94#, Lur’e @35#, and
Tranter@459#. The detailed experimental study of a conce
trated force acting at the apex of the wedge was performe
@460,461#; see also Coker and Filon@27# for further details.

Woinowsky-Krieger@462,463# constructed an analytica
solution in the form of integrals for a clamped plate 0<r
,`, 0<u<2a loaded by a concentrated force in some inn
point lying on the diagonalu5a. He provided results for
bending moments and shearing forces~reactions! along
clamped sides for typical values ofa51

4p,1
2p,p. He pre-

sented a figure showing that the reaction~which is propor-

21In fact, this paper had been published in 1946 because of World War II, but
second author was killed in 1941 in the battle for Leningrad.
-

gle

we
d’’

-
was
s-
He
nd

thod
n-

ding
ex-
e
ced

ce
nge
ll-

u-

a
’e

d at
the
ns-

n-
d in

l

er

tional to the third derivative of the deflection! for a quarter
plane~a51

4p! has oscillatory behavior near the apex, but
did not discuss this result at all.

The creeping steady flow of a very viscous fluid in
wedge domain bounded by the wallsu50, u5a with a uni-
form velocityV sliding motion of the wallu50, was consid-
ered independently by Goodier@145,147# and Taylor
@464,465#. The solution for the stream functionc reads,
@466#

c5Ur f ~u! (55)

with

f ~u!5
~a2sina cosa!u sinu1sin2 au cosu2a2 sinu

a22sin2 a

Taylor @465# ~p 314!, in particular, noticed:

The palette knives used by artists for removing
paint from their palettes are very flexible scrap-
ers. They can therefore only be used whena is
nearly 180°. In fact artists instinctively hold their
palette knives in this position.

Taylor also pointed out the fact of a logarithmic singular
of the shear stress along the wall needed to support the
scribed uniform finite velocity of the wall; this prediction i
clearly unrealistic. Presumably, one of the asumptions of
creeping flow breaks down near the vicinity of a sharp a
gle. More general cases of the nonuniform tangential vel
ity applied at side walls were considered by Moffatt@467#,
Jeffrey and Sherwood@468#, and Krasnopolskaya@469#.

There is another interesting aspect of the biharmo
problem in a wedge domain which deserves special atten
from both mathematical and engineering points of view.
concerns the nature of the homogeneous biharmonic func
in a wedge domain, say, a deflectionw around a plate corne
having two clamped edges. Ritz@470# made the remark tha
it may not be possible to develop a solution of the govern
biharmonic equation into a Taylor series at the corner po
Rayleigh@471# argued that all partial derivatives of the pla
deflection must vanish at the corner point. He erroneou
concluded that the deflection at a distancer from the corner
diminishes more rapidly than any power ofr . In spite of a
short note by Na´dai @472#, who pointed out the possibility to
investigate the question by contructing a solution for a sic
form clamped plate in bipolar coordinates,~such a solution
has been constructed by Woinowsky-Krieger@473#! only
Dean and Montagnon@474# pointed out the possibility tha
the biharmonic function may vary as a fractional power or
had appeared to be overlooked, and in such a case pa
derivatives beyond a certain order will be infinite atr 50.
These authors discovered that in an infinite wedge dom
filled with a very viscous fluid with fixed wallsu50 and
u5a, there can exist a non-zero stream functionc(r ,u)
5r n11f n(u), with the values ofn satisfying the equation

sinna56n sina (56)

where the plus or minus sign corresponds to two differ
types of symmetry with respect to the diagonal lineu51

2a.
the
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The authors found that for values ofa less than 146.3° the
values ofn satisfying Eq.~56! must be complex, but they did
not discuss the structure of the velocity field near the orig
Moffatt @475# discovered that these complex roots lead to
infinite eddy structure~later named ‘‘Moffatt eddies’’! near
the apex of the wedge. These eddies were visualized
Taneda@476#. Subsequent developments which were summ
rized in @468,477,478# provide an understanding of the com
plicated structure of the streamline patterns for various i
nite domains with corners.

However, it should be pointed out that exactly the sa
results concerning the eigenfunctions in an infinite ela
wedge 0<r ,`, a<u<a, with its sides u56a free of
stresses were first obtained by Brahtz@448#. He used the
expression for a stress functionF(r ,u)5r b11cb(u), where
the ‘‘corner function’’ cb(u) satisfies the differentia
equation

cb8-1@~b11!21~b21!2#cb91~b221!2cb50 (57)

and boundary conditionscb(6a)5cb8 (6a)50. For the ei-
genvalueb one obtains two equations~56! with changesn to
b and a to 2a. It was proven that ifaÞ2/p and aÞp the
roots b of that equation are complex; approximate expr
sions for the roots were given. Brahtz@448# used these cor
ner functions to calculate the stress distribution in the Gr
Coulee Dam.

The same eigenfunctions were also obtained by To¨lke
@479# who provided extensive tables with the complex eige
values. Considering the problem for a finite wedge he u
the method of least squares to define the coefficients
eigenfunctions expansion. Apparently, due to the politi
situation of that time, this remarkable study, in spite of
detailed German review, has been completely overlook
Sobrero@480# also obtained the same Eq.~56! considering
the problem of the elastic stress distribution in a wedge w
angle a. He stated, however, that if 270°<a,360°, the
stresses vary asr 20.5 without a sensible error~the author
claimed that these theoretical results were fully confirmed
photoelastic experiments!. Being published in a rather un
known journal this paper also went completely unnotic
And only Williams was lucky enough, for his short talk@481#
has been recognized and widely cited.

5.6 Rectangle

The overriding importance of a clamped rectangular ela
plate and a very long elastic rectangular prism or thin sh
subjected to surface normal loadings only at their sides
crucial elements in structural mechanics and shipbuilding
given rise to a large number of works where the question
treated by different approaches and, in fact, these probl
are connected with some important findings in mathema
as well as in engineering. The history of the biharmo
problem for the bending of a clamped rectangular plate
for the stretching of an elastic rectangle is rather fascinat
Love @6# addressed this problem as ‘‘one of the classi
problems in the Theory of Elasticity.’’

For a thin elastic plate the normal deflectionw satisfies
the nonhomogeneous biharmonic Eq.~3!. In various engi-
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neering structures~bulkheads of a ship, for example! the
edges of the plate are firmly clamped, or attached to an
irons which allow no side motions. The deflectionw must
vanish at the edge; and, in addition, the tangent plane
every point of the edge must remain fixed when the plate
bent. As a matter of practice it is extremely difficult to clam
a plate efficiently. There is nearly always a small inclinati
at the edges of the tangent plate to the originalxy-plane. In
careful experiments@9,10,482# this may be of the order o
magnitude 18. Moreover, the attachment structure at t
edges may be stiff, but cannot be completely rigid. But
the theoretical reasoning it is typical to disregard this a
think of the plate as perfectly clamped.

On the other hand, in the theory of elasticity the determ
nation of stresses in an infinite rectangular prism with
surface loads being the same along the generating line o
prism ~the state of plane strain! or thin sheet or plate unde
thrust in its own plane~the state of plane stress! reduces to
the solution of the 2D biharmonic Eq.~7! for the Airy stress
function. The boundary conditions corresponding to the s
tem of self-equilibrating normal and shear forces applied
the rectangular boundary can also be written in terms of
prescribed values of the stress functionx and its normal de-
rivative at the contour. Discontinuous and concentra
forces are also admissible, and the problem of a rectang
beam supported at two places and bent by a weightW ap-
plied between them is the benchmark one@6,132#.

An important consideration in the formulation of th
boundary conditions consists of the satisfaction or violat
of the conditions of symmetry of the shear stresses at
corner points. In the framework of continuum mechanics
boundary is considered to be a surface that is different fr
the rest of body, and, therefore, it is possible to prescribe
values of forces on it. Some misunderstanding of this
cumstance may lead to both the paradoxial conclusion
Winslow @483# that ‘‘stress solutions satisfying all bounda
conditions will be in general impossible’’ and to addition
relations@484# between stresses at the corner points.

The 2D boundary problem for a rectangle represents
particular case of the famous Lame´ problem of the equilib-
rium of an elastic parallelepiped under any system of norm
forces on its sides. Lame´ @129# considered the 3D problem t
be as complicated as the famous problem of three-bodie
celestial mechanics: ‘‘C’est une sorte d’e´nigme aussi digne
d’exercer la sagacite´ des analystes que le fameux proble`me
des trois corps de la Me´canique ce´leste.’’ ~It seems now that
he has underestimated the difficulty of the second one.! Ap-
parently under Lame´’s influence the competition for the
Grand Prix de Mathe´matiquesof the French Academy o
Science of Paris for a solution of this problem was a
nounced in 1846 for the year 1848. According to the a
nouncement published inComptes rendus des se´ances de
l’Académie des Sciences184622 768–769, the condition for
the award was:

Trouver les inte´grales des e´quations de l’e´quili-
bre intérieur d’un corps solide e´lastique et ho-
mogène dont toutes les dimensions sont finies,
par exemple d’un paralle´lépipède ou d’un cylin-
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dre droit, en supposant connues les pressions ou
tractions inégales exerce´es aux diffe´rents points
de sa surface.

Le prix consistera en une me´daille d’or de la
valeur detroix mille francs.

Le Comission charge´e de proposer le sujet du
prix était compose´e de MM Arago, Cauchy,
Lamé, Sturm, Liouville rapporteur.

There were no entries and this topic was suggested~along
with the last Fermat theorem!! then two times for the year
1853 and 1857, and had been initially prolonged for the y
1861, but already in 1858 it was changed into another qu
tion, seeComptes rendus des se´ances de l’Acade´mie des Sci-
ences, 1858,46, 301. The only entrant for this long compe
tition was a memoir‘‘De l’É quilibre intérieur d’un corps
solide, élastique, et homoge`ne’’ marked with motto ‘‘Obvia
conspicimus, nubem pellente Mathesi’’ submitted by Willia
John Macquorn Rankine~1820–1872! for the year 1853~its
main results were published in@485,486#! but it did not re-
ceive an award; see Todhunter and Pearson@22# ~Section
454!.

An excellent example of an engineering approach to
problem of bending of a narrow rectangle resting on t
supports under a concentrated force applied at the middl
the upper side was given by Stokes in 1891. He took
much interest in Carus Wilson’s@487# photoelastic experi-
mental result of two dark spots existing in the glass beam
which there is no double reflection~indicating the so-called
neutral points or, equivalently, places of equal norm
stresses! that he developed an approximate theory publish
as a letter supplementary to@487# to account for it. By means
of this theory Stokes provided a formula and found the c
rect positions of the neutral points which agreed comple
with Wilson’s observations.

The clamped rectangular plate was not only an import
test problem for any new method, but, in many cases, n
engineering methods were invented to solve exactly
problem. For example, Nielsen@488#, Marcus@489#, Bortsch
@490#, Bay @491–495#, Varvak @496#, Conway, Chow and
Morgan @497#, and Beyer@498# applied the finite-difference
method specially for the problems of the clamped rectan
lar plate and the finite elastic rectangle.~In fact, Richardson
@499# was the first author who developed the finite-differen
method to solve the biharmonic problem in domains cons
ing of several rectangles with application to a masonry da!
Pan and Acrivos@500# applied this method to the stead
Stokes flow in a rectangular cavity. Similarly, the paper
Biezeno and Koch@501# contains an approach when th
clamped rectangular plate is divided into parts, with the c
responding approximation of the surface loading. The rel
ation method developed by Southwell@502,503# for various
problems of the theory of elasticity was also applied
@504,505# to study the biharmonic problem for a rectangle

Below we describe several major approaches to solve
biharmonic problem in a rectangle and to obtain reliable
sults concerning important mechanical characteristics
structural elements. An excellent survey of several appro
ear
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mate methods for the solution of rectangular plate bend
problems is given by Leissa, Clausen, Hulbert, and Hop
@506#.

5.6.1 Grashof’s empirical formula
for a uniformly loaded plate
Apparently Franz Grashof~1826–1893! @507# ~Section 234!
was the first author who obtained an approximate solut
for a practically important case of a rectangular plateuxu
<a, uyu<b bent by a uniform normal pressurep0 applied to
its surface. He considered the plate as a collection of elem
tary clamped beams parallel to both axes; at any given p
the intersecting beams must deflect the same amount
using the elementary solution for a clamped beam Gras
suggested an approximate solution

wG~x,y!5
p0

2Eh3

~a22x2!2~b22y2!2

f ~a,b!
(58)

with some functionf (a,b) yet to be determined. He choos
the expressionf (a,b)5(an1bn)4/n with integern that pro-
vided the correct asymptotic behavior of deflection whilea
→` or b→`. By comparison with the solution for a circu
lar plate, and not very rigorous reasons, he suggested ta
the valuen54. Due to the assumption of the clamped bea
analogy the expressionw is independent ofn. ~Love @18# in
Section 314 gives, however, an expression which diff
from ~58! by factor 12n2 in the nominator.! This empirical,
or rather hypothetical, solution satisfies the boundary con
tions exactly, but does not satisfy Eq.~3!. Grashof’s solution
was constantly addressed to in the old textbooks on app
mechanics and the theory of elasticity,@19,508–515#.

Formula~58! gives relatively good results, considering i
empirical nature. According to the experimental data@9,10#
Grashof’s rule for the deflection of a rectangular plate w
sides 4 inches and 2 inches gave a deflection at the cent
0.0437 inch, which approximates reasonably closely to t
found, viz, 0.0410 inch. This rule for the stress at the ends
a short diameter of the plate gave, however, a stress of 5
in excess of that found from the experiments of Laws a
Allen @516#. The error in center deflectionwmax for a square
plate was about 13%, while the error in the maximum ed
moment was about 23%. The errors are less for rectang
plates; see@517# for further details.

The expressions for the maximum deflection~which oc-
curs at the center of the plate! and stress~which occurs at the
middle of a long side! were often used by practical nava
architects Read@518#, Yates@8#, and Elgar@519# at the end
of nineteenth century. Bryan@328#, probably, was the first
who stressed the necessity to use more accurate mathem
when solving a specific engineering problem. He mention
briefly that the case of a rectangular plate with clamped e
seems to be unsolvable~except with the help of elliptical
functions, which are quite complicated for all practical pu
poses!, but he did not enter into any further explanations.

Already in the beginning of the 20th century Grasho
formula appeared in doubt in comparison with experime
of Bach@520#. Based upon these and his own experiment
German shipbuilder Felix Pietzker suggested@521# a new
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formula for maximum deflection and stresses with some e
pirical coefficients given by figures and tables. Pietzke
short book was rather popular among naval architects, fo
had a second edition as well as Russian@522# and English
@523# translations. Pietzker pointed out that in the case
rectangles with the side ratioa/b below 0.33, the maximum
stress remains almost the same as though the short sid
not exist.~A review paper by Lamble and Shing@12# con-
tains figures showing comparative data of various
proaches for these coefficients depending on the ratioa/b.)
Pietzker@523# ~p 42! also made a characteristic remark th
‘‘the stress in the plate corners is uncertain for the ti
being.’’

5.6.2 Polynomial and Fourier series solutions
In structural mechanics there is a constant interest in ana
ing the stress and displacements in a~long! rectangular strip
0<x< l , uyu<c in order to compare results with an eleme
tary beam theory.

Mesnager@203# suggested using the biharmonic polyn
mials of various integer orders.~Later Zweiling @214# gave
an extensive listing of biharmonic polynomials.! These ex-
pressions satisfy identically the homogeneous biharmo
Eq. ~7! and have some arbitrary constants. By choosing th
constants appropriately, it appeared possible to satisfy
actly some simple boundary conditions over long sidesy5
6c, and by means of the Saint-Venant principle to sati
integrally the boundary conditions over the short sides
special attention has been paid to the benchmark problem
the so-called ‘‘simply supported’’ finite strip loaded either b
uniform normal pressure over its top sidey5c or by its own
weight. ~Already Airy @166–168# had considered this prob
lem but his polynomials were not biharmonic ones.! The
solution in terms of the biharmonic polynomials of the fif
order was given@132,181,219#; it has been since then re
peated in the beginning of the twentieth century in the te
books on the theory of elasticity by Fo¨ppl @127#, Timoshenko
@91#, Föppl and Fo¨ppl @28#. It appeared that an additiona
term in the stressXx connected with the two-dimensionalit
of the problem is small in comparison with the main te
according to the elementary solution of the strength of m
terials provided that 2c/ l is much less than one. A simila
conclusion is true for the displacement of the center l
v(x,0) that corresponds to a deflection of the beam in
elementary theory.

A shortcoming of the polynomial solutions consists in t
impossibility to consider some practically important loadin
~eg, concentrated forces!, see Belzeckii@524#. This short-
coming can be partially overcome by considering the so
tions for the stress function in the form of a Fourier series
some complete systems of trigonometric functions. Alrea
Ribière @525# in his dissertation used Fourier series rep
senations for the stress function on the complete sys
cosnpx/l. In this way, it appeared possible to exactly satis
the boundary conditions over the sidesy56c. However, it
was impossible to satisfy fully the conditions over the tw
short sides,x50 and x5 l . Here one inevitably hasu50,
vÞ0, XxÞ0, Yx50, and mechanically it corresponds to a
m-
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infinite periodically loaded strip with simple supports. If th
ratio of the rectangle’s sides is large, it was believed~accord-
ing to the Saint-Venant principle! that, at a long distance
from the short ends, the effect of any self-equilibrated syst
of loads may be neglected, and the boundary conditions
fulfilled only for total tension, total shear, and total bendi
moment.

Filon @132#22, and independently Belzeckii@527#, used a
similar approach, but with the complete system sinnpx/l. in
the Fourier series of the stress function. Here one hasuÞ0,
v50, Xx50, YxÞ0 that corresponds to the conditions
‘‘free support.’’ Here, also, the accuracy of satisfaction of t
boundary conditions at the short ends was not checked
means of this solution these authors considered a few in
esting problems for beams lying on two supports. In parti
lar, Filon @132# solved the problem of compressing of a fini
elastic rectangle by two normal forces symmetrically plac
at points (0,c) and (0,2c). For a sufficiently long rectangle
the normal stressYy(x,0) equals to zero atuxu51.35c ~inde-
pendently on the ratiol /c for l .4c), and the pressure is
replaced by a tension. This result permits one to understa
simple experiment when an elastic block, acted upon b
concentrated load on its upper surface, cannot lie having
contact with a smooth rigid plane, and at a certain dista
away from the force the ends lift off the plane. An accura
analysis of this remarkable phenomenon has to rely upon
solution of a complicated mixed problem with an unknow
boundary, but a rough estimate of the dimensions of the a
in contact can be made considering the area where the
mal stressesYy are positive.

Papkovich@80# presented a complete comparative ana
sis of the Ribie`re and Filon–Belzeckii solutions for sever
most common loadings of a rectangular plate. This serve
a basis for a detailed study of some practical cases of be
ing of box-shaped rectangular empty beams which
widely used in shipbuilding.

By combining a solution in the form of a Fourier serie
for a halfplane Bleich@528# considered an interesting cas
when normal concentrated forces are applied at the cente
the short sides of a rectangle; see also@28#, Section 56, and
@43#, Section 20. This solution can be used for a quantitat
estimate of the Saint-Venant principle: even for this extre
case the distribution of the stressXx over the cross section i
almost uniform for the distancec from the short ends; se
Meleshko@529# for further details.

22Louis Napoleon George Filon~1875–1937! was the son of Augustin Filon, the
French littérateur who was tutor to the Prince Imperial. He began Latin and Gr
before he was six. Filon’s ambition was to be a sailor. He was always drawing pict
of boats at sea and some good models of ships he made at this time are s
existence. In later life, this old ambition showed itself in his keen interest in the the
of navigation and in his one form of relaxation, yachting. Filon graduated from U
versity College, London, and he took his BA degree in 1896 with a gold medal
Greek. He was a student of Karl Pearson and Micaiah JM Hill, two teachers for w
he had an affection and reverance. In 1898, Filon was elected to an 1851 Stude
and went to King’s College, Cambridge. Here he published his benchmark studie
the theory of elasticity in which he developed the theory of ‘‘generalized plane stre
In 1910, he was elected to the Fellowship of the Royal Society, of which he l
became Vice-President. After World War I, Filon served as Vice-Chancellor of
University of London; he was a Vice-President of the London Mathematical Society
the two years 1923–1925. Towards the end of 1937, Filon fell a victim to the typh
epidemic in Croydon, and he died on December 29. A more detailed biography of F
with a complete list of his scientific works can be found in@526#.
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5.6.3 Ritz method
Swiss born physicist Walter Ritz~1887–1909! lived a short
but brilliant life in scientific aspects. He studied in Go¨ttingen
under David Hilbert, did his PhD thesis in Leiden und
Hendrik Lorenz and had one joint paper with Albert Einste
on the theory of relativity23, see @312,314# for a detailed
account of the life of this extraordinary scientist. Conscio
of his imminent death from consumption, Ritz@530# pub-
lished a short account of his study presented for thePrix
Vaillant competition. This work had been submitted in Ma
1908 to the Go¨ttingen Academy of Sciences by well-know
German applied mathematician Carl Runge~1856–1927!.
Already in September 1908 the extended version of
benchmark study~the ‘‘habilitationsschrift’’ dissertation! was
published@470# in the first issue of the 108th volume of th
famous CrelleJournal für die reine und angewandte Math
ematik. ~The whole volume was dated by the year 1909, a
this sometimes leads to the incorrect dating of Ritz’s me
oir.! This paper still deserves attentive study for its richn
with ideas and unsurpassable clearness of presentation.
proved that the problem of integrating Eq.~3! with boundary
conditions~4! can be reduced to the followingvariational
problem: from the set of functions satisfying the bounda
conditions~4! it is required to find that one which gives th
minimumvalue of the potential energyW of the deformed
plate,

W5DE
S

F1

2
~Dw!22 f wGdx dy, with f 5

p

D
(59)

Among several choices of the trial functions for a recta
gular plate 0<x<a, 0<y<b Ritz @470# in Section 11 em-
ployed an expression

wMN5 (
m51

M

(
n51

N

amnjm~x!hn~y! (60)

Here jm(x) and hn(y) are the eigenfunctions of transver
vibration of the elastic beams 0<x<a and 0<y<b, respec-
tively, satisfying differential equations

d4jm

dx4 5
km

4

a4 jm ,
d4hn

dy4 5
kn

4

b4 hm (61)

with zero boundary conditions on the functions and their fi
derivatives at the ends of their intervals. The values ofkm

andkn are the roots of the equation cosk coshk51. In Sec-
tion 9 of his paper, Ritz provided the explicit expressions
these well-known functions which are too long to be rep
duced here; see@531# ~Section 172!. Ritz pointed out that
sometimes the functions from the exact solution of one pr
lem may be used in the approximate solution of another;
functions giving the deflection of a clamped beam were
fact used in the form of products to represent the appro
mate deflection of a clamped rectangular plate.

It should be noted that series~60!, when differentiated
term by term, does not satisfy the differential Eq.~3! for w,
but the proof was given that it must tend, as the numbersM

23It was, in fact, joint expressions of contradictory views on the subject.
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andN increase indefinitely, to an expression which does s
isfy this equation.~Another version of the proof was given i
a short note@532#.!

The minimizing procedure for the functional

JMN5E
0

bE
0

a F1

2
~DwMN!22 f wMNGdx dy (62)

that is, ]JMN /]amn50, leads to the system of linear alge
braic equations

E
0

bE
0

a

@~DwMN!D~jmhn!2 f jmhn#dx dy50,

~m51, . . . ,M , n51, . . . ,N! (63)

Integrating twice by parts and taking into account the z
boundary conditions for functionsjm , hn and their first de-
rivatives, Ritz arrived at the following system ofM3N lin-
ear algebraic equation for the coefficientsamn

E
0

bE
0

a

~DDwMN2 f !jmhndx dy50,

~m51, . . . ,M , n51, . . . ,N! (64)

Dealing with this~and not with the original one~63! as it
usually assumed! system Ritz performed extensive calcul
tions for a square plate (b5a) under uniform loadp0 and
presented three approximations~with M5N51, M5N53,
andM5N55; only odd values ofm andn were involved!
for the deflection. The first approximation reads asw
50.6620l j1(x)h1(y), where l 58•1024p0a4/D. It is im-
portant that the additional terms with coefficien
a13,a31, . . . ,a55, in the second and the third approxim
tions for deflection were found to be 1/20 of the first coef
cient a11 or less, and that the main coefficient was on
slightly changed.~Later these simulations were complete
reproduced in@533–535#.!

Ritz’s contributions to the most difficult problems of equ
librium of a clamped rectangular plate and steady vibratio
of a rectangular plate with free edges were greatly appr
ated by famous mathematician Jules Henri Poincare´ ~1854–
1912! and physicist John William Strutt~Lord Rayleigh!
~1842–1919!. Poincare´ wrote a special letter@536# ~p XVI !
in the foreword of Ritz’sOeuvresvolume, where he empha
sized the superiority of Ritz’s ‘‘une me´thode d’ingénieur’’
over the purely mathematical Fredholm integral equatio
approach when concrete numerical results are needed. P
caréalso presented this volume to the French Academy
behalf of the Swiss physical society~seeComptes rendus de
séances de l’Acade´mie des Sciences, 1911,153, 924!.

Rayleigh @537# also called attention to the remarkab
study of Ritz @470# and noted that ‘‘the early death of th
talented author must be accounted a severe loss to M
ematical Physics.’’ At the same time Rayleigh remarked

But I am surprised that Ritz should have re-
garded the method itself as new. An integral in-
volving an unknown arbitrary function is to be
made a minimum. The unknown function can be
represented by a series of known functions with
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arbitrary coefficients—accurately if the series be
continued to infinity, and approximately by a few
terms. When the number of coefficients, also
called generalized coordinates, is finite, they are
of course to be determined by ordinary methods
so as to make the integral a minimum.

In this respect, Rayleigh referred to several sections of
treatise@531#, where a similar approach had been succe
fully used.

The Ritz variational method immediately received a gr
deal of attention. Timoshenko@379# ~p 114! told how he in
1909 had found in the library of Kiev Polytechnic Institu
the journal with Ritz’s paper and he suggested this topic a
diploma work to one of his students. Performing this ta
Pistriakoff @538# repeated Ritz’s calculations and extend
them to several other values ofa/b ratio.

Later, the Ritz method was applied for a rectangu
clamped plate in the thesis by Paschoud@539#, Salvati@540#
and papers@541–552#. Stresses in an elastic rectangle und
discontinuous loading at its opposite sides are calculated
Hajdin @553#. The Stokes flow in a rectangular cavity wit
one moving wall was studied by Weiss and Florsheim@554#.

There are many pure mathematical papers summarize
Kryloff @555#; see also@313,556,557# which were connected
with general aspects of the convergence of the Ritz meth
The mathematical question of convergence of the solutio
the biharmonic problem for a clamped plate was addres
by Kryloff @558#, Trefftz @99,559,560#, Courant @561#,
Friedrichs@562#, Wegner@548#, and Rafal’son@563#. A weak
point in the Ritz method is that it does not contain an alg
rithm to estimate the accuracy of the approximation. Mo
importantly, a suitable selection of the basic functions is
ten difficult to make and laborious computations are som
times necessary. A detailed treatment of the variational m
ods is given in the textbooks by Leibenzon@69# and
Sokolnikoff @41#.

Among various interesting fields of application of the R
method one can mentioned the studies of the eigenfreq
cies and modes of vibrations of a clamped rectangular
elastic plate by Rayleigh@537#, Stodola @340,341,564#,
Young @565#, and many others referred to by Bateman@566#,
Courant @567#, and Leissa@568#. Mathematician Davydov
@569# mentioned that by the year 1932 he already collec
291 references for the Ritz method in various problems
statics and dynamics of elastic rods and plates.

5.6.4 Energy methods
Timoshenko@570# suggested a slight modification of the Ri
method—the ‘‘energy method’’ or the ‘‘principle of leas
work,’’ as he usually called it@379# ~p 114!. The method
consists of applying the Lagrange variational equation

dV5E
S

pdwdxdy (65)

that is, by equating the change of potential energy of bend
to the work done by the external loading under prescrib
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plate deflection compatible with boundary conditions~4!.
Here the potential energy of bending is given by Kirchho
@126# as

V5
D

2 E
S
H ~Dw!222~12n!F]2w

]x2

]2w

]y2 2S ]2w

]x]yD 2G J dxdy

(66)

~It can be shown that the integral of the term in square bra
ets vanishes for the clamped plate.!

For the uniformly loaded clamped rectangular plate oc
pying the region 0<x<a, 0<y<b, Timoshenko@570# ob-
tained

w5

p0a4b4S 12cos
2px

a D S 12cos
2py

b D
p4 D~3a413b412a2 b2!

(67)

that satisfies boundary conditions~4!. The same expressio
was independently obtained by Lorenz@571# and it has been
repeated in his~formerly well-known! treatise@19#.

In spite of the French summary and the extended Germ
abstract, Timoshenko’s~and Pistriakoff’s! studies apparently
remained completely unknown. As Krylov later observ
@11# ~p 160!: ‘‘Their investigations are published in th
Transactions of the Polytechnic Institute, in Russian,
course, which means for Western Europe almost the sam
Chinese!’’

Similar calculations based upon the energy method w
performed later by many authors, the results not alw
agreeing, being highly dependent on the choice of the
proximation functions. Another choice of approximatio
functions ~which has also been briefly mentioned by R
@470#! used by father and son Fo¨ppl @28# and later Leibenzon
@69# provided the expression:

w5
7p0

128DS a41b41
4

7
a2b2D ~x22a2!2~y22b2!2 (68)

Similar calculations based upon the variational meth
had been done in the book by Hager@572#. This study was
highly estimated in the review paper by Fo¨ppl @317#. How-
ever, according to Galerkin@573# and Mesnager@544#, there
was an essential error in the expression for inner work du
omission of the shearing forces.

By using the same energy approach Timoshenko@574#
considered the plane stress or strain equilibrium of an ela
rectangleuxu<a, uyu<b subjected to normal symmetric loa
S(12y2/b2), parabolically distributed at its sidesx56a.
Due to the Michell theorem about independence of
stresses in a simply connected domain upon the Poisson
n, the expression for the potential energyU might be simpli-
fied by settingn50, and in terms of the stress functionf it
then reads

U5
1

2E E
2a

a E
2b

b F S ]2f

]y2 D 2

1S ]2f

]x2 D 2

12S ]2f

]x]yD 2Gdxdy

(69)

Choosing the doubly symmetric stress function in the for
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f5
1

2
Sy2S 12

y2

6b2D
1~x22a2!2~y22b2!2~a11a2x21a3y2! (70)

that satisfies all boundary conditions~while the governing
biharmonic Eq.~7! is not satisfied at all; the mathematic
question of convergence of this representation still dese
attention! and substituting it in~70! Timoshenko minimized
the potential energyU,

]U

]a1
50,

]U

]a2
50,

]U

]a3
50 (71)

In such a way he obtained a rather cumbersome system
linear equations fora1 , a2 , a3 . Timoshenko displayed the
distribution of the normal stresssx in the middle cross-
section x50 for the square (a5b) and rectangular (a
52b) domains. For the latter case this distribution appea
to be almost uniform with a mean value2

3S. Similar results
were also obtained by Inglis@575# for a shear loading at the
surface. By the same approach James Norman Goo
~1905–1969!, a PhD student of Timoshenko at the Univers
of Michigan, considered@576# the bending of a finite rect
angle. All these examples have been reproduced in the
books by Timoshenko@43# and Papkovich@80#. Later
Leibenzon@70,69# considered the same benchmark examp
by means of the Castigliano theorem.

It should be noted that in all these studies Ritz’s name
not explicitly been mentioned. This omission of reference
the Ritz name caused a violent attack by von Krzywobloc
at that time a Professor of Gasdynamics and Theore
Aerodynamics at the University of Illinois, Urbana. He wro
two papers@577,578#, and participated in discussions on p
pers@497,579# stating that Timoshenko ‘‘did a great injustic
to the late Swiss physicist,’’ not mentioning the name of R
More attentive reading of Timoshenko’s textbooks sho
that this scientist~who usually was very careful with refer
ences in his books! always paid a tribute to the fundament
method of Ritz, see@91# ~Introduction!, @43# ~Section 80!,
and @45# ~p 158! in Chapter 6 ‘‘Strain-energy methods
which, however, has been completely omitted in the th
edition @46#. Ritz did not consider 2D elasticity problem
and it was Timoshenko@574# who first applied the energy
method~and pointed out the possibility of simplification o
the expression for the potential energy by setting the Pois
ratio equal to zero! to solve the important problem of th
elastic equilibrium of a rectangle.

Filonenko-Borodich24 suggested@582,583# to use a spe-
cial complete system of functions that permit one to sati
identically the static equations of equilibrium and bounda
t
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tation for stresses in the rectangle has enough arbitrarine
satisfy the conditions of compatibility by means of the Ca
tigliano theorem. By usage of this approach Filonenk
Borodich @582# and Danilovskaya@584# considered in full
detail the equilibrium of an elastic rectangle.

Another complete set of polynomials was employed
Horvay @585–588# and Horvay and Born@589# to study vari-
ous problems of equilibrium of a semi-infinite elastic str
under a self-equilibrating load at its end. This approa
caused an extensive discussion, see@579#.

5.6.5 Bubnov—Galerkin method
It has already been mentioned that Ritz, starting from
problem of minimization of potential energy of bending of
rectangular clamped plate, arrived at the Eq.~64! ~number
~41! on page 38 of the original paper@470#! more suitable for
practical calculations. In his seminal paper@590#, Galerkin25

explaining the essence of Ritz’s method, considered bend
by uniform load of a clamped plateuxu<a/2, uyu<b/2 and
chose the deflection in the form

w5 (
k52

3

(
n52

3

Akn~a224x2!k~b224y2!n (72)

~That expression was also briefly mentioned by Ritz@470# as
a possible choice of trial functions.!

Galerkin directly substituted that expression into the go
erning Eq.~3!, multiplied it subsequently by (a224x2)k(b2

24y2)ndxdy, with k,n52,3 and integrated over the plat
area. In such a way he obtained a linear system of four a
braic equations for defining the values ofAkn . Galerkin
solved that system for three values of ratiob/a51,1.5,2.

The approach provided reasonable values of deflect
bending moments, and shearing forces for the plate, wh
were compared with results of previous studies by Hen
@593#, Bubnov@594#, and Galerkin@573#. Galerkin@590# ex-
plained the essence of his approach for the first time with
example of a simply supported rectangular plate, which
mits the exact analytical expression for deflection either
Navier’s or Lévy’s form of double or single Fourier series
respectively. He did not, however, mention that his appro
for a simply supported plate had already been describe
the textbook by Bubnov@594# ~Section 21!. ~This example
was considered by thesameapproach by Simicˇ @595# but,
this study was, probably, not well-known in Russia at th
time.!

Heinrich Hencky~1885–1951! studied the paper of Galer
kin @590# ~he was a Russian prisoner during World War I a

ute
935
the
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ing
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25After graduating from St Petersburg Technological Institute in 1899 Boris G
gor’evich Galerkin~1871–1945! got a job at the Kharkov locomotive plant. In 1906, h
participated in the revolutionary movement and was imprisoned. From 1909 Gale
began teaching at St Petersburg Technological Institute, and in 1920 he was prom
to head of the structural mechanics Chair. By this time he also held two Chairs, o
elasticity at the Leningrad Institute of Engineers of Ways of Communications and
in structural mechanics at Leningrad University. Galerkin was a consultant in the p
ning and building of many of the Soviet Union’s largest hydrostations. In 1929
connection with the building of the Dnepr dam and hydroelectric station, Gale
investigated stress in dams and breast walls with a trapezoidal profile. From 1940
his death, Academician Galerkin was head of the Institute of Mechanics of the A
emy of Sciences in Moscow. A more detailed biography of Galerkin and discussio
his scientific works, including his numerious papers on thin elastic plates, can be f
in @591,592#.
conditions at all sides of a rectangular domain. The repres

24Mikhail Mitrofanovich Filonenko-Borodich~1885–1962! graduated in mathematics
from Kiev University in 1909 and got a railway engineer degree from Moscow Insti
of Engineers of Ways of Communications. He got his Doctor of Science degree in
without submission of a dissertation, due to his important and practical studies i
railway design. From 1931 till the end of his life he worked at Moscow University a
at the Military Engineering Academy. He was a Major General of the Enginee
Corps since 1943. A more detailed biography of Filonenko-Borodich and discussio
his scientific works, including an original approach to the famous Lame´’s problem of
an elastic parallelepiped, can be found in@580,581#.
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during this internment in Saratov he learned the Russian
guage! and later used@596# the same method for the dete
mination of the stress field in an elastic rectangle. Working
that time at the Technische Hoogschule Delft and being p
sonally acquainted with Galerkin, he drew Biezeno’s att
tion to that approach. Cornelis Benjamin Biezeno~1888–
1971! @5# in his opening lecture at the First Internation
Congress on Applied Mechanics, referred to the paper@590#
and called this approach the ‘‘Galerkin method.’’ It is pro
ably since then that this name has been widely used. On
other side, in their recommendation letter for Galerkin
election as a corresponding member of the USSR Acad
of Sciences, Academicians Ioffe, Krylov, and Lazareff@556#
did not explicitly mention this method among the achiev
ments of the candidate; they only wrote that ‘‘Galerkin has
develop new methods of calculus when studying many ra
complicated and difficult problems of theory of elasticity
Only several years later when Galerkin had been electe
Academician and occupied an important place in Soviet m
chanics~see, eg, a special issue of leading Soviet jour
Prikladnaya Matematika i Mekhanika1941,5, No 3, devoted
to the 70th anniversary of Galerkin’s birth! the developed
method was completely connected with his name. T
method received wide appreciation in applied mathema
and mechanics; see@597–601# for detailed reviews of the
vast literature on the subject.

On the other hand, already Biezeno@602# and @5# ~p 14!
stated that ‘‘the GALERKIN and RITZ methods areidentical,’’
according to his previous study@603#. However, Biezeno
@602# also mentioned that the Galerkin method requi
much less ciphering than that of Ritz~in its traditional for-
mulation!, and is therefore preferable. Later Hencky@604#
published a short note with the similar result; this equiv
lence already established by Ritz~see@536# p 228! has been
mentioned by Timoshenko in his textbooks@45# ~p 159! and
@47# ~Section 81!. Davydov, a professor of mathematics
the Zhukovskii Air Force Academy in Moscow, in a lette
@569# to Papkovich, expressed an opinion, that ‘‘Galerkin
‘method’ does not exist at all, but there exists the Galer
‘scheme’ to calculate the coefficients in the Ritz metho
Papkovich@605# replying to that letter wrote:

I share your opinion about Galerkin’s algorithm.
To tell more, I am in doubt whether one can con-
sider ‘‘Galerkin’s scheme’’ as a new one. Prob-
ably, this scheme has been used by great math-
ematicians of the last century and the century
before last. I do not know. We do not read their
original works, and it seems likely that such an
approach has been used by someone. This ap-
proach looks very similar to the main algorithm
for developing the prescribed function into the
Fourier series. Maybe it was used a long time
ago for other developments of the prescribed
function into series, and for a representation of a
seeking function in form of the series. Further
investigation of this issue seems very attractive.
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Sommerfeld@606# pointed out that Kirchhoff and Ohm wer
predecessors of Rayleigh and Ritz.

Later on, by direct calculations of variation of the pote
tial energy in~66! Leibenzon@69# proved that Eq.~65! for a
clamped plate of any shape can be written in the form:

E
S
~DDDw2p!dwdxdy50 (73)

As it was mentioned above, the same equation was obta
by Ritz @470# for the calculations in the rectangular domai
in Eq. ~64!.

A detailed study of this subject by Grigolyuk@599,600#
shows that the main idea of the ‘‘Galerkin method’’ was su
gested by naval architect, Professor Bubnov26 as early as
May 1911 in a referee report@613# on Timoshenko’s memoir,
submitted for the competition for the Zhuravskii prize.~This
prize was established in 1902 and valued at one year’s
fessor salary, named after the famous Russian railway e
neer Dmitrii Ivanovich Zhuravskii~1820–1891!. Timosh-
enko in 1911 was the only single recipient to have e
received the prize.! Bubnov explained~on four printed pages
only!! the essence of a method other than Ritz’s~or ‘‘en-
ergy,’’ as Timoshenko preferred to call it! with examples of
the Euler stability of a rod and a simply supported rectan
lar plate compressed in its plane by opposite normal load
the contour sides. Moreover, Bubnov@594# in Section 22
already applied this method to the more complicated stab
problem of a uniformly loaded rectangular plate under ad
tional normal and shearing loads along its contour. It n
seems that the name ‘‘Bubnov-Galerkin method’’ as it w
widely used in Russian literature@557,601,611,614–616#
should be more appropriate; see Meleshko@617#, Grigolyuk
@600,612# for further historical details.

An interesting modification of the Bubnov–Galerkin pr
cedure has been suggested by Biezeno and Koch@501#; see
also@5,25#. They chose the representation of deflection in
clamped plateuxu<a, uyu<b as

w5S x2

a2 21D 2S y2

b2 21D 2

(
k,n51

2

f knS x2

a2D n21S y2

b2D k21

(74)

which satisfies the boundary conditions~4! and substituted it
into governing Eq.~3!. In this way, some fictitious loadp̄
instead ofp has appeared in the right-hand-side of Eq.~3!.
Then, the coefficientsf kn are determined by the condition
that the integrals**pdxdy and ** p̄dxdy taken over well-
chosen regions of the plate surface, are equal. In the par
lar case of a uniform loadp0 , a quadrant of the plate limited
by the two axesx50 andy50 and by the linesx5a and
y5b, was subdivided into four parts by the linesx5 a/2 and

26Ivan Grigor’evich Bubnov~or Boobnoff, according to the French spelling of h
name! ~1872–1919! graduatedcum laudein 1896 from the Naval Academy in St
Petersburg. He worked as a naval architect, and was a head~1908–1914! of the model
basin of the Imperial Russian Navy. At his final years Bubnov was Professor a
Petersburg Naval Academy and Major General of the Corps of Naval Architects
died in March 1919 from typhoid during the civil war in Russia. The detailed story
his life, a general overview of his scientific advances, including an input into
development of the nonlinear theory of bending of plates and his role in Russian n
architecture as the Chief Designer of battleships and first submarines can be fou
@23,600,607–612#.
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y5 b/2. After laborious but straightforward calculations
integrals, the system of four equations which determines
coefficientsf kn was written down. In the original paper@501#
the aspect ratioa/b51.5 was considered in full detail.

Another modification of the variational approach was su
gested @618# by Leonid Vital’evich Kantorovich~1912–
1983! ~the Nobel prize winner in economics!; see also@619#
and @533–535# for further details. The main idea of thi
method is to reduce a search for the of minimum of a fu
tional ~the total potential energy of the system! depending
upon two variables to the problem of minimizing of the fun
tional that depends on several functions of one variable.
plying the well-known Euler equation of the calculus
variations to the problem gives a set of ordinary differen
equations in these functions to solve.

For the benchmark case of the clamped elastic plateuxu
<a, uyu<b under a uniform loadp0 , one seeks the solutio
as follows@534,535,620#

wN~x,y!5 (
n51

N

fn~y! f n~x!, fn~y!5~y22b2!2y2n22

(75)

where the known functionsfn(y) satisfy the conditions
fn(6b)50, fn8(6b)50. Restricting toN51 and applying
the @Ritz#-Bubnov-Galerkin procedure

E
2b

b S DDw12
p0

D Df1~y!dy50 (76)

one obtains the solution of the fourth-order ordinary diffe
ential equation

f 1~x!5A cosh
ax

b
cos

bx

b
1B sinh

ax

b
sin

bx

b
1

p0

24D
(77)

wherea52.075,b51.143 are the roots of the charactersi
equation, andA, B are explicitly expressed viaa andb.

5.6.6 Complex variable approach
Dixon27 in the series of papers@622,623# summarized in his
Presidential Address@7# read before the London Mathemat
cal Society showed that the solution to the problem of
rectangular clamped plate~which was originally proposed to
him by his colleague, a professor of engineering in Belfa!
depends on the discovery of a functionf (z) of a complex
variablez satisfying the functional equation

f ~z1a!2 f ~z2a!52ca f8~z!

with c some known constant. This functional differenti
equation can be written as an integral equation and fur
analysis leads to both Poisson’s theory of mixed differe
,

a
s
f

lh

r the
re and
cov-
n this
quake
yal
any

ster
gan
che
f
the

g-

c-

c-
p-
f

ial

r-

ic

i-
he

st

al
her
ce

equations and the theory of certain linear integral equati
and, finally, to an infinite system of linear algebraic equ
tions. Dixon@7# noted that it is not clear whether this syste
could be truncated by the theory of infinite determinants, a
said very little about the possible application of the who
theory to numerical calculation.

Love28 suggested@626# an approach wherein the solutio
involves the conformal mapping of the rectangle onto
circular region of unit radius. This, finally, leads to the sol
tion of an infinite system of linear equations of rather co
plicated, but triangular, structure. The solution of that syst
can be found one by one~or a general determinant formul
can be written down!, but the asymptotic behavior cannot b
seen easily from this solution. Love restricted himself to t
first three terms of the series. He obtained a value of
center’s deflection only 2.5% greater than Hencky’s@593#
and did no more arithmetic. The same approach was u
later in @627–630#. It is worth noting that the general idea o
application of conformal mapping~but for smooth contours
only! was suggested by Levi-Cevita@192#.

The approach by Muskhelishvili@37# leads finally to the
solution of the singular integral equation with a kernel
Cauchy’s type and provides an effective method for treat
the biharmonic problem in a domain with a smooth conto
Magnaradze@631,632# gave the general proof of applicabi
ity of that method to contours with sharp angles, while D
verall @633# obtained concrete results for a clamped rect
gular plate. Further developments in this direction a
summarized by Belonosov@634,635#.

5.6.7 Method of superposition
This analytical approach was suggested by Lame´ @129# in the
twelfth of his famous lectures on the mathematical theory
elasticity when considering the equilibrium of a 3D elas
parallelepiped under any system of normal loads acting on
sides. Briefly mentioned by Lame´ @1# in Section 102 and
Thomson and Tait@636# in Section 707 as a possible metho
of solution of the Laplace equation in a rectangle, the meth
of superposition for the 2D biharmonic equation was dev
oped by Mathieu@199–201# to solve the problem of the
equilibrium of an infinite rectangular prism with the surfa
loads being uniform along the generating line of the pris
He considered, however, the equation of equilibrium writt
in traditional form of the Lame´ equations for two compo-
nents of displacement. The main idea of the method, c
cisely expressed in@199#, consists of using the sum of tw
ordinary Fourier series of the complete systems of trigo
metric functions inx andy coordinates in order to represe
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28Augustus Edward Hough Love~1863–1940! graduated from Cambridge and held th
Sedleian Chair of Natural Philosophy at Oxford from 1899. He was elected unde
old Statutes, before the retiring age had been invented, and he continued to lectu
examine until shortly before his death. An expert on spherical harmonics, Love dis
ered the existence of waves of short wavelength in the Earth’s crust. The ideas i
work are still much used in geophysical research and the short wavelength earth
waves he discovered are called the ‘‘Love waves.’’ He was a Fellow of the Ro
Society and a corresponding member of the Institute of France. He received m
honors, the Royal Society awarded him its Royal Medal in 1909 and its Sylve
Medal in 1937, while the London Mathematical Society awarded him its De Mor
Medal in 1926. For more details of his life, a nice pencil sketch of him with mousta
charmingly reminiscent of a frozen waterfall made during a lectureca 1938, and a
complete list of publications see@23,624,625#.
27Alfred Cardew Dixon~1865–1936! in 1883 entered Trinity College, Cambridge an
he graduated in 1886 as Senior Wrangler~placed first!. He had been taught by a
number of famous mathematicians at Cambridge, including Glaisher, Rouse Ball
Forsyth, and he attended lectures by Cayley. Dixon was appointed a Fellow of Tr
College in 1888 and was awarded a Smith’s prize. Dixon was appointed to the Ch
mathematics at Queen’s College, Galway, Ireland in 1893, and in 1901 he wa
pointed to the Chair of mathematics at Queen’s College, Belfast. After he retired
his chair in Belfast in 1930 he served as president of the London Mathematical So
from 1931 until 1933. See@621# for a detailed account of his life and the scientifi
works of this mathematician, who as a devout Methodist, was active in the phi
monic orchestra.
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an arbitrary biharmonic function in the 2D domainuxu<a,
uyu<b. Each of these series satisfies identically the bih
monic equation inside the domain and has a sufficient fu
tional arbitrariness for fulfilling the two boundary condition
on sidesuxu5a or uyu5b. Because of the interdependenc
the expression for a coefficient of a term in one series w
depend on all the coefficients of the other series and v
versa. Therefore, the final solution involves solving an in
nite system of linear algebraic equations providing finally
relations between the coefficients and loading forces.

Mathieu in an elaborate memoir@200# suggested the
method of successive approximations for solving that s
tem, and proved its convergence for a square plate. T
memoir has been completely reproduced in the second
of his lectures on the theory of elasticity@201#; traditionally,
all references to the Mathieu’s studies are only restricted
these lectures. Mathieu did not, however, provide any c
crete numerical results for stresses in such a domain b
upon his solution. As Filon@132# ~p 153! noted later, ‘‘the
solution is, however, so complex in form, and the determ
nation of the constants, by means of long and exceedin
troublesome series, so laborious, that the results defy al
tempts at interpretation.’’ Similar opinions were expressed
the textbooks by Papkovich@80# and Timoshenko and
Goodier@46#. These views, as it was shown in@529# are too
critical: after a proper treatment, Mathieu’s method appe
rather simple for numerical exploration.

Because of permanent internal tensions of that time
tween Parisian and non-Parisian mathematicians~see@227#!
these remarkable results went completely unnoticed. As
already mentioned, in 1894 Picard suggested this topic
question worth thinking about on the pages ofl’Intermédiare
des mathe´maticiens, and it remained practically unanswere
as the Index of contents of this journal for years 1894–19
shows. ~With the beginning of WWI this journal cease
publication.!

Meanwhile, in Russia the biharmonic problem~1!, ~2!
was addressed by a mathematician Koialovich29 in his doc-
toral dissertation@229#. The defense took place in Februa
1903 at the Faculty of Physics and Mathematics of St Pet
burg University.

Koialovich constructed the analytical solution of the b
harmonic problem, and even provided some numerical
sults. He considered separately the two problems of ei
finding the biharmonic function which has the prescrib
value at the boundary with the value of its normal derivat
being zero, or finding the biharmonic function equal to ze
at the contour and having the prescribed value of its nor
v
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derivative. Each of these problems was then subdivided
three simpler problems, depending on whether the bih
monic functions are even in both variables, even inx and
odd in y ~or vice versa!, or, finally, odd in both variables.30

Koialovich @229# employed the Mathieu method of supe
position with a particular choice of the complete trigonom
ric systems in the Fourier series on the intervalsuxu<a and
uyu<b for each of the six problems and considered in gr
detail the solution of each of them. First, he usedfinite num-
bers of terms in both Fourier series (N andK, respectively!.
Therefore, the boundary conditions can be satisfied only
proximately, within the accuracy of representation of t
functions by the finite number of terms in the Fourier seri
The finite system for the unknown coefficientsXn and Yk

was written in general form as

Xn5 (
k51

K

ak
(n)Yk1bn , 1<n<N

Yk5 (
n51

N

cn
(k)Xn1dk , 1<k<K (78)

with some positive elementsak
(n) andcn

(k) . The algorithm of
successive approximations was suggested to solve this
tem, for it has been pointed out that direct numerical solut
of the linear system cannot provide all the necessary in
mation about how these Fourier coefficients may cha
when increasingN and K. It was strictly proven that the
algorithm of successive approximations is convergent w
the number of iterations tends to infinity, and the coefficie
approach some values, depending onN andK. The next step
was to increase these values ofN and K, while conserving
their fixed ratio. It was also proven that this second limiti
process is convergent. Later Sobolev@639# gave a genera
proof of convergence of that approach which is equivalen
the Schwarz alternating algorithm; see@533–535,566# for
details. Thus, it was stated that the final representation of
biharmonic function in terms ofinfinite Fourier series is con-
vergent and satisfies both boundary conditions at all side
the rectangle.

The way of investigation of infinite systems used
Koialovich @229# traces back to the memoir by Fourier wri
ten in 1807~see@640# for the full original text! and published
in the year 1822 in his famous book@641#. It is equivalent
to the solution of theinfinite system of linear algebraic
equations

Xn5 (
k51

`

ak
(n)Yk1bn , 1<n<`

Yk5 (
n51

`

cn
(k)Xn1dk , 1<k<` (79)
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29In the literature, there are different spellings of his name: Coialowitch, Kojaloˇ,
Kojalovitch, Kojalowicz, Koyalovich, Koyalovicz. Boris Mikhailovich Koialovich
~1867–1941! was a son of the well-known Russian historian Mikhail I Koialovich; h
knew seven foreign languages~including old Greek and Latin! and was a good ches
player. He constantly played chess with the great Russian mathematician And
Markov, and he even managed to win against great grand masters Lasker and A
in 1912 and 1924, respectively. During his whole life, Koialovich was interested
pure mathematics: in the period 1895–1924 he wrote many textbooks and lecture
on calculus, geometry, differential equations, and probability, and in the period 19
1916 he published about 70 reviews of various mathematical books. He wrote se
important articles on different mathematical topics for the new Russian edition o
Brockhaus–Efron Allgemeine Enzyklopa¨die. His biography~not touching some ob-
scure events of his last years of life in Perm and Leningrad! is presented in@637#.
in
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03–
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30Already in his master’s dissertation Koialovich~@638#, p 7! wrote: ‘‘We are deeply
convinced that only research in integrating of differential equations may be frui
that is always based upon practical applications,ie, upon specific examples. Nothing is
easier than writing general discussions of the theory of integrating differential e
tions, but such discussions, for the most part, remain fruitless if they do not fo
from researching specific types of theories.’’
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by a traditional way, named by Riesz@642# the ‘‘method of
reduction,’’ assuming that coefficients with subscripts high
than a chosen value may be neglected. Then for given n
bers N, K the unknownsXn , (1<n<N) and Yk , (1<k
<K) in the finite system~78! have some specific value
which can be found by any technique~for example, Fourier
@641# even obtained closed analytical expressions for
specific system!. It is obvious that the values of these u
knowns vary as we increase their number and the numbe
the equations which ought to determine them. It is desire
find the limits towards which the values of the unknow
converge as the number of equationsN1K increases indefi-
nitely. These limits are called the solution of the infinite sy
tem ~79!. The main tasks are to establish whether the sys
has a~unique! solution, to indicate the way of finding~by
means of a finite number of operations! the approximate val-
ues for the unknownsXn , Yk , and to estimate the error o
these approximations.

Koialovich @229# considered a particular example of h
general formulas, namely, the uniformly loaded clamp
rectangular plate with sides ratioa/b52 ~this ratio was in
the neighborhood of that most commonly occurring in sh
building practice!. He chose the deflection in the form

w5
p0

24D
~b22y2!21U~x,y! (80)

and for the functionU he obtained the biharmonic proble
~1!, ~2! with a zero value of normal derivative at the conto
The functionU was represented as a sum of two finite Fo
rier series with the trigonometric functions cosnpx/a and
coskpy/b with n,k51,2, . . . Koialovich found the numeri-
cal values of the Fourier coefficients, restricting himself
only five terms in each of the two series. The values of th
coefficients appeared to decrease rather rapidly, but the
of that decrease was not investigated. The deflection of
plate at some typical points was also calculated~the error in
satisfying the boundary conditions was about 4% of
maximum value at the center!, and a figure with a form of
the bent plate was presented. It was more than enough fo
mathematical dissertation!

However, Timoshenko who was doing his one year co
pulsory military service at that time in a St Petersburg sap
regiment and attended the defense, later remarked,@379#
~p 72!:

No one in the debate stressed the technological
importance of the work. The main item which
was discussed by the official opponents~the then
famous Russian mathematicians Korkin and
Markov! debated mainly the conditions for con-
vergence of the series in terms of which the so-
lution was presented.

Timoshenko permitted a small inexactness: besides Ko
and Markov ~an inventor of the ‘‘Markov chains’’!, who
were Koialovich’s supervisors, the official report@232# was
signed by two other members of the scientific Council. T
report really contained a detailed survey of the mathemat
part of the dissertation, but it did not provide any discuss
of the important results for the physical problem.
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Koialovich was a professor at the Technological Institu
in St Petersburg, and he was also interested in a prac
applications of his doctoral dissertation. Academician Kryl
recalled~see@11#, p 159! that at the beginning of the 20t
century he was the Director of the Model Basin of the Im
perial Russian Navy in St Petersburg, and how he organ
an experimental proof of Koialovich’s@229# theoretical re-
sults. The tank was constructed, in which plates up to 0
inch in thickness, and nearly 3 feet by 6 feet could be inv
tigated. The clamping was effected by tightening the ed

of the plate between very rigid angle irons and steel bars1
4

inch in thickness and nearly 10 inch wide. Several measu
ments were carried out by Bubnov, who at that time w
Krylov’s assistant. Instead of the deflection, the change
inclination under pressure was measured by means
Poggendorf’s scale and mirror method. The experimen
data for the deflection of a plate corresponded quite ac
rately to the calculated results.

Koialovich’s solution has been referred to in subsequ
articles by Lauricella@295#, Galerkin@573,590#, and Leiben-
zon @329#, in the dissertation by Kolosov@206#, and in the
textbooks by Timoshenko@44,92# and Timoshenko and
Woinowsky-Krieger@47#. But the very first reference to tha
solution was made by the Naval Architect of the Imper
Russian Navy Bubnov in the talk@4# read at the Spring
Meeting of the 43rd Session of the Institution of Naval A
chitects in London. In this extensive paper, which contain
a lot of new scientific and engineering ideas, Bubnov no
that the convergence of the Fourier series left much to
desired for practical calculations. Regarding the maxim
value of stresses in the finite plate, he postulated that
maximum value of stresses in the finite clamped plate w
sides 2a and 2b is reached at the boundary in the middle
the longer side 2b. The absolute value is sandwiched b
tween the values of a infinite clamped panel with the sidea
and that of an elliptical clamped plate with the minor a
major axes 2a and 2b, respectively. These two problem
allow simple analytical solutions, providing a rather accur
estimate for the stresses in the finite rectangular plate. In
interesting discussion that followed Bubnov’s talk, Brya
~see@4#, p 48! doubted this postulate. He pointed out that t
slowness in the convergence of the Fourier series sugg
that there may be a very great tendency to break at the
ners of the rectangle. In the written answer Bubnov did
contest this opinion, but he did not fully agree with it.

Later the same year Bubnov published the extended R
sian version of his talk in a series of papers, and in May 19
the whole study@643# was defended in an adjunct dissert
tion at the shipbuilding department of the St Petersburg P
technic Institute. In one of these papers, Bubnov@644# re-
peated briefly Koialovich’s solution and presented numeri
values for the Fourier coefficients. Bubnov mentioned tha
considerable amount of numerical work still needed to
performed: in order to get an accuracy of 1% in the defl
tion in the center of the plate it appeared necessary to g
as many as to 15 terms in the Fourier series, doing all
calculations with five digit accuracy. He solved the fini
system of 919 equations obtained by the method of redu
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tion from the infinite system for the specific problem
bending of a clamped rectangular plate with sides ratiob/a
52. Based upon numerical data Bubnov guessed with
any proof thatall coefficientsAn andBk ~in his notation! in
the Fourier series behave asAn5(21)n C n23 and 4Bk

5(21)k11 C k23 for n,k.9 with the sameconstant of
value C50.2886. How Bubnov arrived at this remarkab
result—we can only guess now. But, the fact remains:
ready in 1902 he knew the right behavior of the coefficien
the asymptotic law which was strictly proven by Koialovic
@645# more than a quarter century later! Unfortunately, n
ther Bubnov in 1902 nor Koialovich in 1930 took full adva
tage of the knowledge of the asymptotic law, and the prin
pal question of the convergence of the Fourier series has
however, been investigated.

In the second volume of his textbook@594#, Bubnov ad-
dressed the biharmonic problem~3!, ~4! in much more detail.
This analysis was presented in the extensive lecture cour
the Naval Academy in St Petersburg, and that volume w
written already in 1912 and had been printed out in Ap
1914 in only 400 copies.~Almost 40 years later, this part o
the lectures has been reprinted in@646#.! Not stated explic-
itly, Bubnov used the asymptotic law for the Fourier coef
cients in order to calculate the important mechanical cha
teristics such as bending moments and shear forces alon
edge of the clamped plate. Without using that law the Fou
series appeared to be divergent—that circumstance had
especially emphasized. Unfortunately, after Bubnov’s prem
ture death during the civil war in Russia, see@607#, these
facts went practically unnoticed by further investigators,
spite of references made in@44,47#.

Lauricella @295# also considered the biharmonic proble
in a rectangle. He used his general approach of the dec
position of the problem by means of two auxiliary harmon
functions u and v, and constructed the representations
these functions by superposition of two ordinary Fourier
ries on the same system of complete trigonometric functi
as Koialovich @229# and Bubnov@644#. Many years later
Schröder @310# used the same approach in a large memoi
which he considered in detail all four types of symmetry
the biharmonic function~or eight combinations of symmetr
of functionsu andv). This excellent paper, however, did n
receive proper attention at that time. One reason could
that this study had been done during WWII and after the w
was published in German. Anyway, neither Lauricella@295#
nor Schro¨der @310# provided any numerical data for solvin
the infinite systems for specific domains.

The method of superposition also got a new impu
when Hencky in his dissertation@593#, submitted in October
1913 to the Technische Hochschule Darmstadt, used o
complete systems of the trigonometric functions cos(m
21)px/2a and cos(2l21)py/2b with m,l 51,2, . . .
Numerical results showed the fast rate of decrease
the Fourier coefficients when the finite system had b
solved, but the rate of convergence for the Fourier ser
especially for bending moments and shear forces at
boundary, was not discussed properly. This solution was u
~or, sometimes, simply repeated! by many authors,
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@18,30,44,47,66,76,92,533–535,573,647–673# to obtain the
numerical data for deflections, bending moments, and sh
forces for a wide range of clamped rectangular plates un
uniform and concentrated loadings.

Being unaware of some previous studies based u
Hencky’s solution Inglis@11# used the same representatio
for the deflection. This analyst used only two terms in ea
of the Fourier series and demonstrated reasonable sati
tion of the boundary conditions for deflection, but details
his solution had been omitted. As famous Russian scien
and naval architect Academician Krylov, who was at th
time in England for talks about the former Russian Na
fleet and attended the meeting, has noted~@11#, p 160! in the
discussion:

In treating mathematical subjects two of the
greatest masters give us quite different models.
Thus Euler enters into every detail of his reason-
ing and calculations, illustrating them profusely
by examples, and explains exactly how his actual
work was performed; on the other hand, the
‘‘princeps mathematicorum’’ Gauss presented re-
sults of his investigations in the most concise and
elegant manner: ‘‘After you have erected a build-
ing you do not leave the scaffolding,’’ he used to
say. Professor Inglis’ paper presented in these
thirteen pages is developed in an ‘‘ultra-
Gaussian’’ manner. Owing to its importance, this
paper must be studied from the beginning to the
end by every student of naval architecture, pencil
in hand, without omitting a single letter or figure.
But before the student succeeds in mastering it,
he will have used a great many pencils.

Anyway, Inglis’s solution really looked like a good enginee
ing solution and deserved the admiration which was sho
in the discussion.

Being already back in the USSR, Academician Krylo
submitted in October 1928 to the Academy of Sciences
extensive study performed by Koialovich@645#. In that re-
markable memoir Koialovich turned to the general ma
ematical theory of infinite systems of linear algebraic eq
tions, keeping in mind, however, its possible application
the problem of bending of the clamped rectangular plate.
the infinite system~79! Koialovich developed a powerfu
method of the so-calledlimitants, the special quantities tha
can be defined after solving the finite system~78!, and which
define completely some bounds forall other unknowns. This
method is similar to Cauchy’s method of majorant functio
in the theory of differential equations. The principal diffe
ence of the proposed method from the traditional method
reduction consists in the following. The traditional meth
can provide only numerical values of the first unknowns—
others are simply put equal to zero. Koialovich’s approa
gives the underestimated and overestimated values ofall un-
knowns by using a successive approximation algorithm w
solving some specially constructed systems.

In spite of the short~and not precise!! reference in Kan-
torovich and Krylov@533,535# and the German abstract i
one of the leading abstract journals of that time, the m
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positive results of that study seem to have been almos
nored by Koialovich’s contemporaries. The ‘‘Renaissanc
of this outstanding memoir~an introduction to it was written
in the best traditions of old mathematicians! was started by a
short note by Grinchenko and Ulitko@674# and the book by
Grinchenko@64#; see also@675,676# for further details.

Koialovich @645# studied the example of the system co
responding to a clamped rectangular plate witha51, b52,
the example that he had already considered in his disserta
@229#. By using a proper choice of limitants Koialovich ma
aged to find numerically~without any computer!! the bounds
for all unknowns. All calculations were presented with inte
mediate data of ten successive approximations and occ
16 printed pages. Koialovich@645# ~p 43! wrote:

The numerical aspect seems at first very narrow,
dry, and low. But, developing it, I realized that it
opens up an interesting area, rich in results im-
portant not only for applications, but for theory
as well. Almost never have I regretted the time I
spent on repeated numerical solutions of a sys-
tem: each time, I learned something new.

His numerical data supported the~empirical! Bubnov law: in
terms ofXn andYk all unknowns seem to tend to the sam
single constant.

In the last section of his paper Koialovich, using the n
tions of limitants and supposing twoadditionalproperties of
the coefficients of matrices~these conditions are not essent
as it had later appeared!, proved that

lim
n→`

Xn5 lim
k→`

Yk5G (81)

with some constant valueG. At the very end of his memoir
he mentioned that the law~81! could be used~as Bubnov had
supposed! as a base for a new, more powerful algorithm
solving infinite systems. Namely, by putting

Xn5G1xn , Yk5G1yk (82)

substituting it into~79!, one obtains a new system with th
unknownsxn andyk , which can effectively be solved by th
method of reduction~now, xn→0 andyk→0 asn→` and
k→`, respectively!.

Koialovich @645# also stated an important question abo
the possibility of finding the value ofG a priori, without
solving the infinite system, but he himself did not provi
any further development. Probably, his age~he was 63 al-
ready, and he died in December 1941 during the siege
Leningrad! and subsequent long discussions between K
lovich @677–679# and Kuz’min@680,681# prevented him, un-
fortunately, from the analysis of that interesting questi
~The discussion, ‘‘the seven years war’’ according to t
Academician Krylov@251#, concerned the general condition
which must be imposed on the matrix and free terms of
arbitrary infinite system in order to have a unique soluti
and how this solution can be obtained. These difficulties
connected, of course, with double infinities~the number of
terms and the number of equations! which are involved in
the system~79!. The arguments of these papers, being v
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interesting by themselves, represent only partial interest
the physical problem in question: already Mathieu@123#
proved the uniqueness of the solution of the biharmo
problem when the values of the function and its normal
rivative are prescribed at the contour of any finite domain!

For the particular case of a square plate, by using
Koialovich @229#-Bubnov @594,644# representation for the
deflection, Grinchenko and Ulitko@674# found anexplicit
value of the constantG which appears not equal to zero. It
interesting to note that for Hencky’s@593# representation the
valueG50, as it has been found by Meleshko and Gomil
@682#; see also Meleshko and Gomilko@676# for a detailed
analysis of the general mathematical problem. This co
pletely justified the method of simple reduction employed
many authors to solve the infinite system and to accura
estimate the values of deflections and bending mome
However, the asymptotic behavior of the termsxn and yk

whenn→` andk→`, respectively, are important to esta
lish the local distribution of deflection and shearing forc
near the corner point; see@683#.

For 2D plane elasticity problems of equilibrium of a
elastic rectangle after Mathieu studies@200,201#, the method
of superposition has been employed in several artic
@484,497,575,684–697# and books @30,89,698,699#. All
these studies provide an immense amount of numerical
concering distribution of stresses at various inner cross
tions of the rectangle, but none of them took into account
asymptotic law~81! for the unknown coefficients in the in
finite systems. As it has been first shown by Grinchenko@64#
the simple reduction method of solving of the infinite sy
tems cannot provide an accurate determination of stre
near corner points: a finite extra valueGab/p in the values
of stressessx andsy at the corner point cannot be remove
by any increase of the number of terms in the finite Four
series; see also Meleshko@529# for further explanations. It it
interesting to note that for an example considered by Pic
@690#—a square loaded by a parabolically distributed norm
load at the sidesuxu5a, the benchmark example of studie
by his teacher Timoshenko@43,574#, the value ofG can be
found explicitly, as it was proven by Meleshko and Gomilk
@676#.

By usage of the method of superposition the stea
Stokes flows in a rectangular cavity was analyzed only i
few studies. Takematsu@700# on one~!! journal page pre-
sented the general scheme of the method. Meles
@617,701# obtained the solutions for arbitrary~including dis-
continuous! distribution of velocities at the cavity’s bound
ary. The algebraic work involved is rather cumbersome,
the final formulas are very simple for numerical evaluatio

Looking back upon the method of superposition one c
state that this approach enables one to deal, after a pr
treatment, with all important physical problems connec
with the biharmonic equation in the rectangular domain. T
developed numerical algorithm seems to overcome the d
culty @4# ~p 21! connected with the use of ‘‘the Fourier’
series, whose convergency leaves much to be desired
practical calculation’’ and to obtain very accurate data
means of only a few terms in the Fourier series. The p
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posed way of consideration of the infinite systems sugge
by physical problems provides a direct and powerful alg
rithm for solving rather complicated 2D biharmonic pro
lems for the rectangle.

5.6.8 Method of eigenfunctions expansion
An elegant analytical approach for considering the bih
monic problem in a rectangle utilizes a natural generaliza
of the expansion in eigenfunctions for the Laplacian bou
ary value problem. Apparently, this method was initiated,
the fundamental memoir by Dougall@702# who considered
the general problem of the equilibrium of thick elastic in
nite layer uzu<h under given forces. Dealing mainly wit
problems in cylindrical coordinates, he briefly mention
that for plane strain in the layer the flexural~antisymmetric
with respect ofz! system of stresses~or ‘‘modes’’ as he
called them!

sx5Ci eikx @~32cosh 2kh!sinhkz12kz coshkz#

sz5Ci eikx @~11cosh2kh! sinhkz22kz coshkz#

txz5Ceikx @~12cosh 2kh! coshkz12kz sinhkz# (83)

with an arbitrary constantC keeps the sidesz56h free of
tractions, provided thatk is a root of the equation

sinh 2kh22kh50 (84)

Dougall established that besides an obvious triple rook
50, Eq. ~84! has complex roots falling into groups of fou
symmetrically placed with respect to the axes of the comp
plane. He also found that the asymptotic behavior of the f
members of each group is given byk rh561/2 ln(4rp1p)
6i( rp1 1/4p) for large r .

Next, if P(z) andZ(z) are continuous functions odd an
even onz, respectively, with conditions

E
2h

h

P~z!z dz50, E
2h

h

Z~z! dz50

represent the normal and tangential loads at the endx50 of
the semiinfinite stripx>0, uzu<h, then complex coeffiicents
Cr should exist, such that simultaneously

i (
r

Cr @~32cosh 2k rh! sinhk rz12k rz coshk rz#5P~z!

(
r

Cr @~12cosh 2k rh! coshk rz12k rz sinhk rz#5Z~z!
J

(85)

Dougall @702# did not suggest any algorithm for determinin
these coefficients from two series expansions~85!.
Probably, he did not even notice the unusual situat
of the necessity of defining the coefficientsCr from two
functional equations in contrast to an ordinary Fourier se
expansion.
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Filon @703# was the first author who made an attempt
define these coefficients. Firstly, he considered the gen
problem of expanding a given functionf (x) in a series of
functionsf(k r ,x), wherek r is the~real or complex! root of
equationc(k)50. Based upon Cauchy’s theory of residue
Filon established a general theorem for expanding a poly
mial into a series of functions of the formf(k r x). Next, he
addressed the possibility of applying the method to a se
of functionsf(k r ,x) wherek r and x do not appear exclu-
sively as a productk r x. Referring to Dougall@702# and
considering the ‘‘flexural’’ solution of the biharmonic equa
tion in a semi-infinite stripuxu<b,y>0, Filon arrived at a
system of equations similar to~85!. He managed to expres
explicitly ~and uniquely, as he believed! the coefficientsCr

by means of onlyone~first! equation in~85!, providedP(x)
was a polynomial. He gave an example of such an exp
sion,

x35
3

5
xb22(

r

b

k r
2 Fk rx

coshk rx

sinhk rb
1~22k rb!

sinhk rx

sinhk rb
G
(86)

where the summation extends to Rekr.0. ~The equivalence
of the eigenfunctions in the expansions~85! and~86! can be
readily established by means of Eq.~84!.!

This paradoxical mathematical result of the necessity
only oneboundary condition for normal loading leaving th
shear end stresses arbitrary, probably appeared so unus
Filon ~and, probably, to many others! that almost no further
papers were published on the subject for the next 33 ye
The single exception was the paper by Andrade@704# who
used this approach to solve the problem of shear in an ela
rectangle with sidesx56a free of loading and prescribe
tangential displacements at the sidesy56b. Corresponding
to the stress field~83!, displacements had to satisfy the pr
scribed boundary conditions. It was found feasible to wo
with more than three roots of Eq.~84!. ~Andrade had also
performed the accurate study of locations of these roots
defined their accurate values.! Six real constants were dete
mined by the collacation approach, that is by setting the d
placements at the pointsx50, x5a/2, andx5a equal to
their prescribed values. The laborious arithmetic was d
on a ‘‘Brunsviga’’ machine, the personal computer of th
time. The results for shear stress distributions in several c
sections were found to be in reasonable correspondence
experimental measurements. Andrade@704# also noticed that
Filon @703# used only one equation, but he did not purs
this avenue.

The reference to the Filon’s paper@703# was made by
Lur’e @705# who introduced the name ‘‘homogeneous’’ sol
tions for the eigenfunctions~83!, and Prokopov@706#, who
suggested to satisfy the prescribed shear stresses only a
middle point, referred to the application of the Saint-Vena
principle.

The next step in developing of the eigenfunctions a
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proach was taken by Papkovich31. In the list of problems to
Chapter X of his fundamental treatise@80# he suggested the
following

Problem 31. Obtain the solution of the plane problem fo
a rectangular strip with two sidesy56b free of loading
while the sidesx50 andx5 l are loaded by arbitrary forces
by means of the representation

f5(
i

Xi~x!Yi~y!

where each functionYi(y) satisfies equations

Yi
+~y!1S ui

b D 2

Yi9~y!50

~with ui are some constants!, and the boundary conditions

Yi~6b!5Yi8~6b!50

In this formulation the functionsXi(x) are to be determined
and not be chosen proportional to exp(kx) as in Dougall’s
@702# representation. The functionsYi(x) correspond to the
eigenfunctions of the stability problem of a clamped elas
beam.

In an extensive hint to that problem occupying almost t
pages printed in small letters, after some interesting trans
mations based upon application of the Bubnov’s method
solving the infinite system of differential equations for t
functionsXi(x), Papkovich finally arrived at the represent
tion for the symmetric~extensional! stress distribution with
even functions with respect to thex-axis loading

f5 (
k52,4, . . .

Ake
skxFk~y! (87)

where the complex functionsFk(y) are

Fk~y!5 (
i 52,4, . . . S cos

ipy

2b

cos
ip

2

21D F S skb

p D 2

2S i

2D 2G22

andsk being the roots of equation

(
i 52,4, . . .

S skb

p D 4F S skb

p D 2

2S i

2D 2G22
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~there is a misprint in the original text on p 485! or, equiva-
lently,

sin~2skb!522skb (88)

Papkovich established that this equation, besides the obv
one,s050, has only complex roots

2skb56ak6 ibk

with p,a2,1.5p, 3p,a4,3.5p, 5p,a4,5.5p, etc,
The representation~87! along with inequalities forak

shows that self-equilibrated loads applied at short sidex
50 andx5 l decrease at the distance of 2b to a factor of
approximately 1/25. This provides some quantitative e
mates for the correctness of the Saint-Venant principle e
without finding valuesAk . The way of the construction o
the solution of the biharmonic equation in a rectangular
main was discussed in much more detail in the textbook
Papkovich@707#. In Sections 32–35, he provided similar di
cussion of a problem important for shipbuilding of bendi
of rectangular plates firmly clamped at the opposite si
uyu5b under any aritrary loading at the edgesx50,1. These
studies first remained hardly known except in the USSR,
only in a naval architects’ community@709#. These estimates
were later confirmed in@710#; see further extensive discus
sions in@119–121#. See also Horgan@711,712# for applica-
tion of such results to the classic problem of estimating
entrance length for Stokes flows in a parallel plate chann

This eigenfunctions expansion approach got much m
popularity after independently publishing in 1940 by Pap
ovich @713# and Fadle@714#. ~The first paper had been als
published in German, according to the Soviet tradition
that time, but later, after Papkovich’s untimely death in 194
was not even mentioned in the detailed list of his public
tions in the obituary. Politics, sometimes, has an unus
influence on science.! The second paper was based upon
dissertation@715#, in which Fadle attributed this approach
Tölke @479#; note also the misprint in the year on the fir
page of@714#. Papkovich@713# mentioned the possibility of
applying the Gram-Schmidt orthonormalization process
constructing an orthonormal set of functions from a linea
independent set in order to define the complex unknown
efficients in series expansion~this paragraph for some reaso
was absent in the German version of the paper!, but he did
not provide any numerics. On the contrary, Fadle@714,715#
performed extensive calculations for several practical dis
butions of normal and tangential loads at the sides o
square plate. The boundary conditions were satisfied
means of the least squares method, that is, by conside
instead of two functional equations~85! the procedure of
minimization of a joint sum consisting of the squares of t
differences between prescribed loads and finite sums
eigenfunctions.

In his next paper on the subject, Papkovich@716# studied
the problem of bending a rectangular plate with clamp
opposite sidesy56b by a system of loads either symmetr
or antisymmetric ony, by prescribing any of two physica
quantities: deflectionw, angle of inclination]w/]x, bending
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31Petr Fedorovich Papkovich~1867–1946! graduated with a gold medal from the Ship
building Department of St Petersburg Politechnic Institute, where he attended the
tures on the theory of vibration by Krylov and on structural mechanics of a ship
Bubnov. In 1912–1916 he served at the design bureau of the Admiralty shipbui
factory. In 1919 he became a professor at Petrograd@Leningrad# Politechnic Institute
succeeding Bubnov and Timoshenko, and in 1925 he was appointed as a head
Department of the Structural Mechanics of a ship. During the period of more
twenty years Papkovich held positions as a lecturer in mechanics, theory of vibra
structural mechanics of a ship at Leningrad Shipbuilding Insitute, Leningrad Uni
sity, and the Naval Academy. In 1933 Papkovich was elected a Corresponding Me
of the Academy of Sciences of the USSR. In 1940 he was promoted to the ran
Rear-Admiral of the Corps of Naval Architects. He was twice decorated with the h
distinction of the USSR, the Order of Lenin. He wrote a textbook@80# which contains
a most interesting exposition of solutions of most problems in the theory of elast
by means of a single unified approach. Another textbook by Papkovich@707# in two
volumes ~almost 1800 printed pages! was awarded the Stalin~or State, as it was
bashfully named in the USSR some time ago! Prize in 1946. This treatise is remarkab
for its completeness, see Timoshenko@23#, Section 90. Further details of Papkovich
life and scientific works can be found in@708# and in the obituary notice published in
Prikladnaya Matematika i Mekhanika, 1946,10, 305–312.



o

o

h

h
n
r

a
p
l

i
i
n

lete
las
e
en-
r-

ion
ob-
ges

the

dy
lso
ion
n

ot

Appl Mech Rev vol 56, no 1, January 2003 Meleshko: History of the 2D biharmonic problem 71
momentMx or shear forceQx at the endsx56a. For the
symmetric case of loading the biharmonic functionw was
represented in the form of a series

w5 (
k51

`

akYk~y!
coshlkx

coshlka
,

Yk~y!5
coslky

coslkb
2

y

b

sinlky

sinlkb
(89)

The complex eigenfunctionYk(y) identically satisfies the
both boundary conditions at the sidesuyu5b, provided that
the eigenvaluelk5sk is the complex root of Eq.~88!.

The most significant input in the eigenfunctions meth
was made by Papkovich@713,716# who established the spe
cial biorthogonality property

E
2b

b

$Yk9~y!Yn9~y!2lk
2ln

2Yk~y!Yn~y!%dy50, kÞn (90)

~This important condition has been independently redisc
ered by Smith@717#.! It readily permitstwo boundary con-
ditions, eitherw, Mx or ]w/]x, Qx , to explicitly determine
the coefficientsak . In particular, by chosingw50, one ar-
rives at the nontrivial expansion of zero in a series of n
orthogonal eigenfunctionsYk(y). That expansion isnonu-
nique depending on the choice of the valueMx . This
nonuniqueness explains Filon’s paradox; a detailed acc
is given by Gomilko and Meleshko@718#. For the classical
biharmonic problem with prescribed values ofw and]w/]x,
Papkovich @716# established the integral equation for th
auxiliary function]2w/]x2 at x5a, and suggested an algo
rithm for succesive approximations to its solution. In t
textbook Papkovich@707# considered some particular eng
neering problems of ship plating. From the engineering po
of view the problem is only partially solved when a mat
ematical expression for the deflection has been determi
The calculation of the moments and shear forces at diffe
points is likely to be just as difficult and tedious.

In spite of a simple idea at the heart of the method
eigenfunctions expansion, it can hardly be recommended
engineering applications, requiring too many additional c
culations; see, for example, the numerical data of Fa
@714,715#, Koepcke @719#, Gurevich @720#, and Gaydon
@721,722# for an elastic rectangle. Besides this, the m
question of the convergence of these nonorthogonal com
series at the sidesuxu5a, already anticipated by Douga
@702#, is not at all trivial. It was investigated in@723–739#, to
name the most significant papers.

Due to these and some other studies referred to in bo
by Timoshenko and Goodier@46# ~Section 26!, Grinchenko
@64#, and Lourie and Vasil’ev@740# and review articles by
Dzhanelidze and Prokopov@741#, Vorovich @742#, and
Prokopov@743,744#, the mathematical problem of develop
ing two arbitrary functions into series of eigenfunctions
non-self-adjoint operators is now clarified in great detail.

An original method of solving the biharmonic problem
a rectangular region was suggested by Grinberg and Ufl
@745# and developed in@746,747#. The method is based upo
a construction in the rectangular domain by means of a
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current sequence of operations on a special set of comp
orthogonal harmonic functions. By using Green’s formu
the expansions of¹2w and w were then constructed. Th
method provides reliable results for the deflection at the c
ter, even with only a few basic functions. A similar enginee
ing approach was independently suggested by Morley@748#.

It may seem strange, but the eigenfunctions expans
method has only begun to be applied to Stokes flow pr
lems in a rectangular cavity recently. Papers by Stur
@749#, Shankar@750#, and Srinivasan@751# provide interest-
ing data concerning the structure of streamline patterns in
cavity, including the Moffatt eddies near quiet corners.

6 CONCLUSION

History, to paraphrase Leibniz, is a useful thing, for its stu
not only gives to men of the past their just due but a
provides those of the present with a guide for the orientat
of their own endeavors.~Recall Abel’s statement, quoted i
the remarkable talk by Truesdell@753# p 39, that he had
reached the front rank quickly ‘‘by studying the masters, n
their pupils.’’!

At the end of the 19th century, Karl Pearson~1857–1936!
wrote in the preface to the monumental treatise@21# ~pp
X-XI !:

The use of a work of this kind is twofold. It
forms on the one hand the history of a peculiar
phase of intellectual development, worth study-
ing for the many side lights it throws on general
human progress. On the other hand it serves as a
guide to the investigator in what has been done,
and what ought to be done. In this latter respect
the individualism of modern science has not in-
frequently led to a great waste of power; the
same bit of work has been repeated in different
countries at different times, owing to the absence
of such histories as Dr Todhunter set himself to
write. It is true that the variousJahrbücher and
Fortschritte now reduce the possibility of this
repetition, but besides their frequent insuffi-
ciency they are at best but indices to the work of
the last few years; an enormous amount of matter
is practically stored out of sight in theTransac-
tions andJournalsof the last century and of the
first half of the present century. It would be a
great aid to science, if, at any rate, the innumer-
able mathematical journals could be to a great
extent specialised, so that we might look to any
of them for a special class of memoir. Perhaps
this is too great a collectivist reform to expect in
the near future from even the cosmopolitan spirit
of modern science. As it is, the would-be re-
searcher either wastes much time in learning the
history of his subject, or else works away regard-
less of earlier investigators. The latter course has
been singularly prevalent with even some first-
class British and French mathematicians.
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On the other hand, almost one hundred years later Al
Edward Green~1912–1999!, one of the prominent figures in
the theory of elasticity in the twentieth century, said wh
receiving the Timoshenko medal of the American Society
Mechanical Engineers~cited according toJournal of Applied
Mechanics, 1999,66~4!, p 837!

On looking back over the history of science one
realizes that most of us can only hope to place
one small brick—if that—in the edifice—and
even that may get knocked out by following gen-
erations.

As it may be seen from the preceding pages, the lo
fascinating history of the biharmonic problem in the peri
of the last 125 years or so completely confirms both of th
quotes. The history of the biharmonic problem that has b
represented in a great number of diverse works revea
great variety of mathematical methods specially develo
for its solution. Most of the methods can provide accepta
results for engineering purposes, even though the rigor
mathematical requirements regarding convergence cann
completely answered in all cases32. Of course it should be
kept in mind that any engineering formula giving a relative
simple solution and connecting some physical quantities
the consequence of some assumptions, and it is necessa
see in it not only pure numbers. But we might definitely st
that the fruitful interaction between mathematical and en
neering approaches provides the solution of the 2D bih
monic problem with both mathematical and engineering
curacy.

I have started this review with words of Lame´33, one of
the great mathematicians and engineers~French mathemati-
cians, however, considered him too practical, and French
gineers too theoretical!, and I want to end it with words from
his last lecture course in the Sorbonne@758#:

Écartez a` tout jamais la division de la science en
Mathématiques pures en Mathe´matiques appli-
quées.
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@66# Hlitčijev J ~1950!, Poglavlja iz theorije elasticˇnosti sa primenama,
2nd Edition,Nauchna Knijga, Beograd.

@67# Huber MT ~1954!, Teoria sprȩzystósci, PWN, Warszawa.
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des solides e´lastiques en ge´néral, et des formules pratiques pour l
calcul de leur re´sistance a` divers efforts s’exerc¸ant simultane´ment,
Mém. Savants Etr.14, 233–560.

@131# Rankine WJM~1858!, A Manual of Applied Mechanics, Griffin, Lon-
don.

@132# Filon LNG ~1903!, On an approximate solution for the bending of
beam of rectangular cross-section under any system of load,
special references to points of concentrated or discontinuous load
Philos. Trans. R. Soc. London, Ser. A201, 63–155.

@133# Filon LNG ~1937!, On the relation between corresponding problem
in plane stress and in generalized plane stress,Q. J. Math.1, 289–
299.

@134# Langlois L ~1964!, Slow Viscous Flow, Macmillan, New York.
@135# Stokes GG~1902!, On the effect of the internal friction of fluids on

the motion of pendulums,Trans. Cambridge Philos. Soc.9, 8–106.
~Reprinted in Stokes GG~1922!, Mathematical and Physical Papers,
J Larmor~ed!, Cambridge Univ Press, Cambridge,3, 1–141.!

@136# Rayleigh Lord,~1893!, On the flow of viscous liquids, especially in
two dimensions,Philos. Mag. ~ser. 5! 36, 354–372.~Reprinted in
Strutt JW, Baron Rayleigh~1903!, Scientific Papers, Cambridge Univ
Press, Cambridge,5, 78–93.!

@137# Sommerfeld A~1904!, Zur hydrodynamischen Theorie der Schmie
mittelreibung,Z. Math. Phys.50, 97–155.

@138# Lamb H ~1906!, Hydrodynamics, 3rd Edition, Cambridge Univ Press,
Cambridge.

@139# Klein F and Wieghardt K~1904!, Über Spannungsfla¨chen und rez-
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prix de la surface e´lastique~décembre 1811!, Ann. Chimie Physique,
~ser 2! 39, 149, 207.

@157# Germain S~1821!, Recherches sur la the´orie des surfaces e´lastiques,
Hurard-Courcier, Paris.

@158# Germain S~1828!, Examen des principes qui peuvent conduire a` la
connaissance des lois de l’e´quilibre et du mouvement des solide
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Laméequations~in Russian!, Prikl. Mat. Mekh.1, 147–154.

@218# Clebsch A~1862!, Theorie der Elasticita¨t der fester Ko¨rper, Teubner,
Leipzig.

@219# Timpe A ~1905!, Probleme der Spannungsverteilung in ebenen Sy
men, einfach gelo¨st mit Hilfe der AIRYschen Funktion,Z. Math. Phys.
52, 348–383.

@220# Mann EH ~1949!, An elastic theory of dislocations,Proc. R. Soc.
London, Ser. A199, 376–394.

@221# Sadeh WZ ~1967!, A note on the general solution of the two
dimensional linear elasticity problem in polar coordinates,AIAA J 5,
354.

@222# Bert CW~1968!, Comments on ‘‘A note on the general solution of th
two-dimensional linear elasticity problem in polar coordinates,’’AIAA
J 6, 568.

@223# Hyman BI ~1968!, Comments on ‘‘A note on the general solution
the two-dimensional linear elasticity problem in polar coordinate
AIAA J 6, 568–569.

@224# Wan FYM ~1968!, Comments on ‘‘A note on the general solution
the two-dimensional linear elasticity problem in polar coordinate
AIAA J 6, 569.
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@288# PainlevéP ~1907!, Rapport sur le Me´moire de M J Hadamard,C.R.

Acad. Sci. Paris145, 984–986.
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@317# Föppl A ~1912!, Die Biegung einer kreisfo¨rmigen Platte,S-B. Math.-
Phys. Kl. K. Akad. Wiss. Mu¨nchen42, 155–190.

@318# Melan E ~1920!, Die Berechnung einer exzentrisch durch eine E
zellast belasteten kreisplatte,Eisenbau17, 190–194.
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@361# Leon A ~1909!, Über die Sto¨rungen der Spannungsverteilung in Ve
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work method,Österreich Ing.-Arch.5, 81–98.

@579# Horvay G~1953!, The end problem of rectangular strips~discussion!,
ASME J. Appl. Mech.20, 576–582.

@580# Ishlinskii AYu ~1962!, Mikhail Mitrofanovich Filonenko-Borodich, an
obituary notice~in Russian!, Stroit. Mekh. Raschet Soor.No 5 46–47.
~Reprinted: Ishlinskii AYu~1962!, Mechanics: Ideas, Problems, Ap
plications, PYa Kochina~ed!, Nauka, Moscow, 534–537.!

@581# Ogibalov PM, Kishkin BP, and Netrebko VP~1972!, Life and activity
of Mikhail Mitrofanovich Filonenko-Borodich~in Russian!, Vestnik
Moskov Univ. Ser. Mat. Mech.No 5 124–129.

@582# Filonenko-Borodich MM~1946!, On a certain system of function
and its application in the theory of elasticity~in Russian!, Prikl. Mat.
Mekh.10, 192–208.

@583# Filonenko-Borodich MM~1947!, The bending of a rectangular plat
with two clamped opposite edges~in Russian!, Vestnik Moskov Univ
Ser Fiz-Mat Estest Nauk29–36.~English review inAppl. Mech. Rev.
3, No 650.!

@584# Danilovskaya VI ~1968!, An application of Castigliano variationa
method to the plane problem of thermoelasticity~in Russian!, Prikl.
Mekh.4~12!, 33–40.

@585# Horvay G ~1953!, The end problem of rectangular strips,ASME J.
Appl. Mech.20, 87–94.

@586# Horvay G ~1957!, Biharmonic eigenvalue problem of the sem
infinite strip,Q. Appl. Math.15, 65–81.
g

er

c

-

,

s

-

ls

l

o

d-

t

-

i-

@587# Horvay G ~1957!, Saint-Venant’s principle: a biharmonic eigenvalu
problem,ASME J. Appl. Mech.24, 381–386.

@588# Horvay G~1957!, Some aspects of Saint-Venant’s principle,J. Mech.
Phys. Solids5, 77–94.

@589# Horvay G and Born JS~1955!, The use of self-equilibrating functions
in solution of beam problems,Proc of 2nd US Nat Congress of Ap
plied Mechanics, PM Naghdi~ed! ASME, New York, 267–276.

@590# Galerkin BG ~1915!, Rods and plates. Series in some questions
elastic equilibrium of rods and plates,Vestnik Inzh.1, 897–908.~Re-
printed in Galerkin BG~1952!, Collected Papers, ~in Russian!, NI
Muskhelishvili ~ed!, Izd Akad Nauk SSSR, Moscow,1, 168–195.!

@591# Grigorian AT~1971!, Galerkin, Boris Grigor’evich,Dictionary Scien-
tific Biography, CC Gillispie ~ed!, Scribner, New York,VIII , 607–
608.

@592# Sokolovskii VV ~1951!, On life and scientific activity of Academician
BG Galerkin, Izvestiya Akad. Nauk SSSR Otd. Tech. Nauk1159–
1164,~in Russian!.
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@647# Happel H ~1914!, Über das Gleichgewicht rechteckiger Platte
Nachr. K. Ges. Wiss. Go¨ttingen Math.-Phys. Kl.37–62.
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Laméand Clapeyron, 1820–1830,Ann. Sci.38, 291–312.
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