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This review article gives a historical overview of some topics related to the classical 2D bihar-
monic problem. This problem arises in many physical studies concerning bending of clamped
thin elastic isotropic plates, equilibrium of an elastic body under conditions of plane strain or
plane stress, or creeping flow of a viscous incompressible fluid. The object of this paper is
both to elucidate some interesting points related to the history of the problem and to give an
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C’est un problene sur 'importance duquel au are widely scattered over the literature on the theory of elas-
point de vue des applications il convient ticity, theory of plates, and creeping flow of a viscous fluid.

d'appeler l'attention des ‘genares-physiciens, The literature of the subject is far too big for an adequate
ainsi que sur la neode au moyen de laquelle on  treatment within a reasonably finite number of pages. This
reussira peutde a trouver la solution pour task is partially addressed in the widely known treatises and
d'autres formes que la circulaire. courses on theory of elasticity and theory of plates. Even an

In the beginning of his talk read before the Spring Meetrcomplete list of monographs and textbooks on theory of
ing of the 43rd Session of the Institution of Naval Architectslasticity and theory of plates published in various countries
March 19, 1902, Russian naval architect Lieutenant lvan &d in various languages contains several dozen titles. One
Bubnov(or Boobnoff, according to the French spelling of higan mention(in alphabetical ordérwidely known treatises
name in the publicationnoticed[4] (p 19 and courses by Barb§24], Biezeno and Grammé25], Cia-

| do not know of any question in the theory of rlet[26], Coker and Filorj27], Foppl and Fpl [28], Frocht
elasticity which should interest the naval archi-  [29], Girkmann[30], Gould [31], Green and Zern#32],
tect to the same extent as that of the flexion of Hahn[33], Happel and Brenndi34], Love [14-182 Lur'e
thin plating. Indeed, the whole ship from keel to [35], Milne-Thomson[36], Muskhelishvili [37-39, Rich-
upper deck, consists of plates, which are to fulfil ards [40], Sokolnikoff [41], Southwell [42], Timoshenko
the most varied purposes and to withstand all  [43,44], Timoshenko and Goodi¢#5,46], Timoshenko and
kinds of stresses. Owing to this, naval architects  Woinowsky-Krieger[47], Villaggio [48], Wang[49], along
cannot be satisfied with approximate and rough  with less known(or, at least, less available at present time
practical formulas, which may be regarded as  textbooks and monographs by Agai®@], Babuika, Rekto-
sufficient by engineers of other branches of en-  ys and Wichlo [51], Belluzzi[52], Boresi and Chong53],
gineering profession, and they are bound t0 ex-  Byicas [54], Burgatti [55], Butty [56,57, Filonenko-
amine and solve this question in detail. Borodich[58—-61], Galerkin[62], Godfrey[63], Grinchenko
On the other hand, the biharmonic problem provides[84], I'Hermite [65], HlitCijev [66], Huber [67], Kolosov
number of interesting questions in mathematics as to t[&8], Leibenzon[69,70, Lecornu[71], Little [72], Lorenz
solvability of certain functional equations in the complex19], Mansfield[ 73], Marcolongo[ 74], Morozov[75], Nadai
plane, convergence of series of the non-orthogonal systefms], Novozhilov[77,78, Panc[79], Papkovich[80], Savin
of complex eigenfunctions, and the uniqueness of the sofg1—84, Segal[85], Solomon[86], Stiglat and Wippe|87],
tion for specific domains with corner points under genergzjjard [88], Teodorescu[89,90, Timoshenko [91-93,
boundary conditions imposed on the function and its normgkyand[94], and Westergaark20]. All these books provide

derivative. Besides, it represents an excellent testing problefiiensive references and surveys of many other articles and
for checking already existing and developing new numericgl s related to the 2D biharmonic problem in various
methods. domains

. Typ|cal examples of the engineering, mather_nancal, and There exist review articl95-123 written in the course
historical approaches to the various biharmonic problem : . ) .
. . ) . of the twentieth century. Further, papers written in the thirties

were provided by Biezenb] in the general opening lecture

read on April 23, 1924 at the First International Congress of the last century were reviewed in full detail Zentralblatt

n ) .
Applied Mechanics in Delft, in the Presidential addresses Ey Mechanik pub!|sh_ed from 1934_1941(.” should be
Love[6] and Dixon[7] to the London Mathematical Society, oted that the editorial board of several first volumes was

and in several talkg4,8—13 delivered at the sessions of thé'eally international since it consisted of A Befzattingen),
Institution of Naval Architects. CB Biezeno(Delft), JM Burgers(Delft), R Grammel(Stut-

The historical aspect of the biharmonic problem also prégard, E Hahn(Nancy, Th von Kaman (Aachen, Pasadeha
sents an interest. Already Maxwell deplored the growth of b Levi-Civita (Romg, EL Nicolai (Leningrad, L Prandtl
“narrow professional spirit” amongst scientists, and sugGattingen, Gl Taylor (Cambridge, and SP Timoshenko
gested that it was the duty of scientists to preserve théknn Arbor). The later volumes, due to the political issues of
acquaintance with literary and historical studies. Thus, titeat time, were edited only by German editors Wdge and
“undue specialization in Science” with which we are ofterD Neugebauer from Gtingen) Later publications in this
charged today is no new thing. In addition to fascinatingrea are extensively reviewed Applied Mechanics Reviews
historical introductions in the textbooks by Loy#4—-18, published since 194@vith SP Timoshenko, Th von Kman,
Lorenz[19], and Westergaar®0], there also exist excellentand LH Donnell as founders and the first edijoidoreover,
books by Todhunter and Pearsfi2il,22 and Timoshenko some mathematical review journals suchJasirbuch iber
[23]" specially devoted to the history of theory of elasticityjie Fortschritte der Mathematigublished from 1875-1942,
and strength of materials that contain a lot of interestingantralplatt fir Mathematik und ihre Grenzgebiet@ub-

results on the 2D biharmonic problem. _ lished since 193] and Mathematical Reviewspublished
Numerious data of the solution of the biharmonic problem

. 2There was a favorite saying among graduate students and professors in an earlier era
INote the number of reviews of this book in various journals. that “All you really need is Love;” sed¢31], p 107.
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since 1940 also contain sections devoted to the 2D bihathin plate under thrust in its own plarighe state of plane
monic equation in various mathematical and mechanicsties$ reduces to the solution of the 2D biharmonic problem.
problems. Under assumptions of plane strain or plane stress in the

The main goal of the present article is to elucidate sonfg,y)-plane when no body forces are present, the normal
interesting points in the historical development of the 2Btresse,, Y, and shear stress, =Y, inside the domairs
biharmonic problem. It is rather a discourse on those aspentsst satisfy the system of two equations of static equilibrium
of the problem with which | myself have had contact over
recent years. My choice of topics therefore has a very per—a_xx+ ‘9_Xy: ‘9_Xy+ ‘9_Yy:0 (5)
sonal bias, for a special attention is paid to the lesser known X dy toax o ady

f [i [ f th h ical " . - .

aspgcts 0 mutual interaction o .t & pure mat emgtlca and (Traditionally in the theory of elasticity there exist several
engineering approaches to solving the problems in several .. :

. h . notations for stresses, see Note A in L¢¥&] and Sommer-
typical canonical domains. For many books and papers : . )

) : . . eld [125] (Section 8. For a 2D stress field among them are:
which are in an unfamiliar language, eg, Russian, | ha\fe

: . : ; . ¢ the normal stresses,, Y, and shear stress,=Y,, intro-
given the English translation of the title. The title of periodi- ; - . X
cals, however, remained in the original languaigeEnglish duced by Kirchhof{126] and used in the textbooks tng

transliteration. In such cases, whenever possible, | tried to Love [14-14, Timoshenkd91], Muskhelishvili[37-3d,

add the references to English or German revi¢h@vever, and Papkovich80];

A '« the normal stresses,, o, and shear stresg,,= 7,,= 7,
full search of the review journals was not my goah addi introduced by Fppl [127] and used by, eg, von Kan

tion, | have given birth and death dates of authors, where thiT128] Timoshenko[43], and Timoshenko and Goodier

inf i ilabl . . .
information was available to me [45,46); now they are generally acceptable, especially in

technical literature;
2 STATEMENT OF THE BIHARMONIC PROBLEM  the normal stressds;, N, and shear stresE, introduced

The classical biharmonic problem, as stated[123,124, by Lame[1,129;
consists of finding a continuous functidh with continuous .« the normal stressep,,, pyy and shear stresg,,=pyx,
partial derivatives of the first four orders, which satisfies theintroduced by Saint-Venartt30] and used by Rankine

homogeneous biharmonic equation [131].)
AAU=0 ) A possible solution of systeith) may be expressed in the
at every point inside the domai and has the prescribedfollowing manner:
values of the function and its outward normal derivative, P 2 P
X=X v=X x--2X (6)
XToay? Y oax® Y axay

U
u=f(), —-=g() @
by means of single auxiliary functioy(x,y), called the
on its boundaryL. Here and in what follows\ denotes the (airy) stress functionThe governing equation for defining
2D Laplacian operator. must represent the condition of the compatibility of deforma-

In the classical theory of thin plates, the differential equaons in the elastic body in accordance with Hooke’s law, and
tion describing the deflectiow of the middle surface of an t js written as the biharmonic equation

elastic isotropic flat plate of uniform thicknehsreads as:
DAAw=p ®)

where the constard =Eh?12(1-1?) is called the flexural
rigidity of the plate(with E and v being Young’s modulus
and Poisson’$95] ratio, respectively p is the load per unit
area of the plate. Two boundary conditions imposed on the g4 ay d [y
functionw and its first, second, or third normal derivatives a(@) =X, a 5) ==Y, (8)
must also be satisfied. In various engineering structures

(bulkheads of a ship, for examplthe edges of the plate arecorresponding to the system of normal and shear forces ap-
firmly clamped, or attached to angle irons which allow ngjied at the boundary. which maintain the body in equilib-
side motions. The deflection must vanish at the edge; andyjum.

in addition, the tangent plane at every point of the edge mustFilon [132], in his memoir received by the Royal Society

AAx=0 (7)

If the force (X,dl,Y,dl) acts on an elemend| of the
boundary contout., then the boundary conditions for the
function y can be written as

remain fixed when the plate is bent: on June 12, 1902, introduced the notion of what was subse-
oW quently called by Lovd16,18 (Section 94 the generalized
w=0, 520 (4) plane stresof a thin elastic sheet. This considers the mean
of the displacement and stress components through the thick-
at the contoul. ness of the sheet; see a[d@3]. For these mean components

In the theory of elasticity, the determination of stresses the stress equations are of the same form as the equations for
an infinite prism with the surface loads being the same alo@@ strain or stress and, consequently, the relatinpand(7)
the generating line of the prisithe state of plane straior hold well.
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Two-dimensional creeping flow of a viscous incompress-
ible fluid can also be described in terms of the biharmonic
problem. If the motion is assumed to be so slow that the
inertial terms involving the squares of the velocities may be
omitted compared with the viscous terms, the stream func-
tion ¢ satisfies the 2D biharmonic equation

Appl Mech Rev vol 56, no 1, January 2003

Um die Spannungsverteilung zu finden, welche
in einer einfach zusammenhgenden, homoge-
nen elastisch-isotropen Platte durch ein am
Rande angreifendes Gleichgewichtssystem von
Kraften erzeugt wird, konstruiere man zihat
diejenige, bis auf eine beliebig hinzuzgknde

Ebene vdig bestimmte abwickelbare Fhe,
welche Spannungsfthe der durch das Kraftsys-
tem definierten Streifenfolge ist, und sodann die-
jenige Flahe, welche sichher dem Plattenrand
uberall ohne Knick an diese abwickelbare ¢Ha
anschliesst undher dem Inneren der Plattber-

all die DifferentialgleichundgvVz=0 befriedigt.
Istz=F(x,y) diese Flahe, so sind die gesuchten
Spannungen selbst durch die Gleichungén

AAY=0 9)

This type of flow is also called the low-Reynolds-number
flow [34] or slow viscous flow[134]. It is also named the
Stokes flow after the famous Stok¢435] memoir devoted
to estimation of the frictional damping of the motion of a
spherical pendulum blob due to air resistance.

The velocity components andv in the Cartesianx,y)
coordinates are expressed as

gegeben.
o Iy Wieghardt was the first who useflL41] the analogy be-
u=2yr VST ox (10) tween the deflection of a clamped plate and the 2D Airy

function to study experimentally the distribution of stresses

If a flow in a cavity S is produced by applying a tangentialn some elastic structuresThis s_tudy haq already been re-
velocity U,(1) along its boundary contotlr, then the bound- Ported [142] at the AachenBezirksverein Deutscher Ing-

ary conditions for the stream function are: enieureon May 1905, _
Since these pioneering works, these analogies were used

Ay in many further studief143—-154. For example, Southwell
=0, (9_n:Ut(|) (11) [153] used a problem in the bending of plates to resolve
Stokes’s paradox in fluid motion, while Richarflb4] pre-

The biharmonic equations express, in the most geneg&inted interesting tables and figures of correspondence be-
and most concise manner, the necessary relations of numirieen analogous quantities for flexure and extension of a
cal analysis to a very extensive class of mechanical phenophate and fluid flow for several typical geometrical regions
ena. It remains now to discover the proper treatment of aficluding stress concentration problems.
these problems in order to derive their complete solutions o . . .
and to consider their applications. _2.1 Derlvatlo_n of biharmonic equation

Comparing Eqs(3), (7), and (9) one may conclude that N theory of thin plates
three independent mechanical phenomena are found toHgation(3) has been known since 181iefore establishing
expressible in an identical mathematical form: the homogthe general laws of the theory of elastigignd its derivation
neous or inhomogeneous 2D biharmonic equation with nowas connected with the names of the French scientists
zero or zero boundary conditions for the functions thenh-agrange (1736-1813 Sophie Germain(1776-183],
selves and their first normal derivatives. This analogy wa&éavier (1785-183% and Poissori1781-1840. In 1808 the
pointed out a long time ago and since then it has been udg@nchinstitut (Academy of Sciencegproposed as a subject
widely. The stream functiogs and the Airy stress functiog for a prize:
as functions of two variables define surfaces, certain geo-
metrical properties of which are a measure of quantities of
interest in the particular mechanical problem. For example,
the component slopes of the stream-function surface are pro- . )
portional to component velocities, while the curvatures of t e prize(of a medal of one kllogra_m of go]d/va_ls offered
Airy surface give the elastic stresses. The stream and A the Emperor Napoleon who, being deeply impressed by

: . : ladni’'s experiments on sand figures on a vibrating plate,
functions define mathematical surfaces, whereas the deflec-
tion of a clamped plate presents a real physical surfa d added 6000 francs to the 3000 francs of the standard

which may be studied quantitatively. award, see Chladdil55]. In fact, the subject was proposed

The analogy between the slow 2D motion of incompresgree times with dates for receiving the essays of candidates

ible viscous fluid between rigid boundaries and transver 4 October 1, 1811, 1813, and 1815.

flexure of an elastic plate clamped along the same boundarlieévlct))St matheLmat|C|anshd|g nq':j ?ﬁemﬁt to ‘?ﬁlve t?e ?mb;h
was first pointed out by Lord Rayleigi36] and mentioned em, because Lagrange had said that the mathematical meth-

by Sommerfeld 137] and in the classical textbook of LambOdS available were inadequate to solve it. Sophie Germain,
[138] however, spent a lot of time attempting to derive a theory of

Klein and Wieghard{139] pointed out the analogy be-

B : STrefftz [140] published a short obituary note for Karl Wieghatd874—1924, who
tween th_e deﬂec_tlon of a Clamped plate and the 2D A”;gas a student of Felix Klein, and after his dissertation iitti@gen in 1903, worked as
function in following words:

professor at various technical schools in Germany.

De donner la therie mathenatique des vibration
des surfaces lastiques, et de la comparer a
I'experience.
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elasticity, competing and collaborating with some of the for more than 50 years. At the beginning of the
most eminent mathematicians and physicists, namely, Navier 1860's, he built for the Observatory a new large
and Poisson. Germain was the only entrant in the contest in  meridian line with a telescope having an 8-inch
1811, but her work did not win the award. She had not de-  object lens. He had to count with the flexure of
rived her hypothesis from principles of physics, nor could the telescope under the weight of the lens and
she have done so at the time because she had not had training ocular and of other devices, a fact which had
in analysis and the calculus of variations. In her first essay, caused errors up to 2 arc seconds at the Paris
the right hand side of Eq.3) contains the erroneous term Observatory, errors which are inadmissible in
®wlax*ay? + 9wl ax2ay*. Lagrange in 1811, who was one such accurate observations with significant mea-
of the judges in the contest, corrected the errors in a referee’s  surements in decimal seconds.

note (published posthumouslj156]) and came up with an Airy introduced one functiorF and represented the stresses

equation that he believed might describe Chladni’'s patterraar “strains,” as he called thelin the beam, as the solution
Only at the third attempt did Germain gain the prigge did ¢ the equilibrium equations

not attend the award ceremony, howeyemd later on the
winning essay was publish¢d57]; see alsd158]. (Consid- d N d 0
ering the contemporary state of knowledge in elasticity and &pxx d_ypxy_
differential geometry TruesddllL59] came to rather negative
. : - L d d
conclusions with regard to Germain's contribution to the —_p 4+ —p  +g=0 (12)
. dx Py gy Pyy
theory of elasticity. y
The fascinating story of the derivation of E@®), full of \yith account of gravity forces, as
controversies and discussions between Germain, Fourier,
Navier, and Poisson, is presented in the bpb&0], and the _dZ_F _dZ_F_ o d’F
review article§ 161—-164, and it was also briefly addressed Prox= dy?’ Pyy=gx2 ~9Y: Pxy™ dxdy
in the bookdg 23] (Section 29, and[21,165.

(13)

Here, Rankine’§131] notationsp,y, Pxy, Pyy for the pres-
2.2 Airy stress function in 2D elasticity sure parallel t, the shearing force and the pressure parallel
The reduction of the 2D elastic problems under plane stratf?\y’ respectively, instead of Airy’s unusugl notatidnsM,
or plane stress conditions to the statement of the biharmo _ié?. , are used._ Nexy represents t_h_e gravity _force and total
problem is usually associated with the name of the Astron%‘-anv""t'veS @) instead of now traditional partiah) ones are
mer Royal George Biddel Airg1801-1892 who during his

sed.
long life occupied positions of Lucasian Professor at Cam-

Airy considered a few practically important cases: a beam
bridge, President of the Royal Society of London, and Pre&lf?mped by one end, a beam under its own weight supported
dent of the British Association for Advance Sciences. In h{2

two piers and unloaded, centrally loaded or eccentrically
paper{166], which was received by the Royal Society on

aded, a beam fixed at both ends, and a beam fixed at one
November 1862, and read on 11 December 1862, Airy Coﬁ[ld and supported at the other. For all these cases, the author
sidered a flexure of a finite rectangular beam as a 2D pro

ssumed an expression fércontaining a sufficient number
lem in the theory of elasticity. Because of the prevailing.

terms of powers and products sfandy. Tables were
tradition of the Royal Society at that time, the extended a ven, showing the values of principal stresses at selected
stract of the paper was published separafél7]. In fact,

the results were reported before as a {dlRg] at the 32nd stresses at every point of the bea.m in each of thes_e cases.
meeting of the British Association for Advancement of Sci- The Secretary of the Royal Society George Gabriel Stokes

. . 1819-1903 then age 43, sent the paper for review to James
ences held at Cambridge in October 1862. (
The reason why the Astronomer Roy@iry occupied %%r; Mag\;veu\;'h&laﬁ%?, tz.er(‘ﬂ%%%siégg Rlecembeérlzl 8,
this position from 1835 until 1881and well-known scholar » and to vvitiiam ankin " €n age 2z,

in mathematics and astronomye improved the orbital on Pecember 31_’ 1863' Rankine raised no objections to
theory of Venus and the Moon, made a mathematical stuéIryS paper,“ and_ in his report, dated Jan_uary 26, 1863, ob-
of the rainbow and computed the density of the Earth b rved that “the |_ntroduct|on of that functid leads Fo re-

swinging a pendulum at the top and bottom of a deep min arkably clegr, simple, a’.‘d certain meth‘?ds of solvmg“prob—
and fluid dynamicgthe theory of waves and tidesonsid- ems respecting the stram:_s "3 the m_terlor .Of beams, and
ered elastic problems was partially explained by Acadentl® nCI.UdEd that th? baper 15 theoretically interesting, and
cian Krylov in the preface to the first Russian edition Opractlcally useful, in the highest degree, and well worthy of

Muskhelishvili [37]. In the English translation3g] (p °€ing Published in the Transactions.”
XVIIl ), it reads: In contrast, Maxwell[169] considered the paper very

carefully, and he noticed that the 2D equations of equilibrium

One might usefully remember that the stress  (12) can be also satisfied by choosing a more general than
function itself was introduced into the theory of (13) representation:

elasticity by the famous Astronomer Royal Sir ) 5
Jamegsic, in Russian only G.Biddel Airy who, _dF _dF _
| believe, was director of Greenwich Observatory Pxc=gy2 YW Py =g XG0y,

points, and diagrams were added showing the direction of
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his [Maxwell’s] meaning—that your investiga-
tion takes account afystems of forces onlyot
entering into displacements; that your result is
therefore necessarilyROM THE VERY PRINCIPLE

OF THE PROCESSindeterminate.

d?F

Pxy=— dxdy (14)

Next, Maxwell considered two cases) & very thin
lamina free from the pressure along thexis, 2 a very thin
plank unable to expand in thedirection, (plane stress and In the response letter of February 27, 1863, Airy wrote:
strain, respectively, in modern terminolggyFor both of “Pray send my letter for Prof Maxwell's reading, if you
them, by applying the laws of elasticity connecting OIiSpIaC?ﬁink there is nothing in it which he can take the slightest

ments and stresses, Maxwell obtained the additional equatlﬂﬂbrage " In his reply dated March 18, Stokes mentioned

that “I have not yet written to Prof Maxwell about your
(15) paper, because there was no hurry about it.”

d d
a/f PxxdX—2Pyy+ d_xf pyydy—ghx=0
Later Stokes sent these letters to Maxwell who responded

whereh=— v or h=1/(1—h) for the first and second case 0N June 9, 1863 in lengtfi 71]:

respectively.

Maxwell found that Airy’s solution F=(r —x)(3sy?
—2y®)/2s? for the case of the beam clampedxat0 does
not satisfy this equation, and he suggested his own expres-
sion for the stresp,,. However, Maxwell positively esti-
mated Airy’s approximate solution:

If any one can work out thexactsolutions, he

will have performed a mathematical feat, but | do
not think he will have added anything to our
practical knowledge of the forces in a beam not
near the ends or the points where pressures are
applied. For all such points the formulas ob-
tained in this paper are quite satisfactory and as
far as | know they are new.

(In his covering letter to Stokes, Maxwdll70] was more
cautious: “I am not enough up in the literature of the subject
to say whether it is quite new. | have not Lameegons to
refer to and there may be something of the kind in the Jour-
nal de L'Ecole Polytechnique)’

At the same time, Maxwell gave the following comment:
“The objection which | have to the method of investigation
is that the conditions arising from the elasticity of the beam
are not taken account of at all or even mentioned.”

In the letter February 22, 1863 to Stok@gho was also
the Editor of thePhilosophical Transactions of the Royal
Society of London having been sent Maxwell’s report, Airy
responded:

This remark astonishes me. The elasticity and its
law, are the foundations of every one of my ap-
plications of the new theory....) In every in-
stance, the value of the functidri-] is found
from a process which restsNTIRELY on the
theory of elasticity{ . . .) If Professor Maxwell

on further consideration should see reason for
making other remarks, | shall be delighted to see
them in the form of Appendix to the paper, if
approved by the President and Council of the
Royal Society.

Stokes, in his letter of February 26, 1863 to Airy an-
swered:

| have not as yet myself read your paper, and
therefore cannot fully enter into the report and
your letter; but unless | greatly mistake | catch

Dear Stokes

| have received your letter and that of the As-
tronomer Royal. Perhaps | ought to have ex-
plained more distinctly what | meant by the con-
ditions arising from elasticity.

There are three separate subjects of investiga-
tions in the theory of Elastic Solids.

15t Theory of Internal Forces or Stresses their
resolution and composition and the conditions of
equilibrium of an element.

2"d Theory of Displacements or Strains their
resolution and composition and the equation of
continuity (if required.

3'd Theory of Elasticity or the relations be-
tween systems of stresses and systems of strains
in particular substances.

Airy’s conclusions are all deducible from the
conditions of equilibrium of theForces or
Stressedor although he has introduced into his
calculation considerations arising from the ob-
served uniformly varying strain and stress be-
tween the top and bottom of the bedsee top of
p 3 of his letter and his paper Art 15yet | have
shown that on his own principles these assump-
tions are not required, for the results may be got-
ten from the conditions near the end of my report
namely that the pressure all over the surface is
zero. Now we know that without any theory of
elasticity and any application of elastic principles
which tells us no more than this may in a math-
ematical paper be treated as an episode an illus-
tration or instructive consideration but not a nec-
essary part of the investigatiofust as many
mechanical experiments help us to see the truth
of principles which we can establish otherwise

What | meant by the conditions arising from
the elasticity of the beam may perhaps be more
accurately described as “Conditions arising from
the beam having been once an unstrained solid
free from stress.”

That is, the stresses must be accounted for by
displacements of an elastic solid from a state in
which there were no forces in action.

| think what you and the author intend is that |
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should state the result of the above assumption
instead of that of the paper. The mode of getting
complete solutions | have only partially worked
out. It depends on expanding the applied forces
in Fouriers series the terms are of the form
Asin(nx+b)e™™. | shall send you the note or ap-
pendix when | can write it | hope before Thurs-
day.

(Airy’s paper had reached revised proofs by June 1863 and it

did not contain an appendix by Maxwell.
Nevertheless, it was none other than Maxw&ll2] who

referred to “important simplification of the theory of the
equilibrium of stress in two dimensions by means of the
stress function” and suggested the name “Airy’s Function of

Stress.” The governing equation for defining this functien
Maxwell presented not in forril5), but in the explicit form
of the biharmonic equation:

AAF=0, (16)

which can be obtained frorfl5) by substitution(13) in the

absence of body forces. This equation represents the co
tion of the compatibility of deformations in the elastic bod

in two dimensions expressed in terms of the stresses.

Later Maxwell[173,174 suggested the geometrical inter

pretation of the stress function:

If a plane sheet is in equilibrium under the action
of internal stress of any kind, then a quantity,
which we shall call Airy’s Function of Stress, can
always be found, which has the following prop-
erties.

At each point of the sheet, let a perpendicular
be erected proportional to the function of stress
at that point, so that the extremities of such per-
pendiculars lie in a certain surface, which we
may call the surface of stress. In the case of a
plane frame the surface of stress is a plane-faced
polyhedron, of which the frame is the projection.
On another plane, parallel to the sheet, let a per-
pendicular be erected of height of unity, and
from the extremity of this perpendicular let a line
be drawn normal to the tangent plane at a point
of the surface of stress, and meeting the plane at
a certain point.

Thus, if points be taken in the plane sheet,
corresponding points may be found by this pro-
cess in the other plane, and if both points are
supposed to move, two corresponding lines will
be drawn, which have the following property:
The resultant of the whole stress exerted by the
part of the sheet on the right hand side of the line
on the left hand side, is represented in direction
and magnitude by the line joining the extremities
of the corresponding line in the other figure. In
the case of a plane frame, the corresponding fig-
ure is the reciprocal diagram described above.

From this property the whole theory of the
distribution of stress in equilibrium in two di-

Meleshko: History of the 2D biharmonic problem 39
mensions may be deduced...) These equa-
tions are especially useful in the cases in which
we wish to determine the stresses in uniform
beams. The distribution of stress in such cases is
determined, as in all other cases, by the elastic
yielding of the material; but if this yielding is
small and the beam uniform, the stress at any
point will be the same, whatever be the actual
value of the elasticity of the substance.

Hence the coefficients of elasticity disappear
from the ultimate value of the stresses.

In this way, | have obtained values for the
stresses in a beam supported in a specific way,
which differ only by small quantities from the
values obtained by Airy, by a method involving
certain assumptions, which were introduced in
order to avoid the consideration of elastic yield-
ing.

Thus, already in 1870 Maxwell anticipated thevyd175]—
Michell [176] theorem on independence of stress in 2D elas-

rg%ity upon elastic moduli. However, until his premature

ath in 1879 Maxwell did not publish any more on this

%ubject.

It seems instructive to consider a reception that the Airy
stress function had received among early researchers in sev-
eral leading scientific countries of that time. In England, in
the fundamental treatise by Todhunter and Pearfj
which dealt in detail with even minor contributions in the
theory of elasticity, Airy’s paper was discussed only briefly
in Section 666, occupying only a half page! The biharmonic
Eqg. (16) was not explicitly mentioned. In contrast, in a rather
popular at the time textbook by Ibbetspti77], Airy’s stud-
ies were reproduced on 10 pages. But at the last moment
Ibbetson added a short note in small letters

307 bis Important Addition and Correction .
The solutions of the problems suggested in the
last two Articles were given—as has already
been stated—on the authority of a paper by the
late Astronomer Royal, published in a report of
the British Association. | now observe,
however—when the printing of the Articles and
engraving of the Figures is already completed—
that they cannot be accepted as true solutions,
inasmuch as they do not satisfy the general Eq.
(164) of Section 303. It is perhaps as well that
they should be preserved as a warning to the stu-
dent against the insidious and comparatively rare
error of choosing a solution which satisfies com-
pletely all the boundary conditions, without sat-
isfying the fundamental conditions of strain, and
which is therefore of course not a solution at all.

Love in all editions of his famous treati®4—18 besides
historical introduction chapter mentioned Airy’s name only
once, in connection with the more general Maxwell approach
based upon the 3D stress functions. However|16—19
(Section 144 Love expressed the displacement components
corresponding to plane strain in terms of Airy’s stress func-
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tion. Filon[132] chose a similar way for considering in the3 GENERAL METHODS OF SOLUTION
Cartesian coordinates several benchmark problems for anff®R AN ARBITRARY DOMAIN

finite elastic layer or long rectangle. At the same time, Mich-

ell mentioned at the beginning of his important papEf6] 3.1 General representations of solution
that “Airy did not consider the differential equation satisfiedf the biharmonic equation

by his function,” and constructed the representation of t

S . > r§earchin for more simple representations of the displace-
stress function in polar coordinates. Later, Mich&lr8,179 9 b P P

. o . ment vector and the stress tensor from the general Lamde
used it to study some elementary distribution of stress in %n trami-Michell i f the th £ elasticity h
elastic plane and wedge. eltrami-Michell equations of the theory of elasticity has a

In Germany, VenskgL80] and Klein and Wieghardt.39] longstanding fascinating history which is represepted_ _in
were the first scientists who attracted attention to the Aik}17,208. However, one must remember that the main diffi-
stress function, and this approach was widely developedGHIY in solving the biharmonic problem consists of satisfy-
dissertations of Timp&l81] and Wieghardf141]. Sommer- INg the prescribed boundary conditions. According to
feld [182,183 considered some specific problems for aff0lovin [209] (p 378 a similar opinion had already been
elastic layer by means of the stress function. Later this suPressed by Kirchhoff and Riemann; see also Muskhelish-
ject has received sufficient attention in review article¥li [39] (Section 105 for further discussion.

[95,98,184. o i _ 3.1.1 Representations of solutions of the
In Italy at the turn of the ninetienth-twentieth centurieginarmonic equation in Cartesian coordinates

EQZ? 1;‘éa58 a _str[olrég7 g;lg)gup( of rr}athemat;lcla?s;[ i’;'g?an%seph Valentin Boussine$4842-1929 [210] considered
+08, B0ggIo —-103 (S€€, aIso, recofiectio in detail several forms of the general solution of the bihar-

written more than half a century latgr! Levi-Cevita monic equation, mainly for the 3D case, but of course, all
[191,193, Lauricella[193], and \olterra[194], who were q ' y K ! '
these results can be easily transformed into the case of two

interested mainly in solution of the classical biharmoni imensions. The main idea of Boussinesa entailed the usage
problem(1), (2) for some canonical domains. These results, ' q 9

were summarized ifi74,196—198 of simpler harmonic functionghe ‘potentials’ in his termi-

In France, MathieL[,123] studied general mathematicaInOIO.gw in °Tder tq obtain g.e.”era' ;olutions of the bihar-
properties of the biharmonic functions, the uniqueness of tHPNIC equation. First of i‘”’ it is obvious that any harmonic
solution of the classical biharmonic probléf, (2) for gen- UNCtion #(x,y) with A¢=0 automatically satisfies the bi-
eral domains, the Green’s function, and, finally, the solutidipfmonic equatiord A¢=0. Next, Boussinesq proved that
[199-20] of the basic problem for a rectangular prism{l ¢1. ¢2 and g are harmonic functions, then the functions
Goursaf202] presented a complex representation of the s§@1, Y#2, (x“+y)¢ are biharmonic. Finally, combining
lution of Eq. (1) which finally led to the effective method ofthese types of solutlons,2 hezesta;bllshed that the2 funzctlons
complex variables for solving the biharmonic problemvy.e X¢12+ ¥, Yot byt (XY —@%)IPlox, dot (XY
[175] introduced a system different froi¥) for the stress —a°)d4/dy, with a an arbitrary constant, are biharmonic
component\;, N,, T (in Lamés notations functions. Boussinesq widely used these combinations to

solve the now famous problem of normal loading of an elas-
tic halfspace(or a halfplang Similar representations were
independently obtained by Almangi86]; see alsq74,211—
213] for further mathematical details.
Biezeno and Grammé¢R5] presented an extensive collec-
(N1 +Np)  d*(N;+Np) tion of these types of biharmonic functions useful for con-
X2 + ay? =0 17) sidering the biharmonic problem in some canonical domains.
They pointed out that for any analytic functidiiz) with z

The third equation expresses the continuity of the body undex 1y, the real functions R&x*iy) and Imf(x*iy) are
deformation. Thus the sum of the normal stresiigs-N, harmonic. This circumstance considerably simplifies the
represents a harmonic stress function. The whole sy&t@m search for suitable biharmonic functions. An extensive listing
is often called the “Maurice ey equations” for the 2D of functions which can be used for solution of the bihar-
elastic problems. It is readily seen by means of substitutifionic equation is given if214,213.
(6) that the third equation ii17) is reduced tq16). Based ~ Papkovich[80] and Biezeno and Grammg25] simulte-
upon this system, Mesnagg203,204 presented the stressneously and independently posed an interesting question
distribution in specific rectangular and wedge geometries apout the number of independent harmonic functions that are
the form of finite polynomials. needed to represent an arbitrary 2D biharmonic function.
In Russia, Abramov, Kolosotor Kolossoff, according to They established thany biharmonic function can be repre-
the French spelling of his name in some publicatjoasd sented by means ofwo arbitrary independent harmonic
Gersevanov in their dissertatioh205—-207 used the Airy functions in one of the following forms¢,+ ¢, yé,
stress function to solve various specific problems. A systent-i,, (X2+y?) 3+ by, with ¢, and ¢; being harmonic
atic usage of the solution of the biharmonic problem in rectunctions. In fact, the similar question has been addressed by
angular and polar coordinates was given in the textbook Bhaplygin already in 1904, s¢216].
Timoshenkg 91]. Love [14] see, also[18], (Section 144, was the first au-

ON; T aT  aN,
—+—=0, —+—=0,
ax | ay ax | ay
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thor who addessed an important question of determinationafnnected 2D domaii® enclosed by a contouk. In an
the components of displacemeamtandv via a biharmonic elaborate memoir, Mathidud 23] developed the theory of the
stress functiony. On the other hand, Papkovidl80,217 so-called “second” potential, obtained the analogy of
established the relation between the biharmonic Airy streGseen’s formulas for biharmonic functions, proved some
function y and harmonic functiong,, ¢4, ¢, in his famous theorems concerning the existence and uniqueness of the so-
general solution for the displacement componentndv.  lution of the biharmonic Eq(l) with either boundary condi-
tion (2) or with prescribed values of the function and its
Laplace operator at the boundary. Although his four main
theorems describe the properties of the 3D biharmonic func-
tions, similar results for the 2D case were also stated.

First, Mathieu established the generalization of Green’s
formulas, namely, for any two functionsandv continuous

3.1.2 Representations of solutions

of the biharmonic equation in polar coordinates

Although ClebscH 3,218 and Venskd 180] constructed so-

lutions of the biharmonic Eq1) written in the polar coordi-

natesr, 6 in form of Fourier series while looking for the

(nonaxisymmetrit Green’s function of a clamped circular, i their thi A : : :
eir third derivatives ir55, the following relation holds

plate, John H Michell(1863—1940 [176] (p 111 was the 9

first author who presented, without any derivation, the gen- B dAu  dAv

eral form of solution of the biharmonic E¢l) as S(UAAU_UAAU)dXdy_ P dan Ydn

d=Agr?+Bor(Inr—1)+CyInr+Dy8

dl

du dv
+ Av——Au—1|dl
+(Ar+Byr 14+B1Or+Cyr3+Dyr Inr)cosd fL Ydn udn)d
+(Eqr +For Y4+ F10r+Gyr3+HyrInr)sing (19)
o where d/dn denotes the derivative in the direction of the
+ > (A" B, r "+ C "2+ Dr "*2)cosné inner normal to the contour.
n=2 Next, Mathieu introduced two biharmonic functions
” 1
+ O (Efr"+For "+ G " 24+ H,r "*2)sinng v(x,y)=fp’(a,b)lnrdl, r?=(x—a)?+(y—b)?
n=2 L
(18) ,o 11
with arbitrary constants\y, ... ,H,. Later, a similar solu- wix.y)= pr(a,b) rinetsrr)d, (20)

tion was derived by Timpé¢181,219. Timoshenko[43,9]] ) ) ) )

added to the solutiofl8) the termd0r26 and he, Coker and c_alled the first(logarithmig a_nd second potentials, respec-

Filon [27], and Papkovich80] discussed in full details the tively, for some smooth functions'(a,b) andp(a,b) on the

mechanical meaning of each term in this representation. contourL. _ _
Filonenko-Borodich59] pointed out the possibility of ex-  Mathieu developed a theory of this second potential.

istence of the term@r2inr, @Inr, rInrécosé, r Inrgsing Based upon relatiofil9), he proved that inside the simply

in the general solution of the biharmonic equation, but HPnnected domais there exists a unique, continuous in its

explained that these terms lead to multivalued stresses if th¥d derivatives, function with prescribed values af and

coordinates’ origin is located inside the body. They can EE/dnonL, and this function can be expressed as a sum of

important for the elastic dislocation thedig20]. It is inter- first and second potentials,

esting to 'note that 20 years later exactly the same solutionsy(x y)=yv(x,y) +w(x,y) (21)

were derived221] that led to short commen{222-224. o _ . _

These latter authors have mentioned not only the EnglishBY using in (19) the biharmonic functionI=r?Inr,

translation of Filonenko-Borodick61], but also a rather for- Mathieu established the relation

gotten paper by Sonntg@25]. It should be mentioned that 1 dAu  dAII du drt

Filonenko-Borodich59] himself attributed these additional u= %J HW—UWJrAHﬁ—Auﬁ d (22)

solutions to Biezeno and Gramm{&5]. These authors pre- L

sented the most complete set of solutions of the biharmoriis equation provides the value of the biharmonic function

Eqg. (1) which also include the terms' cos\6, r**?cos\6,  at any point inside the domai® by means of the values,

cosf Inr)coshh g, r?cosp Inr)coshhé (and corresponding du/dn, Au andd(Au)/dn given on the contout ..

terms with sin and sinhwith an arbitrary value ok. These results were proven in another way in the doctoral
thesis by KoialovicH229] defended on February 2, 1903 at
3.2 Green’s function for the biharmonic problem St Petersburg University as a consequence of his more gen-

The French mathematician Emile Leonard Mathiegral relations for linear partial differential equations with
(1835-1890* was the first who addressed in full the mathconstant coefficients(These results were first announced

ematical properties of the biharmonic equation in a singlg30,231 on December 28, 1901 at the Xith Congress of
ussian Natural Scientists and Physicians which by tradition

“4Biographical data and a short survey of his scientific works can be foufi22iB— took place at t_he very end _Of the yedl‘ should t_)e I"IOtGTd,
228). however, that in the committee repd@32] on this thesis,
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signed among others by prominent Russian mathematiciavith ® = Ju/ox + dv/dy, 2w= dvldx — Juldy, and estab-
Korkin and Markov, these results were mentioned onlished that the expression ¢2u)0 +2uiw is an analytic

scarcely in one short paragraph. function of the complex variable.
Further discussion of Green'’s function for clamped elastic The same approach was developed by Chaplyg#6]
plates can be found if233-240Q. around 1900, but he did not pursue further this avenue. Later

For the Stokes flow, Green’s function was imployed bffilon [132] established rather complicated complex repre-
great Dutch physicist Hendrik Antoon Lorent¥853—-1928 sentations and used them for construction of various real
who considered241] the action of a force in an interior of aexpressions for displacements and stress components in a
viscous incompressible fluid with negligible inertia forcedinite rectangle in form of Fourier series and in finite poly-
By using the well-known device of surrounding the poinbhomial terms.
where the force acts by a small sphere and then allowing itsKolosov [247,248 was the first author who developed
radius to vanish, he derived the now famous integral equand systematically applied the complex variables method
tion for slow viscous flows which relates the velocity vectoBased upon Maurice vg’s Egs. (17), with the first two
at any point inside the fluid to a boundary integral whichewritten in the form,
involves the stresses and the velocities on its boundary. This
formula has been used extensively in the past two decades o?(ZT) + 9d(N1—Np) - _ 9(N1+No)
so in the so-called boundary-element method. ay IX IX

Lorentz[241], and later independently Hancol42], in- J2T)  a(N;—N,) 9(N; +N,)

terpreted the well-known Stok¢435] solution for the slow (25)
flow induced by a sphere moving through a highly viscous 7% ay %y

fluid as the sum of two solutions which are singular at theolosov derived the following relations

center of the sphere. One of these is a doublet which is also .

present in an inviscid flow. The second one, according to _ -

[242] “is a singularity peculiar to viscous motion, which will N1+ Np= 2{<I>(z) T @)}

here (for want of a better wordbe called astokeslet For

the 2D case this terrta more appropriate name according to o1 i(N;—Ny)=i(a+iB) do(2) +F(2) (26)

[243] could belorentzle} coincides with the second Green'’s dz

function of the biharmonic problem. where® andF are arbitrary complex functions of their ar-

guments,a(x,y) and B(x,y) are real functions representing

3.3 Method of complex variables any solutions of the system
The idea of application of complex variable theory to solve ;o 4 Ja B
the biharmonic equation looks very natural in view of the < W: -1, W-’- ﬁ—x=0 (27)

great success attained by such an approach for harmonic

functions. Goursaf202] established that arbitrary bihar-Therefore, the solution of the 2D problem is completely de-

monic functionU can be represented via two analytic funcfined if two analytic functionsb(z) andF(z) can be found

tions ¢(z) and y(z) of the complex variable=x+iy as based upon the prescribed boundary conditions at the con-
— — tour.

2U=2¢(2)+z¢(2) + x(2) + x(2), (23) Kolosov [248] also provided the analog @R6) for any
where the bar sign indicates a complex conjugate. Anoth@rvilinear orthogonal isothermic coordinate system. By
version of the derivation of this important formula is giverthosing some concrete expressions dofz) and F(z) he
by Muskhelishvili[244]. obtained anew the already known resy69,219 for cir-

In the theory of elasticity for 2D plane stress or p|an§ular domains. In addition, he solved some typical boundary
strain problems the idea of application of complex variabroblems for a halfplane, a circle, and a plane with circular
traces back to Clebscfi218] and Love [14]; see, also, and elliptical openings. The results were presef@b| at
Tedone and Timpg95] (p 163 for details. Clebsch218] the IV International Mathematical Congress in Rofttaly),
(Section 31 derived the representation of the functiods section of Mechanics and Mathematics, on April 11, 1908.
+Y, andX,—Y,+2iX, via one function oz and the same Hadamard was the chairman of the session, and Runge, Bog-
function of zZ. These expressions, see also Kolo$@¢5], gio, and Volterra participated in discussion.
were rather cumbersome and contained some combinationdvore then one and a half years later, Kolosov presented
of Lamés constants\ and . Clebsch did not use them fortwo talks[256,257 at the XII Congress of Russian Natural
solving any specific problem for plane stress. Scientists and Physicians, held in Moscow from December

Love [14], following Lame[1], wrote the 2D equations

for the Cartesian componentsandv of the displacement °Gurii Vasilievich Kolosov (1867—1936 (or Kolossoff in the French spelling of his

vector in a form name graduated from St Petersburg University where he did his master’s dissertation

on a solid body rotation with one fixed point. From 1902 till 1913 he worked at Yur'ev

[Tartu] University. After 1913, he worked at the Electrotechnical Institute and the

d w d Jw University in St Petersbur¢l_eningrad where he spent the rest of his career. In 1931
()\ + 2,U«) 07_ - 2,U« 5_ = 0, ()\ + 2#) (9_ + 2# &_ =0 upon a suggestion by Academicians Krylov and Chaplygin he was elected a corre-
X y y X sponding member of the Academy of Sciences of the USSR. A more detailed biography

(24) of Kolosov and discussion of his scientific works can be founf249—-254.
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28, 1909-January 6, 19%@ccording to the Julian calendartation that gives the analytic complex function under pre-
which was in usage in Russia that tim&enowned Russian scribed value of its real part at some closed contothis
mathematicians and mechanicians Steklov, Joukowslgyethod, being rather powerful and straightforward, remains
Chaplygin, and Timoshenko participated in the discussighther unnoticed and it deserves further elaboration.

and made some comments. In the first te266], Kolosov The method of complex variables in 2D elasticity prob-

suggested an interesting method of solution of the bihgli, yeveloped by Kolosov was successfully followed
monic problem(1), (2) based upon searching for the seconfb63,264 by Muskhelishvili® a pupil of Kolosov at St Pe-

Qerlvatlvesuxx, Uyy, ande_y, mstc_aad of the functiot ersburg Electrotechnical Institute. Later Muskhelishvili
itself. After some transformations this reduces the problem

that of finding two analytic function®(z) andF(z) under 844,265—27§)con3|derarbly extended the method by.addlng
the condition that along the boundary the function (the idea of the Cauchy integral and conformal mapping, and
+iB8)dd(2)/dz—iF (2) + Lexp(=2i0)(®(2) + ®(2)) is Solved a large number of specific problems summarized in
given. Hered denotes the angle between the normal at thés remarkable treatisg87—39. Additional references and
boundary at the pointx(y) and the positivex-axis. Finally, detailed exposition of the complex variables method can be
the problem is reduced to the known Riemann-Hilbert protieund in[33,271.
lem. The method was generalized to arbitrary orthogonal cur- It is worthwhile to note that a similar complex variables
vilinear coordinates and then applied to some specific camethod has been also suggested by Stevefth273 and
tours: a line, a circle, an ellipse, and even a rectangle. Bbritsky[274], with Kolosov’s formulas being derived anew
seems that this method remains unnoticed and it deseryggout any references to his works. This circumstance re-
further elaboration. ~ ceived severe critique from Muskhelishvili in the third edi-
In the second talk257], Kolosov repeated the derlVat'ontion of his treatisg 38] (Section 32. Radok in a translator’s

of his main formulas(26) and provided an expression fornote in[39] (p 115 mentioned that he received some expla-
components of the displacement vector. He also derived an

integral Fredholm equation, but he did not investigate i{gatlons from both authors. Stevenson wrote that in the years

properties. Later, a similar approach was essentially deveP39—1940 when he worked on his paper he was admittedly
oped by FoK258,259. ignorant of prior works in that area. However, later Steven-
All these results entered in Kolosov’s doctoral dissertatiotPn acknowledged the priority of Kolosov and Muskhelish-
[206]°. The defense took place at St Petersburg University §ili by referring to six papers by Kolosov, dating as far back
21 November 1910, and Academician Vladimir Andreevichs 1909, of four papers by Muskhelishvili, the first of which
Steklov(1863—-1926 and Professor Dmitrii Konstantinovichappeared in 1919, and to the joint paper by both authors,
Bobylev (1842—-1917pwere the official opponents. Accord-published in 1915. Poritsky indicated that he deduced his
ing to [250,25% Kolosov had some troubles during the deformulas in 1931, although his paper was not published until
fense. The matter was that Academician Steklov, who immeg4s, By that time, the Russian works had been given a fair
diately understood and appreciated the main idea of usage,gfount of publicity in the USA and therefore he quoted only
two analytlt_:al func_tlons, had noticed some fault in formula_gne papef392], merely for the purpose of acknowledging
(26) when in Section 12 Kolosov applied them to an arbi; o )
trary isothermic coordinate system. His concern was that tlhheat he had been anticipated; §@5,27§ for further de-
right hand side does not generally represent an analytic fuﬁ%'—ls' )
tion. From February—April 1910, Steklov exchanged several AnOther usage of complex variables was suggested by
letters with Bobylev and Kolosov, sd@54] for full texts. Nikolai Mikhailovich Gersevanoy1879—1950 in his mas-
Kolosov had to accept these comments and he includedtghs dissertatiorj207]. Considering the inhomogeneous bi-
Appendix into his dissertation with a long quotation fronharmonic Eq(3) for bending a plate with linearly distributed
Steklov’s letter. That is why the date on the title page of theading p(x,y)=Px+Qy+R (for example, for a sluice
printed dissertation does not correspond to reality—the entgate, he presented the general solution in the form
work had been bound after April 1910. Later Kolosov
[260,261 referred to the year 1910 as the date of publication
of his dissertation.
KolosoV [68] summarized his studies on the solution of
the biharmonic prob|em by means of the Comp|ex Variab|é‘l§1.ere are different spellings, Muscheiig Muskhelov of this Georgian name in
method of finding two analytic functiond(z) and F(2) uanovch Muskhelshul (19911575 gradusted in 1915 from the. Physico-

based upon prescribed boundary conditions at the contourMathematical Faculty of St Petersburg University, and on presentation of a diploma
thesis he was retained by the Department of Theoretical Mechanics for preparation for

addition to already EXiSting approaChesy he deVGIC[ﬁéd] an academic career. From 1917-1920 he taught at Petrograd University and also at

the method of “complex compensation.” This method wasther higher educational institutions of Petrograd. In 1920, Muskhelishvili moved to
Tiflis [Thilisi], where he worked at Tbilisi University and Thilisi Politechnic Institute.

based upon appllcatlon of the Schwarz mtegﬂearepresen- In 1939, he was elected as a Academician of the Academy of Sciences of the USSR,
and in 1941 he was elected as a President of the Georgian Academy of Sciences, and

R the Director of the Georgian Mathematical Institute. Muskhelishvili's fundamental

®The dissertation has also been printed in parts in several issues $fithnatific Notes  monograpl{37] was honored in 1941 with the Stalin Prize of the first order; it has been

of Yur'ev [Tartu] Universityin 1911 with two additional pages with main statements.translated into English, Chinese, and Roumanian and is widely known among special-

"It is interesting to note that the book had slightly different titles on the cover and titists. In 1945, Muskhelishvili was awarded the title of Hero of Socialist Labor. He was

pages; this leads to somewhat confusing references in the literature. a deputy of the Supreme Soviet of the USSR of all councils.
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1
W= 5[ d1(X—iy)+ da(x+iy)]

+iy[ 1(x—iy) = do(x+iy)]

Py’ Qy* RY'

24 "120" 24
(28)

where four continuous functiong{(x—iy), ¢s(x+iy),

[ Pa(x—iy) + da(x+iy) ]+

P3(X—1iy), ¢a(x+iy) are defined from four functional

equations corresponding to the boundary conditighsfor
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wherez=x+iy and ¢, and ¢, are two arbitrary functions.
Previously Gersevand07,279 used more complicated ex-
pressions that contain four arbitrary functiofasmd even the
Lame constants\ and ., which however can be easily ex-
cluded. Gersevanoy278-28Q considered by this approach
some problems for an elastic halfplane and found simple
closed form expressions for various given boundary condi-
tions at the surface. He pointed out a mistake in the solution
by Puzyrevski{281] connected with afapparentnounique-
ness of the solution. In my opinion, this method for the case
of the halfplangas an alternative approach to Fourier trans-
forms) is rather useful and it deserves further elaboration.

the clamped plate. The author derived that these f“nCtionSSobrero[ZSZ] suggested the method based upon usage of
¢4(2) can be presented in the form of Taylor series expafe go-callechypercomplex functionahich was developed

sions

z z2°
¢a(2)= g (0) 77+ bg(0) g+ - ..

and provided an algorithm for finding the values of the ¢

efficients ¢’ (0), ¢4(0), . ..

in [283,284 for the representation of the stress function.
However, this approach appeared to be much less effective
for solution of specific problems.

0_

4 THE PRIX VAILLANT COMPETITION

Gersevanoy207] himself did not consider any numericalThe engineering problem of bending of a clamped, rectangu-
example of application of the developed scheme. For sofdé thin plate by normal pressure constantly attracts the at-
reasongnot clear now Bubnov, who in 1910 was one of thetention of mathematicians. As the famous Russian scientist
chief designers of the Russian Imperial Navy, suggested ggd naval architect Academician Alexei Nikolaevich Krylov
Fridman, (the future renowned expert in the dynamical me1863—1945 (or Kriloff in French spelling of his namerec-
tereology and general cosmology, who had just graduat@éected,[285]:

from St Petersburg Universityto make some practical cal-
culations based upon that method. In June 1910, Fridman

wrote a letter{277] to Steklov (probably, his scientific ad-
viser at the University

Some days ago after sending a letter to AN Kry-
lov | received from Mr Bubnov some informa-
tion about the project. It appears neccesary to
solve by the method of N Gersevanov the equa-
tion AAv=a for boundary contours consisting
of two parabolas of tha-th order. This approach
theoretically looks highly cumbersome; | don't
know yet how it will work numerically. Anyway
that project is very timely and | thank you very
much for your help.

and some time later in the second letter

The matter with calculations based upon Gerse-
vanov's method is very bad; Gersevanov did not
prove either the convergence of the Taylor’s se-
ries or the possibility of finding the coefficients
at all. | have tried to apply this method to a sim-
pler Dirichlet problem for a halfplane; it does not
work. | am going to discuss this issue with Bub-
nov.

Later Gersevanoy278] also presented the general inte-
gral for the componentsl;,N,,T of the stress tensor in the

Maurice Lery Eqs.(17)
Ni=iypi(z)—igy(2),
No=2¢1(2) =iy $1(2) +ida(2),

T=—i¢1(2)~y¢1(2) + ¢2(2) (29)

In the summer of 1892 | worked in Paris on the
project of the Drzewiecki's submarine. Before
leaving for Paris, | received from Professor Ko-
rkin several of his articles and a letter for Her-
mite. Upon arrival in Paris, | went to Hermite
and was received very warmly. Hermite asked
me about Korkin, the Naval Academgtic Then

| said to Hermite that it would be very important
for shipbuilding to obtain a solution of the dif-
ferential equation with the boundary conditions
being that the contour of the plate is fixed. Her-
mite called his son-in-law Picard and said to
him: “Look, Captain Kriloff suggests an excel-
lent topic, which can be used for tli&and Prix
des Mathenatiques Think about this.” Approxi-
mately a year later this topic was suggested by
the Paris Academy of Sciences.

This recollection does not seem to be completely correct.
In 1894, the journal'intermediare des Mathmaticienswas
founded with an original idea of providing room for the ex-
change of opinions among professional mathematicians and
interested people by stating questions §oassibly getting
answers. In the first issue of this journal, Picg286] put the
question No 58 in the following words:

Le problene de I'guilibre d’'une plaque rectan-
gulaire encastee revient “a lintégration de
I'équation

AAu=a
(a etant une constante, eAf representant

9*f19x? + 9°f19y?), u s'annulant sur le pame-
tre du rectangle, ainsi que larieee du/dn prise
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dans le sens de la normale. La solution de ce
problame peut-elle &e obtenue par des$es ou
des intgrales dénies?

As the i he first 2 I for th 1894-191 . . .
s the index to the first 20 volumes for the years 189 9n:13em0|r (of 128 pagep is to study “fonction de Green

shows, this question remained without answer. A Sim"ag’ordre deux " T8 of the biharmonic problent3), (4) for

. ] A ] il
questlon(n(?t_relate(_j to the rectangle onlyas re_pea_ted ten the clamped elastic plate, that is, to investigate the general
years later; it received short replies by Boggio with a fe‘ﬁroperties of the deflectiow(B;A) at an arbitrary poinB
Italian references and Maillet with reference to Flamantiﬁside the domair with a smooth boundary under the

textbooK[287]. _ _ action of a unit normal force applied at a pot Hadamard
Only in 1904 did the French Academy of Sciences Sugnowed that the value df4 is finite and positive and the

gest that topic for the competition of ttirix Vaillant (and  inequality °8)2<I'ATE holds well. He considered the inter-
not theGrand Prix Mathenatique for the year 1907, with a esting problem of how the biharmonic Green's function
prize of 4000 francs. The condition for the competition Waghanges under a small deformation of the domain, and he
first announced in Comptes rendus des a@®&es de derived the nonlinear integro-differential equation for the
I'’Academie des Sciencek904,139 1135: variation of the Green’s function mentioning that “it is in no

established Fredholm integral equation theory, it was proven
that under rather general conditions a unique solution to the
problem under consideration exists.

The main goal of Hadamard®291] rather voluminous

PRIX VAILLANT (4000").

L’Academie met au concours, pour 'anme
1907, la question suivante:

Perfectionner en un point important le prob-
leme d’Analyse relatif d’équilibre des plaques
elastiques encastes, c’est-adire le problane de
l'intégration de I'equation

#u AVEEAT
W +2W + W =f(X,y)
avec les conditions que la fonction u et sa de
rivée suivant la normale au contour de la plaque
soient nulles. Examiner plus spalement le cas
d’un contour rectangulaire

Les Mamoires devronfie envoys au Secre
tariatavant le1°" janvier 1907.

way an exception in mathematical physics.” He also studied
the variational properties of the Green’s function and put
forward the isoperimetric conjecture that the maximum value
of the functionalG(P,P) considered on the set of domains
with a prescribed perimeter, is attained for a circular domain
with a center aP. This has an important connection with the
solution of extreme problems and problems related to con-
formal mapping; se€298] for further mathematical details.
Another question addressed [@91] was the so-called
“Boggio’s conjecture.” Boggio[188] had put forward a con-
jecture that the biharmonic Green’s function is alwapsi-
tiveinside a convex domain. In other words, the deflection of
any point of a clamped plate coincides with the direction of
an applied concentrated force. Boggio proved this conjecture
for a circular domain by means of some obvious inequalities
applied to the explicit expression of the Green’s function.
Hadamard[291] suggested another “physically evident”

Poincafe1854—1912 Picard(1856—1941, and Painleve Conjecture that the value of the Green's function increases
(1863—1933 were namedes rapporteurs that is, it was with decreasing domain. In the talk presented at IVth Inter-
their task to judge twelve memoirs submitted for considefational congress of Mathematicians in Rome in September

ation. They presented extended repd288-29Q, and in 1908, Hadamar{299] (p 19 stated Fhat

December 1907, the authoritative commission consisting of M Boggio qui a, le premier, notta signification

Jordan, Appell, Humbert, Maurice g, Darboux, and physique dd'g, ena deluit I'hypothese qugl“é

Boussinesq decided to share the piiasking for additional etait toujours positit. Malgre'absence de de-

money for that purpogebetween Jacques Hadamaid65— onstration - rigoureuse, l'exactitude de cette

1963 (three quarters of the valueArthur Korn (1870— proposition ne parait pas douteuse pour les aires

1945, Giuseppe Lauricella(1868—1918 and Tommaso convexes.

Boggio (1877—1963° and gave a special notice to the worlHadamard, however, mentioned the necessity to put some

by Stanislaw Zaremb&1863—-1942. additional assumptions on the domain, for the Green’s func-
In the memoirs awarded thBrix Vaillant, Hadamard tion G has an alternating sign for an annulus with a large

[291], Korn [292], Lauricella[293-295, Boggio [189],'° ratio between external and internal radiEnlis and Peetre

and Zarembd 296,297 considered mainly the biharmonicl300] proved thatG is not positive for an arbitrary ratio of

problem for a singly connected interior with a smootihe radii . _

boundary contour. In all cases, some integral equations eithef\t€r Hadamard, the Boggio-Hadamard conjecture re-

for the original biharmonic function or for some auxiliaryS€/Ved considerable attention, mainly among applied math-

harmonic functions were written down. By means of the ju aticians. |t finally appeared 'Fhat_it\j\jerong Gargbgdyan
01] showed thaiG changes sign inside the elliptical do-

_ f 21 (5,2 ;

Boggio was extremely fortunate to escape with his life as 78,000 people were kaE]a'” X + ( 3'y )s 1. Shaplro and Tegmal[BOZ] showed that

by an earthquake that on December 28, 1908 struck Messina, northeastern Sicily, witt@n-pOSitivity of G for the elongated elllpseI2+ 25y2$ 1

he held the position of Professor of Rational Mechanics. can be easily obtained by Considering the polynomial

1%There were no special publications later on, but Poinizahés repor{290] presented 2 5 > T
a detailed survey of the entrant essay. P(x,y)=(x“+25y“—1)(1—x)“(4—3x) that satisfies both
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boundary conditiong4). SinceAAP>0 everywhere inside  General approaches based on the integral equations ap-
the ellipse, then assumirg=<0 one arrives aP<0, which peared not effective when dealing with the rectangular
is obviously incorrect. Othefexotic) examples of domains domain—the case that was specially mentioned in the con-
bounded by analytical curves, for which Green’s functiogition for the Prix Vaillant. Lauricella[295] wrote down at
changes sign, were provided iB03,304. length the representation for the deflection of the clamped

Duffin [305] suggested that Green's function for a halfiocangular plate in terms of functionsandw. (The general

strip x=0, |y|<1 may change sign because of asymptotiC,<a of the inhomogeneous biharmonic equation can be eas-

tiehaviorCe_xp(—crx)c_os(rx—¢) for large x on the liney i raquced to the homogeneous one by choosing any par-
=0. Following Boggio[188] and Hadamard299), he also jcjar solution) In fact, the infinite system of linear alge-

formulated two conjectures. First, he supposed that theic equations for the coefficients in the Fourier series for

change of sign occurs for rectangles with a ratio of sidegese functions completely concides with one obtained by
greater than four. Secondly, he supposed that for a SqURfgihieu[200,20] for an elastic rectangle. Lauricella did not
plate the Boggio-Hadamard conjecture holds wellhis ,oyide any numerical results, only referring to Koialovich’s
statement is incorregt. [229] (or Coialowitch, as he wrojedoctoral dissertation.

Another approach to the Boggio-Hadam.ard conjec.turlehiS approach was further developed by Sderd308,309
was developed by Hedenmalf806]. He was interested in i, oytensive papers which, however, remained not known

additional conditions for the positivity of the biharmonic,,.5,se of World War II. Later Schier [310] considered

Green's function, and he applied the idea of Hadamard g case of a rectangular domain, where he also used Lauri-

changingG with changing form of a domain. By introducing.q|ia's method.

into consideration  the - functionH(P,Po) =ApG(P,Py) The results of Korr{292] and Zaremb4296,297, being
—9(P,Po) with g(P,Po) being the harmonic Green's func-j,iaresting at the time, did not have much impact on the
tion for the Dirichlet problem for the Laplace equation, h‘I"'urther development in the biharmonic problem: references

proved that for a star-shaped domain with boundary given Ry \hese memoirs are scarce today, both in mathematical and

analytic iurvg,G(P,Po)zo in the domain if and only if ongineering studies. References to these studies in general
H(P,Pg)=0 in the whole domain including the boundary. c,ntext of thePrix Vaillant competition are given ifi37—
Lauricella [295] in his winning memoir developed an-3q 204

other approach to solve the biharmonic problgmand (2).

X ; I do not know what other eight memoirs submitted for the
He introduced two unknown functions

Prix Vaillant competition were. It is highly possible that the
Ju Ju manuscript by Haaf1885-1933[311] (based upon his Geo

U=72x VT oy (30) tingen dissertation guided by Hilbgnvas among them. In
several publication§11,12,312—31}it was mentioned that
with an auxiliary function among the twelve memoirs submitted to tReix Vaillant
o ov competition there was one authored by Walter Ritz. This
= —+ —=AU (31) epoch-making study was not to be crowned, and it was not
ax . dy even discussed in the commission reports. The reasons for
Lauricella considered the following equations that are not very clear. According to Formg8iL4] (p 48D,
Ritz's manuscript, 38 pages in folio, together with a referee’s
a_u: &_U AH=0 (32) Summary, is in the archives of the French Academy of Sci-
ay Ix’ ences(it still would be interesting to find these shegts!

while the obituary note by Fuet¢B12] (p 102 stated that

inside the domairs with boundary conditions ! et ) A
Ritz presented the memoir in time, but it had been simply

u=g(|)d—x+g%=f 0 lost. In any case, in April 1908 Poincamésited Gdtingen
dn dldn 1 (where Ritz then resideand expressed his deep regrets that
this very original investigation had not been honored. Poin-
dy df dx carementioned that the Academy would award Ritz another

=g() = — — — =gl 33
v=9( )dn d dn 91(1) (33) prize. Finally, in 1909 Ritz was awardédnfortunately, post-

at the contout. . humously the Prix Leconteof the Academy of Sciences for

After extensive transformations Lauricella reduced thi(]-)IS WOF"S in mathematical p,hyS|cs and’mec,:hqnlcs as 't. was
boundary value problent32), (33) to the system of two stated inComptes rendus desam:es_ de IAcadele_deys Sci-
Fredholm integral equations with respect to the unknomﬁpceﬁgqg'mg’ 1291. For further dls_cussmn of Ritz's work,
functionsu andv. He proved uniqueness of the solution forte Section 5.6.3 of the present article.
the case of a finite domain bounded by a smooth contour.

Later Shermari307] independently established a simila® METHODS AND RESULTS
integral equation for a complex functio@(z) conditions, FOR SOME CANONICAL DOMAINS
which is usually called the Lauricella-Sherman equation. Ahe term “canonical domain” usually refers to the domain
detailed review of Sherman’s numerous articles on this topihose boundaryor boundariesis formed by a coordinate
as well as other possible types of integral equations can Ibe (or lineg of some typical 2D coordinate systems, eg,
found in[38,39,108. rectangular, polar, elliptical, or bipolar ones. The usage of
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these systems can often provide a considerable simplificatimmmment Volterrd194] demonstrated that both these expres-
and permit one to obtain an analytical solution of the bihagions can be transformed one into another; see[4135).
{nci[rrlllc probtlem. In whlat fO”%WS we r_estlrl((j:t our_consflc;_er_fltlog_g.1.2 Bending of a clamped circular plate

0 the most commonly used canonical domains of finite dl'ﬁ his epoch-making memoir Poiss§815] was the first to
mensions: a circléor ring), an elliptic region, an eccentric

. . . ) .consider the bending of a circular thin isotropic elastic plate
circular ring, and a rectangle. Out of consideration remain

) of thicknessh and radiusa clamped at the boundany=a
however, a sector and an annular seadtarcurved thick b =

. S .under an action of axisymmetric pressysér) at its top
beam that also obtained a great deal of attention in the IIE'urface. He got the general solution to the boundary value

erature. The biharmonic problem for an |nf|n.|te wedge re| roblem(3), (4) in closed form: see Todhunter and Pearson
resents one of the benchmark problems that is extremely i

. o .[21] for this long expression.
portant. for und.erstand[ng the pecu I'|a'r|t|es of local behavior For particular cases of uniform loading, and concen-
of a biharmonic function in a vicinity of a non-smooth

boundary. Besides, we briefly consider the solutions of trt&r?ated forceP applied at the center of the plaieere, in fact,

biharmonic problems in some outer infinite regions, namel oisson used the notion @ffunction while mentioning that
P . 9 » NAME¥e Joad has sensible values only when the values afe
a plane, a halfplane, and a layer with circular and elllptlc?éb

. . sensitive and some integrals then have to be suppressed
openings, the problems that traditionally have a strong tec 9 ppre

nological importance in civil engineering and shipbuilding. tained

(The equally important problems of several nearby openings Po 5 on
remain, however, out of the scope of this reviefhe most ~ W(I) = gz —25(@°— 1) (35)

typical infinite domains: a plane, a halfplane, and a layer
remain out of consideration, too—there exists a great numisErd

of textbooks and monographs already mentioned in the In-
troduction that contain detailed expositions of these w(r)=

a 1

—r2In—+ 5 (a%-r?) (36)
r 2

problems.

8mD [
respectively.

In 1862, Alfred Clebscl{1833-1872, then age 29, being
a Professor at the Polytechnic school at Karlsruhe published
The circular domain is obviously the most common one fgy book[218], based upon his lectures on the theory of elas-
solving explicitly the biharmonic problem. This has beeRcity. Notwithstanding his position at the technical school
done by many authors in almost innumerable publications. fiis ook certainly was not suited for the technician—it was
what follows, we restrict our consideration only to the MOoHighly mathematical, with a wealth and ingenuity of analysis
important steps; for sake of uniformity of description of thef the more theoretical parts of elasticity. The chief value of
results of many authors we will consider the circular domaipe pook lies in the novelty of the analytical methods and
O0s=r=a, 0= 6=<2m in the cylindrical coordinatesr(¢). solutions of several new elasticity problems. In the French

5.1.1 General homogeneous biharmonic problem translatior(3], performed by Saint-Venariage 86) and Fla-
The explicit solution of the general biharmonic problém mant, there are a lot of amendments which increase the vol-

; : . to more than twice the lengths well as the correction
2) was obtained a long time ago in several ways. One wa{}""® . )
@ g g y >%}fzﬁmany of the innumerable errata of the origindh Sec-

employed by VenskgL80], consists in using the fact that any’;
oy y E180 d tions 75 and 76 of218] (or pp 763—-778 of the French trans-

biharmonic functiond can be written in the form . . .
lation [3]) the general problem of small deflection of a thin
U(r,@)=u(r,0)+r?v(r,0) (34) isotropic clamped plate of thickneksis dealt with. Clebsch

with u andv being the harmonic functions in the interior ofV"oté down the general equation for the bending of the plate
the circle. By searching for these functions in the form di!SO subjected to the stretchifigin the middle plate. Sup-
Fourier series on the complete trigonometric systemnéps POSINg the normal loag(r, ) to be known in sines and
sinnd with n=0,1, ... and expanding the boundary condi€0S!N€sS of mult|plle angleg @ "?m,d then expressing |n.l|ke
tions (2) in Fourier series one obtains an independent systd@fM, and assuming for simplicity =0, Clebsch obtained a
of equations to determine the Fourier coefficients for eveft Of €quations in the form:
numbern. The main question, however, is the convergence [ g2 1 d n2)\?2 Pn
of the Fourier series, and their ability to present the WJr rar r—z) "=
biharmonic functionU in a form suitable for numerical
evaluation. wherew,,(r) is the coefficient of cosé or sinnf in w(r, ),
Another approach belongs to the Italian mathematiciaasd p,(r) the coefficient of the like terms ip(r,6).
Almansi[185] and Lauricella[193]. By means of represen-  Clebsch presented the explicit expression for the particu-
tation (34) they reduced the problem to two Dirichlet probiar case of a clamped edge=a under concentrated normal
lems in the circle and they represented the solution of thead P applied at the pointr(, 6y), that is the Green'’s func-
boundary value problenil), (2) in two different forms of tion for the biharmonic problem in the circular domain. This
definite integral over the contour=a that provide the finite solution had mainly mathematical interest, for it was rather
expression for the above-mentioned Fourier series. In a shdifficult to employ it for practical calculations. However,

5.1 Circle and circular ring

n=0,1, ..., (37)
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Clebsch managed to sum the Fourier series and to finchenaxisymmetric load. This problem, in fact, had been cor-
simple engineering formula for the deflectibn of the plate rectly solved by Michell[178] and cited already by Love
at the point of applied load. This value appeared finite: [16-18.
It should be noted that the problem for the circular disc
f = L (38) under action of concentrated forces acting at its surface has
o 8wD been first solved in a closed form by the great German physi-
cist Heinrich Hertz(1857-1894 [327] by the method of
images; se443,80,9] for detailed explanation. The same
B Pa’ 39 problem by the method of complex variables was solved by
~ 16m7D (39) Kolosov and Muskheloy263] and later reproduced by both
rI]<0Iosov [68] and Muskhelishvili[37-39.

a?-r3
2

r
2 0
+r5ln—
" a

and for the most interesting case of central loags 0

fo

Michell [179] developed an elegant method of inversio
and presented the deflectiom at some pointA under the
concentrated force of valu@ applied at some point as:

!

p , 1, 5.2 Ellipse and elliptical ring

w=go5| R Inﬁ+ 7 (R=R9, (40)  Although the biharmonic problem in an elliptic region has

received relatively little attention so far, it provides, how-

whereR andR’ are the distances from poit to pointsC  ever, a wonderful example of a simple closed-form analytical
andC’, the inverse taC with respect to the circle of radius sg|ution of an important engineering problem.
a; see,[18] (Section 31#) for further details. This solution | his talk communicated to the Summer Meeting of the
was used in[316] to consider more general cases of locaisih Session of the Institution of Naval Architects on July
loading of a clamped circular plate. L 13, 1893 Bryari328] discussed how the general mathemati-

Apparently, being unaware of Michell's solution Bt 4 Kirchhoff theory of thin elastic plates could be applied to
[317] considered this problem anew and he obtained the repjicyjate the stresses in a thin elastic plate that is bent under
resentation for deflection in the complicated form of a Fousyessyre. Giving a talk before practical naval engineers, the
rier series. By using bipolar coordinates Me[&18], Flugge 5 jied mathematician, as we could call him now, Bryan did
[319], and Muler [320] constructed anotheimore simplé ot aitempt to go through the long and complicated analysis
expression for the deflection in Michell’s solution. and mentioned that “at a future | would be prepared to apply
5.1.3 Stresses in a circular plate and a circular ring the results to calculate the stresses in a circular, elliptic, or
Clebsch[218] (Section 74 also addressed a general solutioféctangular area exposed to fluid pressure, in the hope that
for a circular plate(under conditions of plane strgssub- such calculations may serve as a basis for future experimen-
jected to a given system of forces acting parallel to the plaf@ or other investigations on the subject.” At the very end of
of the plate, but himself did not provide a discussion of arfyis talk, Bryan[328] said:

specific problem. | find that the solution assumes a very simple
Based upon general representatia) Timpe [181,219, form when the boundary of the plate is elliptical
Timoshenko[321-323, Wieghardt[324], Filon [325], and (or other form of any conic sectipnand is built
Kohl [326] considered several practical cases of concentrated in, provided that the pressure is either uniform
and distributed loads acting at the surf@tef a circular disc over the plate, or is hydrostatic pressure propor-
(or aring. There were some delicate questions concerning a  tional to depth.(...) | only regret that it has
choice of constantB; andF; in order to provide the single been found too late to incorporate into the

values for. not only stresses, bgt also for the radia! and cir- present paper the results which | have arrived at
cumfer_entlal components of a d|spla_cement vectorina com- g far: but | trust the delay may allow of this
plete ring. It appeared that the relations work being put into a more complete form before
Bi(1—2v)+H(2-2v)=0, it is published.
, Although in 1901 George Hartley Bryafi864-1928 the
F1(1=2)+Dy(2-21)=0 Fellow of the Royal Society since 1895, was awarded the
must be fulfilled for the case of plane deformati@md with gold medal of the Institution of Naval Architects for a paper
corresponding change of for plane stregs Therefore, the on the effect of bilge keels on the oscillations of a ship, his
stresses in the circular ring will generally depend on Poiseientific interest gradually moved to aviation, to a class of
son’s rationv. However, if loadings applied to the inner andproblems known now as “flutter.{For his bookStability in
outer surfaces of the ring provide separately zero total forddyiation published in 1911, Bryan was presented with the
than the constant8;, Hq, F;, D, turn to zero. In particu- gold medal of the Royal Aeronautical Socigtryan had
lar, PapkovicH80] (p 506 pointed out the mistakes made innever published the promised results. Instead, he communi-
the textbooks by TimoshenKa@3] and Filonenko-Borodich cated to Love the elegant solution on bending of an elliptic
[58] while considering the benchmark problem of concemplate x?/a+y?/b?=1 by uniform normal loading. This
trated force acting in an infinite elastic plate as a limitingolution was immmediately presented in Lau] (p 199
case of a plate with a small circular hole under prescribedth reference to Bryan:
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p X2 y?\? to understand. Muskhelishv{l268,334 gave a rather simple
w= 3 3 3 (1_;_F) (41) solution, which was later reproduced {188,39 by the
8D| 4+ -2+ 2> method of conformal mapping together with his method of
a” b® a'hb complex variables for two complex functions. Instead of an

obvious mapping of the ellipse onto a cirdihich led to
complications in the solution the special mapping of an
elliptic “ring” with an empty region between foci was used.
Again, the recurrent infinite system was obtained that con-
tains coefficients with indicek+2 andk and their conju-
ates. This system could be solved recurrently, starting from
Wo known first coefficients. Shermdi335] employed his

It is easy to check that expressigAl) satisfies both the
governing equationi3) and boundary conditiong}) because
dw/dx=0 andgw/dy=0 at the contour.

Love briefly referred td41) in subsequent editions of his
treatise,[16,18 (Section 310, without much use of it. In
contrast, this solution was thoroughly discussed in textboo
by Timoshenkd 92] (Section 52, Timoshenkd 44] (Section jnseqra| equation method to solve the same problem.

56), and Timoshenko and Woinowsky-Kriege#7] (Section  The gjastic problems for the domain enclosed by two con-
71). In particular, it appeared that the maximum stresses g{e.5| ellipses(or an elliptic arc clamped at the horizontal
at the ends of the short axis. The expressions for distributi %ne were considered by BelzeckiB36], Timpe [337],1%

of shear forces and normal pressure on the contour were also Sheremet'e[838] by means of the Fourier series expan-
provided. .
sions.

Bubnov [4] (p 21) used this remarkable solution to as- It should be noted that all these studies contain(oio

sume the following postulate: . . . . .
“If we have fou? ;E)Iates of the same thickness, having theery little) numerical data for the stress field, which might

following form of boundaries: represent a possible engineering interest.
(1) Arectangle with one side& the other being very long;
(2) A rectangle with one side& the other ® (b>a);

(3) An ellipse with the axis 2 and 2 (b>a); 5.3 Stress concentration around openings

(4) A circle with the diameter 2; i )
For many years engineers have been in doubt as to the effect,

all subjected to the same pressure, the corresponding streggegistribution of stress, of punching a hole in the center of a

and strains in the first plate are greater than in second, g par or other simple tension member. Common sense made

second greater than in the third, and in the fourth they the,ijent that the resulting distribution of stress in the im-

least. mediate neighborhood of the hole must be far from uniform,
Therefore, if we denot®;, p,, ps, andp, the pressures put it was not an easy matter to estimate the relative impor-
causing the same maximum bending stresses, we havetfffce of the local increases in stress intensity. That this in-

plates clamped on the boundaries crease of stress might well be very considerable was evident
3 3 2/a\2 /a\* from the fact that Groler [339] had shown that the piercing
P1:P2:Pa=g! §( 1+ 3lp + b 1 of a small hole in the center of a rotating disc had the effect

of doubling the maximum stress as compared with the stress
Boggio [188] and Leibenzorf329] considered the prob- in an unpierced disc subjected to the same centrifugal forces;
lem of construction of the Green’s functida concentrated see also Stodolg340] (or English translatioi341], p 383
force acting at the center of an ellipsfer a clamped ellip- for an important note of danger of boring a hole for the shatft.
tical plate, and Bremekam[B830] considered the classical The stress concentration problems provide a vast area of
biharmonic problengl), (2) in an elliptical region with semi- application of the solutions of the biharmonic problem in the
axesa and b along x- and y-axes. The solutions weretheory of elasticity; see, for example, fundamental books by
searched for in the elliptical coordinat¢g, 7), wherex Neuber[342] and Savin[81-84, and review papers by
=C coshésiny, y=csinh£cosz, ¢ being half the focus dis- Biezeno[343], Timoshenkd344], Sternberd345], and Neu-
tance, by expansion of two auxiliary harmonic functions intger and Hahri346] for detailed lists of publications. Below

Fourier series in simy and cos177. The general representa-ye present a few typical examples in the history of these
tion for the biharmonic function consists of four Fourier sy oplems.

ries, the two pairs of them corresponding to even and odd

parts on the coordinate. Finally, two independent recurrent5.3.1 Stress concentration around a circular opening
infinite systems were derived. Each equation in thgm® It is a common statement th@lmos) every textbook on the
sides the first twpcontains Fourier coefficients with indicestheory of elasticity and structural mechanics published in the
n—2,n, andn+2. The algorithm of solution based upon awentieth century, in a chaptéor chapters devoted to 2D
specially constructed Taylor expansion was employed th&bblems, contains a section about stress concentration
permitted one to express the coefficients explicitly. Addround a circular opening in an infinitely large elastic plate
tional references on the general problem of bending of elligypjected to a uniform tension in a certain direction at infin-

Eggll %323“0 plates by various loadings can be found i§y, This problem is traditionally attributed to German scien-

The elastic 2D prObIem for an elllptlcal region was flrstlAccording to[39] (Section 64 that solution is wrong, because Timpe did not use the

considered by Tedor{é333], but his solution is very difficult complete system of functions to represent the biharmonic function.
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tist and engineer G Kirséhand is usually considered as thalisplacements in the Cartesian coordinates of the infinite
starting point of the vast area of the stress concentratielastic body(with a reference to the system of equations in
problems. displacements given in the textbook of b [353]) were
But, in fact, the first problem of stress concentration hgarovided without any deviation. How Kirsch managed to find
been considered by LoJé4], who studied the displacementthese rather complicated expressions for displacements and
field in an infinite elastic plate with a circular cavity substresssome parts of them contain terms liké ¢ y?) ~2 and
jected to a shear displacemedt=sy, V=0 at an infinite (x*>+y?)~*) really remains unclear. But in the new edition
distancey— . In terms of stress these conditions meant asf his very popular that time textbook, Augustgpb (1854-
application of uniform shearing stress at infinity. By use of 4924 gave an expressigri27] (Section 5%
general representation for the displacements in the cy-
lindrical coordinates, 6, established by him earlier, along

2 2\2
with the condition that there is no traction across the surface 1 2 2 (re—a’)
. F=—-pir°—2a“Inr— ———-——cos 29 44
r=a, Love obtained“the work may be left to the reader,” 4P r (44)
as he wrotg
_ AN+2ua® 1 1a* . for the stress function which provides the compondi®
USRI T T2 2 ssn 20 of the stresses. pl also wrote down without derivation the
, . expressions for displacements in the Cartesian coordinates
[ w a1 1la 1 addressing now the paper of KirsgB50]!
v= ( ANtur ot 5 3)scosB - osr (42) Apparently independently of fpl [127], Velikhov [354]

) ) and Timoshenk$321] in Russia addressed the same Kirsch'’s
Apparently, this solution has been overlooked by all followgoplem. While the first of these studies again contained ini-

ers except Suyehirf348|, and later Fppl [349], who ob'_ tially some empirical expressions for the stress components
tained it independently. For unknown reasons Love omittgql rectangular coordinates, and then by not very clear proce-
this solution from the subsequent editidd$-18. dure of fitting it, provided the accurate expressiéwith an

In an extensive talk read before the 39th general meetiggiensive experimental verification of results and practical
of des Vereines deutscher IngenieimeChemnitz on 8 June recommendations for distribution of rivets in an elongated

1898, Kirsch[350] stated that the tangential stresseg, (' pjate), the second study provided a strict derivation of the
his notation at the end points of a diameter of the holgyess function. The method is based upon considering a
drawn at right angles to the direction of tension are thrgiher extensive circular ring plate with nonuniform normal
times greater than the applied uniform tenspor(At the end g tangential loadings over its large circle R. These dis-
points of the diameter parallel to the direction of tension thgptions correspond to simple expressions for stresses of a
tangential stress is equal to the applied tensile sir&sadi- | niformly loaded plate, written in polar coordinates. The so-
tionally, it is mentioned that Kirsch himself did not provid§jon for the stress function of this auxiliary problem has
any derivation of the final correct analytical expressions fQyaan obtained in a closed form by means of two terms of the

the stress tensor in the polar coordinatesf Fourier series. Finally, by lettinf— in the final expres-
o 1 a2\ 1 a2 332 sions!.Timoshenk{BZl] obtained the results of Kirsdi350]
F: > 1- 7zt 1- Tz 1- e cos 26 and Fepl [127] for the stresses and the stress function; see
also studies by Timoshenkp43,91,355—35) for further
o, 1 a2\ 3 3a% details.
F: > 1+ Tz 5(1_ T cos 20 It might seem strange, but all these solutions remained

unnoticed by naval engineers at the beginning of the twenti-
a2 eth century. In the September 1, 1911, issu&nfineering
1+ rT)Sin 20 (43) (p 29, one of the leading applied journals of that time, an
editorial note “The distribution of stress round deck-
and virtually each author suggested his ofsather simpl¢ openings” was published with a brief discussion of the solu-
derivation of the Kirsch solutior(ln some cases the name oftion presented by Dr Suyehiro, of the Department of Naval
Kirsch was not mentioned at all; for example, Howlandrchitecture, Tokyo Imperial University, in which that author
[351] ascribed this solution to Southwell, which, in turn, hakad been “congratulated on a distinct addition to the number
been published if352]. Love [16,18 in a rather detailed of known solutions in the mathematical theory of elasticity.”
reference list of authors did not mention Kirsch’s namén fact, Suyehiro’s[358] solution was nothing more than a
either) detailed repetition of Kirsch’s solutidh
In fact, Kirsch’'s papef350] contains a few Appendices In Austria a lot of theoretical and experimental studies
and in the second one an analytical representation for thievoted to the Kirsch problem were done by Ld@59—
362, and Leon and Willheim363]; see also Leon and

12In [347) there was published a short obituary note for Gustav Kifd@%1—1901 Zidlicky [364] and Preus$365] for further references.
who, after graduation from the Gewerbeinsitut in Berlin, studied further at Fadette
SciencegSorbonng and the Eidgenssischen Polytechnikum in"Zioh. After defend-
ing his Doktor promovirt degree in 1869 at the philosophical Fakoltizhe Universita  **Suyehiro[348] did really make a new contribution to the problem by considering the
Leipzig, he was almost 30 years in Chemnitz as a Professor of the Gewerbeakadedi&tribution of stresses near a plugged circular hole.

— 1_r_2
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There were a lot of experimental studig366-377 by
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In the discussion, Swaih386] had doubted the Kirsch

the English school of photoelasticity founded and headed bglution in the following(rather peculigrwords:

Ernest George Cokeil869—1948 delivered mainly at the
meetings of the Institution of Naval Architectésee also
Coker and Filon27] for a detailed review that contained
experimental testing data and a confirmation of the theoreti-
cal results for that important problem.

Having left Kiev in 1920 to go first to Zagre@rugosla-
via), and then to the USA, TimoshenKgublished two pa-
pers[355,358 which contain an approximate solution of the
stress concentration problem in a circular ring of inner and
outer diameted andD, respectively, loaded at the outer side
by specially distributed loads corresponding to the uniaxial
tension in an infinite plate with a hole of diamet&r Pro-
vided thatD is large compared witkl, he used the elemen-
tary theory of the bending of curved bars and came to the
conclusion that for 5:D/d<8 the results obtained agree
closely with the exact Kirsch’s solution. Whéwd<5, the
hole has an essential effect on the distribution of the forces
acting at the external boundary of the ring. WHehd>8,
the elementary theory of curved bars when the inner radius is
very small in comparison with the outer one provides insuf-
ficient accuracy. These results partly entered into an exten-
sive talk Timoshenko and Die{385] delivered at the Spring
Meeting of the American Society of Mechanical Engineers,
Milwaukee, May 16—21, 1975

It may be worthwhile to examine first this so-
called exact solution. It is based on two assump-
tions. The first, of course, is that there is a hole.
The second is that the width of the plate is infi-
nite. The last assumption means that there is no
hole at all, because a hole of finite diamedein

a plate of infinite width is the same as a hole of
no diameter in a plate of finite widt, since

d 0
infinity ~ w

here we have an instance of the character of
some of the demonstrations that are now being
put forward as founded on the theory of elasticity

and as being “exact.” This one, as above stated,
is founded on the assumptions that there is a hole
and that there is no hole; in other words, that a
thing is and is not at the same time. It gives

results for the stress at the edge of the hole which
are independent of the diameter of the hole. Of
course, it is easy for any practical man to see that
such results are absolutely worthless as applied
to any practical case.

Both this talk and the analytical Kirsch solution met and he concluded

severe reaction from Swaif886] who was at that time a
Professor of Civil Engineering at Harvard University and
one of the leading figures in bridge design. He had just pub-
lished a textbook387] in which on pp 121-123 he pointed
out that if the result of threefold increase of the stress on the
edge of the hole is independent of the size then it (al-
suming the material to be perfectly homogeneous and elas-
tic) be the same if the diameter of the hole be diminished to
an infinitesimal size. Based upon “common sense,” the au-
thor took the illigitimate step of equating this infinitesimal tq
zero, thus abolishing the hole, with the “result=3L, which
he advanced as a proof of some error in thepgt¢-Kirsch]
solution(he reproduced, however, the main formul43) for
stres$ and concluded that “it is unnecessary to give their
derivation.” Further the author provided additional argu-
ments based upon elementary strength of materials reasons
to support his conclusion, and he noted on p 122:

Perhaps in this may be found the fallacy in the
theoretical demonstration, but the writer has not
gone through with it. He has no time for such
illusory mathematical recreations.

1A detailed account of the life and scientific results of that outstanding scholar who

produced a considerable input on the development of the many fields of mechanics of
solids in many countries can be found in a fascinating autobiography by Stephen
Prokopovich Timoshenk@1878-1972 [378,379 and in the introductory article in

In the judgement of the present author, engineer-
ing today is being and has been demoralized by
the abuse of mathematics and of testing. Math-
ematics is an invaluable tool, a necessary tool,
but it is a dangerous tool, because the tool itself
is so interesting that those who are expert in its
use but do not understand the meaning or the
physical limitations of the problems to which it
is applied will misuse the tool.

Timoshenkd 388] in the discussion of the talk retorted

In his discussion Professor Swain makes a refer-
ence to his book on the Strength of Materials in
which the problem on stress concentration is dis-
cussed in an elementary way; but by using a
simple beam formuldsee page 123, Eq. 13, of
Professor Swain’s bogkit is impossible to dis-
prove the exact solution. The errors in his rea-
soning have been indicated also by another au-
thor (seeEngineering July 31, 1925, page 144
and the writer hopes that in the next edition of
his book Professor Swain will give a more satis-
factory discussion of such an important question
as stress concentration produced by notches and
holes.

[380]; see alsd381-383. The book[384] contains not only a list of Timoshenko’s and he concluded with general comments

numerous books and articles, but a list of references about Timoshenko in numerous
“Who'’s whos” and reviews on some of his books and articles published in various
archival and review journals.

19t seems strange, but this remarkable talk has not been reproduced in Timoshenko
[380].

In conclusion, the writer desires to make some
remarks in general about analytical and experi-
mental methods in modern technical literature.
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The trend of modern industrial development is
more and more toward the free acceptance and
application of the teaching of pure science. This
general tendency can be seen also in the in-
creased use of the mathematical theory of elas-
ticity for solving technical problems. In many
cases of modern design the elementary solutions
obtained by the application of the theory of
strength of materials are insufficient, and re-
course has to be made to the general equations of
the theory of elasticity in order to obtain satisfac-
tory results. All problems on stress concentration
are of this kind. They involve highly localized
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Independently of Kolosov, Ingfté addressed395] the
same problem in a talk read at the Spring Meeting of the
54th Session of the Institution of Naval Architects, March
14, 1913. In the first part of his talk, he presented a summary
of the more important results and conclusions, with a lot of
instructive figures, while in the second part the mathematical
treatment of the problem in the elliptical coordinates is
briefly outlined. This was one of the comparatively few at-
tempts that have been made at that time to adapt the math-
ematical theory of elasticity to the practical problems en-
countered in naval architecture. Inglis mentioned that his
paper is an endeavor to answer questions concerning the
stresses around a crack stated in a lecture of Professor Hop-
kinson read before the Sheffield Society of Engineers and

Metallurgists in January 1910.
Inglis [395] established that for an elliptical hole in a plate
with the majorOA and minorOB semi-axes being of length
a andb, respectively, subjected to a tensile str&sat the
direction perpendicular to the major semi-axd&A, if the
- H material is nowhere strained beyond its elastic limit, a tensile
per, can be expected to yield sufficient datafora  gyess occurs at the poiAtwith the valueR(1+ 2a/b), and
practical design. a compression stress at the poBitof magnitudeR. On
Later, in his William Murray Lecture presented at the Annuaxploring the plate along the major axis, the tensile stress
meeting of the Society for Experimental Stress Analysis iiapidly decreases, and at a short distance attains approxi-
New York, December 1953, Timoshenkd44] gave more mately its average valuR. Advancing along the minor axis
mild reminiscences about this discussion. SwWgdB9] did the compression stress soon changes to a small tensile stress,
not follow Timoshenko’s suggestion about correction in thand this gradually tends to zero.
new edition of his book. Anyway, the problem of scaling If the major axis of the ellipse makes an anglevith the

stated by Swain is really important; see recent pdpeo] direction of the pull, the tensile stress at the ends of this axis

for further discussion. is Rla/b—(1+a/b)cos 2]. For such a case, however, the
greatest tension does not occur exactly at these ends, and the

5.3.2 Stress concentration around an elliptical opening ygjue given may be considerably exceeded. The general ex-

Kolosov [206] (Section 5 [260,261, by using his method pression for tangential tensile stre@salong the edge of the

based upon the theory of complex variables solved the e (with an angled from a positive direction of the major

problem of stress distribution produced in an in infinite platgxis) reads as

with an elliptic opening caused by uniform uniaxial tension

at infinity'®. He presented explicit expressions and showed _ 1—-m?+2mcos 2¢—2 cos 2 0— a)

that the maximum stress is especially large if the major axis Q=R 1—2mcos 20+ m? (45)

of the ellipse is perpendicular to the direction of tension in

the plate. The maximum stress occurs at the opening boumdth m=(a—b)/(a+b).

ary along this axis and increases with an increase of thelnglis [395] extended these results to a few cases impor-

major axis to the minor axis ratio of the ellipse. Althougliant for shipbuilding, namely the case of a square hole with

one of these studies has been published in German in ongafnded corners, the case of a crack starting from the edge of

the leading mathematical journals of that time, the resulésplate, and the case of a notch which is not necessarily

remained unnoticed by a wide circle of practical engineerglliptic in form. Viewing a crack as the limiting case of the

This solution has been reproduced in Kolog68]. Kolos-

oV’s solution in terms of complex variables has been simpli’sir Charles Edward Ingli1875-1952was educated at King's College, Cambridge,

fied by Muskhelishvil[244,391,392 and later has been re- e S o o e o e e e bridoe Unraty. Burm e

produced in[37-39, and here the solution occupies onlywar I, Inglis was able to make an immediate and valuable contribution to military

two pages of Iarge print. The same problem has been con engineering and had devised a light portable tubular bridge, which was accepted as

ndard equipment. For this work he received the OBE. On being demobilized, with
ered by F'(pp| [393] as an examp|e of his very Comp”ca_tedhe rank of Major, he returned to Cambridge University and in 1919 he was appointed
. . . . Professor of Engineering—or Professor of Mechanical Sciences, as he was later
method of conformal mapping. The solution 0CCUp|ed fN@lown—a position in which he served until his retirement twenty-five years later. His
Iarge pages of small print that Corresponds to about twersrgat services to the cause of engineering educélinglis was for a long time Head of
. . . the Department of Engineering at Cambridge Univejsitiere recognized by the
pages of normal academic typesetting; MuskhelisH\&]

Knighthood which he received in the Birthday Honours of 1945. Education at its best,
(p 344 has even admitted that he has not succeeded in Ijjglis said, should aim at something much deeper than the memorization of a number
derstanding this method.

stresses and elementary methods like those given
in Professor Swain’s book, pp. 122 and 123, can-
not give a satisfactory solution. Only a complete
analysis of stress distribution, together with ex-
periments such as discussed in the authors’ pa-

of facts and formulas and be more lasting. The good of education was the power of
reasoning, and the habit of mind which remained when all efforts of memorization had
faded into oblivon. A short account of Inglis’ life with the references to some of his
papers devoted to mathematics in relation to mechanical engineering and university
18In fact, this problem was considered by a similar approach in a draft note by Chapining of engineers can be found[i894] and in obituary notices published Engi-

lygin [246] written around 1900. Chaplygin, however, did not publish these resulteering 1952,173 528, andThe Engineer1952,193 570 where a nice pencil portrait
during his life. was supplied.
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elliptical hole in which the minor axis is vanishingly smallyvalue of y satisfies all the conditions except those at the rim
a>b, he stated that the stress at the end of the crack afthe holer =a. If the additional tractions due tg,, ., are
arbitrary form is proportional to the square root of the lengtsmall enough, the solution is again sufficient in practice.
of the crack, and inversely proportional to its radius of cuHowland[351] established that ik <0.5, withA =a/b, it is
vature. (This result was highly appreciated by Hopkinsomever necessary to proceed beyard while if A <0.25 it is
during subsequent discussipin answering the questions inpossible to stop aj,. ValuesA>0.5 would lead to very
the discussion which followed, Inglis admitted that “conaborious computatior&
cerning the direction in which a crack will spread, theory, | Howland and Knigh{404] modified this solution to find
think, tells us little or nothing.” the stream function corresponding to the slow rotation of a
Inglis’s solution in elliptical coordinates was obtainedigid cylinder placed symmetrically between parallel un-
anew by Pschl [396] and repeated with full details in moved walls in a very viscous flow. In comparison to an
[27,43,45,48 Experimental measuremer{t375,397 based infinite plane the influence of walls produces a considerable
upon the photoelasticity method provided good agreementrease in the torque couple to maintain the same angular
with Inglis’s theoretical expressions for various types ofelocity: for A =0.5 it increases by 25%.
openings and cracks.
5.4 Eccentric cylinders
_ A . . A solution of the 2D biharmonic problem in the domain in-
The solution for a semi-infinite plate with one circular olgjge 1o eccentric cylinders with coincident axes tradition-

subjected to the presence of traction either at the edge of H]E/ attracts great interest in engineering. The question of

hole or at infinity was obtaine-d by ‘,]eﬁem, using bipolar slow motion of an incompressible viscous fluid between two
coordinates. Gutmaf898] applied this solution to calculate uniformly rotating cylinders is a key question in the field of

stress dist.ributiorll around atunrlel. Mind[i899,40Q found _tribology when considering the hydrodynamic theory of
a small mistake in the expression for stresses and providedy ¢im lubrication. The question of what happens in a thin

the corrected solution. The same elasticity problem and tféeg‘/er between a journal and bearing has a longstanding his-

mathematically similar problem of a slow creeping flow of ?ory. Considerable input for this problem was made in the

viscous fluid over a halfplane with a circular rigid Cy"nderperiod 1883-1886 when independently Nikolai Pavlovich

(either stationary or uniformly rotatingvere independently Petrov (1836—1920 [405] and Osborn Reynold$1842—

ponside_red in _bipolar coordinates and thoroughl.y disquss%h2 [406] suggested the hydrodynamical theory of lubrica-
in the dissertation by Krettn¢401] and papers of his adV'Sertion. Petrov was mainly interested in experimental verifica-

Miller [402,403. Apparently, due to the conditions of Waltion of the hypothesis of application of the Navier-Stokes

thesg S‘“‘."e? WhiCh contained a lot of .numerical data Co@(iuations and especially the non-slip conditions at the rigid
cerning distributions of stresses, velocity field and forcegy, ,nqaries for such type of flow. Therefore, he used an as-
and torque acting at the rigid cylinder and some other intefy,, yion of coincidence of the axis of journal and bearing

esting results went almost unnoticed. considering in fact an axisymmetric problem. He provided an

Howland[351] considered the more complicated problem,ineering formula for the dependence of the friction force
of an elastic infinite layer bounded by two parallel edges upon viscosity of fluid(and also the external frictiorand

=+b thhat cgntains Z circt:)qlar ZOIe with=a midV\k/)ayhbe—dan ular velocity. Joukovsk[i407] pointed out the necessity
tween the edges and subjected to tensions at both endy@ll, occentricity between axes of the journal and bearing in

infinity. A sglution of the prpblem was sought by the method, o ¢, get a supporting force. This problem was thoroughly
of successive approximations thgt is anal.ogous to the ,alt%'nsidered by Reynoldg06] and was first presented in two
nating process of Schwarz. The biharmonic stress fun()‘t'orhnpublished talks before the 44th meeting of the British As-

was sought as sociation for the Advancement of Science, Montreal,
Canada, on August 28 and September 2, 1884 with Stokes,
Rayleigh, and W Thomson among the listeners;[4€&] for

where the terms of the series are each, separately, solutigHgdeta"S' Reynolds establlshgd t_he main equ|l|br|um equa-
of the biharmonic equation and have, in addition, the follow'ONS for pressure and torque dls_trlbutlor) alc_)ng the cwcle'and
ing properties:y, gives the stresses at infinity and none ORerformed a hug.e approximate integration n terms .Of. trigo-
the edgey'= = b; x4+ xo satisfies the conditions on the rimnometric expansion. He expressed the Fourier coefficients of
r=a of the hole and at infinity, but not on the edges, ie, it i§.° S'"® and cosine terms in thelform of Taylor series of
the solution for an infinite plane; the terpgy cancels the imensionless eccentrlc!tty up toc™. (Later Petrov409)
stresses due too on the edgesy==b, but introduces extended these expressions up to the tetfisand he also

stresses on the rim of the holg; cancels these, but againpoxtigIguécs)r?]%irsfggylr;(issgal;%ssJi_n[tlr;e?]p:sgir?t?osn23etsr;is
produces stresses on the edges, and so on. B

If the series is truncated aftgn, it will give a value of y

: P i 18t is interesting to read now an acknowledgment in the article, “In making the cal-
SatISfymg all the conditions exaCtIy except those on thc%lations we have had the use of two calculating machines. One of these was obtained

edgesy= *b. If the residual tractions due t@,, are small with a grant from the Government Grant Committee of the Royal Society, to whom our

; B 1 thanks are due. We also gratefully acknowledge the assistance of the Research Com-
enoygh’ thIS Value, Of(.IS adequate for praCtlcaI purppse Mittee of University College, Southampton, who have made possible the hire of a
Similarly, if the series is truncated aftgp,, ; the resulting second machine.”

5.3.3 Halfplane and layer with a circular opening

X=xotXxotx1txz2t ... (46)
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mammoth and quite unnecessary approximate integratioveen the journal and the bearing. In conclusion there was
and developed an accurate theory based upon the Stokes #tnwn the derivation from these formulas the approximate
approximation. He established the biharmonic &) for the Sommerfeld expression for a thin layer.

stream function { in his notation. He also pointed out the In spite of an extensive German summary published in
analogy with an elastic problem of bending of a clampetahrbuch her die Fortschritte der Mathematikhis study
elastic eccentric circular platgn fact, at the inner circle a went almost unnoticed in countries other than Rugsia
constant angle of inclination should be giyemd mentioned USSR. For example, Mlier [402,403 constructed anew the
that the solution of this problem had not been obtained ysblution in the bipolar coordinates and added a lot of figures
and it could lead to very complicated expressions. Basstowing the distribution of streamlines. Independently, Wan-
upon physical reasonings for a velocity field, in a thin layemier [418] and Ballal and Rivlif419] solved the same prob-
between a journal and bearing, Sommerfeld neglected solkem. This journal bearing flow served as one of the first
terms in the governing biharmonic E@®) (it is worth noting examples, Aref and Balchanda 20|, Chaiken, Chevray, Ta-
that such an approach of neglection of terms in the governibgr, and Tan[421], of the chaotic advection paradigm in
linear Stokes flow equation has recently been employed bggrangian turbulence.

Hills and Moffatt[410] for the much more complicated case A similar elastic problem about stress distribution in a
of the 3D flow in a wedgeand obtained a simple closedregion enclosed by eccentric cylindéesd a limiting case of

form expression a halfplane with a circular holewas addressed in several
studies, including Jeffery2], Chaplygin and Arzhannikov
a p? [422], Gutman[398], Mindlin [399,40Q, Miiller [320], and
V= Epz Inp+(b—2a) T +clnp+d (47) Ufliand [423]. All these authors used the bipolar coordinates

and constructed the explicit solution. In particular, it was

analytically proven that under uniform normal pressure ap-
with p being the radial coordinate, amd b, ¢, d some(later plied at either outer or inner cylinder boundaries the maxi-
defined functions of a circumferential anglé. Based upon mum stresses will occur at the boundary of the inner cylinder
this approximate solution Sommerfdlti37] discussed some at the thinnest part, if the eccentricity is not too higiher-
examples and defined all necessary mechanical quantitiise, the maximum appears at the outer boundary
important in practical applications of fluid-film lubrication.
Anthony GH Michell(1870-1959[411] extended Sommer- ¢ ¢

. o Infinite wedge
feld’s solution for two inclined planes to the case when one . . .
Venske[180] was the first who considered the solution of the

plane has a finite width. Michell got a patent on this practB_h ; blem | dae d i of
cally important case that appeared to be very successful. tharmonic problem in a sector wedge domain of angie

The complete solution of the slow journal bearing rovSIelﬂned in the polar coordinatesr,() for O<r<c,

2D biharmonic problem for arbitrary thickness of layer ang 20T=b=zam. F;epre;entmg the biharmonic function in
radii of cylinders was constructed by Nikolai Egorovich® formy=U+r?V, with U andV being harmonic func-
Joukovskii (1847-1921 and Sergei Alexeevich Chaplygint'ons' and seeking the solution for andV as
(1869-1942in their joint (a rather rare case for scientists of o .

that time paper{412]'°. Since then this benchmark paper has Y= fo {(a,e*’+a e ?)coguinr)

been reprinted 10 times—probably, a record for any scien-

tific publication! (Mercalov[414] provided the detailed ex- +(b,e*+b) e #?)sin(uInr)}du (48)

position of this article in a review paper for Russian techni- - : . -
; . . and a similar expression fov with unknown coefficients
cal encycloped®) In this paper which was based upon

previous studies, JoukovsKi#16] and Chaplygin417], the Cpr -2 Ay \/enske, in fact, employed the Mellin trapsfor
e . mation. He did not, however, present any further details con-
authors made use of Neumann's bipolar coordinates, in . o -
. . : . . .cerning determination of the unknown coefficients. Venske
which one family of coordinate lines gives two eccentric

circles—the boundaries of the cylinders. After a rather ingOnly wrote a final explicit expression for the "second

nious transformation, the stream functit¥t was obtained %errezn:snfinlctzlo(rg (géﬁ:rféfe(’)o'rn asuﬁgnaedgur?ilr:) r\:VItTt;mi-
explicitly (here the uniform distribution of velocities at the? ' P P 9

boundaries is essentialThe authors obtained the analytica|nf|mte. stralght_lme) when a concentrated force is applied at
some inner point.

expressions for the force and momentum of interaction be- Maurice Lavy (1838—1910[424] considered the problem

— of elastic stress distribution in a wedge<s@<<c, 0<6<p
Amazingly, this article was first published in 1904 as a separate issue for the XI . f ;

volume of the journalTrudy Otdeleniya Fizicheskikh Nauk Imperatorskogo ObshTBad_Ed'by uniform Or. linear normal forces at the Sﬁdﬁ) (OI’

chestva Lyubitelei Estestvoznaniya, Antropologii i Etnografge a photocopy of the y-axis in the Cartesian coordinaje3he representation for

}gfm’ﬁgﬁh:2&4;%6‘,;:3)'03’;‘1":‘ vas really published in the XIlith volume of that the (ot mentioned explicitly biharmonic Airy function was
2rylov [4185] pointed out: “Many of Joukovskii's works had a practical importance:chosen in the form of polynomials of the second or third
if he, like Lord Kelvin, had developed them up to practical applications and had tak%grees ik and y The expressions for components of the
out patents, he would also have had his own yacht, villas, and castles. It's enough to X ' ) i
mention his theory of lubrication—it contains all of Michell's journal bearing theoryStress tensor in rectangular coordinates look rather simple,
which had brought millions to Michell. Joukovskii never patented anything and hénd L'e/y Suggested to use this solution in the analysis of
provided all his discoveries for common usage, seeing science not as a mean of per- . .

sonal enrichment, but of increasing the knowledge of mankind.” stresses In masonry damiésalerkm[425] used such a solu-
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tion for a more general case of a truncated wedge whenCarotherd430] considered some typical cases of wedge
studying the problem of stresses in dams and retaining wati@ding bearing in mind the discussion of the technically
with trapezoidal profiles. Later, these solutions were ob-important problem of determining the stress in a masonry
tained independently by Fillungg426]. This author noticed, dam (see,[18], Section 151 of91], Section 36, for addi-

however, that for the case of uniform loading the stress cofi" treferer|1ct§s A]Enong Qt?e_rts he l()jrieflly n:jerétigned an el-

ponents contain in the denominator the termAang which ~ SMeNtary Solution for.an infinite wedge loaced by a concen-
: trated coupleV at the apex with the stress functign

may turn into zero for some valyg,> .

Michell [179] considered two particular cases of compres- M sin 26— 26 cos 2«
sion and flexure of a wedge<dr <=, —a<@<aby concen-  X=~ 5 Gin52 24 cos 2 (51)
trated forces? or Q applied at the apex of the wedge in the
direction of the axis#=0 and in a perpendicular direction,and stresses
respectively. By usage of his general solutid76] of the )
biharmonic Eq.(7) in polar coordinates, Michell chose the _2M sin 26 =0
particular expressions for the stress functions " 1% sin2a—2acos 2’ 0

x=Arfsing, or y=Brécosd (49) M  cos 20— cos 2o

Tro= 2 (52)

for the two cases, respectively. For these solutions, only the r sin2a—2acos 2

radial stresses, are nonzero, and they increase indefinitel
asr ~! whenr —0. The constantd andB were defined from
the conditions of equilibrium @

¥hese stresses satisfy the conditions of equilibrium

(o, cosf—1,4SiN0) r do=0

J o, cosOrdo=P, orJ o, sinfrdo=Q (50) )

-« -«

for any finite portion Gsr<a, —a<#<a of the wedge. For f_a(af sing+ 74 c0s6) r dg=0

the particular caser=3m, the normal forceP provides the

solution for a halfplane already obtained by Flamant [« )

[427,42§. It is worth noting that same solutions were inde- wTrﬁr do=M (53)
pendently obtained by Mesnadg&04], and since then these

solutions have been traditionally included in many textbooKer any finite portion Gsr=<a, —a<6=<« of the wedge.

on the theory of elasticity, seeg Love [16—18, Timosh- However, Fillungef431] in a completely forgotten paper
enko[43,91], Papkovich{80], and Lur’e[35], to name only a constructed exactly the same solution! He observed that for
few. the specific acute angle of the wedge @r 2® in his nota-

Action of concentrated forces at some points of the sidéen) equal to 2=257°2713’, the root of the equation®
of the wedge were considered in detail by Wiegh@@9] in  =tan 2b, the denominator if51) becomes zero and the so-
a far less known paper. This paper was published in Germiation in the form (52) does not exist. Having pointed out
in a journal which later ceased publication and, therefore,thiis, Fillunger did not discuss in detail this paradoxical re-
was forgotten and did not exert any long-living impact in theult.
theory of elasticity and fracture mechanics recent En- Later, all these elementary solutions for concentrated
glish translation of 1995 deserves, in our opinion, specifirces and couples at the appex were repeated by I3
attention) Wieghardt[429] used the so-calleommerfeld who wrote that “the object of this paper is to popularize
transformationin order to use the Flamah#27] solution. certain stress distributions which, in the opinion of the au-
Several expressions are presented to solve the plane sttheg ought to be better known than they are at present.”
problem in elastic wedge shaped bodies under concentraRemarkably, neither Carothefd30] nor Inglis [432] (and
forces applied at its sides. Wieghardt also considered aclater Miura[433], Coker and Filor{27], Bay[434], and Pa-
angles of the wedge in order to apply his theory to Bachfskovich [80] who also described in detail these solutipns
problem of roller bearing case fracture, for which he derivduhve noticed the specific acute wedge angleghen for-
the first mixed-mode fracture criterion. He described thmally the solution for the concentrated couple does not exist.
structure of the stress field for any wedge-type notch, includ- Sternberg and Koitef435] called attention to the para-
ing the crack as a special case of a plane with a semi-infindexical result in the Carothers solution for a specific angle
straight cut. The solutions presented are associated with the*. (They did not mentiorj431] at all.) Their remarkable
splitting and cracking of elastic bodies. Wieghd29] cor- paper on the so-called “Carothers paraddgiie name “Fil-
rectly stated that “knowledge of the theoretical stress distiiinger paradox” seems far more approprjastarted an in-
bution does not allow one to evaluate crack initiation upaeresting discussion concerning the physical meaning of a
exceeding of the loading with certainty; and it is not at afoncentrated couple applied at the apex of a wedge. This
possible to determine the path of further cracking.” Finallygouple can be considered eiti&ternberg and Koitdd35],
the differences between the developments presented in Baenblatt{436], Harrington and Tind437]) as a limit as
study and the partially incorrect approaches by Vernd8®] r,—0 of loading by antisymmetric normal forcggr) on a
regarding wedge domains are emphasized. small lateral part &r=<r provided that
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ro o tional to the third derivative of the deflectipfor a quarter
fo p(r)dr=0, 2f0 p(rjrdr=M (54)  plane(a=1m) has oscillatory behavior near the apex, but he
did not discuss this result at all.
The creeping steady flow of a very viscous fluid in a
wedge domain bounded by the walls-0, 6=« with a uni-
or (Neuber{438]) as a limit withr ,— 0 of a truncated wedge form velocity V sliding motion of the wall9=0, was consid-
ro=r<w, —as#@<a with free lateral sides and applied tanered independently by Goodief145,147 and Taylor
gential force(or displacementproducing the couplé/. In [464,465. The solution for the stream functiory reads,
the first case, it appears that the solution for the wedge anfd&6]
2a<2a™ tends withry—0 to the Carothers-Inglis solution
(51), while for the wedge angled2=2a* the solution cru- y=Urt(6) (55)
cially depends upon the distribution pfr) even whenry with
—0 and does not turn into the elementary solution. Here we ) . . 5
have an example of the self-similar solution of the “second” ¢, _ (= sina cosa) g sin g+ sin’ af cosf— o’ sin
kind according to Barenblaft436]. Later, this paradox has a’—Ssirf a
been addressed angwW39-445.
Apparently Braht4446—44§ being engaged in the math-
ematical analysys of stresses in the Grand Coulee Dam was The palette knives used by artists for removing
the first author who considered by means of the Mellin trans- ~ Paint from their palettes are very flexible scrap-
form the general case of loading of a wedge at its sides. He ~ €rs. They can therefore only be used whers
presented the explicit solution for the stress function and ~ nearly 180°. In fact artists instinctively hold their
provided concrete results for the wedge with the angé23 palette knives in this position.
loaded by a concentrated force. He used the residues metfagllor also pointed out the fact of a logarithmic singularity
to calculate the integrals in the Mellin transforms. Indepemf the shear stress along the wall needed to support the pre-
dently, Shepher@449], Abramov[450], and Figurno451] scribed uniform finite velocity of the wall; this prediction is
considered by the same approach the general case of loadilegrly unrealistic. Presumably, one of the asumptions of the
of a wedge at its sides. The latter author presented the exeeping flow breaks down near the vicinity of a sharp and-
plicit solution for the stress function, but he did not providgle. More general cases of the nonuniform tangential veloc-
any concrete results. All these papers went almost unnotidgd applied at side walls were considered by Mofft67],
by the successors, besid§452,453, see also[40,454. Jeffrey and Sherwoof#68]|, and Krasnopolskaypt69].
(While the third author published his results in a conference There is another interesting aspect of the biharmonic
proceedings, in Russian, this situation seems more strafjeblem in a wedge domain which deserves special attention
for the first two authors who published their studies in welfrom both mathematical and engineering points of view. It
established American and British journal€nly Papkovich concerns the nature of the homogeneous biharmonic function
[80] repeated briefly the main lines of the Abramov’s solu & wedge domain, say, a deflectianaround a plate corner
tion and suggested as problefsin his course to consider having two clamped edges. Rit470] made the remark that
ten typical loads, mentioning a possible connection with lhmay not be possible to develop a solution of the governing
practical problem of breaking of ice by an ice-breaker. Lur’Biharmonic equation into a Taylor series at the corner point.
and Brachkovskii455]* developed a similar solution andRayleigh[471] argued that all partial derivatives of the plate
considered the case of a concentrated normal force applied@#ection must vanish at the corner point. He erroneously
one side; they applied the residue method to calculate thncluded that the deflection at a distanceom the corner
integrals. The same approach based upon the Mellin traféhinishes more rapidly than any power iof In spite of a
form has been developed independently by Sakh@&6] _short note by Ndai [4_72], who pomte_d out the possmlllty to
and Trantef457]; later it was repeated with full detail in theinvestigate the questllon py contructmg a solution for a_3|ckle
books by Sneddor458], Ufliand [94], Lur'e [35], and form clamped plate in bipolar (_:oordlnate(sfuch a solution
Tranter[459]. The detailed experimental study of a concer1@S been constructed by Woinowsky-Kriedd73]) only
trated force acting at the apex of the wedge was performed§an and Montagnof74] pointed out the possibility that
[460,461; see also Coker and Fildi27] for further details. the biharmonic function may vary as a fractional power of

Woinowsky-Krieger[462,463 constructed an analytical Qad, appeargd to (tj)e overlqokedd and'I:nbsu'cf;' a case partial
solution in the form of integrals for a clamped plate<© erivatives beyond a certain order will be infinite rat 0.

<, 0=#=<2« loaded by a concentrated force in some innr;?}lrl]edSe iﬁthors dlsc_overed ffh%t m_tﬁnf_mf(ljnlte nvsgﬂ%e d(()jmaln
point lying on the diagonab=«. He provided results for ted with a very viscous Tfiuid with Tixed walls=1 an

bending moments and shearing forcégaction$ along €=ﬁziltfher0e Ca.?h?;]('St al non—;erot_strgamtrl:unctm(rt.,0)
clamped sides for typical values ai=3imimm. He pre- ' n(0), with the values oh satisfying the equation

sented a figure showing that the reactigvhich is propor- sinna= *nsina (56)

Taylor [465] (p 314, in particular, noticed:

2Yn fact, this paper had been published in 1946 because of World War Il, but t%here the plus Or minus sign corresponds to two different

second author was killed in 1941 in the battle for Leningrad. types of symmetry with respect to the diagonal lifre 3a.
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The authors found that for values afless than 146.3° the neering structuregbulkheads of a ship, for examplehe
values ofn satisfying Eq(56) must be complex, but they did edges of the plate are firmly clamped, or attached to angle
not discuss the structure of the velocity field near the origiirons which allow no side motions. The deflectisnmust
Moffatt [475] discovered that these complex roots lead to aranish at the edge; and, in addition, the tangent plane at
infinite eddy structurdlater named “Moffatt eddies}’ near every point of the edge must remain fixed when the plate is
the apex of the wedge. These eddies were visualized lbynt. As a matter of practice it is extremely difficult to clamp
Tanedd476]. Subsequent developments which were summa-plate efficiently. There is nearly always a small inclination
rized in[468,477,478provide an understanding of the comat the edges of the tangent plate to the origiyaiplane. In
plicated structure of the streamline patterns for various inttareful experiment$9,10,482 this may be of the order of
nite domains with corners. magnitude 1. Moreover, the attachment structure at the

However, it should be pointed out that exactly the sanmwiges may be stiff, but cannot be completely rigid. But for
results concerning the eigenfunctions in an infinite elastine theoretical reasoning it is typical to disregard this and
wedge Osr<o, asf=sa, with its sides §=+a free of think of the plate as perfectly clamped.
stresses were first obtained by Bralfzig]. He used the  On the other hand, in the theory of elasticity the determi-
expression for a stress functii(r, 0) =r#"1y(6), where nation of stresses in an infinite rectangular prism with the
the “corner function” ¢4(0) satisfies the differential surface loads being the same along the generating line of the
equation prism (the state of plane stragiror thin sheet or plate under

" 2 29 m 2 2, _ thrust in its own plandthe state of plane stresseduces to

V' TLBTDTH(B=D Mt (B D"s=0  (57) o Solution of the 2D biharmonic E(7) for the Airy stress
and boundary conditiong(+ @) = ¢5(*+ a) =0. For the ei- function. The boundary conditions corresponding to the sys-
genvalueB one obtains two equatior{§6) with changes1 to  tem of self-equilibrating normal and shear forces applied at
B and a to 2a. It was proven that ife#2/7m and a# the the rectangular boundary can also be written in terms of the
roots B of that equation are complex; approximate expreprescribed values of the stress functipand its normal de-
sions for the roots were given. BraH#48] used these cor- rivative at the contour. Discontinuous and concentrated
ner functions to calculate the stress distribution in the Grafiskces are also admissible, and the problem of a rectangular
Coulee Dam. beam supported at two places and bent by a weighap-

The same eigenfunctions were also obtained byké&o plied between them is the benchmark ¢6e137.
[479] who provided extensive tables with the complex eigen- An important consideration in the formulation of the
values. Considering the problem for a finite wedge he usgdundary conditions consists of the satisfaction or violation
the method of least squares to define the coefficients @ff the conditions of symmetry of the shear stresses at the
eigenfunctions expansion. Apparently, due to the politicgbrner points. In the framework of continuum mechanics the
situation of that time, this remarkable study, in spite of itsoundary is considered to be a surface that is different from
detailed German review, has been completely overlooketle rest of body, and, therefore, it is possible to prescribe any
Sobrero[480] also obtained the same E(6) considering values of forces on it. Some misunderstanding of this cir-
the problem of the elastic stress distribution in a wedge witumstance may lead to both the paradoxial conclusion of
angle «. He stated, however, that if 27@%<360°, the Winslow [483] that “stress solutions satisfying all boundary
stresses vary as~%° without a sensible errofthe author conditions will be in general impossible” and to additional
claimed that these theoretical results were fully confirmed bglations[484] between stresses at the corner points.
photoelastic experimentsBeing published in a rather un- The 2D boundary problem for a rectangle represents the
known journal this paper also went completely unnotice@articular case of the famous Larpeoblem of the equilib-
And only Williams was lucky enough, for his short tdk81] rium of an elastic parallelepiped under any system of normal

has been recognized and widely cited. forces on its sides. Lanj@29] considered the 3D problem to
be as complicated as the famous problem of three-bodies in
5.6 Rectangle celestial mechanics: “C’est une sorte digme aussi digne

lexercer la sagacitdes analystes que le fameux probke

The overriding importance of a clamped rectangular elas X .
g Imp P g s trois corps de la Manique Ckeste.” (It seems now that

plate and a very long elastic rectangular prism or thin shei® ) -
subjected to surface normal loadings only at their sides &8 has underestimated the difficulty of the second )of:

crucial elements in structural mechanics and shipbuilding hB&rently under Larie influence the competition for the

given rise to a large number of works where the question wggand Prix de Mathmatiquesof the French Academy of

treated by different approaches and, in fact, these problerg€nce of Paris for a solution of this problem was an-
are connected with some important findings in mathematif@unced in 1846 for the year 1848. According to the an-
as well as in engineering. The history of the biharmoni'(}our":fam_ent published iComptes rendus des a®ces de
problem for the bending of a clamped rectangular plate ahic@demie des SciencekB84622 768769, the condition for
for the stretching of an elastic rectangle is rather fascinatifg® award was:
Love [6] addressed this problem as “one of the classical  Trouver les intgrales des quations de I'guili-
problems in the Theory of Elasticity.” bre inteieur d’un corps solide’ kastique et ho-

For a thin elastic plate the normal deflectiansatisfies mogee dont toutes les dimensions sont finies,
the nonhomogeneous biharmonic Eg). In various engi- par exemple d’un parallepipede ou d’un cylin-
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dre droit, en supposant connues les pressions ou  mate methods for the solution of rectangular plate bending
tractions ingales exerces aux diffeents points problems is given by Leissa, Clausen, Hulbert, and Hopper
de sa surface [506].

Le prix consistera en une maille d’or de la
valeur detroix mille francs

Le Comission chargede proposer le sujet du
prix etait compose de MM Arago, Cauchy,
Lamg Sturm, Liouville rapporteur.

5.6.1 Grashof's empirical formula

for a uniformly loaded plate

Apparently Franz Grashdfl826—-1893[507] (Section 234

was the first author who obtained an approximate solution

for a practically important case of a rectangular platg

There were no entries and this topic was suggesisthg <a, |y|<b bent by a uniform normal pressupg applied to

with the last Fermat theoremthen two times for the years its surface. He considered the plate as a collection of elemen-

1853 and 1857, and had been initially prolonged for the yetary clamped beams parallel to both axes; at any given point

1861, but already in 1858 it was changed into another quele intersecting beams must deflect the same amount. By

tion, seeComptes rendus desaswes de I'Acadmie des Sci- using the elementary solution for a clamped beam Grashof

ences 1858,46, 301. The only entrant for this long compe-suggested an approximate solution

tition was a memoir‘De I'E quilibre interieur d’'un corps

solide, dastique, et homogee” marked with motto “Obvia _ po (aP=x®)A(bP—y?)?
.. . . - W (X,Y)— 3

conspicimus, nubem pellente Mathesi” submitted by William ¢ 2Eh f(a,b)

John Macquorn Ranking€l820-1872 for the year 1853its ) i i

main results were published [485,486) but it did not re- with some functionf(a,b) yet to be determined. He choose

ceive an award; see Todhunter and Pear2#f] (Section the expressiori(a,b) = (a"+b")*" with integern that pro-
454 vided the correct asymptotic behavior of deflection wiaile

An excellent example of an engineering approach to the ™ °f b—eo. By comparison with the solution for a circu-

problem of bending of a narrow rectangle resting on tvx) r plate, and not very rigorous reasons, he suggested taking
t e valuen=4. Due to the assumption of the clamped beam

supports under a concentrated force applied at the middle alogy the expressian is independent of. (Love [18] in

the upper side was given by Stokes in 1891. He took . . . ; .
much interest in Carus Wilson$87] photoelastic experi- ection 314 gives, however, an expression which differs
P P from (58) by factor 1— »? in the nominatoy. This empirical,

mental result of two dark spots existing in the glass beam a . . g .
which there is no double reflectigindicating the so-called of rather hypothetical, solution satisfies the boundary condi

. ) tions exactly, but does not satis . Grashof’s solution
neutral points or, equivalently, places of equal normal0 Y fy BG)

i Kthat he developed imate th bli hW s constantly addressed to in the old textbooks on applied
stressesthat he developed an approximate theory publiSneLy -pnics and the theory of elasticit$9,508-51%
as a letter supplementary[ié87] to account for it. By means

: i Formula(58) gives relatively good results, considering its
of this thgory Stokes provided a forml_JIa and found the co 'mpirical nature. According to the experimental dgd0]
rect positions of the neutral points which agreed complet

. : : ; rashof’s rule for the deflection of a rectangular plate with
with Wilson’s observations.

) sides 4 inches and 2 inches gave a deflection at the center of
The clamped rectangular plate was not only an importaglys37 inch, which approximates reasonably closely to that

test problem for any new method, but, in many cases, N@¥(,nq viz, 0.0410 inch. This rule for the stress at the ends of

engineering methods were invented to solve exactly thalghort diameter of the plate gave, however, a stress of 50%
problem. For example, NielsgA88], Marcus[489], Bortsch iy excess of that found from the experiments of Laws and

[490], Bay [491-49§, Varvak [496], Conway, Chow and pjien [516]. The error in center deflection,, for a square
Morgan([497], and Beye498] applied the finite-difference p|ate was about 13%, while the error in the maximum edge

method specially for the problems of the clamped rectangiioment was about 23%. The errors are less for rectangular
lar plate and the finite elastic rectanglin fact, Richardson pjates: se¢517] for further details.

[499] was the first author who developed the finite-difference Tpe expressions for the maximum deflectigvhich oc-

method to solve the biharmonic problem in domains consigigrs at the center of the platand stres§which occurs at the
ing of several rectangles with application to a masonry dlanmiddle of a long side were often used by practical naval
Pan and Acrivog500] applied this method to the steadyarchitects Reai518)], Yates[8], and Elgarf519] at the end
Stokes flow in a rectangular cavity. Similarly, the paper byf nineteenth century. BryafB28], probably, was the first
Biezeno and Koch501] contains an approach when theyho stressed the necessity to use more accurate mathematics
clamped rectangular plate is divided into parts, with the cofshen solving a specific engineering problem. He mentioned
responding approximation of the surface loading. The relajsriefly that the case of a rectangular plate with clamped edge
ation method developed by Southwg$02,503 for various seems to be unsolvabl@xcept with the help of elliptical
problems of the theory of elasticity was also applied ifunctions, which are quite complicated for all practical pur-
[504,509 to study the biharmonic problem for a rectangle.poses, but he did not enter into any further explanations.
Below we describe several major approaches to solve theAlready in the beginning of the 20th century Grashof’s
biharmonic problem in a rectangle and to obtain reliable réarmula appeared in doubt in comparison with experiments
sults concerning important mechanical characteristics of Bach[520]. Based upon these and his own experiments, a
structural elements. An excellent survey of several approxterman shipbuilder Felix Pietzker suggesfé®1] a new

(58)
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formula for maximum deflection and stresses with some enmfinite periodically loaded strip with simple supports. If the
pirical coefficients given by figures and tables. Pietzkeristio of the rectangle’s sides is large, it was beliet@ctord-
short book was rather popular among naval architects, foring to the Saint-Venant principlethat, at a long distance
had a second edition as well as Rusdi&82] and English from the short ends, the effect of any self-equilibrated system
[523] translations. Pietzker pointed out that in the case of loads may be neglected, and the boundary conditions are
rectangles with the side rate'b below 0.33, the maximum fulfilled only for total tension, total shear, and total bending
stress remains almost the same as though the short sidesndonent.
not exist. (A review paper by Lamble and Shifd2] con- Filon [132]2, and independently BelzecKi527], used a
tains figures showing comparative data of various apimilar approach, but with the complete systemrgi/l. in
proaches for these coefficients depending on the edtio) the Fourier series of the stress function. Here oneua8,
Pietzker[523] (p 42 also made a characteristic remark thai=0, X,=0, Y,#0 that corresponds to the conditions of
“the stress in the plate corners is uncertain for the timdree support.” Here, also, the accuracy of satisfaction of the
being.” boundary conditions at the short ends was not checked. By
. . . . means of this solution these authors considered a few inter-
5.6.2 Polynomial aqd Founer Senes squtpns , esting problems for beams lying on two supports. In particu-
!n structural mechan_|cs there is a _constant interest in apalygr—, Filon[132] solved the problem of compressing of a finite
ing the stress and displacements ifiang) rectangular strip o |aqtic rectangle by two normal forces symmetrically placed
0=x=I, |y|=<c in order to compare results with an elemeng; points (0g) and (0 c). For a sufficiently long rectangle
tary beam theory. , _ _ the normal stres¥,(x,0) equals to zero dk|=1.3% (inde-
‘Mesnager{203] suggested using the biharmonic POlyNOpendently on the ratid/c for 1>4c), and the pressure is
mials of various _mteger _orderSLa_\ter Zwe”'n_g [214] gave replaced by a tension. This result permits one to understand a
an extensive listing of biharmonic polynomialS.hese ex- ginnje experiment when an elastic block, acted upon by a
pressions satisfy identically the homogeneous biharmonig, entrated load on its upper surface, cannot lie having full
Eq.(7) and have some arbitrary constants. By choosing theggniact with a smooth rigid plane, and at a certain distance
constants appropriately, it appeared possible to satisfy exyay from the force the ends lift off the plane. An accurate
actly some simple boundary conditions over long Sigles 55 vsis of this remarkable phenomenon has to rely upon the

+¢, and by means of the Saint-Venant principle to satisfy,| tion of a complicated mixed problem with an unknown

integrally the boundary conditions over the short sides. @bundary, but a rough estimate of the dimensions of the area

special attention has been paid to the benchmark problemof.,iact can be made considering the area where the nor-
the so-called “simply supported” finite strip loaded either b¥nal stressey, are positive
y .

uniform normal pressure over its top sigle:c or by its own  pa oy avich{80] presented a complete comparative analy-
weight. (Already Airy [166-168 had considered this prob-g;q of the Ribiee and Filon—Belzeckii solutions for several

lem but his polynomials were not biharmonic oneshe g common loadings of a rectangular plate. This served as

solution in tgrms of the biharmpnic polynomi_als of the ﬁm’h basis for a detailed study of some practical cases of bend-
order was giver{132,181,219 it has been since then re-ing of box-shaped rectangular empty beams which are

peated in the beginning of the twentieth century in the te)ﬂ}ﬁidely used in shipbuilding.

books on the theory of elasticity by ppl[127], Timoshenko gy’ compbining a solution in the form of a Fourier series
[91], Foppl and Fepl [28]. It appeared that an additionalt,. 4 paifplane Bleic528] considered an interesting case

term in the stres¥, connected with the two-dimensionalityhen normal concentrated forces are applied at the centers of
of the problem is small in comparison with the main terMhe short sides of a rectangle; see d28], Section 56, and
according to the elementary solution of the strength of Mgz3) gection 20. This solution can be used for a quantitative
terials provided that &1 is much less than one. A similar gogiimate of the Saint-Venant principle: even for this extreme
conclusion is true for the dlsplacement of the cente.r I'rl?ase the distribution of the streXg over the cross section is
v(x,0) that corresponds to a deflection of the beam in thg st uniform for the distance from the short ends: see

elementary theory. _ _ __ Meleshko[529] for further details.
A shortcoming of the polynomial solutions consists in the

ImpOSSIblllty to consider some praCtlca”y Important IOéujmgtﬁLouis Napoleon George Filoii1875—-193Y was the son of Augustin Filon, the

(eg, concentrated forcessee Belzeckii[524]. This short- French litteateur who was tutor to the Prince Imperial. He began Latin and Greek

Coming can be partially overcome by Considering the solpefore he was six. Filon’s ambition was to be a sailor. He was always drawing pictures
of boats at sea and some good models of ships he made at this time are still in

tions for the stress function in the form of a Fourier series QRistence. In later life, this old ambition showed itself in his keen interest in the theory

i i i navigation and in his one form of relaxation, yachting. Filon graduated from Uni-

Som? Comple_te S_ySte_mS of t_ngonometnc fljlnCtIOI"l.S. Alreaqgrsity College, London, and he took his BA degree in 1896 with a gold medal for

Ribiere [525] in his dissertation used Fourier series représreek. He was a student of Karl Pearson and Micaiah JM Hill, two teachers for whom
7 7 ad an affection and reverance. In 1898, Filon was elected to an 1851 Studentship
senations for ,the strgss function on ,the Complete Sy_Stéz;mwent to King’s College, Cambridge. Here he published his benchmark studies on

cosnmx/l. In this way, it appeared possible to exactly satisfyie theory of elasticity in which he developed the theory of “generalized plane stress.”

it 'd_ES &+ i+ In 1910, he was elected to the Fellowship of the Royal Society, of which he later

the b_oundar_y COI’]dItIOUS over the si ___C' HOWGVGI‘, it became Vice-President. After World War |, Filon served as Vice-Chancellor of the

was impossible to satisfy fully the conditions over the twoniversity of London; he was a Vice-President of the London Mathematical Society for

i — — i ; — the two years 1923-1925. Towards the end of 1937, Filon fell a victim to the typhoid

short SIdES,X 0 andx=I. Here ,One mewtably has O’ epidemic in Croydon, and he died on December 29. A more detailed biography of Filon

v#0, X,#0, Y,=0, and mechanically it corresponds to aruith a complete list of his scientific works can be found&26].
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5.6.3 Ritz method andN increase indefinitely, to an expression which does sat-
Swiss born physicist Walter RitZ1887—-1909 lived a short isfy this equation(Another version of the proof was given in
but brilliant life in scientific aspects. He studied intBogen a short notg532].)

under David Hilbert, did his PhD thesis in Leiden under The minimizing procedure for the functional

Hendrik Lorenz and had one joint paper with Albert Einstein b ra
on the theory of relativit?, see[312,314 for a detailed JMN:J f
account of the life of this extraordinary scientist. Conscious 0.Jo
of his imminent death from consumption, Rita30] pub- that is, 93,y /9am,=0, leads to the system of linear alge-
lished a short account of his study presented for Biix  prajc equations

Vaillant compéetition. This work had been submitted in May o ra

1908 to the Gtiingen Academy of Sciences by well-known _ _

German applied mathematician Carl Runge856—1927. 0 fo L(AWwN) A (Emn) = T Emmnldx dy =0,

Already in September 1908 the extended version of this

benchmark studythe “habilitationsschrift” dissertationwas (m=1,...M, n=1...N) (63)
published/470] in the first issue of the 108th volume of theintegrating twice by parts and taking into account the zero
famous CrelleJournal fu die reine und angewandte Math-boundary conditions for function,,, 7, and their first de-
ematik (The whole volume was dated by the year 1909, anfatives, Ritz arrived at the following system M XN lin-

this sometimes leads to the incorrect dating of Ritz's mergar algebraic equation for the coefficients,

oir.) This paper still deserves attentive study for its richness b ra

with ideas and unsurpassa.ble cIea_Lrness of presentation. R|tzJ f (AAWyN— T ) €nmndx dy=0,

proved that the problem of integrating E&) with boundary oJo

conditions(4) can be reduced to the followingariational B B
problem: from the set of functions satisfying the boundary (m=1,...M, n=1,...N) (64)
conditions(4) it is required to find that one which gives theDealing with this(and not with the original one(63) as it
minimumvalue of the potential energw of the deformed usually assumedsystem Ritz performed extensive calcula-

1
E(AWMN)Z_fWMN dX dy (62)

plate, tions for a square plateb&a) under uniform loadp, and
1 presented three approximatiowith M=N=1, M=N=3,

W:Df —(Aw)2—fw|dx dy, with f= P (59) andM=N=5; only odd values ofn andn were involved
s|2 D for the deflection. The first approximation reads was

— _ — 4 4 P
Among several choices of the trial functions for a rectan- 0.6620£4(x) 7,(y), wherel=8-10""p,a’/D. It is im-

gular plate Gsx<a, O<y=<b Ritz [470] in Section 11 em- portant that the additional terms with coefficients
ployed an expression a,s,as3;, - .. ,as5, in the second and the third approxima-

tions for deflection were found to be 1/20 of the first coeffi-
cient a;; or less, and that the main coefficient was only
WMN:mZ‘l nzl amném(X) 7n(Y) (60) slightly changed(Later these simulations were completely
reproduced if533-539.)
Here {,(x) and n,(y) are the eigenfunctions of transverse Ritz’s contributions to the most difficult problems of equi-
vibration of the elastic beams<Ox<a and O<y=<Db, respec- librium of a clamped rectangular plate and steady vibrations
tively, satisfying differential equations of a rectangular plate with free edges were greatly appreci-
die p 4 4 ated by famous mathematician Jules Henri Poin¢h854 —
_"1"“: _T . 2 _ _2 T (61) 1912 and physicist John William StruttLord Rayleigh
dx a dy* b (1842-1919. Poincarewrote a special lettef536] (p XVI)

with zero boundary conditions on the functions and their fird? the foreword of Ritz’sOeuvresvolume, where he empha-
derivatives at the ends of their intervals. The valuescgf Sized the superiority of Ritz's “une ntieode d'ingaieur”

and x,, are the roots of the equation cesoshx=1. In Sec- OVer the purely mathematical Eredholm integral equation;
tion 9 of his paper, Ritz provided the explicit expressions f@fpproach when concrgte numerical results are needed. Poin-
these well-known functions which are too long to be repr&arealso presented this volume to the French Academy on
duced here; sef531] (Section 172 Ritz pointed out that Pehalf of the Swiss physical societyeeComptes rendus des
sometimes the functions from the exact solution of one prop@nces de I'Acadwie des Scienced 911,153 924).

lem may be used in the approximate solution of another; the Rayleigh [537] also called attention to the remarkable
functions giving the deflection of a clamped beam were #{udy of Ritz[470] and noted that “the early death of the
fact used in the form of products to represent the appro,galented author must be accounted a severe loss to Math-

M N

mate deflection of a clamped rectangular plate. ematical Physics.” At the same time Rayleigh remarked
It should be noted that serig60), when differentiated But | am surprised that Ritz should have re-

term by term, does not satisfy the differential E8) for w, garded the method itself as new. An integral in-

but the proof was given that it must tend, as the numbérs volving an unknown arbitrary function is to be

made a minimum. The unknown function can be
23t was, in fact, joint expressions of contradictory views on the subject. represented by a series of known functions with
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arbitrary coefficients—accurately if the series be plate deflection compatible with boundary conditio@s.
continued to infinity, and approximately by a few Here the potential energy of bending is given by Kirchhoff
terms. When the number of coefficients, also  [126] as

called generalized coordinates, is finite, they are D 2w Pw [ ®w \2
of course to be determined by ordinary methods V= —f [(AW)Z—Z(l— V)| =% - —) }dxdy
2 Js axXe ay axXay

so as to make the integral a minimum.

(66)
In this respect, Rayleigh referred to several sections of his

treatise[531], where a similar approach had been succeddt can be shown that the integral of the term in square brack-
fully used. ets vanishes for the clamped plate.

The Ritz variational method immediately received a great FOr the uniformly loaded clamped rectangular plate occu-
deal of attention. Timoshenki@79] (p 114 told how he in PYing the region &x=a, O<y=b, Timoshenkd570] ob-
1909 had found in the library of Kiev Polytechnic Institutd@ined

the journal with Ritz’s paper and he suggested t.his topic asa - 2% 27y

diploma work to one of his students. Performing this task poa“b 1—cosT 1_COST

Pistriakoff [538] repeated Ritz's calculations and extended = 7 2 7 > (67)
them to several other values afb ratio. 7" D(3a"+3b"+2a"b?)

Later, the Ritz method was applied for a rectangulghat satisfies boundary conditiod). The same expression
clamped plate in the thesis by Pasch§889], Salvati[540] \yas independently obtained by Loref&71] and it has been
and paper$541-552. Stresses in an elastic rectangle U”d%peated in higformerly well-known treatise[19].
discontinuous loading at its opposite sides are calculated by|p spite of the French summary and the extended German
Hajdin [553]. The Stokes flow in a rectangular cavity withapstract, Timoshenko®and Pistriakoff’s studies apparently
one moving wall was studied by Weiss and FlorshEi®4].  remained completely unknown. As Krylov later observed

There are many pure mathematical papers summarizeqd{A] (p 160: “Their investigations are published in the
Kryloff [555]; see als¢313,556,55T which were connected Transactions of the Polytechnic Institute, in Russian, of
with general aspects of the convergence of the Ritz methgyrse, which means for Western Europe almost the same as
The mathematical question of convergence of the solution @hjnese!”
the biharmonic problem for a clamped plate was addressedgimjlar calculations based upon the energy method were
by Kryloff [558], Trefftz [99,559,56Q, Courant [561], performed later by many authors, the results not always
Friedrichs[562], Wegner[548], and Rafal'sori563]. Aweak agreeing, being highly dependent on the choice of the ap-
point in the Ritz method is that it does not contain an alg@yoximation functions. Another choice of approximation
rithm to estimate the accuracy of the approximation. Mokgnctions (which has also been briefly mentioned by Ritz

importantly, a suitable selection of the basic functions is of470)) used by father and sori Bpl [28] and later Leibenzon
ten difficult to make and laborious computations are somgsg] provided the expression:

times necessary. A detailed treatment of the variational meth- .

ods is given in the textbooks by Leibenzd69] and _ Po 9 92,2 L2

Sokolnikoff [41]. w= L, 4, Tyt (68)
Among various interesting fields of application of the Ritz 128D| a"+b"+ 7a b

method one can mentioned the studies of the eigenfrequen-

cies and modes of vibrations of a clamped rectangular thin Similar calculations based upon the variational method

elastic plate by RayleigH537], Stodola [340,341,564 had been done in the book by Hadér?Z_]_. This study was

Young[565], and many others referred to by Bateniage], highly estimated in the review paper by i [317]. How-

Courant[567], and Leissa[568]. Mathematician Davydov €ver, according to Galerkib73] and Mesnagef544], there

[569] mentioned that by the year 1932 he already collect&¥¢fs an essential error in the expression for inner work due to

291 references for the Ritz method in various problems 8fnission of the shearing forces.

statics and dynamics of elastic rods and plates. By using the same energy approach Timoshe[to4]
considered the plane stress or strain equilibrium of an elastic
5.6.4 Energy methods rectanglgx|<a, |y|<b subjected to normal symmetric load

Timoshenkd570] suggested a slight modification of the Ritz5(1—y?/b?), parabolically distributed at its sides= *+ a.
method—the “energy method” or the “principle of leastDue to the Michell theorem about independence of the
work,” as he usually called if379] (p 114. The method stresses in a simply connected domain upon the Poisson ratio
consists of applying the Lagrange variational equation 3, the expression for the potential enetdymight be simpli-

fied by settingr=0, and in terms of the stress functighit

then reads

1 (a (b[/a2d\2 [52\2 Ph\2
ose Ll
2E J_a)-p|\ 9y IX Xy
that is, by equating the change of potential energy of bending (69)

to the work done by the external loading under prescrib&hoosing the doubly symmetric stress function in the form

5V=f p dwdxdy (65)
s
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1 y? tation for stresses in the rectangle has enough arbitrariness to
p= ESYZ( 1- W) satisfy the conditions of compatibility by means of the Cas-
tigliano theorem. By usage of this approach Filonenko-
+(x2—a%)?(y2—b?)2(a;+ aXx?+ azy?) (70) Borodich[582] and Danilovskayd584] considered in full

i . . . detail the equilibrium of an elastic rectangle.
that satisfies all boundary conditiori&hile the governing 9 9

. : . g ) . Another complete set of polynomials was employed by
biharmonic Eq.(7) is not satisfied at all; the mathemat'cahorvay[585—588 and Horvay and Borf89] to study vari-
question of convergence of this representation still deserve

. AR X L St problems of equilibrium of a semi-infinite elastic strip
attention ?”d substituting it ir(70) Timoshenko minimized under a self-equilibrating load at its end. This approach
the potential energy,

caused an extensive discussion, E&#9|.

ﬁz ﬁz ﬂ_o (71) 5.6.5 Bubnov—Galerkin method

day ' dap ' dag It has already been mentioned that Ritz, starting from the

In such a way he obtained a rather cumbersome systempf)?blem of minimization of pote;ntial energy of bending of a
linear equations fory;, a, as. Timoshenko displayed the €ctangular clamped plate, arrived at the Egf) (number

distribution of the normal stress, in the middle cross- (41 Onpage 38 of the original papg#70]) more suitable for

section x=0 for the square =b) and rectangular & practl_ce_ﬂ calculations. In hls_semmal papseo, _Galerkn? _
gefplammg the essence of Ritz's method, considered bending

by uniform load of a clamped plate|<a/2, |y|<b/2 and

to be almost uniform with a mean valg&. Similar results
48 chose the deflection in the form

were also obtained by Ingli©75] for a shear loading at the
surface. By the same approach James Norman Goodier 3 3

(1905-1969, a PhD student of Timoshenko at the University ,,— 2 2 Arn(a2— 4x2) k(b2 — 4y?)n (72)
of Michigan, considered576] the bending of a finite rect- k=2 n=2

angle. All these examples have been reproduced in the text- ) ) )

books by Timoshenko[43] and Papkovich[80]. Later (That expression was also briefly mentioned by Riz0] as

Leibenzon[70,69 considered the same benchmark exampl@sPossible choice of trial functions. o
by means of the Castigliano theorem. Galerkin directly substituted that expression into the gov-

- . - - k
It should be noted that in all these studies Ritz's name h§E1NY Ea.(3), multiplied it subsequently bya®—4x*)*(b®

2 . _ .
not explicitly been mentioned. This omission of reference o 4Y*)"dxdy, with k,n=2,3 and integrated over the plate

the Ritz name caused a violent attack by von Krzywoblocki€2- In such a way he obtained a linear system of four alge-

at that time a Professor of Gasdynamics and Theoreti@fiC equations for defining the values &f,. Galerkin
Aerodynamics at the University of lllinois, Urbana. He wrot§©!Ved that system for three values of raia=1,1.5,2.
two paperd577,578, and participated in discussions on pa- Th_e approach provided regsonable values of deflectlt_)n,
pers[497,579 stating that Timoshenko “did a great injustice’®Nding moments, and shearing forces for the plate, which
to the late Swiss physicist,” not mentioning the name of Rit/€ré compared with results of previous studies by Hencky

More attentive reading of Timoshenko's textbooks showg93) Bubnov[594], and Galerkir{573]. Galerkin[590] ex-
that this scientistwho usually was very careful with refer- plained the essence of his approach for the first time with the

ences in his booksalways paid a tribute to the fundamentaf*@mPple of & simply supported rectangular plate, which ad-
method of Ritz, se¢91] (Introduction), [43] (Section 80, mits the exact analytical expression for deflection either in
and [45] (p 158 in Chapter 6 “Strain-energy methods” Navier's or Levy’s form of double or single Fourier series,

which, however, has been completely omitted in the thif@SPectively. He did not, however, mention that his approach
edition [46]. Ritz did not consider 2D elasticity problems,©r @ Simply supported plate had already been described in

and it was Timoshenk@574] who first applied the energy € textbook by Bubnoy594] (Section 21. (This example

method(and pointed out the possibility of simplification of¥as considered by thsameapproach by Simi¢595] but,

the expression for the potential energy by setting the Poissb¥s Study was, probably, not well-known in Russia at that
ratio equal to zerpto solve the important problem of thet'me')_ ) )
elastic equilibrium of a rectangle. Heinrich Hencky(1885—-195] studied the paper of Galer-

Filonenko-Borodich* suggested582,583 to use a spe- kin [590] (he was a Russian prisoner during World War | and

cial complete system of functions that permit one to satisfy
identically the static equations of equi"brium and boundarzs fter graduating from St Petersburg Technological Institute in 1899 Boris Gri-
. . . or'evich Galerkin(1871-1945%got a job at the Kharkov locomotive plant. In 1906, he
conditions at all sides of a rectangular domain. The repreS@hicipated in the revolutionary movement and was imprisoned. From 1909 Galerkin
began teaching at St Petersburg Technological Institute, and in 1920 he was promoted
- to head of the structural mechanics Chair. By this time he also held two Chairs, one in
2Mikhail Mitrofanovich Filonenko-Borodich{1885-1962 graduated in mathematics elasticity at the Leningrad Institute of Engineers of Ways of Communications and one
from Kiev University in 1909 and got a railway engineer degree from Moscow Instituie structural mechanics at Leningrad University. Galerkin was a consultant in the plan-
of Engineers of Ways of Communications. He got his Doctor of Science degree in 1986g and building of many of the Soviet Union’s largest hydrostations. In 1929, in
without submission of a dissertation, due to his important and practical studies in #@nnection with the building of the Dnepr dam and hydroelectric station, Galerkin
railway design. From 1931 till the end of his life he worked at Moscow University anthvestigated stress in dams and breast walls with a trapezoidal profile. From 1940 until
at the Military Engineering Academy. He was a Major General of the Engineerirtys death, Academician Galerkin was head of the Institute of Mechanics of the Acad-
Corps since 1943. A more detailed biography of Filonenko-Borodich and discussionesfiy of Sciences in Moscow. A more detailed biography of Galerkin and discussion of
his scientific works, including an original approach to the famous Lsum@blem of  his scientific works, including his numerious papers on thin elastic plates, can be found
an elastic parallelepiped, can be found%80,581. in [591,592.
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during this internment in Saratov he learned the Russian l&Bemmerfeld 606] pointed out that Kirchhoff and Ohm were
guage and later usedi596] the same method for the deterfredecessors of Rayleigh and Ritz.

mination of the stress field in an elastic rectangle. Working at Later on, by direct calculations of variation of the poten-
that time at the Technische Hoogschule Delft and being p&g! energy in(66) Leibenzon[69] proved that Eq(65) for a
sonally acquainted with Galerkin, he drew Biezeno's attefil@mped plate of any shape can be written in the form:
tion to that approach. Cornelis Benjamin Biezefi888—
1971 [5] in his opening lecture at the First International
Congress on Applied Mechanics, referred to the p&b@0]
and called this approach the “Galerkin method.” It is probas it was mentioned above, the same equation was obtained
ably since then that this name has been widely used. On eRitz [470] for the calculations in the rectangular domain,
other side, in their recommendation letter for Galerkin fan Eq. (64).

election as a corresponding member of the USSR AcademyA detailed study of this subject by GrigolyU699,60Q

of Sciences, Academicians loffe, Krylov, and Lazafé&f6] shows that the main idea of the “Galerkin method” was sug-
did not explicitly mention this method among the achievegested by naval architect, Professor Bulficas early as
ments of the candidate; they only wrote that “Galerkin has fdlay 1911 in a referee repd13] on Timoshenko’s memoir,
develop new methods of calculus when studying many rathgtbmitted for the competition for the Zhuravskii priz&his
complicated and difficult problems of theory of elasticity.’Prize was established in 1902 and valued at one year’s pro-
Only several years later when Galerkin had been elected fggsor salary, named after the famous Russian railway engi-
Academician and occupied an important place in Soviet m@eer Dmitrii lvanovich Zhuravskii(1820-189]. Timosh-
chanics(see, eg, a special issue of leading Soviet journ@Nke in 1911 was the only single recipient to have ever
Prikladnaya Matematika i Mekhanike941,5, No 3, devoted received the prize¢ Bubnov explainedon four prmted E)ages

to the 70th anniversary of Galerkin's bijtihe developed ONlY!) the essence of a method other than Rilds “en-

method was completely connected with his name. Th{%gy’" as Timoshenko preferred to cal) iith examples of

method received wide appreciation in applied mathemati € Euler stability of a ro_d and a simply supported rectangu-
e . . ar plate compressed in its plane by opposite normal loads at
and mechanics; s€é&97-60] for detailed reviews of the . . X
vast literature on the subject the contour sides. Moreover, Bubn$94] in Section 22
. already applied this method to the more complicated stabilit
On the other hand, already Biezef&02] and[5] (p 14 y app b y

hat “th h , ~ ~ 7 problem of a uniformly loaded rectangular plate under addi-
stated that “the @LERKIN and RTz methods arédentical”  iona| normal and shearing loads along its contour. It now
according to his previous study03]. However, Biezeno gaams that the name “Bubnov-Galerkin method” as it was

[602] also mentioned that the Galerkin method requirggigely used in Russian literaturf557,601,611,614—616
much less ciphering than that of Ritn its traditional for- gnould be more appropriate; see Melesp&b7], Grigolyuk

f(DAAW— p) swdxdy =0 (73)

X2 L
=| 2

X2

n—-1 2\ k-1
5

a2

| share your opinion about Galerkin’s algorithm.
To tell more, | am in doubt whether one can con-
sider “Galerkin’s scheme” as a new one. Prob-
ably, this scheme has been used by great math-
ematicians of the last century and the century
before last. | do not know. We do not read their
original works, and it seems likely that such an
approach has been used by someone. This ap-

mulation), and is therefore preferable. Later Hendig04] [600,613 for further historical details.

published a short note with the similar result; this equiva- An interesting modification of the Bubnov—Galerkin pro-

lence already established by Ritee[536] p 228 has been cedure has been suggested by Biezeno and K5@t; see

mentioned by Timoshenko in his textbodkss] (p 159 and  also[5,25]. They chose the representation of deflection in the

[47] (Section 8). Davydov, a professor of mathematics atlamped platéx|<a, |y|<b as

the Zhukovskii Air Force Academy in Moscow, in a letter 5

[569] to Papkovich, expressed an opinion, that “Galerkin’s 2()/2 1 2 S

‘method’ does not exist at all, but there exists the Galerkin [ Kn=1 kn

‘scheme’ to calculate the coefficients in the Ritz method.” o N _ _

Papkovich[605] replying to that letter wrote: which satisfies the boundary conditio® and substituted it
into governing Eq.(3). In this way, some fictitious loag
instead ofp has appeared in the right-hand-side of E).
Then, the coefficient$,,, are determined by the conditions
that the integrald [pdxdy and [ [pdxdy taken over well-
chosen regions of the plate surface, are equal. In the particu-
lar case of a uniform load,, a quadrant of the plate limited
by the two axex=0 andy=0 and by the linex=a and
y=Db, was subdivided into four parts by the lines a/2 and

proach looks very similar to the main algorithm

for developing the prescribed function into the

Fourier series. Maybe it was used a long time
ago for other developments of the prescribed
function into series, and for a representation of a
seeking function in form of the series. Further
investigation of this issue seems very attractive.

26lvan Grigor'evich Bubnov(or Boobnoff, according to the French spelling of his
name (1872-1919 graduatedcum laudein 1896 from the Naval Academy in St
Petersburg. He worked as a naval architect, and was a(h688-1914 of the model

basin of the Imperial Russian Navy. At his final years Bubnov was Professor at St
Petersburg Naval Academy and Major General of the Corps of Naval Architects. He
died in March 1919 from typhoid during the civil war in Russia. The detailed story of
his life, a general overview of his scientific advances, including an input into the
development of the nonlinear theory of bending of plates and his role in Russian naval
architecture as the Chief Designer of battleships and first submarines can be found in
[23,600,607—61R
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y= b/2. After laborious but straightforward calculations okquations and the theory of certain linear integral equations
integrals, the system of four equations which determines thed, finally, to an infinite system of linear algebraic equa-
coefficientsf,,, was written down. In the original papgs01] tions. Dixon[7] noted that it is not clear whether this system
the aspect rati@/b=1.5 was considered in full detail. could be truncated by the theory of infinite determinants, and

Another modification of the variational approach was sugaid very little about the possible application of the whole
gested[618] by Leonid Vital'evich Kantorovich(1912— theory to numerical calculation.
1983 (the Nobel prize winner in economicsee alsq619] Love® suggested626] an approach wherein the solution
and [533-53§ for further details. The main idea of thisinvolves the conformal mapping of the rectangle onto the
method is to reduce a search for the of minimum of a funeircular region of unit radius. This, finally, leads to the solu-
tional (the total potential energy of the systemlepending tion of an infinite system of linear equations of rather com-
upon two variables to the problem of minimizing of the funcplicated, but triangular, structure. The solution of that system
tional that depends on several functions of one variable. A@an be found one by Or(@r a genera| determinant formula
plying the well-known Euler equation of the calculus otan be written dowp but the asymptotic behavior cannot be
variations to the problem gives a set of ordinary differentialeen easily from this solution. Love restricted himself to the
equations in these functions to solve. first three terms of the series. He obtained a value of the

For the benchmark case of the clamped elastic gidte center's deflection only 2.5% greater than HenckiB83]
=<a, |y|<b under a uniform loagh,, one seeks the solutiongng did no more arithmetic. The same approach was used
as follows[534,535,620 later in[627—-63(Q. It is worth noting that the general idea of

N application of conformal mappingput for smooth contours
WNOGY) = D da(V) (X)), dn(y)=(y2—b?)2y2n~2 only) was suggested by Levi-Cevifa92].
n=1 The approach by MuskhelishvilB7] leads finally to the
(75) solution of the singular integral equation with a kernel of

where the known functionsp,(y) satisfy the conditions Cauchy’s type and provides an effective method for treating
én(=b)=0, ¢/ (xb)=0. Restricting toN=1 and applying the biharmonic problem in a domain with a smooth contour.

the [Ritz]-Bubnov-Galerkin procedure Magnaradzd¢ 631,633 gave the general proof of applicabil-
b ity of that method to contours with sharp angles, while De-
Po ;
J (AAWF _) ¢1(y)dy=0 (76) verall [633] obtained concrete results for a clamped rectan-
—b D gular plate. Further developments in this direction are

one obtains the solution of the fourth-order ordinary diffe€Ummarized by Belonosd34,633.

ential equation 5.6.7 Method of superposition
ax  Bx ax _ Bx  po This analytical approach was suggested by Lah®9) in the
f1(x)=Acosh-cos -+ B sinh-=sin= =+ 275 (77)  twelfth of his famous lectures on the mathematical theory of
elasticity when considering the equilibrium of a 3D elastic

wherea=2.075, 3=1.143 are the roots of the charactersitigarallelepiped under any system of normal loads acting on its
equation, andh, B are explicitly expressed via and 5. sides. Briefly mentioned by Laml] in Section 102 and
5.6.6 Complex variable approach Thomsgn and Tait636] in Sectio_n 797 as a possible method
Dixon?’ in the series of papef$22,623 summarized in his of solution of the Laplace equation in a rectangle, the method

Presidential Addres] read before the London Mathemati0f superpositioln for the 2D biharmonic equation was devel-
cal Society showed that the solution to the problem of ttP€d by Mathieu[199-20] to solve the problem of the
rectangular clamped platevhich was originally proposed to equilibrium of an infinite rectangular prism with the surface

him by his colleague, a professor of engineering in BelfadP2ds being uniform along the generating line of the prism.
depends on the discovery of a functié(z) of a complex He considered, however, the equation of equilibrium written
variablez satisfying the functional equation in traditional form of the Lameequations for two compo-

nents of displacement. The main idea of the method, con-
f(z+a)—f(z—a)=2caf'(z) cisely expressed ifil99], consists of using the sum of two

with ¢ some known constant. This functional differentiaPrdinary Fourier series of the complete systems of trigono-

equation can be written as an integral equation and furtHBgtric functions inx andy coordinates in order to represent

analysis leads to both Poisson’s theory of mixed difference

28Augustus Edward Hough Low@863—1940 graduated from Cambridge and held the

Sedleian Chair of Natural Philosophy at Oxford from 1899. He was elected under the
27Alfred Cardew Dixon(1865—1936in 1883 entered Trinity College, Cambridge andold Statutes, before the retiring age had been invented, and he continued to lecture and
he graduated in 1886 as Senior Wranglplaced first. He had been taught by a examine until shortly before his death. An expert on spherical harmonics, Love discov-
number of famous mathematicians at Cambridge, including Glaisher, Rouse Ball, amdd the existence of waves of short wavelength in the Earth’s crust. The ideas in this
Forsyth, and he attended lectures by Cayley. Dixon was appointed a Fellow of Trimityprk are still much used in geophysical research and the short wavelength earthquake
College in 1888 and was awarded a Smith’s prize. Dixon was appointed to the Chaimafves he discovered are called the “Love waves.” He was a Fellow of the Royal
mathematics at Queen’s College, Galway, Ireland in 1893, and in 1901 he was Spciety and a corresponding member of the Institute of France. He received many
pointed to the Chair of mathematics at Queen’s College, Belfast. After he retired frdronors, the Royal Society awarded him its Royal Medal in 1909 and its Sylvester
his chair in Belfast in 1930 he served as president of the London Mathematical Socibtgdal in 1937, while the London Mathematical Society awarded him its De Morgan
from 1931 until 1933. Se621] for a detailed account of his life and the scientific Medal in 1926. For more details of his life, a nice pencil sketch of him with moustache
works of this mathematician, who as a devout Methodist, was active in the philhaharmingly reminiscent of a frozen waterfall made during a lect&rél938, and a
monic orchestra. complete list of publications s¢@3,624,625.
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an arbitrary biharmonic function in the 2D domdx|<a, derivative. Each of these problems was then subdivided into
ly|<b. Each of these series satisfies identically the bihahree simpler problems, depending on whether the bihar-
monic equation inside the domain and has a sufficient funmonic functions are even in both variables, everxiand
tional arbitrariness for fulfilling the two boundary conditiondd iny (or vice versy or, finally, odd in both variable¥.
on sides|x|=a or |y|=b. Because of the interdependency, Koialovich[229] employed the Mathieu method of super-
the expression for a coefficient of a term in one series witlosition with a particular choice of the complete trigonomet-
depend on all the coefficients of the other series and vide systems in the Fourier series on the interjals<a and
versa. Therefore, the final solution involves solving an infly|<b for each of the six problems and considered in great
nite system of linear algebraic equations providing finally théetail the solution of each of them. First, he usieite num-
relations between the coefficients and loading forces. bers of terms in both Fourier seriel @ndK, respectively.
Mathieu in an elaborate memo(200] suggested the Therefore, the boundary conditions can be satisfied only ap-
method of successive approximations for solving that sygroximately, within the accuracy of representation of the
tem, and proved its convergence for a square plate. THigctions by the finite number of terms in the Fourier series.
memoir has been completely reproduced in the second phle finite system for the unknown coefficierts and Y
of his lectures on the theory of elastic{t901]; traditionally, Wwas written in general form as
all references to the Mathieu’s studies are only restricted by
these lectures. Mathieu did not, however, provide any con-
crete numerical results for stresses in such a domain base
upon his solution. As Filoi132] (p 153 noted later, “the
solution is, however, so complex in form, and the determi- .
nation of the constants, by means of long and exceedingly Y= 21 c{OXn+dy, 1<k=<K (78)
troublesome series, so laborious, that the results defy all at- "

tempts at interpretation.” Similar opinions were expressed {gith some positive element"” andc{¥ . The algorithm of
the textbooks by Papkovicti80] and Timoshenko and successive approximations was suggested to solve this sys-
Goodier[46]. These views, as it was shown[i29] are too tem, for it has been pointed out that direct numerical solution
critical: after a proper treatment, Mathieu’s method appeass the linear system cannot provide all the necessary infor-
rather simple for numerical exploration. mation about how these Fourier coefficients may change
Because of permanent internal tensions of that time bghen increasingN and K. It was strictly proven that the
tween Parisian and non-Parisian mathematiciaee[227])  algorithm of successive approximations is convergent when
these remarkable results went completely unnoticed. As g number of iterations tends to infinity, and the coefficients
already mentioned, in 1894 Picard suggested this, topic aggproach some values, depending\bandK. The next step
question worth thinking about on the paged'bftermediare was to increase these valueshfandK, while conserving
des mathmaticiens and it remained practically unansweredheir fixed ratio. It was also proven that this second limiting
as the Index of contents of this journal for years 1894—-19%30cess is convergent. Later Sobol@89] gave a general
shows. (With the beginning of WWI this journal ceasedproof of convergence of that approach which is equivalent to
publication) the Schwarz alternating algorithm; s€&33-535,566 for
Meanwhile, in Russia the biharmonic proble), (2) details. Thus, it was stated that the final representation of the
was addressed by a mathematician Koialofidh his doc- biharmonic function in terms dhfinite Fourier series is con-
toral dissertatiorj229]. The defense took place in Februarywergent and satisfies both boundary conditions at all sides of
1903 at the Faculty of Physics and Mathematics of St Petetise rectangle.
burg University. The way of investigation of infinite systems used by
Koialovich constructed the analytical solution of the biKoialovich[229] traces back to the memoir by Fourier writ-
harmonic problem, and even provided some numerical nen in 1807(see]640] for the full original tex} and published
sults. He considered separately the two problems of eithiarthe year 1822 in his famous bodk41]. It is equivalent
finding the biharmonic function which has the prescribet the solution of theinfinite system of linear algebraic
value at the boundary with the value of its normal derivativequations
being zero, or finding the biharmonic function equal to zero
at the contour and having the prescribed value of its normal

K
Jo=2 al"Yitby, 1=n=N
k=1

N

Xn=2, a"Y +b,, 1<n=oo
k=1

29n the literature, there are different spellings of his name: Coialowitch, Kojalovic

Kojalovitch, Kojalowicz, Koyalovich, Koyalovicz. Boris Mikhailovich Koialovich o0

(1867-194)1 was a son of the well-known Russian historian Mikhail | Koialovich; he (%)

knew seven foreign languagéscluding old Greek and Latjnand was a good chess Yk: E Ch Xn+ dk ) Isk=sx (79)
player. He constantly played chess with the great Russian mathematician Andrei A n=1

Markov, and he even managed to win against great grand masters Lasker and Alekhin

in 1912 and 1924, respectively. During his whole life, Koialovich was interested in

pure mathematics: in the period 1895-1924 he wrote many textbooks and lecture né%ageady in his master’s dissertation Koialovi¢f638], p 7) wrote: “We are deeply

on calculus, geometry, differential equations, and probability, and in the period 1908envinced that only research in integrating of differential equations may be fruitful,
1916 he published about 70 reviews of various mathematical books. He wrote sevéhnat is always based upon practical applicatioesypon specific examples. Nothing is
important articles on different mathematical topics for the new Russian edition of teasier than writing general discussions of the theory of integrating differential equa-
Brockhaus—Efron Allgemeine Enzyklogia. His biography(not touching some ob- tions, but such discussions, for the most part, remain fruitless if they do not follow
scure events of his last years of life in Perm and Leningisgresented ifi637]. from researching specific types of theories.”
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by a traditional way, named by Rie$&42] the “method of Koialovich was a professor at the Technological Institute
reduction,” assuming that coefficients with subscripts highém St Petersburg, and he was also interested in a practical
than a chosen value may be neglected. Then for given nugpplications of his doctoral dissertation. Academician Krylov
bersN, K the unknownsX,, (1=n=<N) and Yy, (1=K recalled(see[11], p 159 that at the beginning of the 20th
S#)h'n th% f|rfw|te Zystem(?fi) hk?",elaz)me Spelc'f";: valueSceniyry he was the Director of the Model Basin of the Im-
which can be foun any techni r example, Fourier ; ; - -
[641] even obtained )élosgd anal;/qtical exprepssions for hFl)s(:a rial Russian Navy in St Petersburg, and how he organized

specific system It is obvious that the values of these und! experimental proof of Koialovicht229] theoretical re-

knowns vary as we increase their number and the numberSyftS: The tank was constructed, in which plates up to 0.25
the equations which ought to determine them. It is desired #gh in thickness, and nearly 3 feet by 6 feet could be inves-
find the limits towards which the values of the unknowntigated. The clamping was effected by tightening the edges
converge as the number of equatidtis K increases indefi- of the plate between very rigid angle irons and steel bars 1
nitely. These limits are called the solution of the infinite sysnch in thickness and nearly 10 inch wide. Several measure-
tem (79). The main tasks are to establish whether the systefnis were carried out by Bubnov, who at that time was
has a(uniqué solution, to indicate the way of findin@y —vi5\s assistant. Instead of the deflection, the change of
means of a finite number of operatigrike approximate val- . 7.~

inclination under pressure was measured by means of

ues for the unknownX,, Y\, and to estimate the error ofP dorf | 4 mi thod. Th . tal
these approximations. oggendorf’s scale and mirror method. The experimenta

Koialovich [229] considered a particular example of hidata for the deflection of a plate corresponded quite accu-

general formulas, namely, the uniformly loaded clampd@tely to the calculated results. .
rectangular plate with sides rata'b=2 (this ratio was in Koialovich’s solution has been referred to in subsequent

the neighborhood of that most commonly occurring in shigt'ticles by Lauricelld295], Galerkin[573,590, and Leiben-

building practicé. He chose the deflection in the form 20N [329], in the dissertation by Kolosoj206], and in the
textbooks by Timoshenkd44,92 and Timoshenko and

Woinowsky-Krieger{47]. But the very first reference to that
Po 5 50 : ; ;
= - ; solution was made by the Naval Architect of the Imperial
=5 (PT7Y)THUXY) (80) solut de by the Naval Architect of the | |
Russian Navy Bubnov in the talkd] read at the Spring

and for the functiorlJ he obtained the biharmonic problemMeeting of the 43rd Session of the Institution of Naval Ar-
(1), (2) with a zero value of normal derivative at the contoufhitects in London. In this extensive paper, which contained

The functionU was represented as a sum of two finite Foif lot of new scientific and engineering ideas, Bubnov noted
rier series with the trigonometric functions qusx/a and that the convergence of the Fourier series left much to be

coskarylb with n,k=1,2, . . . Koialovich found the numeri- desired for practical calculations. Regarding the maximum

cal values of the Fourier coefficients, restricting himself tj2lué of stresses in the finite plate, he postulated that the
only five terms in each of the two series. The values of theB}¥XImum value of stresses in the finite clamped plate with
coefficients appeared to decrease rather rapidly, but the ¢S 2 and 2 is reached at the boundary in the middle of
of that decrease was not investigated. The deflection of #h¢ longer side B. The absolute value is sandwiched be-
plate at some typical points was also calculaftbe error in tween the values of a infinite clamped panel with the side 2

satisfying the boundary conditions was about 4% of tHfd'd that of an elliptical clamped plate with the minor and
maximum value at the cenferand a figure with a form of Major axes 2 and D, respectively. These two problems

the bent plate was presented. It was more than enough for ##@W simple analytical solutions, providing a rather accurate
mathematical dissertation! estimate for the stresses in the finite rectangular plate. In the
However, Timoshenko who was doing his one year confiteresting discussion that followed Bubnov’s talk, Bryan

pulsory military service at that time in a St Petersburg sapp&eel4], P 48 doubted this postulate. He pointed out that the
regiment and attended the defense, later remark@zd] slowness in the convergence of the Fourier series suggests
(p 72: that there may be a very great tendency to break at the cor-

i ) ners of the rectangle. In the written answer Bubnov did not
No one in the debate stressed the technological  ¢qnest this opinion, but he did not fully agree with it.

w

importance of the work. The main item which Later the same year Bubnov published the extended Rus-
was discussed by the official opponefitse then sian version of his talk in a series of papers, and in May 1904
famous Russian mathematicians Korkin and e whole study[643] was defended in an adjunct disserta-
Markov) debated mainly the conditions for con- tion at the shipbuilding department of the St Petersburg Poly-
vergence of the series in terms of which the so-  ochnic Institute. In one of these papers, Bubii6®4] re-
lution was presented. peated briefly Koialovich’s solution and presented numerical

Timoshenko permitted a small inexactness: besides Korkialues for the Fourier coefficients. Bubnov mentioned that a
and Markov (an inventor of the “Markov chains/, who considerable amount of numerical work still needed to be
were Koialovich’s supervisors, the official rep¢&32] was performed: in order to get an accuracy of 1% in the deflec-
signed by two other members of the scientific Council. Thigon in the center of the plate it appeared necessary to go to
report really contained a detailed survey of the mathematiad many as to 15 terms in the Fourier series, doing all the
part of the dissertation, but it did not provide any discussiaralculations with five digit accuracy. He solved the finite

of the important results for the physical problem. system of 99 equations obtained by the method of reduc-
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tion from the infinite system for the specific problem 0f18,30,44,47,66,76,92,533—535,573,6476ft3 obtain the
bending of a clamped rectangular plate with sides rat numerical data for deflections, bending moments, and shear
=2. Based upon numerical data Bubnov guessed withd@tces for a wide range of clamped rectangular plates under

any proof thatall coefficientsA,, and By (in his notation in  uUniform and concentrated loadings. _
the Fourier series behave #=(—1)"C n 2 and 4B, Being unaware of some previous studies based upon
=(—1)"1 C k™3 for n,k>9 with the same constant of Hencky’s solution Inglig11] used the same representation

value C=0.2886. How Bubnov arrived at this remarkabldor the deflection. This analyst used only two terms in each
result—we can only guess now. But, the fact remains: aﬂf the Fourier series and'Qemonstrated rgasonable sgtisfac-
ready in 1902 he knew the right behavior of the coefficientdon Of the boundary conditions for deflection, but details of
the asymptotic law which was strictly proven by KoialovicHls solution had_ been omltte_d._ As famous Russian scientist
[645] more than a quarter century later! Unfortunately, nefNd naval architect Academician Krylov, who was at that

ther Bubnov in 1902 nor Koialovich in 1930 took full advaniime in England for talks about the former Russian Navy

tage of the knowledge of the asymptotic law, and the prindt€€t and a.ttended the meeting, has nafad], p 160 in the
pal question of the convergence of the Fourier series has rffEcussion:

however, been investigated. In treating mathematical subjects two of the
In the second volume of his textbo¢&94], Bubnov ad- greatest masters give us quite different models.
dressed the biharmonic proble@), (4) in much more detail. Thus Euler enters into every detail of his reason-

This analysis was presented in the extensive lecture course in ing and calculations, illustrating them profusely
the Naval Academy in St Petersburg, and that volume was by examples, and explains exactly how his actual

written already in 1912 and had been printed out in Aprii  work was performed; on the other hand, the
1914 in only 400 copiegAlmost 40 years later, this part of “princeps mathematicorum” Gauss presented re-
the lectures has been reprinted[8%6].) Not stated explic- sults of his investigations in the most concise and
itly, Bubnov used the asymptotic law for the Fourier coeffi- elegant manner: “After you have erected a build-

cients in order to calculate the important mechanical charac- ing you do not leave the scaffolding,” he used to
teristics such as bending moments and shear forces along the say. Professor Inglis’ paper presented in these
edge of the clamped plate. Without using that law the Fourier ~ thirteen pages is developed in an ‘“ultra-
series appeared to be divergent—that circumstance had been Gaussian” manner. Owing to its importance, this
especially emphasized. Unfortunately, after Bubnov's prema-  paper must be studied from the beginning to the

ture death during the civil war in Russia, sgg07], these end by every student of naval architecture, pencil
facts went practically unnoticed by further investigators, in ~ in hand, without omitting a single letter or figure.
spite of references made j#4,47. But before the student succeeds in mastering it,

Lauricella[295] also considered the biharmonic problem  he will have used a great many pencils.

in a rectangle. He used his general approach of the decommyway, Inglis’s solution really looked like a good engineer-
position of the problem by means of two auxiliary harmonighg solution and deserved the admiration which was shown
functionsu andv, and constructed the representations fan the discussion.
these functions by superposition of two ordinary Fourier se- Being already back in the USSR, Academician Krylov
ries on the same system of complete trigonometric functiosgbmitted in October 1928 to the Academy of Sciences an
as Koialovich[229] and Bubnov[644]. Many years later extensive study performed by Koialovi¢b45]. In that re-
Schraler[310] used the same approach in a large memoir iarkable memoir Koialovich turned to the general math-
which he considered in detail all four types of symmetry admatical theory of infinite systems of linear algebraic equa-
the biharmonic functioror eight combinations of symmetrytions, keeping in mind, however, its possible application to
of functionsu andv). This excellent paper, however, did nothe problem of bending of the clamped rectangular plate. For
receive proper attention at that time. One reason could i infinite system(79) Koialovich developed a powerful
that this study had been done during WWII and after the watethod of the so-calletimitants the special quantities that
was published in German. Anyway, neither Lauric¢285] can be defined after solving the finite systéf8), and which
nor Schraler[310] provided any numerical data for solvingdefine completely some bounds fait other unknowns. This
the infinite systems for specific domains. method is similar to Cauchy’s method of majorant functions
The method of superposition also got a new impulda the theory of differential equations. The principal differ-
when Hencky in his dissertatidi93], submitted in October ence of the proposed method from the traditional method of
1913 to the Technische Hochschule Darmstadt, used otheduction consists in the following. The traditional method
complete systems of the trigonometric functions cos(2can provide only numerical values of the first unknowns—all
—1)mx/f2a and cos(B-1)my/2b with m,[=1,2, ... others are simply put equal to zero. Koialovich’s approach
Numerical results showed the fast rate of decrease gifes the underestimated and overestimated valued ah-
the Fourier coefficients when the finite system had be&nowns by using a successive approximation algorithm when
solved, but the rate of convergence for the Fourier seriemlving some specially constructed systems.
especially for bending moments and shear forces at theln spite of the shortand not precisg!reference in Kan-
boundary, was not discussed properly. This solution was ugedovich and Krylov[533,535 and the German abstract in
(or, sometimes, simply repeajedby many authors, one of the leading abstract journals of that time, the main
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positive results of that study seem to have been almost igteresting by themselves, represent only partial interest for
nored by Koialovich's contemporaries. The “Renaissancahe physical problem in question: already MathiglP3]
of this outstanding memoig@an introduction to it was written proved the uniqueness of the solution of the biharmonic
in the best traditions of old mathematiciangas started by a problem when the values of the function and its normal de-
short note by Grinchenko and Ulit{&74] and the book by rivative are prescribed at the contour of any finite domain.
Grinchenko[64]; see alsd 675,674 for further details. For the particular case of a square plate, by using the
Koialovich [645] studied the example of the system corKoialovich [229]-Bubnov [594,644 representation for the
responding to a clamped rectangular plate véthl, b=2, deflection, Grinchenko and Ulitkf674] found anexplicit
the example that he had already considered in his dissertati@itue of the constar® which appears not equal to zero. It is
[229]. By using a proper choice of limitants Koialovich maninteresting to note that for Hencky{§93] representation the
aged to find numericallywithout any computej!the bounds valueG=0, as it has been found by Meleshko and Gomilko
for all unknowns. All calculations were presented with intef682]; see also Meleshko and Gomilk676] for a detailed
mediate data of ten successive approximations and occumalysis of the general mathematical problem. This com-

16 printed pages. Koialovick645] (p 43 wrote: pletely justified the method of simple reduction employed by
The numerica' aspect seems at ﬁrst Very narrow, many authorS to SOlVe the |nf|n|te System and to aCCUI‘ately
dry, and low. But, developing it, | realized that it estimate the values of deflections and bending moments.
opens up an interesting area, rich in results im- ~ However, the asymptotic behavior of the terms and y,
portant not only for applications, but for theory whenn—c andk—co, respectively, are important to estab-
as well. Almost never have | regretted the time | lish the local distribution of deflection and Shearing forces
spent on repeated numerical solutions of a sys-  near the corner point; s¢683].
tem: each time, | learned something new. For 2D plane elasticity problems of equilibrium of an

His numerical data supported thempirica) Bubnov law: in elastic rectangle after Mathieu stud{90,201, the method
terms ofX.. and Y. all Fl)JFr:knowns sepem to tend to the.sam%)f superposition has been employed in several articles
n k
484,497,575,684—-697 and books [30,89,698,699 All

single constant. . . . .
. . , . . these studies provide an immense amount of numerical data
In the last section of his paper Koialovich, using the no-

tions of limitants and supposing tvaadditional properties of concering distribution of stresses at various inner cross sec-

the coefficients of matriceshese conditions are not essentiatlIons of the rectangle, but none of them to_olf Into ?‘CC"“F“ the
as it had later appeargchroved that asymptotic law(81) for the unknown coefficients in the in-

finite systems. As it has been first shown by Grinchelrid
limX,=1limY,=G (81) the simple reduction method of solving of the infinite sys-
n—e ke tems cannot provide an accurate determination of stresses

with some constant valué. At the very end of his memoir near corner points: a finite extra val@ab/ 7 in the values

he mentioned that the lai81) could be usedas Bubnov had Of stressesr, and o at the corner point cannot be removed

supposeflas a base for a new, more powerful algorithm day any increase of the number of terms in the finite Fourier

solving infinite systems. Namely, by putting series; see also Meleshkd29] for further explanations. It it
interesting to note that for an example considered by Pickett
Xp=G+X,, Yi=G+y, (82) [690—a square loaded by a parabolically distributed normal

load at the side$x|=a, the benchmark example of studies

substituting it into(79), one obtains a new system with thedy his teacher Timoshenka3,574, the value ofG can be
unknownsx, andy,, which can effectively be solved by thefound explicitly, as it was proven by Meleshko and Gomilko
method of reductior{now, x,—0 andy,—0 asn—« and [676].
k—oo, respectively. By usage of the method of superposition the steady

Koialovich [645] also stated an important question aboustokes flows in a rectangular cavity was analyzed only in a
the possibility of finding the value o6 a priori, without few studies. Takematsir00] on one(!) journal page pre-
solving the infinite system, but he himself did not providsented the general scheme of the method. Meleshko
any further development. Probably, his age was 63 al- [617,70] obtained the solutions for arbitratincluding dis-
ready, and he died in December 1941 during the siege aintinuous distribution of velocities at the cavity’s bound-
Leningrad and subsequent long discussions between Koiary. The algebraic work involved is rather cumbersome, but
lovich[677-679 and Kuz'min[680,681 prevented him, un- the final formulas are very simple for numerical evaluation.
fortunately, from the analysis of that interesting question. Looking back upon the method of superposition one can
(The discussion, “the seven years war” according to thetate that this approach enables one to deal, after a proper
Academician Krylo251], concerned the general conditiongreatment, with all important physical problems connected
which must be imposed on the matrix and free terms of avith the biharmonic equation in the rectangular domain. The
arbitrary infinite system in order to have a unique solutioleveloped numerical algorithm seems to overcome the diffi-
and how this solution can be obtained. These difficulties atalty [4] (p 21 connected with the use of “the Fourier’s
connected, of course, with double infinitié@he number of series, whose convergency leaves much to be desired for
terms and the number of equatipnshich are involved in practical calculation” and to obtain very accurate data by
the system(79). The arguments of these papers, being vemeans of only a few terms in the Fourier series. The pro-
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posed way of consideration of the infinite systems suggestedFilon [703] was the first author who made an attempt to
by physical problems provides a direct and powerful algalefine these coefficients. Firstly, he considered the general
rithm for solving rather complicated 2D biharmonic probproblem of expanding a given functidi(x) in a series of

lems for the rectangle. functionsé(«, ,X), wherek, is the(real or complexroot of
i _ i equationy(«)=0. Based upon Cauchy’s theory of residues,
5.6.8 Method of eigenfunctions expansion Filon established a general theorem for expanding a polyno-

An elegant analytical approach for considering the bihaial into a series of functions of the forg(«, x). Next, he
monic problem in a rectangle utilizes a natural generalizatieiidressed the possibility of applying the method to a series
of the expansion in eigenfunctions for the Laplacian boungf functions ¢(«,,x) wherex, andx do not appear exclu-
ary value problem. Apparently, this method was initiated, isively as a product, x. Referring to Dougall[702] and

the fundamental memoir by Dougdlf02] who considered considering the “flexural” solution of the biharmonic equa-
the general problem of the equilibrium of thick elastic infition in a semi-infinite strigx|=<b,y=0, Filon arrived at a
nite layer|z|<h under given forces. Dealing mainly withsystem of equations similar @5). He managed to express
problems in cylindrical coordinates, he briefly mentioneexplicitly (and uniquely as he believedthe coefficientsC,

that for plane strain in the layer the flexuantisymmetric by means of onlyone (first) equation in(85), providedP(x)

with respect ofz) system of stressefr “modes” as he was a polynomial. He gave an example of such an expan-
called them sion,

o= Ci€e"*[(3—cosh h)sinhkz+ 2z coshkz]

3 3 S b cosherJr b sinhk, X
o,=Cie"*[(1+ coshh) sinhkz— 2xz coshkz] X=X T K’ <X Sinhx,b K )sinhK,b
(86)

T,= Ce"*[(1—cosh 2h) coshkz+2kzsinhkz]  (83)

with an arbitrary constant keeps the sidez=+h free of where the summation extends to Re-0. (The equivalence

tractions, provided that is a root of the equation of the eigenfunctions in the expansiof@&5) and(86) can be
readily established by means of Eg§4).)
sinh 2xh—2xh=0 (84) This paradoxical mathematical result of the necessity of

only oneboundary condition for normal loading leaving the
Dougall established that besides an obvious triple reot shear end stresses arbitrary, probably appeared so unusual to
=0, Eq.(84) has complex roots falling into groups of fourFilon (and, probably, to many othgrthat almost no further
symmetrically placed with respect to the axes of the complgapers were published on the subject for the next 33 years!
plane. He also found that the asymptotic behavior of the folihe single exception was the paper by Andrf@d@4] who
members of each group is given liyh=*+1/2In(47+m) used this approach to solve the problem of shear in an elastic

*i(rm+ 1/4) for larger. rectangle with sides=*a free of loading and prescribed
Next, if P(z) andZ(z) are continuous functions odd andtangential displacements at the siges+b. Corresponding
even onz, respectively, with conditions to the stress field83), displacements had to satisfy the pre-
A A scribed boundary conditions. It was found feasible to work
f P(2)zdz=0, f Z(2) dz=0 with more than three roots of E{84). .(Andrade had also
~h ~h performed the accurate study of locations of these roots and

_ defined their accurate valugsSix real constants were deter-
represent the normal and tangential loads at thexend of  mined by the collacation approach, that is by setting the dis-
the semiinfinite strix=0,|z|<h, then complex coeffiicents placements at the points=0, x=a/2, andx=a equal to

C, should exist, such that simultaneously their prescribed values. The laborious arithmetic was done
on a “Brunsviga” machine, the personal computer of that
i >, C,[(3—cosh ,h) sinhk,z+ 2k, z coshk,z]= P(2) time. The results for shear stress distributions in several cross
r

sections were found to be in reasonable correspondence with
_ experimental measurements. Andrqde4| also noticed that
Z Cr [(1—coshh) coshk,z+2«,zsinhk,z]=Z(2) Filon [703] used only one equation, but he did not pursue
(85) this avenue. _
The reference to the Filon's pap€r03] was made by

Dougall[702] did not suggest any algorithm for determinind-ur'e [705] who introduced the name “homogeneous” solu-
these coefficients from two series expansioii85). tions for the eigenfunction&83), and Prokopoy706], who
Probably, he did not even notice the unusual situatistiggested to satisfy the prescribed shear stresses only at one
of the necessity of defining the coefficien® from two middle point, referred to the application of the Saint-Venant
functional equations in contrast to an ordinary Fourier serigsinciple.

expansion. The next step in developing of the eigenfunctions ap-
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proach was taken by Papkovithin the list of problems to (there is a misprint in the original text on p 48r, equiva-
Chapter X of his fundamental treatif®0] he suggested the lently,
following

Problem 31 Obtain the solution of the plane problem for SiN(2sb)=—2s,b (88)
a rectangular strip with two sideg=*b free of loading _ ) ) _ ) )
while the sidesx=0 andx=1 are loaded by arbitrary forceS’Papkowch established that this equation, besides the obvious

by means of the representation one,so=0, has only complex roots

ZSkb: T a* IBk

¢=Z Xi(X)Yi(y)

with 7<a,<1.57, 37<a,<3.57, 5m<a,<5.57, etq

where each functiolY;(y) satisfies equations The representationi87) along with inequalities fora,
U\ 2 shows that self-equilibrated loads applied at short siles
Y}"'(y)+ HI Y/ (y)=0 =0 andx=I| decrease at the distance db 20 a factor of

approximately 1/25. This provides some quantitative esti-

(with u; are some constantsand the boundary conditions Mates for the correctness of the Saint-Venant principle even
without finding valuesA,. The way of the construction of

Yi(£b)=Y/{(£b)=0 the solution of the biharmonic equation in a rectangular do-

In this formulation the functionX; (x) are to be determined, Main was discussed in much more detail in the textbook by
and not be chosen proportional to exgy as in Dougall's Papkovich(707]. In Sections 32—35, he provided similar dis-
[702] representation. The functiong(x) correspond to the CUSSion of a problem important for shipbuilding of k_)end!ng
eigenfunctions of the stability problem of a clamped elastfd rectangular plates firmly clamped at the opposite sides
beam. y|=b under any aritrary loading at the edges 0, 1. These

In an extensive hint to that problem occupying almost twafudies first remained hardly known except in the USSR, and
pages printed in small letters, after some interesting transf8fly in @ naval architects’ communify09]. These estimates
mations based upon application of the Bubnov’s method a§"e later confirmed ifi710]; see further extensive discus-
solving the infinite system of differential equations for th§!ons in[119-121. See also Horgafi711,713 for applica-
functionsX;(x), Papkovich finally arrived at the representallon of such results to the classic problem of estimating the

tion for the symmetridextensional stress distribution with €ntrance length for Stokes flows in a parallel plate channel.
even functions with respect to theaxis loading This eigenfunctions expansion approach got much more
popularity after independently publishing in 1940 by Papk-

ovich [713] and Fadld714]. (The first paper had been also

published in German, according to the Soviet tradition of
that time, but later, after Papkovich’s untimely death in 1946,
was not even mentioned in the detailed list of his publica-

o= X AEXFY) (87)
k=2,4

iy tions in the obituary. Politics, sometimes, has an unusual

cosﬁ sb|2 [i\2]°2 influence on scienceThe second paper was based upon the
F(y)= — (_) _(_) } dissertatior{ 715], in which Fadle attributed this approach to
i=24, ... cosI—Tr m 2 Tolke [479]; note also the misprint in the year on the first

2 page of{ 714]. Papkovich[713] mentioned the possibility of

applying the Gram-Schmidt orthonormalization process for
constructing an orthonormal set of functions from a linearly
-2 1 independent set in order to define the complex unknown co-

Skb Skb 2 i
i=2§ A7) Va2 2 efficients in series expansidthis paragraph for some reason
was absent in the German version of the papeut he did

3lpetr Fedorovich Papkoviai867—1946 graduated with a gold medal from the Ship- not prOVIde any numerics. On the contrary, Fa[dlﬂz4,715

building Department of St Petersburg Politechnic Institute, where he attended the Ip@€rformed extensive calculations for several practical distri-
tures on the theory of vibration by Krylov and on structural mechanics of a ship ; : i

Bubnov. In 1912-1916 he served at the design bureau of the Admiralty shipbuild%uuons of normal and tangentlal I_o_ads at the Slqe$ of a
factory. In 1919 he became a professor at Petrogiradingrad Politechnic Institute  Square plate. The boundary conditions were satisfied by
succeeding Bubnov and Timoshenko, and in 1925 he was appointed as a head o ; ; H
Department of the Structural Mechanics of a ship. During the period of more thgﬁ@ans of the least s_quares me_thOd’ that IS, by conS|der|ng
twenty years Papkovich held positions as a lecturer in mechanics, theory of vibratibAstead of two functional equation®5) the procedure of
structural mechanics of a ship at Leningrad Shipbuilding Insitute, Leningrad Univetinimi i i ioti

sity, and the Naval Academy. In 1933 Papkovich was elected a Corresponding Mem elrmmlzatlon of a jOInt sum gon3|st|ng of the sqqares of the
of the Academy of Sciences of the USSR. In 1940 he was promoted to the rank@ifferences between prescribed loads and finite sums of
Rear-Admiral of the Corps of Naval Architects. He was twice decorated with the higgi enfunctions

distinction of the USSR, the Order of Lenin. He wrote a textbf#] which contains 9 i ' i i

a most interesting exposition of solutions of most problems in the theory of elasticity N his next paper on the subject, Papkovi@i6] studied

by means of a single unified approach. Another textbook by Papk¢vieA in two i :

volumes (almost 1800 printed pagesvas awarded the Stalifor State, as it was the pr_oble_m of bendmg a reCtangmar pla_te with Clamp_ed
bashfully named in the USSR some time pBeize in 1946. This treatise is remarkable OppOsite sideg= *=b by a system of loads either symmetric
for its completeness, see Timoshen8], Section 90. Further details of Papkovich's 1 ; ihi P

life and scientific works can be found [708] and in the obituary notice published in or ant_llsymmemc _Ory’ by presc_rlbmg ?‘ny of two phy§|cal
Prikladnaya Matematika i Mekhanikd 946,10, 305—312. guantities: deflectiow, angle of inclinatioryw/dx, bending

andsy being the roots of equation

4 2
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momentM, or shear forceQ, at the endx= *a. For the
symmetric case of loading the biharmonic functianwas
represented in the form of a series

current sequence of operations on a special set of complete
orthogonal harmonic functions. By using Green’s formulas
the expansions oV?w andw were then constructed. The
method provides reliable results for the deflection at the cen-
ter, even with only a few basic functions. A similar engineer-
ing approach was independently suggested by Mdrld|.
coshy  y SN\ It may seem strange, but the ejgenfunctions expansion
Yo (y)= KoY 2Tk method has only begun to be applied to Stokes flow prob-
coshgb b sinkyb lems in a rectangular cavity recently. Papers by Sturges

The complex eigenfunctiorY,(y) identically satisfies the [749], Shanka{750], and Srinivasaii751] provide interest-
both boundary conditions at the sidg$=b, provided that ing data concerning the structure of streamline patterns in the
the eigenvalue\,=s, is the complex root of Eq(89). cavity, including the Moffatt eddies near quiet corners.

The most significant input in the eigenfunctions method
was made by Papkovidtv13,716§ who established the spe-
cial biorthogonality property

b
[
-b
(This important condition has been independently redisc
ered by SmitH717].) It readily permitstwo boundary con-

coshi  x

W= kz‘l AYi(Y) coshh @’

(89)

6 CONCLUSION

PY)YI(Y) = N2A2Y (V) Y,(y)ldy=0, k#n (90) History, to paraphrase Leibniz, is a usefgl Fhing, for its study
not only gives to men of the past their just due but also
oRrovides those of the present with a guide for the orientation
of their own endeavorgRecall Abel's statement, quoted in
the remarkable talk by TruesddlV53] p 39, that he had

ditions, eitherw, M, or dw/dx, Q,, to explicitly determine
the coefficientsa, . In particular, by chosingv=0, one ar-

reached the front rank quickly “by studying the masters, not

rives at the nontrivial expansion of zero in a series of noff2€ir PUpils.”)

orthogonal eigenfunction¥,(y). That expansion isionu-
nigue depending on the choice of the valld,. This

At the end of the 19th century, Karl Pearsdd857—-1936
wrote in the preface to the monumental treatigd] (pp

nonunigueness explains Filon’s paradox; a detailed accothit):

is given by Gomilko and Meleshkpr18]. For the classical
biharmonic problem with prescribed valuesvofand ow/ dx,
Papkovich[716] established the integral equation for the
auxiliary functiong®w/9x? at x=a, and suggested an algo-
rithm for succesive approximations to its solution. In the
textbook Papkovich707] considered some particular engi-
neering problems of ship plating. From the engineering point
of view the problem is only partially solved when a math-
ematical expression for the deflection has been determined.
The calculation of the moments and shear forces at different
points is likely to be just as difficult and tedious.

In spite of a simple idea at the heart of the method of
eigenfunctions expansion, it can hardly be recommended for
engineering applications, requiring too many additional cal-
culations; see, for example, the numerical data of Fadle
[714,719, Koepcke [719], Gurevich [720], and Gaydon
[721,727 for an elastic rectangle. Besides this, the main
guestion of the convergence of these nonorthogonal complex
series at the sidef|=a, already anticipated by Dougall
[702], is not at all trivial. It was investigated {723—-739, to
name the most significant papers.

Due to these and some other studies referred to in books
by Timoshenko and Goodig¢r6] (Section 26, Grinchenko
[64], and Lourie and Vasil'e\740] and review articles by
Dzhanelidze and Prokopoy741], Vorovich [742], and
Prokopov[743,744, the mathematical problem of develop-
ing two arbitrary functions into series of eigenfunctions of
non-self-adjoint operators is now clarified in great detail.

An original method of solving the biharmonic problem in
a rectangular region was suggested by Grinberg and Ufliand
[745] and developed ih746,747. The method is based upon
a construction in the rectangular domain by means of a re-

The use of a work of this kind is twofold. It
forms on the one hand the history of a peculiar
phase of intellectual development, worth study-
ing for the many side lights it throws on general
human progress. On the other hand it serves as a
guide to the investigator in what has been done,
and what ought to be done. In this latter respect
the individualism of modern science has not in-
frequently led to a great waste of power; the
same bit of work has been repeated in different
countries at different times, owing to the absence
of such histories as Dr Todhunter set himself to
write. It is true that the variougahrbicher and
Fortschritte now reduce the possibility of this
repetition, but besides their frequent insuffi-
ciency they are at best but indices to the work of
the last few years; an enormous amount of matter
is practically stored out of sight in thEransac-
tions and Journalsof the last century and of the
first half of the present century. It would be a
great aid to science, if, at any rate, the innumer-
able mathematical journals could be to a great
extent specialised, so that we might look to any
of them for a special class of memoir. Perhaps
this is too great a collectivist reform to expect in
the near future from even the cosmopolitan spirit
of modern science. As it is, the would-be re-
searcher either wastes much time in learning the
history of his subject, or else works away regard-
less of earlier investigators. The latter course has
been singularly prevalent with even some first-
class British and French mathematicians.
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On the other hand, almost one hundred years later Albeite during severalrelatively short meetings, GertJan van

Edward Greer{1912—-1999, one of the prominent figures in Heijst, Frans Sluijter and Han Meijer from Eindhoven Uni-

the theory of elasticity in the twentieth century, said whilgersity of Technology for many informal discussions on the

receiving the Timoshenko medal of the American Society &tokes flows and useful suggestions concerning the clarity of

Mechanical Engineergited according tdournal of Applied presentation.

Mechanics 1999,66(4), p 837 This paper, probably, would never be written without ac-
On looking back over the history of science one cess to some excgllent Iibrf';\ries: the.NationaI Vernac_jskii Li-
realizes that most of us can only hope to place brary of Ukraine(Kiev, Ukraing, the Library of the Univer-
one small brick—if that—in the edifice—and sity of lllinois at Urbana-ChampaigiiUrbana, IL, USA, the

even that may get knocked out by following gen- Library of Eindhoven Qniversity of Techpolog(Eindhoven,
erations. the Netherlands the Library of the Institute of Hydrome-

chanics(Kiev, Ukraine, from which | greatly benefitted.

As it may be seen from the preceding pages, the long

fascinating history of the biharmonic problem in the periogererencES

of the last 125 years or so completely confirms both of thes
quotes. The history of the biharmonic problem that has beetl
represented in a great number of diverse works reveals [a]
great variety of mathematical methods specially develope%]
for its solution. Most of the methods can provide acceptable
results for engineering purposes, even though the rigoroudl
mathematical requirements regarding convergence cannot be
completely answered in all cagésOf course it should be [5]
kept in mind that any engineering formula giving a relatively
simple solution and connecting some physical quantities, iﬁﬂ
the consequence of some assumptions, and it is necessary to
see in it not only pure numbers. But we might definitely statem
that the fruitful interaction between mathematical and engi-
neering approaches provides the solution of the 2D bihaifs]
monic problem with both mathematical and engineering ac-
curacy. [9]
| have started this review with words of Lafieone of
the great mathematicians and engine@ench mathemati- ., ,
cians, however, considered him too practical, and French en-
gineers too theoreticaland | want to end it with words from

his last lecture course in the Sorbor7&8]: [11]

Ecartez aout jamais la division de la science en
Mathematiques pures en Matimatiques appli-
quees.

[12]

[13]
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