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Packet Scheduling Algorithms and Performance of a
Buffered Shufflenet with Deflection Routing
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Abstract—In a multihop network, packets go through a number
of hops before they are absorbed at their destinations. In routing to
its destination using minimum path, a packet at a node may have
a preferential output link (the so-called “care” packet) or may not
(the so-called “don’t care” packet). Since each node in an optical
multihop network may have limited buffer, when such buffer runs
out, contention among packets for the same output link can be
resolved by deflection. In this paper, we study packet scheduling
algorithms and their performance in a buffered regular network
with deflection routing. Using shufflenet as an example, we show
that high performance (in terms of throughput and delay) can be
achieved if “care” packets can be scheduled with higher priority
than “don’t care” packets.We then analyze the performance of a
shufflenet with this priority scheduling given the buffer size per
node. Traditionally, the deflection probability of a packet at a node
is solved from a transcendental equation by numerical methods
which quickly becomes very cumbersome when the buffer size is
greater than one packet per node. By exploiting the special topo-
logical properties of the shufflenet, we are able to simplify the anal-
ysis greatly and obtain a simple closed-form approximation of the
deflection probability. The expression allows us to extract analyt-
ically the performance trend of the shufflenet with respect to its
buffer and network sizes. We show that a shufflenet indeed per-
forms very well with only one buffer, and can achieve performance
close to the store-and-forward case using a buffer size as small as
four packets per node.

Index Terms—Asymptotic performance, deflection routing, op-
tical buffer, packet scheduling algorithm, shufflenet.

I. INTRODUCTION

OPTICAL fiber provides a tremendous amount of band-
width in excess of tens of terabits per second in its

low-loss low-dispersion window at 1.2–1.6m. In wave-
length-division-multiplexing (WDM) optical networks, such
enormous bandwidth is divided into multiple wavelength
channels whereby users may transmit and receive packets in
parallel by tuning to the appropriate wavelengths.

Since wavelength-agile transmitters and receivers are still
currently not available at low cost, each node in an optical
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network may be able to tune to only a limited number of
wavelengths. By means of wavelength conversion, a packet can
be forwarded to its destination through a series of intermediate
channels. Such a “multihop” approach hence overcomes the
current device limitations at the expense of some packet delay
and network throughput. It should be noted that because of the
enormous usable bandwidth in an optical fiber, communication
schemes utilizing only a small fraction of such bandwidth
can still achieve impressive throughput. For example, with
a network making use of only 1% of the optical bandwidth,
throughput in excess of hundreds of Gbits per seconds can be
achieved.

Optical buffers may be used in high speed networks to avoid
O/E (optics to electronics) and E/O (electronics to optics) con-
version of data, the so-called “electronic bottleneck.” Low-cost
optical buffers are generally in the form of optical delay lines
(ODL’s) [1]–[3]. Since optical buffers are expensive, a node
in an optical network generally has limited buffering. Packets
are transmitted in the network in a store-and-forward manner, if
there is enough buffer in the nodes. In the event of output con-
tention, one of the packets will be routed correctly while the rest
will be either buffered (if storage is available), or “deflected” or
mis-routed temporarily to wrong channels. A deflected packet
simply recirculates in the network and takes more hops to reach
its destination. Therefore, in deflection routing, packets do not
get lost due to a buffer overflow at the expense of some delay
and bandwidth. A low deflection probability is generally of in-
terest in such a system, as the performance of the network de-
grades with an increase in such probability. (The case with no
buffering is called “hot-potato” routing.)

In this paper, we study packet scheduling algorithms and per-
formance of a buffered regular network with deflection routing.
The network we consider is a shufflenet, though the results and
analytic methodologies can be extended to other networks of
similar type. A shufflenet is a regular WDM multihop network
proposed to interconnect multiple computers or processors to-
gether [4], [5]. A node in a shufflenet accesses the network
through a number of lightwave receivers and transmitters. A
shufflenet is characterized by two numbersand , where
is the number of wavelength channels that a node can receive or
transmit while is the number of columns in the network. A (,

) shufflenet consists of nodes arranged incolumns
of nodes each. We show in Fig. 1 the (2, 3) shufflenet (which
has 24 nodes). The nodes are interconnected as a perfect shuffle,
with the last column being cylinder; therefore, packets can con-
tinuously “re-enter” the network until they are absorbed at their
destinations. The maximum distance in hops between any two
nodes in the ( ) shufflenet is , independent of .
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Fig. 1. An example of a (p; k) shufflenet, withp = 2 andk = 3.

Fig. 2. A physical implementation of a(2; k) shufflenet (withN = k2 )
using a passive star.

We show in Fig. 2 a physical implementation of a ( ) shuf-
flenet (as opposed to the logical topology as shown in Fig. 1)
using a central star coupler, in which each of the nodes
(labeled as ) is connected to the coupler by a
fiber, and transmits and receives wavelengths labeled by’s. If
all the fibers are of the same length, the transmission and re-
ception may be synchronized in the network (i.e., a time-slotted
network). Other implementations using a bus or multiconnected
ring topology have been discussed in [4], [6], [7]. A recent shuf-
flenet experimental system has also been reported in [8].

In the ( ) shufflenet, each node can be identified by its ad-
dress (, ), where (stands for the column)
and (stands for the row). For a given
packet at node ( ), let be the number of columns between
the source ( ) and the destination ( ). We clearly have

mod if
if

(1)

where represents the lowest bound on the number of hops for
the packet to go from ( ) to ( ). A node is said to be a
“don’t care” node to a packet if the packet at the node can go
from this node to its destination with the minimum number of
hops by taking any link emanating from this node. (Therefore,

a packet at its “don’t care” node is called a “don’t care” packet
and will not suffer deflection in the node.) A property of a shuf-
flenet is that a packet at a node is “don’t care” if its destination
is more than hops away from the node when there is no de-
flection. In this case, it is not possible to route the packet in
hops; instead it takes hops. This is an important topo-
logical property of shufflenet which greatly reduces the state
space when we analyze the network, as will be shown later in
the paper. Conversely, all the nodes that are withinhops from
a packet’s destination are “care” nodes in which the packet has a
preferential output channel/link in order to be routed to its des-
tination with the minimum number of hops (the packet is hence
called a “care” packet in this case). For the ( ) shufflenet,
the distance of a packet from its current node to its destination
in the case of a deflection is increased byhops as compared
to the distance without deflection. Therefore, except for the last
hop of a packet, each deflection puts a packet from its “care”
node to one of its “don’t care” nodes (and hence turning it from
a “care” packet to a “don’t care” packet). In this paper, we will
mainly focus on the ( ) shufflenet.

In scheduling a packet in a deflection network, we have to
considerwhether it is “care” and “don’t care” in the node. We
study here a nonpriority first-in-first-out scheme in which the
packets are routed regardless of their classes, and a class-based
priority scheme in which the “care” packets are routed at a
higher priority than the “don’t care” packets. Using simula-
tion, we compare the performance of the schemes for a given
buffer size per node. No matter how large the buffer size is,
the performance of the nonpriority scheme is found to deterio-
rate to that of the hot-potato routing as the load increases, indi-
cating that the buffers fill up very quickly in this scheme. On the
other hand, though packets may not be served according to their
arrival order, the priority scheme achieves substantially better
throughput and delay than the nonpriority scheme. This result
suggests the advantages in scheduling packets according to their
classes in a deflection network.

In a shufflenet with deflection routing, it has been observed
that using just one buffer can lead to a substantial performance
improvement (as compared to the case of hot-potato routing) and
achieve performance close to the infinite buffer case. However,
there has not been a study to show explicitly how the throughput
scales with respect to the buffer size and the network size. In
this paper, we address this issue by first observing that the per-
formance of a shufflenet under uniform traffic is known once
the deflection probability of a packet in the network is obtained.
Such probability can be obtained by solving numerically an im-
plicit transcendal equation given a certain routing algorithm and
buffer size [1], [9]. Most of the previous analyzes focus on the
cases of zero buffer (hot-potato routing) and one buffer, mainly
because the trancendental equation and the number of states that
we need to keep track of become complex (and hence the numer-
ical method becomes cumbersome) as the buffer size goes be-
yondone(except for thespecialcaseofstore-and-forwardrouting
which corresponds to the infinite buffer case). This makes it dif-
ficult to analyze the trend of the maximum throughput of a shuf-
flenet (i.e., its “asymptotic” performance when the network load
increases) with respect to the buffer size. By exploiting the topo-
logical properties of shufflenet, we are able to greatly simplify
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Fig. 3. Simulation steps performed at each node in the(2; k) shufflenet.

the analysis of a shufflenet by reducing the state space of the cor-
responding Markov chain from to . Based on
this, we obtain an approximate formula for the deflection proba-
bility as a function of the buffer and network sizes for the class-
based scheduling algorithm. We show that the deflection prob-
ability decreases rapidly with the buffer sizein a node and is
asymptoticallygivenby .Ourapproximationagrees
very well with simulation results. Using the expression, we ob-
tain the asymptotic throughput of the shufflenet and show that
usingonlyonebuffer inashufflenetnodecan indeedachievehigh
throughput, and the store-and-forward throughput is more or less
achieved with buffer size as low as four. Such relative gain in per-
formance for the one buffer case, however, decreases as the net-
work size increases.

The paper is organized as follows. We first briefly review pre-
vious work in Section II. In Section III, we present the priority
and nonpriority scheduling algorithms and their performance
based on simulation. In Section IV we present the performance
analysis of the shufflenet: We first discuss shufflenet analysis
given the deflection probability, and then derive an approximate
expression of the probability which allows us to evaluate the
throughput of the buffered shufflenet given its buffer and net-
work sizes. We conclude in Section V.

II. PREVIOUS WORK

We briefly review previous work as follows. Analyzes of
shufflenet have been recently reported by several authors
[9]–[14]. We greatly reduce the state space by exploiting its
special topological property. We also quantify for the first time
analytically the effect of buffer size in shufflenet performance.
In [14], split output queues have been considered. We differ
from it in using shared queuing and class-based scheduling. The
priority scheme we consider also achieves higher throughput.
Most of the previous analyzes focus on hot-potato routing.
While the one-buffer case is treated in [9], we consider the
multiple buffer case here, which necessitates the consideration
of “care” and “don’t care” packet classes.

Some contention resolution schemes based on packet age or
its distance from its destination have been reported in [15], [16].
It has been shown that if priority is given to an old packet or
a packet with a shorter distance from its destination, slightly
better throughput can be achieved. Architectural changes in the
shufflenet have also been proposed in order to decrease the de-
flection probability: In [17], an alternate path is provided (via

another channel) for the deflected packets so that the increase
in path length would not be high, while a recirculating shuf-
flenet with multiple cylinders is studied in [18] to decrease the
deflection probability.

Another class of shufflenet called the “generalized shuf-
flenet” has been proposed and studied in [19], [20] so that
the number of nodes is not restricted to . Our work
on the “conventional” shufflenet would be useful in deriving
the performance of this extended class of shufflenet. A bidi-
rectional shufflenet, in which the channels are bidirectional
for flow control and throughput improvement, has also been
proposed (see [21], [22], and references therein). We will not
address the performance of this network here. Another regular
multiconnected network known as a Manhattan street network
has been proposed in [23], [24]. An analysis of deflection
routing in such a mesh network has been reported in [25].

Optimization of the shufflenet has been discussed in various
aspects: In [26], [27], both static and dynamic nodal placements
in a shufflenet with nonuniform traffic has been discussed. Im-
plementation of a shufflenet for reconfigurability and scalability
has been studied in [28], [29], while data multicast in a shuf-
flenet has been treated in [30].

III. SCHEDULING ALGORITHMS

A. Packet Scheduling Algorithms

We consider a ( ) shufflenet in which the time is slotted,
with the packet transmission time being one time slot. The fibers
are of equal length and the propagation delay of a packet in the
fiber equals to a time slot. We show in Fig. 3 the procedure a
packet undergoes in a node in each slot (or clock cycle), which
is given as follows. The packets from the incoming links are
first checked for their destination addresses. Packets that are
destined to the current node are absorbed (i.e., delivery of the
packets to their destination node). The absorption can take place
on both links within a single time slot. We consider uniform load
in which each node in the network generates a packet with prob-
ability in each time slot independent of all the other nodes in
the network. A newly generated packet is injected into the net-
work only if at least one of the links is freeafter the absorption;
otherwise it is discarded and cleared. The probabilityis called
the offered load of the network. The destination for a newly gen-
erated packet is uniformly distributed among all the other
nodes in the network. The injected packet along with the other
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Fig. 4. Optical storage using delay lines with buffer size equal to 2.

packet, if any, are then queued or routed according to a sched-
uling algorithm. Packets are routed to an output channel using
the shortest path algorithm.

In the event of output contention, one of the packets is put
into a buffer (if available). We show in Fig. 4 a nonblocking
optical storage architecture with buffer size . An optical
delay line (ODL) delays the packet by one time slot. Note that
packets can be randomly accessed in such node, and a packet
will stay in the node at most time slots. We will assume this
storage architecture in this paper.

As mentioned before, there are two types of packets in a node,
“don’t care” packets and “care” packets. Routing decisions are
done at the beginning of a time slot and packets are routed within
the same time slot. We consider the following scheduling algo-
rithm to decide which packets should be routed in each slot.

• First-in–first-out (FIFO):This is a nonpriority scheme in
which the packets are routed strictly in the first-in-first-out
manner. At the beginning of each slot, the oldest packet in
the buffer (if any) would be scheduled first and hence it
would not suffer deflection. If it is a “don’t care” packet,
the next oldest packet, if any, would also be routed without
deflection. However, if it is a “care” packet, and the next
oldest packet is also a “care” packet but with a different
preferential output link, both packets will be routed in
the same slot. If only one packet is in the buffer and two
packets come in at the beginning of a slot, one of the in-
coming packets will be chosen at random for routing. In-
coming packets not routed in the current slot are put into
the buffer in random order. Clearly, a deflection occurs
when there are two incoming packets (at and ), the
buffers are full and the two packets considered for routing
contend for the same output link.

• Class-based scheduling: This is a priority scheme in which
the “care” packet(s) are routed first, followed by the “don’t
care” packet(s). This scheme is expected to improve the
performance as it reduces the number of “care” packets
in a node by routing without deflection as many “care”
packets as possible in a time slot. A “don’t care” packet
is transmitted only when it has stayed in the buffer for

time slots, or when there are no “care” packets in the
node, or when all the “care” packets in the node contend
for the same output link. A deflection occurs only when
two packets come in, the buffers are full, all the packets
in the node (including the two incoming ones) are “care”
packets, and they contend for the same output link.

B. Simulation Results

We have simulated the aforementioned scheduling policies
for the ( ) shufflenet under uniform load (i.e., all the nodes

in the network have the same traffic characteristics). The per-
formance measures of interest are the following.

• Normalized throughput (i.e., throughput per node)—It
is defined as the average number of packets absorbed per
node per time slot ( is hence also the expected number
of new packets generated per time slot). Note thatis
strictly less than the offered load, as a newly generated
packet is not always injected into the network due to two
unabsorbed by-passing packets at a node [note that

is the fraction of newly generated packets that are
discarded or cleared].

• The hop distribution and the average number of hops
—We define the number of hops as the number

of nodes a packet visits (including the ending or des-
tination node) before it is absorbed in the destination.
The hop distribution and the average number of hops are
indicators of the delay performance of the network. In
deflection routing, the delay increases with the deflection
probability.

We show in Fig. 5 the throughput of the (2, 4) shufflenet
with FIFO versus the offered load, given buffer size (

, and 8). When , the throughput first increases
and then decreases. There exists an offered load such that the
throughput of the network is maximized. We note that with high
, no matter how large the buffer size may be, the throughput

reduces to the hot-potato case. This is because of the indis-
criminating nature in the FIFO, which fills up the buffers very
quickly. We also observe instability in the case of infinite buffer
size under heavy load, as the number of stored packets increases
without bound.

We show in Fig. 6 the normalized throughputfor the (2, 4)
shufflenet versus the offered loadfor the class-based sched-
uling, given . Clearly, increases with . With , the
throughput is very close to the store-and-forward case, sug-
gesting that deflections have been mostly eliminated with this
buffer size. Therefore, in a shufflenet with deflection routing,
the amount of buffering does not need to be large in order to
achieve a high performance. The throughput is substantially im-
proved with merely one buffer, as has been observed by other
investigators as well [9], [14].

We show in Fig. 7 the expected number of hops versus
for the hot-potato, FIFO (1-buffer case) and class-based

scheduling (1-buffer case). As increases, increases
and the hop distribution spreads due to deflection (the hop
distribution given will be discussed in Section IV). For
FIFO, increases quickly toward the hot-potato case as
increases, while for the class-based scheduling, remains
at a low level. Our results suggest that packet scheduling based
on packet classes leads to a good performance.
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Fig. 5. � versusg for the FIFO scheduling policy in the (2, 4) network givenB.

Fig. 6. � versusg for the class-based scheduling policy givenB in the (2, 4) shufflenet.

IV. PERFORMANCE OF ABUFFEREDSHUFFLENET

A. Shufflenet Analysis

In this section, we present the analysis of a shufflenet under
the uniform load. One important parameter in the analysis is the
deflection probability of a packet in its “care” node, , which
critically determines how well the shufflenet performs. In fact,
there is a unique relationship between and the shufflenet
performance in terms of throughput and the number of hops.

We first observe that the shufflenet is a symmetric network.
When the load is uniform, all the nodes are equivalent; thus we
can focus on one node and, by analyzing its performance, we
can obtain the global performance of the network. Using this
“one node model,” we further make the following independence
assumptions:

• a node may have a packet on an incoming link independent
of whether there is another packet on the other link;

• a packet is equally likely to take any one of the two output
links, independent of other packets in the node;
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Fig. 7. E[H] versusg in the (2, 4) shufflenet.

Fig. 8. State transition diagram for the (2; 4) shufflenet.

• on its way to its destination, a “care” packet in a node is
deflected with probability , and routed correctly to its
output channel with probability , independent
of the distance from its destination node (so long as it is
less than or equal to).

In the following, we first derive the hop distribution and it-
saverage, and then the probability of don’t care,, defined as
the probability that a packet visits one of its “don’t care” nodes
in a given hop. Note that except for its last hop, a packet in the
shufflenet is always deflected to its “don’t care” node. Let
be the random variable which represents the number of “don’t
care” nodes that a packet visits on its way to the destination, and
let be the number of hops that the packet takes. Then we have

(2)

We now present the analytical relationships among, ,
the hop distribution and the expected number of hops, .
Recall that in any ( ) shufflenet, the “care” nodes for a packet
are the nodes within diameterhops from its destination. All
the other nodes are “don’t care” nodes where the packet will
not suffer deflection. Using this property, we need to deal with a
Markov chain with only states, instead of states as usually
used in studying mesh networks.

Let us select a packet arbitrarily and observe the trajectory of
the “tagged” packet. Let our state space
be a collection of possible distances between the current posi-
tion of the tagged packet and its destination, where the distance
is defined as the minimum number of hops that the packet must
make to travel to its destination in the absence of deflection.
Let [number of hops when the tagged packet is at dis-
tance from its destination probability of deflection ],

. We model the network as an absorbing Markov chain
with state space , and state 0 is the absorbing state. [We show
in Fig. 8 the state transition diagram for the ( ) shufflenet.]
As each deflection increases the packet’s hops by, we have

, for . When
the packet is at a distance greater thanhops from its destina-
tion, it is at its “don’t care” node and therefore will not suffer
a deflection (i.e., ). Hence, , for

. Since state 0 is the destination of the tagged
packet, we have . Therefore

(3)
Note that the above equation does not depend on the parameter

of the shufflenet.
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Note that for , there are nodes at hops away
from a given node, and for , there are ( )
nodes at hops away. The expected number of hops, ,
for any packet in the network is therefore given by

(4)

To find the probability distribution of the number of hops, we
form a transition matrix, , where the entry is

the one step transition probability given by [the tagged
packet at distancefrom its destination hops to distancein the
next time slot], . Then we have

absorbing state

for

for
for

elsewhere (5)

Clearly ’s satisfy .
Let and be column vectors. Theth element of is

the initial probability that a packet is generated at distanceand
the th element of is the probability that the packet visits
state in its th hop, where . Then,

where is the diagonal matrix formed
by the eigenvalues of , and is the corresponding matrix
formed by the eigenvectors of. As the destination of a packet
just generated is randomly distributed among all the other (
) users in the network, the initial probability distribution for

the distance of a packet can be written as

(6)

Note that since the underlying Markov chain has one ab-
sorbing state (i.e., state 0) and all the other ( ) states are
transient, it is known that only one eigenvalue of the transition
matrix is unity, and the magnitudes of all the other eigenvalues
are strictly less than 1. Therefore in the limit

and from the theory of Markov chain, we can show that
, where is a column vector whose entries

are all zero except the first element (which corresponds to
state 0), which is unity. Therefore the tagged packet reaches its
destination with probability one.

Let be the probability that a packet reaches its destina-
tion at the th hop. is then the proba-
bility distribution of the number of hops taken by a packet and
is given by . [Packet generated at distance

reaches its destination exactly at theth hop.] Since the state
is the absorbing state, is given by the first element of

the vector ( ). Thus, we have

for (7)

where is the transpose of the vector.
We next obtain . Let [number of “don’t care”

nodes that the tagged packet at distancevisits in its lifetime].
We obviously have , for

, and , for .
Given that , we have

.
(8)

The expected number of “don’t care” nodes that the packet hops
through can then be obtained as

(9)

The probability that the node which the tagged packet visits is
a “don’t care” node is then given by (2) with the use of (4) and
(9).

As an illustrative example, let us consider the () shuf-
flenet. From (5), the transition matrix

(10)

and from (6)

(11)

We present in Fig. 9 versus [according to (4)] in
solid line for the (2, 4) shufflenet, along with the points obtained
from simulating the shufflenet (using the scheduling algorithms
discussed in the previous section with different buffer sizes),
from which we see that the analysis and simulation agree to
each other, validating the independence assumptions made. As

increases, also increases. The deflection probability
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Fig. 9. Simulation and analytic results ofE[H] versusP for the (2; 4) shufflenet.

Fig. 10. Probability distribution for the number of hops for the (2; 4) shufflenet givenP .

is generally low (less than 0.15), and most of them are less than
0.05, which corresponds to the class-priority scheme with buffer
size 1 or greater. Note that , and

.
In Fig. 10, we show the corresponding hop distribution [i.e.,

of (7)] given . We also show in dis-
crete points the simulation results for hot-potato routing with

(corresponding to ), (cor-
responding to ) and (corresponding to

). The “ripples” of four are expected, due to the fact

that the shufflenet has columns and all packets within
hops from their destinations are “care” packets and hence

are potentially deflected. We verify the exponential tail of the
hop distributions as reported by others [12].

B. Asymptotic Throughput of a Buffered Shufflenet

In this section, we present the asymptotic throughput of a
buffered shufflenet. Recall that “asymptotic throughput” means
the maximum throuhgput when . Let be
the probability of a packet being absorbed in a given hop. The
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Fig. 11. Maximum store-and-forward throughput of a shufflenet versesN .

Fig. 12. Diagram to obtain the probability of deflection,P , in the network.

asymptotic throughput of a ( ) shufflenet, , has been given
by [9]

(12)

Note that as is a function of , so is . We see from the
above that the average number of hops, the hop distribution, and
the throughput of the network can all be analytically obtained
once is known.

Note that in the store-and-forward case. We show in
Fig. 11 the asymptotic throughputusing (12) versus network
size . The maximum throughput of the shufflenet decreases
as increases, but it does not decrease linearly (ranging from
around 0.7 for 24-nodes to around 0.1 for as many asnodes).
Note that, from (4),

; and hence
. When (say, or higher), Therefore,

for the store-and-forward case

(13)

For finite buffers, we obtain the deflection probability for a
packet in the network by following the trajectory of an arbitrary
“tagged” packet and consider its deflection as shown in Fig. 12.
Note that at a given slot, there is almost always a packet on the
other input link besides the tagged packet (because ). The

probability that the packet is “care,” and hence would contend
with the “tagged” packet in its “care” node, is given by
(obviously there would be no deflection if the packet is at its
“don’t care” node). Therefore, the deflection probability of the
“tagged” packet, , is given by

(14)

where is the probability that the “tagged” packet is de-
flected given that there is a “care” packet on the other link.
Therefore, the larger the is, the less likely a packet will be
deflected in the network. The value depends not only on ,
but also on the scheduling algorithm (for example, for
hot-potato routing and for store-and-forward routing
[9], [31]). Note that since is a function of , (14) is a
nonlinear equation in which can be solved by numerical
methods. In the following, we obtain an approximate value of

, from which we obtain .
We consider a class-based scheduling algorithm, in which the

“care” packets are routed first before the “don’t care” packets.
Using this routing algorithm, at least one “care” packet is sent
out of the buffer in each cycle. We model the transition of the
buffer as a Markov chain, with the state being the number of
“care” packets in the buffer. By observing that in any time slot,
two “care” packets may be routed and at most one “car” packet
may be added into the buffer, we therefore obtain the buffer



CHAN AND KOBAYASHI: ALGORITHMS AND PERFORMANCE OF A BUFFERED SHUFFLENET 499

Fig. 13. State transition diagram for a shufflenet with buffer sizeB using the
class-based scheduling.

TABLE I
n FOR THE CLASS-BASED SCHEDULING

ALGORITHM

state transition diagram as shown in Fig. 13. Let(
) be the steady state probability that the buffer is in state,

with . It should be noted that exact value of the
transition probability from buffer stateto state , depends on
the routing algorithm (such transition probability for
using the class-based scheduling is clearly zero).

As the number of “care” packets in the buffer increases, there
are more choices of “care” packets to be routed in a time slot;
hence, an upward state transition is less probable. Therefore, the
steady state buffer occupancy probability likely satisfies

The steady-state probability, , that the buffer is full of
“care” packets can then be expressed as

(15)

Using the class-based routing algorithm, our “tagged” is
deflected when there is another “care” packet on the other
link [occurs with probability ], the buffer is full of
“care” packets (occurs with probability ), all the current

“care” packets contend for the same output channel,
and the “tagged” packet loses with a coin flip (occurs with
probability . Therefore, a self-consistent equation for
the deflection probability of the “tagged” packet at its “care”
node, , can be expressed as

(16)

Comparing (14)–(16), we have . From sim-
ulation, we found that

(17)

is a good approximation which we will assume for the rest of
the following discussion. We show in Table I the values of
for different buffer sizes. Note that increases very rapidly
with . This is the main reason why the deflection probability
decreases very rapidly as buffer size increases.

We now obtain a first-order approximation of given
buffer size . Let be such approximation, which is
obtained by observing that is small (Fig. 9, 2, 4 shufflenet).
Using (4) and (9), we expand (2) around to obtain

(18)

where
, and

, where

TABLE II
APPROXIMATE MAXIMUM THROUGHPUT OF THE(2; k) SHUFFLENET WITH

ONE BUFFER(n = 16) FOR DIFFERENTVALUES OFk. SIMULATION VALUES

ARE SHOWN IN BRACKETS

, and
. Equations (14) and (18) yield

(19)

(20)

A necessary condition for the expansion of (18) to be accurate
is . Using (20), we therefore need .
With (corresponding to more than nodes), we need

, which is clearly satisfied when . Note that as
increases, .

Let be the normalized throughput of the ( ) shufflenet
given its buffer size by using the expression of in (19)
and substituting it into (12). We show in Table II the approxi-
mate asymptotic throughput for different values ofwith
(i.e., with ). The simulation values for and
when and are also shown in brackets, showing close
agreement with our approximation. We see that the throughput
of the shufflenet with only one buffer achieves more than 70%
of the throughput corresponding to the store-and-forward case,
as shown in the rightmost column of Table II.

We finally obtain an approximate expression for in
terms of and . Let be the average number of
hops of a packet given buffer size. Expanding around

yields , where
, and

. Recalling that , we have
. From (20), we

have (because ). Therefore

(21)

Using (13), we have

(22)

We plot in Fig. 14 the above expression of versus
for and . We see that decreases with .
Using the class-based scheduling policy, a shufflenet with only
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Fig. 14. �̂ =�̂ versusk in the(2; k) shufflenet.

one buffer can achieve performance close to store-and-forward
performance, and with four buffers it achieves throughput com-
parable with the store-and-forward case, i.e., .

V. CONCLUSION

In a multihop network, packets go through multiple hops be-
fore they are absorbed. In order to reach its destination with the
minimum number of hops, a packet at a node may have a prefer-
ential output channel to use (the so-called “care” packet) or does
not have such preference (the so-called “don’t care” packet). De-
flection routing can be used whenever packets contend for the
same output at a node which runs out of buffer. Since available
optical buffers may be limited, a good scheduling algorithm is
important in the network performance. In this paper, we have
studied packet scheduling algorithms and their performance in
a buffered regular network using deflection routing. Using shuf-
flenet as our example, we have shown that class-based sched-
uling, in which “care” packets are scheduled at a higher priority
than “don’t care” packets, can achieve substantial performance
improvement (in terms of throughput and delay) compared with
its nonpriority counterpart. Our results suggest that scheduling
packets strictly in a first-come-first-served manner regardless of
whether they are “care” or “don’t care” is not efficient.

In a shufflenet with deflection routing, there has not been
enough study to show explicitly how the performance may scale
as the buffer size per node and the network size increase. We
have analyzed how the performance scales using the class-based
scheduling. Using the symmetric property of the shufflenet, the
state space in analyzing a shufflenet can be greatly reduced and
the trajectory of an arbitrarily chosen packet in the network can
be modeled as a discrete time Markov chain. With this model,
important network performance measures (such as throughput
and delay) can be analytically derived, once the deflection prob-
ability of a packet in the network is known. The performance

analysis of shufflenet is hence reduced to finding such proba-
bility with respect to the offered load and the scheduling algo-
rithm. Previous studies generally obtained the deflection prob-
ability by solving numerically a transcendental equation which
becomes complicated as the buffer size increases beyond one.
We have obtained a simple closed-form approximation of the
deflection probability. The expression, validated with our sim-
ulations, greatly simplifies the analysis of the shufflenet and al-
lows us to extract the performance trend of a shufflenet with
respect to the buffer and network sizes. The deflection proba-
bility decreases very quickly with the buffer sizein each node
(as ), accounting for the substantial performance
improvement in the shufflenet as the buffer size increases. A
shufflenet with one buffer per node can indeed achieve impres-
sive throughput and with the buffer size as low as four packets
per node, throughput close to the store-and-forward casecan be
achieved.
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