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Tip/tilt estimation from defocused images
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In astronomical imaging, the errors in the wave-front slope are a significant cause of aberrations in the de-
tected image. We investigate how the slope can be estimated optimally using an intensity measurement of the
propagated wave front. We show that the optimal location for detection of wave-front tilt is the focal plane,
and we quantify the error in using defocused images, such as would be obtained from a curvature sensor, for
estimating the wave-front tilt. The effect of using broadband light is also quantified. © 2002 Optical Society
of America
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1. INTRODUCTION
Atmospheric turbulence is known to have a dramatic ef-
fect on the resolution of ground-based optical telescopes,
with the resolution often being decreased by an order of
magnitude or more. Adaptive optics provides a means of
recovering this lost resolution, but its performance de-
pends on the accuracy to which the aberrations are mea-
sured. If we assume Kolmogorov turbulence, the domi-
nant aberrations are the tip and tilt modes and together
these comprise 87% of the energy of the aberrations.1 As
a consequence it is critical that these measurements be
made optimally and from broadband light, since they are
often made from a relatively dim source.

Our objective is to measure the angle u that defines the
least-mean-squares (LMS) slope of the wave-front. Fig-
ure 1 shows how the tip or tilt of the wave-front causes a
displacement in the detected image. Teague has shown
quantitatively that the tip and the tilt of the wave-front
are proportional to the first-order moments of the de-
tected intensity image.2 In a previous paper, we investi-
gated the optimal estimation of the slope of a wave-front
at the focal plane of a telescope assuming that the turbu-
lence is not severe.3 This situation is of particular rel-
evance to the Shack–Hartmann sensor, where the diam-
eter of the aperture is typically chosen to be equal to the
Fried parameter, r0 . Since r0 is defined as the diameter
of the telescope that would give a long-exposure resolu-
tion equivalent to that imposed by the atmosphere, in this
case the shape of the received intensity at the focal plane
is not strongly affected by the atmospheric turbulence.

In this paper we extend this analysis to the optimal es-
timation of the tip/tilt signal when the intensity measure-
ments are taken at planes other than the focal plane.
This is motivated, in part, by the need to analyze the per-
formance limits of the curvature sensor for slope estima-
tion. Curvature sensors, unlike the Shack–Hartmann
sensor, take intensity measurements from defocused im-
ages. This entails a compromise since curvature-sensing
measurements are more sensitive close to the focal plane,
but this is at the expense of spatial resolution in the
wave-front and the accuracy of the linear model.
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Intuitively, we would expect tilt estimation to be af-
fected by two main factors. The first factor is the shape
of the received intensity, since we would expect to be able
to estimate the center of a narrow, concentrated distribu-
tion more easily than a diffuse distribution. Second, we
would like the signal being measured, the displacement of
the center, to be as large as possible. These factors indi-
cate that the accuracy of the slope estimation would be
expected to degrade both with increasing distance from
the focal plane and with increasing turbulence. We em-
ploy Cramér–Rao bounds to formalize this reasoning and
to define the fundamental performance limits.

In Section 2 we present the optical and estimation
background theory. For the general case of Fresnel dif-
fraction, we confirm that a slope in the wave front simply
causes the displacement of the image. Since the turbu-
lence changes with time, we consider the displacement of
speckle images. A speckle image is the intensity distri-
bution of an image integrated over a period of time
shorter than the atmospheric correlation time. Using
prior knowledge of the intensity distribution, we derive a
maximum-likelihood estimator for the displacement of
the speckle image from its center. We compare this to
the standard procedure for estimating the tilt by using
curvature-sensing data. In Section 3 we prove that the
focal plane is the optimal place to measure the slope and
that as the detector moves away from the focal plane, the
variance of the estimate increases. We also show that
the common practice of using broadband light does not
significantly affect the quality of the estimate. Simula-
tion results are presented in Section 4 to confirm the
theory that we present. Finally, we demonstrate in Sec-
tion 5 that most of the energy of the boundary signal in a
curvature sensor is due to higher-order aberrations, a fac-
tor that makes tip/tilt estimation difficult since it depends
on the measurements of higher-order aberrations.

2. THEORY
A. Fourier and Atmospheric Optics
The first step in defining the accuracy of the tip/tilt mea-
surement is to determine the intensity at the measure-
2002 Optical Society of America
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ment plane of interest. The relationship between the ab-
errations in the wave front at the aperture and the
expected image at the detector can be modeled by using
Fourier analysis.

Consider a wave of complex amplitude U0(j) at an ap-
erture of diameter D. For atmospheric turbulence and
the propagation distance z and wavelength l of interest
here, the complex amplitude U1(x) is given by the
Fresnel diffraction formula:4
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We consider the one-dimensional case first, both because
it is easier to analyze and because when extended to a
rectangular aperture, the two orthogonal directions can
be treated individually. We follow this with results for a
circular aperture.

1. Point-Spread Function
The intensity of the wave at the detector, called the point-
spread function (PSF), h(x), is uU1(x)u2. The PSF, when
normalized to integrate to 1, defines the probability dis-
tribution of the photons as a function of position:
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It is the shape of this distribution that imposes limits on
our ability to estimate the wave-front slope. We can re-
write U0(j ) as

U0~j ! 5 A~j) exp@if~j !#, (3)

where A(j ) is the amplitude and f(j ) the phase of the
wave front.

If the LMS angle of arrival of the wave front is u,
then the phase can be written as f(j ) 5 f̃(j )
1 (2p/l)uj , where f̃(j ) is the zero-LMS-slope phase.
Setting Ũ0(j ) 5 A(j ) exp@if̃(j )# leads to U0(j )
5 Ũ0(j ) exp@i(2p/l)uj #. The corresponding intensity at
the detector is

Fig. 1. Least-mean-squares slope of a wave front.
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By comparison with Eq. (2), this shows that the effect of
the wave-front slope is to displace the image by

Dx 5 uz, (5)

as shown in Fig. 1. The effect of overall slope of the wave
front can be removed by recentering the speckle image, as
has been noted for the geometrical optics case.5 Center-
ing also forms the basis of the Shack–Hartmann sensor,
where the slope is estimated by the displacement of the
speckle image at the focal plane.

2. Optical Transfer Function
The optical transfer function (OTF) is defined as a scaled
inverse Fourier transform of the PSF,

OTF~j ! 5 E
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and can be obtained by correlating the wave front at the
aperture:

OTF~j ! 5 E
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The OTF can be thought of as a linear filter describing the
effect of the lens and aberrations on the intensity at the
measurement plane.6 An ideal lens adds a quadratic
phase shift to the incoming wave front, and is modeled by
multiplying the wave front by exp(2ipj 2/lf ), where f is
the focal length.4 Modifying Eq. (1) by a quadratic phase
shift yields
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and it can be seen by comparing Eq. (8) and Eq. (2) that
the effective propagation distance is now fz/( f 2 z). For
a rectangular aperture we can treat the two dimensions
independently. Treating j as one dimensional gives the
defocused OTF as
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P~j! 5 H 1, j P $2D/2,D/2%
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. (10)

Here, sinc(j) is defined as sin(j)/j and u replaces uju/D for
clarity.

For a circular aperture, consider two circles of unit di-
ameter displaced from each other by distance u along the
m axis, as shown in Fig. 2. The phase difference at (m, n)
due to the quadratic phase shift of each of the two aper-
tures is
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Integrating the complex exponential over the overlapping
area gives
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This integral has a complicated analytical solution in
terms of an infinite sum,7 but by analogy with the linear
aperture an approximation to the OTF can be derived.
The triangular function in Eq. (9), 1 2 u, is replaced by
the conventional OTF of a circular aperture, and the sine
function by J1 , a first-order Bessel function of the first
kind,4 yielding

Fig. 2. Geometry to calculate the OTF of a defocused circular
aperture.
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The percentage difference between Eq. (13) and a numeri-
cal evaluation of Eq. (12) is of the order of 5% or less for
all values of u. Using the Fourier transform relationship
between the OTF and the PSF, Eq. (6), we can now define
the intensity pattern of a defocused image.

3. Kolmogorov Turbulence
Atmospheric turbulence is usually assumed to obey Kol-
mogorov statistics.8 The short-exposure OTF associated
with Kolmogorov turbulence, assuming that the telescope
is located in the near-field of the turbulence, is approxi-
mately given by6

OTFturb 5 expF23.44S uD
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where r0 is Fried’s parameter. Combining the expres-
sions of Eq. (9) and Eq. (14) gives

OTFturb,def 5 ~1 2 u !sincFp~ f 2 z !

lfz
u~1 2 u !G

3 expF23.44S uD

r0
D 5/3

~1 2 u1/3!G , (15)

and a similar expression exists for a circular aperture.
Implicit in the derivation of Eq. (15) is that the quadratic
phase shift due to the Fresnel propagation is orthogonal
to the phase of the wave front due to the turbulence.
Mathematically, we can write this condition as

E
2D/2

D/2 p~ f 2 z !

lfz
u2f~u !du 5 0. (16)

Clearly this condition is not satisfied, as the wave front
can also have a defocus aberration. However it was veri-
fied that failure to satisfy Eq. (10) leads to only a small
error in the OTF for the sufficiently defocused images
used here. This approximation was also dealt with and
numerically verified by Ellerbroek and Tyler.9 The sta-
tistical correlation between the PSF determined by simu-
lating an ensemble of phase screens and the PSF obtained
by taking the discrete Fourier transform of Eq. (15) for a
circular aperture is greater than 99%.

B. Maximum-Likelihood Estimator
A slope in the wave-front phase gives rise to a displace-
ment of the speckle image. Consequently, slope estima-
tion consists of deducing displacement of the image from
the origin. Suppose that a photon is detected at x0 . The
PSF, h(x), represents the probability of a photon landing
at point x; consequently, h(xuu) is the probability of a pho-
ton landing at x 2 uz , given that a wave-front tilt, u, is
present. The effect of u is simply to translate the distri-
bution of the xi values by uz . In order to estimate u op-
timally, the form of h(x) is needed. Ideally, we want to
use the intensity distribution corresponding to the actual
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phase screen with the LMS slope subtracted. However,
this is not known a priori. Instead, as a best estimate to
the actual intensity distribution, we use the ensemble av-
erage over many phase screens with the LMS slope sub-
tracted. This defines the expected value of h(x) and is
called the short-exposure PSF (henceforth referred to as
the PSF). The PSF can also be obtained by taking the
Fourier transform of the OTF.

The maximum-likelihood (ML) estimator gives the es-
timate, û, for the parameter, u, that maximizes the condi-
tional probability distribution, h(x0uu). For N photons,
this corresponds to

ûML 5 u
maxH )

i50

N21

h~xiuu!J . (17)

Equation (17) has, in general, no analytic solution and
must be solved numerically.

C. Cramér–Rao Lower Bound
The Cramér–Rao lower bound (CRLB) is a lower bound
on the variance of the error of an unbiased estimator. In
this case, the angle of arrival, u, is to be estimated from a
measurement, x0 , given the conditional probability distri-
bution, h(x0uu). The conditions that need to be satisfied
are that ]h(x0uu)/]u and ]2h(x0uu)/]u2 exist and are ab-
solutely integrable. The CRLB, which can be extended to
any number of measurements, is formally stated as10
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Var@ û~x0! 2 u# > H 2EF ]2 ln h~x0uu!

]u2 G J 21

. (19)

An estimate that satisfies the equality is called an effi-
cient estimate. The equality holds if and only if

] ln h~x0uu!

]u
5 @ û~x0! 2 u#c ~u!, (20)

where c (u) is an arbitrary function of u only. The bound
is not, in general, the greatest lower bound, as the vari-
ance is higher if Eq. (20) is not satisfied, and tighter
bounds, such as the Bhattacharyya bound, exist.10

The CRLB calculated above is for tilt estimation with
one photon. For N measurements, the CRLB is divided
by N. It can be shown that as N approaches infinity, the
ML estimate becomes asymptotically efficient and ap-
proaches the CRLB.11

The left-hand side of Eqs. (18) and (19) can be written
simply as Var@ û(x0)#, because the estimator is unbiased.
The right-hand side of Eqs. (18) and (19), before inver-
sion, can be written as

E
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]u
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and it is this expression that is used in this paper to ob-
tain the CRLB. For the examples in this paper, the inte-
grand of Eq. (21) has no singularities. The integral was
evaluated numerically with the finite limits of integration
chosen to be large enough to ensure convergence.

D. Tilt Estimation from Curvature-Sensing
Measurements
Curvature sensing was introduced by Roddier12 as a
means to detect the phase of an aberrated wave front.
The irradiance transport equation13 is the basis for the
wave-front reconstruction,
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where ¹ 5 (]/]x, ]/]y) and ¹2 5 ]2/]x2 1 ]2/]y2.
Equation (22) assumes that the geometric optics approxi-
mations are valid, which is true when l is very small rela-
tive to the scales of interest. Two intensity images, I1(x)
and I2(x), are recorded at a distance l from focus on ei-
ther side of the focal plane. Assuming a small effective
propagation distance, f( f 2 l)/l, it can be shown that the
intensity of the images, I1(x) and I2(x), can be approxi-
mated by the following relationship14,15:
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where P is the transmission function of the pupil, dc is a
linear Dirac distribution around the pupil edge, and
]f/]n is the outward wave-front derivative perpendicular
to the pupil edge. Equation (23) indicates that the signal
is due to two terms: the contribution due to the Laplac-
ian of the wave front and an edge signal proportional to
the slope of the wave front at the edge of the aperture.
The wave front is reconstructed by solving the Poisson
equation with the edges of the signal providing Neumann
boundary conditions. As the detector approaches the fo-
cal plane, the sensitivity of the curvature and slope mea-
surements increases at the expense of limiting the spatial
resolution in the pupil and the linearity of the model un-
derlying Eq. (23).

A slope in the wave front causes the two speckle images
to be displaced from the center by uz. Because the La-
placian of the tip and tilt terms is zero, all the informa-
tion about the tip/tilt modes is contained on the boundary
of the signal, and present techniques use the edge signal
to estimate the slope from Eq. (23). This is achieved by
integrating over the region where the two images do not
overlap and subtracting the contribution to the edge sig-
nal of the higher-order terms.16

3. NUMERICAL RESULTS OF THE
CRAMÉR–RAO LOWER BOUND
The CRLB for the estimate of the angle of arrival was
found numerically from the PSF of the Fresnel-diffracted
aperture. The parameters used in the calculation are D
5 1 m, f 5 10 m and l 5 600 nm. These calculations
are performed for a single defocused image, but for the
case of no scintillation in the aperture, which is approxi-
mately true at good astronomical sites,8 the same results
hold for a pair of symmetrically defocused images. In
this case, both images have the same PSF but equal and
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opposite displacements. We initially assume diffraction-
limited imaging from a linear aperture of length 1 m in
one dimension. This gives the bottom curve in Fig. 3,
which displays the CRLB for the standard deviation of
the slope estimate from one photon as a function of defo-
cus. The minimum variance of the slope estimator starts
to increase significantly for distances greater than the fo-
cal tolerance, zR , which is given by17

zR 5 2l~ f/D !2 (24)

5 0.12 mm.

This is expected since for measurements within zR of the
focal plane, the shape of the intensity distribution does
not change significantly from that given by the Fraun-
hofer approximation.17

The CRLB calculation was repeated for wave fronts
with Kolmogorov statistics. The results demonstrate

Fig. 3. CRLB of slope estimate for different levels of turbulence,
D 5 1 m and 1 photon. The curves represent, from top to bot-
tom, D/r0 5 40, 20, 10, 5, 1, and 0.

Fig. 4. CRLB of slope estimate for 300 nm , l , 900 nm (top
curve) and l 5 600 nm (bottom curve) for (a) no turbulence and
(b) D/r0 5 10 at l 5 600 nm.
that, as expected, the variance increases with increasing
turbulence. Also, it is apparent that the focal plane is
the best place to estimate the slope, and the more defo-
cused the images are, the higher the minimum variance
of the slope estimator. It must be emphasized that the
CRLB can be approached in practice only by using detec-
tors with a spatial resolution higher than the scale of the
diffraction detail and with no read noise.

The CRLB here can be interpreted as the lower bound
for an estimate from an ensemble of images with the
same displacement, not just one speckle image. How-
ever, it is indicative of the amount of information about
the slope contained by each photon. For a single speckle
image, the instantaneous intensity differs from the PSF
computed from the ensemble average. The estimate is
consequently worse, because the expected intensity does
not match the received intensity. In order to make the
estimator optimal, we would need to know a priori the
probability distribution of photon arrivals for that par-
ticular phase screen with the overall slope subtracted.

We now extend the analysis from the monochromatic
case to broadband light. Instead of detecting at a single
frequency, we allow the number of photons to be evenly
distributed across a range of wavelengths, from 300 to
900 nm. This was implemented by sampling discrete
wavelengths at 100 intervals, but it was verified that
sampling the wavelengths more finely does not affect the
results significantly. It should be noted that r0 } l6/5, so
as the wavelength increases, the turbulence effects de-
crease while the diffractive effects increase.

The CRLB is plotted in Fig. 4. From the graphs we
can infer that close to the focal plane, allowing a large
range of wavelengths causes only a small loss of informa-
tion. As the detector moves farther away from the focal
plane, the loss of information from each photon increases.
However, the lost information is in the detail at very
small scales of resolution, and this detail is difficult to
measure in a practical sensor. We conclude that unless
the source is very bright, it is better to use all the avail-
able photons to measure the tilt rather than restricting
the bandwidth.

4. SIMULATIONS
In this section we discuss details of the ML- and
curvature-based tilt estimation simulations and the re-
sults. Simulations were performed to confirm and quan-
tify the behavior of the ML- and curvature-based tilt es-
timators from defocused images. Random phase screens
consisting of circular apertures 64 pixels in diameter with
Kolmogorov statistics were generated with the method of
Harding et al.18 Two 64 3 64 pixel speckle images were
obtained with the Fresnel diffraction formula, Eq. (2), cor-
responding to positive and negative defocus. From these
speckle images, 100 photons on average were obtained by
assuming Poisson photon arrival statistics. Here, D
5 1 m, r0 5 0.1 m, l 5 600 nm and the detector array is
64 3 64. As the distance from the focal plane increases,
so does the size of the speckle image. The pixel size was
increased for the most defocused images so that the angu-
lar extent of the detector was larger than the angular ex-
tent of the speckle images. Hence the pixel size varied
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from 6 3 1027 rad for distances up to 1 mm from the fo-
cal plane, 12 3 1027 rad for l 5 1022.5 m and 24
3 1027 rad for l 5 1022 m. There were 1000 simula-
tions for each level of defocus.

A. Maximum-Likelihood Estimator
The ML estimator was simulated with the PSF as the
probability distribution. The PSFs were generated from
the fast Fourier transforms of the OTFs. An array of
128 3 128 was used, which was chosen to be larger than
the size of the detector to allow for the speckle image be-
ing displaced from the center as a result of the turbu-
lence. The ML estimator was found by using a numerical
maximization algorithm called the Nelder–Mead direct-
search method.19 The posterior distribution,
P i50

N21h(xiuu), has no local maxima in the vicinity of the
solution, so the evaluation of the estimator is independent
of the algorithm used.

In wave-front sensing, the wave front, not just the
slope, is estimated from the measured intensities. From
the wave-front estimate, one can obtain an estimate of the
speckle image with the LMS slope removed. This speckle
image can then be used to define the probability distribu-
tion of photon arrival, permitting a more accurate esti-
mate of the slope. The effects of this were quantified by
repeating the ML estimation with the slope-removed
speckle image defining the probability distribution. The
values between the centers of adjacent pixels were found
by linear interpolation.

B. Curvature Sensor
The performance of the ML estimator was compared with
that of the curvature-sensor model described in Subsec-
tion 2.D. We implemented the curvature-sensor tip/tilt
estimator in the manner suggested by Han, because his
paper provides a detailed description of the algorithm.16

Other authors have also suggested a similar least-squares
fit of the tip/tilt terms from the edge signal.5,20

1. The contours of the two defocused images are ob-
tained by truncating the speckle image where the inten-
sity is less than 10% of the average intensity within the
contour.

2. One image is inverted and subtracted from the
other. The pixels where there is no overlap are obtained.
These pixels are grouped into N equal bins, each repre-
senting a segment of a circle. The signed, nonoverlap-
ping area in each segment i, Ai , is summed.

3. From Fig. 1, u 5 Dr/z. In polar coordinates, Ai
5 rDrDa. We define a sensor signal, s, where each
component, si is given by

si 5
Ai

rzDa

5
2 fAi

D~ f 2 z !zDa

5
NfAi

pD~ f 2 z !z
. (25)
4. The angle of arrival in the tip direction is now given
by least-squares fitting of s to the average value of the co-
sine function over each of the segments, denoted by c:

û 5 ^s,c&/^c,c&

5
2Nf

pDz~ f 2 z !
^A,c&. (26)

We used 16 bins in our simulations. Note that the
higher-order aberrations that contribute to the image dis-
placement were not estimated and subtracted.

C. Results and Discussion
Figure 5 plots the results of the simulations, with 1s er-
ror bars. One can see that it is much easier to detect the

Fig. 5. Solid curves are the standard deviation of the slope es-
timate error with use of the ML estimator from one detector
plane. The error is plotted in (a) for an infinite number of pho-
tons with the top and bottom curves corresponding to a prior dis-
tribution of the PSF and the zero LMS slope speckle image, re-
spectively. The circle at 1.5 rad is the error using the curvature-
sensing measurements. The error with 100 photons is plotted in
(b) with the top and bottom curves corresponding to a prior dis-
tribution of the PSF and the zero LMS slope speckle image re-
spectively. The dashed curve is the CRLB for 100 photons with
use of the PSF.
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Table 1. Effect of Zernike Polynomials on the Tip Term

Zk Polynomial Derivative AE@dk
2#

Signal
Standard Deviation

Z2 2r cos(a) 2 cos(a) 0.6693 1.339
Z8 A8(3r3 2 2r)cos(a) 7A8 cos(a) 0.0787 1.559
Z16 A12(10r5 2 12r3 1 3r)cos(a) 17A12 cos(a) 0.0346 2.040
Z30 4(35r7 2 60r5 1 30r3 2 4r)cos(a) 124 cos(a) 0.0208 2.581
slope close to the focal plane. The variance of the LMS
slope in each of the tip/tilt directions is
7.17r0

25/3D21/3 rad2 m22.1 For r0 5 0.1 m and D 5 1 m,
this corresponds to an angle-of-arrival standard deviation
of 1.74 3 1026 rad in each direction, totalling 2.46
3 1026 rad. It can be seen that if only the tip/tilt terms
are estimated, the slope estimation from very defocused
images is of little use.

The curvature sensor cannot be employed very close to
the focal plane owing to the difficulty in defining the over-
lap when the images are manifestly not circular. This
limits the distance from focus for the algorithm described
in Subsection 4.B. and is the reason there is only one
point—at a distance of 0.01 m—in Fig. 5(a) corresponding
to the conventional curvature-sensing algorithm. As ex-
pected, the ML estimator performs slightly better than
the curvature sensor at this distance, and in addition it
can also be used closer to the focal plane.

For N 5 `, the mismatch between the ensemble PSF
and the speckle image is the limiting factor, so the top
curve in Fig. 5(a) does not go to zero. The error in esti-
mating the LMS slope using the actual speckle image as
the a priori probability distribution should tend to zero as
the number of photons goes to infinity. However, in prac-
tice there remains an error associated with pixelation and
interpolation, owing to the finite number of pixels used.

From close inspection of Fig. 5(a), there is a very small
improvement in the estimate when the images are moved
away from focus. We postulate that this is because a
small defocus smooths the speckle images at small scales,
which improves the accuracy of the subpixel interpola-
tion.

In Fig. 5(b), we compare the one-dimensional CRLB re-
sults with the simulations. Here the CRLB from Fig. 3
needs to be divided by A100 since there are 100 photons,
and multiplied by A2 because there the variance is the
same in each of the two dimensions. This procedure is
necessary in order to obtain an approximation to the two-
dimensional CRLB. The bound is quite tight close to the
focal plane compared with ML estimation with the PSF.
For the two most defocused images the pixel size is in-
creased in the simulations, so the performance relative to
the CRLB degrades.

5. EFFECT OF HIGHER-ORDER
ABERRATIONS ON TILT SENSING
The aberration of a wave front from a circular aperture,
f(j, h), can be described as an infinite sum of orthonormal
Zernike polynomials,1
f~j, h! 5 (
k52

`

dkZk~j, h!, (27)

where dk is the coefficient of the kth Zernike polynomial,
Zk . Z1 is constant across the aperture and is assumed to
be zero. The wave-front tip and tilt terms are Z2
5 2r cos(a) and Z3 5 2r sin(a), respectively. Here r
5 (j2 1 h2)1/2 is the distance from the center of the ap-
erture and a is the angle between vectors (j, h) and (1,0).
We consider the tip term only, as the same results hold for
the tilt. Assuming a circular aperture with unit radius,
taking the normal derivative of the tip component gives

]Z2

]n
5 2 cos~a!. (28)

However, all the other Zernike polynomials with a cos(a)
angular dependence also displace the speckle image.
Table 1 displays the first four Zernike polynomials with a
cos(a) angular dependence. For each polynomial, the
normal derivative at the edge is computed. This is mul-
tiplied by the standard deviation of the turbulence-
induced Zernike coefficient to obtain the expected value of
the standard deviation of the slope at the edge of the ap-
erture. The values displayed are for D/r0 5 1, and the
standard deviation is proportional to (D/r0)5/3. The vari-
ances of the Zernike coefficients, E@dk

2#, represent the
power of each aberration and were obtained from Noll’s
paper.1

It can be seen from Table 1 that the higher-order aber-
rations make the most significant contributions to the
slope at the edge of the aperture. The procedure for es-
timating the tip suggested by Han16 is to obtain the dis-
placement of the defocused apertures and subtract the
contributions from the higher-order terms. The above
analysis shows that this is difficult for Kolmogorov turbu-
lence as it involves measuring high-order aberrations to a
very high precision. The reason that the curvature-
sensor tilt measurement works in practice is that the im-
pact of the high-frequency phase components on the tilt
decreases as the detector approaches the focal plane.

To illustrate the attenuation of high-frequency compo-
nents, we simulated the Fresnel propagation of a 2-m lin-
ear aperture, focused 10 m away. The phase at the aper-
ture was aberrated with each of the Zernike polynomials
of Table 1. Because the simulation was in one dimension,
a was set to zero. When the aberration was a tilt (Z2),
the angle of displacement of the image, u, was equal to the
angle of the wave-front slope at the edge of the aperture,
](fl/2p)/]n. The ratio of u to the slope angle is plotted
in Fig. 6. It can be seen that as the wave propagates
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closer to the focal plane, the effect of the higher-order ab-
errations on the displacement of the image decreases.
For example, if the detector is placed 1 cm away from the
focal plane, the displacement due to Z30 is about half of
what Eq. (23) predicts. The aberrations of an order
higher than Z30 are even more attenuated, so it is possible
to estimate the tilt without having to correct for a large
number of higher-order aberrations. In addition, Fig. 6
suggests that the closer to the focal plane, the better the
tilt estimation becomes without compensating for the
other aberrations. This provides confirmation that de-
creasing l reduces the aliasing of the high-order aberra-
tions onto the lower-order ones in the curvature sensor
because the wave front diffracts.14 In essence, the high-
spatial-frequency components become blurred and the
spatial resolution of the sensor decreases. The logical ex-
tension to this argument is to make the wave-front slope
measurement at the focal plane, because then the alias-
ing of the high-order Zernike polynomials is reduced as
much as possible.

6. CONCLUSIONS
The slope of the wave front is a critical parameter in
wave-front sensing since it causes the displacement of the
image intensity for the case of Fresnel diffraction. We
show mathematically that the best place to estimate the
tip/tilt terms is at the focal plane, and we present a ML
algorithm for slope estimation from defocused images.
As the detector is moved away from the focal plane, the
variance of an optimal tilt estimator increases, but the
spatial resolution of the curvature sensor increases.
Adding a third detector at or near the focal plane could
consequently be useful in estimating the wave-front slope.
Furthermore estimating the LMS slope using the curva-
ture sensing equation is very difficult for Kolmogorov tur-
bulence, because most of the contributions to the wave-
front slope at the edge come from high-frequency
aberrations. This situation is alleviated by the compen-
sation of the higher-order modes with an adaptive optics
system and by the attenuation due to propagation of

Fig. 6. Displacement of aberrated defocused aperture. The
curves, from top to bottom, are for Z2 , Z8 , Z16 , and Z30 .
higher-order modes near the focal plane. Finally, unless
the source is very bright, in theory as well as in practice it
is best to use all the available photons rather than re-
strict the bandwidth.
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