
Finite-State Grammatical Model and Parser for
Air Traffic Controller’s Commands

Moraima Valle

Advisor: Dr. Jorge Ortiz

Electrical and Computer Engineering Department
University of Puerto Rico, Mayagüez Campus

Mayagüez, Puerto Rico 00681-5000
mory@amadeus.uprm.edu

Abstract

Applications for military tactical
environments are often exposed to
rapidly changing commands, streams of
information, and different sources of
background noise. They are also exposed
at this moment in time to people from
different backgrounds and different
accents working on Air Traffic Control.
These two are some of the facts that can
cause an air traffic command to be
misinterpreted. The method discussed in
this paper uses Artificial Intelligence
techniques to create an intelligent
syntactic parser to process the input
information to these air traffic control
applications. In future research this
parser will be used with a voice
recognition system to create an
application for Air Traffic Controllers.

1. Introduction

The main purpose of this research is to
create a syntactic parser to process the
input commands of an air traffic
controller. Syntactic Parsers manipulate
the declarative knowledge of the
grammar to determine if a sentence is
correct or not. Recognition is the process
of identifying a string of words as
syntactically well formed. Parsing
associates a syntactic structure to those

expressions that have been recognized.
Recognition and parsing are processes
that determine whether a particular
sentence or a stream of words is a valid
expression or not [7]. A Skip Loops
Syntactic Parser is used in the
application created by this research to
get the input commands of an air traffic
controller and filter out the background
noise. Also it detects homophones
(words that have the same sound but
different meaning). Like for example an
Air Traffic Controller that has an accent
can say two and the voice recognizer can
detect to. The parser will verify the
words using AI techniques to find out if
the word said is a homophone of a real
command or if it is an error in the
command said. Another feature of this
syntactic parser is the fact that
sometimes people tend to elongate a
word. For example an air traffic
controller might say tuuuurn and this
parser will compare the word with the
commands in the database and will
assume that what the controller means is
the command turn.

2. Problem Definition

This research uses a Finite-State
Grammatical Model for Air Traffic
Controller’s Commands created by Dr.
Jorge Ortiz [7]. The research done by
Dr. Jorge Ortiz created a syntactic parser
that deletes incorrect or out of context
words. This Syntactic Parser replaces
each word by its lexical category and
checks if the transformed stream
corresponds to one of the possible
grammatically correct sentences. The
research exposed in this paper improves
this syntactic parser by adding two new
features. The first one works with the
fact that at this moment there are air
traffic controllers that have different
backgrounds and accents. In the future a
system could be created for improving
air traffic control using a voice
recognition system. These systems might
misinterpret a command said by the air
traffic controller if he has an accent. For
example an air traffic controller could
say two and the voice recognition system
could write to. The words two and to are
homophones (words that have the same
sound but different meaning). The
syntactic parser improved in this
research gets the input of the air traffic
controller and if the command is not
valid it verifies if a homophone of this
command is valid. If it is, the parser will
replace the command with its
homophone (Figure 2).

The Syntactic Parser also calculates a
certainty factor (CF). A certainty factor
is the probability of the real command

being misinterpreted by its homophone.
In the case of the elongation of words,
the certainty factor is the rate of equal
letters in the command said and the real
command meant.

The Finite State Grammar Model used
for this syntactic parser (Figure 1),
defines the structure of the grammar in a
graphical way and later it is translated to
a computer language for its
implementation. Nodes and arcs
compose the graph. These arcs are non-
deterministic which means that the arc
moves from one node to the other
depending on a condition. In the case of
this research there are three conditions;
a) the command is correct, b) the
homophone of the command said is a
valid command and c) the correction of
the elongated command gives a valid
command. In this research the graph is
translated to Prolog Language a logic
programming language. Figures 2 to 4
are examples of Finite State Transitions
Diagram for each of the tasks done by
the syntactic parser.

Basically, what the syntactic parser does
is that first it verifies if the command
said is valid, if not it verifies if its
homophone is a valid command. If the
first two options fail then the parser will
verify if the command said is an
elongated version of the real command.
If any of this conditions fail, it will skip
the command because it is not valid.

Figure 1: Finite State Grammatical Model for the Syntactic Parser of this research.

Figure 2: Finite State Transition Diagram for the statement “Two one one five miles”
demonstrating how the syntactic parser works when it detects a homophone.

Figure 3: Finite State Transition Diagram for the statement “Four one two turn right”
demonstrating how the syntactic parser works when it detects an elongated command.

Figure 4: Finite State Transition Diagram for the statement “Seven five nine begin
descent” demonstrating how the syntactic parser works when it detects an unknown

command.

1

1
2

1
3

1
4

1
5

1
6

1

start To

idn idn idn mw unit output

Two (CF)

one one five miles

1

1
2

1
3

1
4

1
5

1
6

1

start Four

idn idn idn cw cw output

turn (CF)

one two tuuurn right

1

1
2

1
3

1
4

1
5

1
6

1

start Seven

idn idn idn cw cw output

Skip
bahhhh

five nine begin descent

1

1
2

1
3

1
4

1
5

1
6

1

start idn
output

7

1

idn idn mw unit

skip skip skip skip skip skip

skip

cw
cw

mw

output

subj mw

3. Experimental Work

Examples of the output of the parser created using Prolog

ATC> Diamond six zero three four point zero miles.
Correct Sentence = diamond six zero three four point zero miles

ATC> For one to begin descent.
Correct Sentence = four (0.9) one two (0.9) begin descent.

ATC> Six zero zero tuuuuurn right.
Correct Sentence = six zero zero turn (0.6) right

ATC> six zero seven uups ahh begin descent
Correct Sentence = six zero seven begin descent

4. Conclusions

The results of this research have been
successful with a small amount of
commands in the database. In the near
future it is expected to have all the
commands in the database. More
features can be added, and at the
moment a research is being conducted to
add more features and to build a voice
recognition system.

References

[1] Addison Wesley Longman
Limited. Gazda, G., and Mellish,
C. 1996. Natural Language
Processing in Prolog: University
of Sussex at Brighton, England.

[2] Clocksin, W.F., Mellish, C.S.
1994. Programming in Prolog.
Fourth Edition: Springer.

[3] Cole, Ronald A. 1996. Survey of
the State of the Art in Human
Language Technology: National
Science Foundation.

 http://cslu.cse.ogi.edu/HLTsurvey.

[4] Dougherty, Ray C. 1994. Natural
Language Computing: An
English Generative Grammar in
Prolog: Lawrence Erlbaum
Associates.

[5] Luger, G., Stubblefield, W. 1997.
Artificial Intelligence: Structures
and Strategies for Complex
Problem Solving. : Addison
Wesley Longman.

[6] Matthews, Clive. 1998. An
Introduction to Natural
Language Processing through
Prolog.

[7] Ortiz, Jorge L. 2000. Finite-State
Grammatical Model and Parser
for Air Traffic Controller’s
Commands, Interservice/Industry
Training, Simulation and
Education Conference.
(I/ITSEC), Noviembre 2000.

[8] Roche, Emmanuel, and Shabes,
Yves. 1997. Finite-State
Language Processing: The MIT
Press.

[9] Suereth, Russel. 1997.
Developing Natural Languages
Interfaces: Processing Human
Conversations: Mc-Graw-Hill.

