Swarm Algorithms Simulation and Generation

Michael A. Kovacina

Masters Thesis Defense September 02, 2005

Case Western Reserve University Advisor: Dr. Michael Branicky

Overview

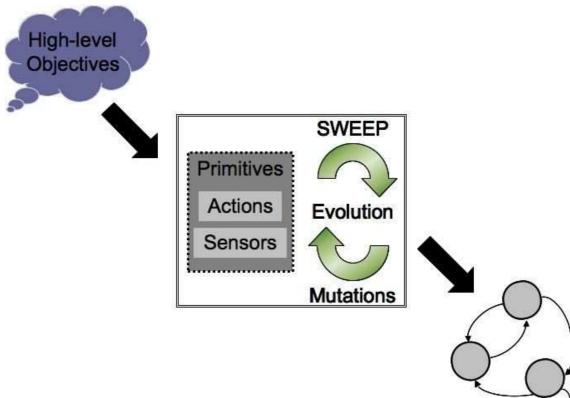
- Rationale
- Swarm Intelligence Overview
- Swarm Simulation Software
- Evolutionary Computing for Swarms
- Results
- Conclusions

Motivations

- Interactions and complexity
- Complexity can grow quickly
- Swarm algorithm development requires simulation
- Trial-and-error programming
- A complete toolchain is needed to streamline swarm algorithm creation
 - Simulator
 - Algorithm generator
 - Identify/classify emergence

Vision

Demonstrate a method for generating swarm behaviors using evolutionary computing.



Examples of Swarm Intelligence found in nature

- Flocking birds
 - A bird flying disrupts airflow
 - Disrupted air flow reduces drag for following birds
 - Reduced drag results in easier flying
 - Distance traveled by the flock is maximized

Examples of Swarm Intelligence found in nature

- Foraging ants
 - An ant leaves a pheromone trail upon finding food
 - Other ants follow and reinforce the trail
 - Each ant is able to find food for the nest
 - Trail laying finds the closest food source

Examples of Swarm Intelligence found in nature

- Termite nests
 - A termite deposits a pheromone-tagged mud ball
 - Local pheromones affect mud ball placement
 - A secure nest for the termite is established
 - A temperature regulated nest emerges

Why has evolution produced swarming in so many different contexts?

- Simultaneously benefits the individual and the whole
- Individuals benefit from the efforts of others
- The survivability of the swarm increases
- Simple rules and behaviors, decentralized
- Replication relatively easy

Swarm intelligence as defined for this work

a group of agents whose collective interactions magnify the effects of individual agent behaviors, resulting in the manifestation of swarm level behaviors beyond the capability of a small subgroup of agents

Other properties required for emergent behavior

- Large numbers of agent interactions
- Ability to modify the environment, stigmergy
- Randomness

Swarm Algorithm Development

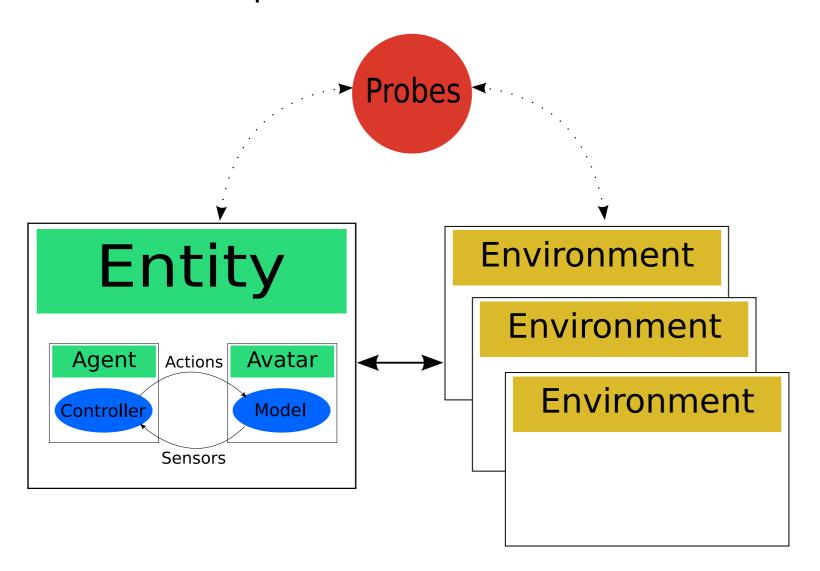
- No methods for direct analysis of swarm algorithms
- Swarm algorithms evaluated through simulation

Thus, a flexible swarm simulation platform is required.

- Multiple agent and swarm types
- Support for various environment types
- Access to all simulation data
- Easy to use
- Portable

SWEEP

SWEEP- SWarm Experimentation and Evaluation Platform



SWEEP - Simulation

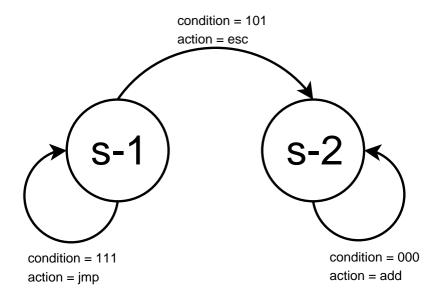
- XML simulation specification file
- Responsible for constructing the simulation
- Handles update scheduling
 - 1. Environment
 - 2. Entity:: Agent
 - 3. Entity:: Avatar
 - 4. Probes

```
<simulation>
  <main/>
  <agent/>
   <controller/>
   <model/>
   <environment/>
   <probes/>
</simulation>
```

SWEEP - Entity:: Agent

The "mind" of the Entity

- State: collection of variables that define the agent
- Controller: defines the governing logic of the agent
- The default Controller is a finite state machine



SWEEP - Entity::Avatar

The "body" of the Entity

- Conduit between Agents and Environments
- Separates modeling and algorithm development
- e.g., a UAV
- Model: defines characteristics e.g., minimum turning radius, maximum thrust
- Sensor: defines environmental information available e.g., chemical sensor, GPS
- Action: defines behavioral abilities e.g., plan-path-to, return-to-base

SWEEP - Environment

The Environment has three core functionalities:

- 1. Defining fundamental laws that Avatars must respect e.g., gravity, F=ma, bandwidth limits
- 2. Presenting an information abstraction layer e.g., neighborhood on a grid vs. a graph
- 3. Facilitating direct and indirect communication e.g., simulating wireless, pheromone gradients

SWEEP - Probe

Probes provide the ability to

- Extract information from a running simulation
- Inject information into a running simulation

The current Probe implementation uses Connectors.

- Connectors are data conduits between components
- Probes "tap" Connectors
- Connectors provide access to information injection/extraction

Example Probe usage: diagnostic interface

SWEEP Applications

This thesis:

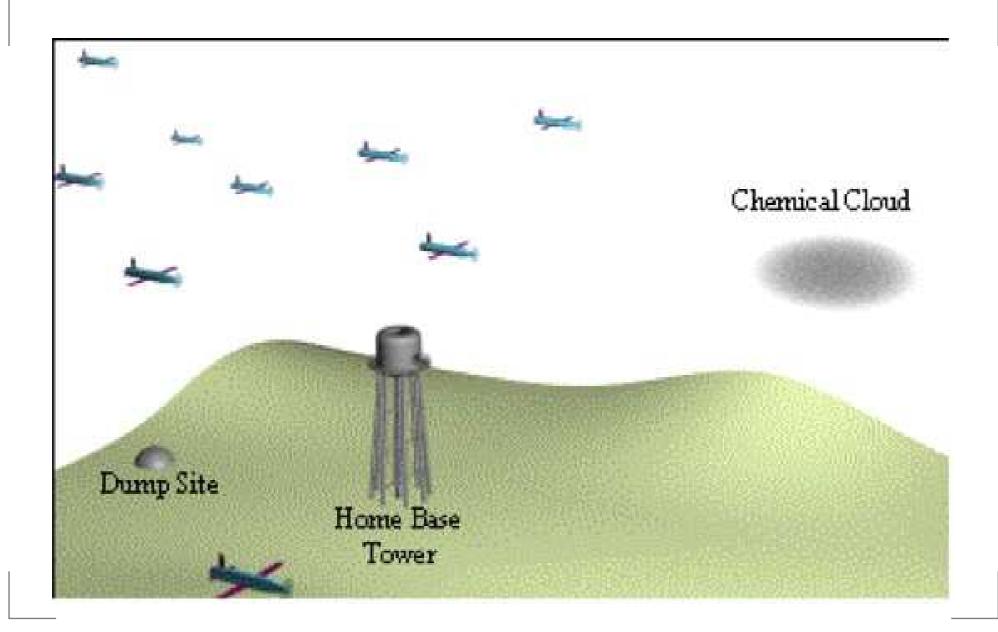
- Dispersion
- Task assignment, CAST Auction
- Chemical cloud tracking

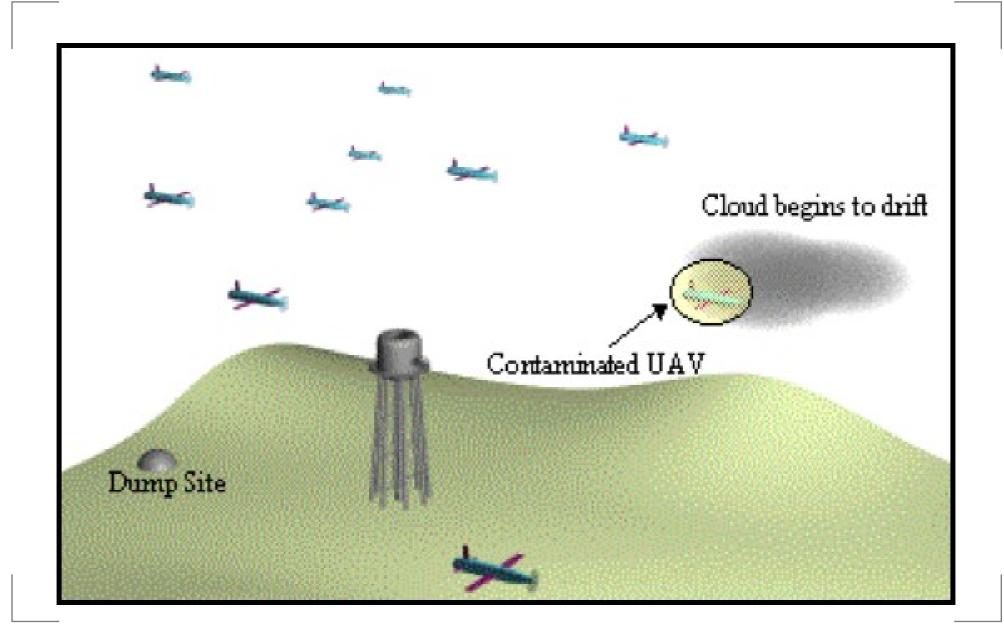
Other works:

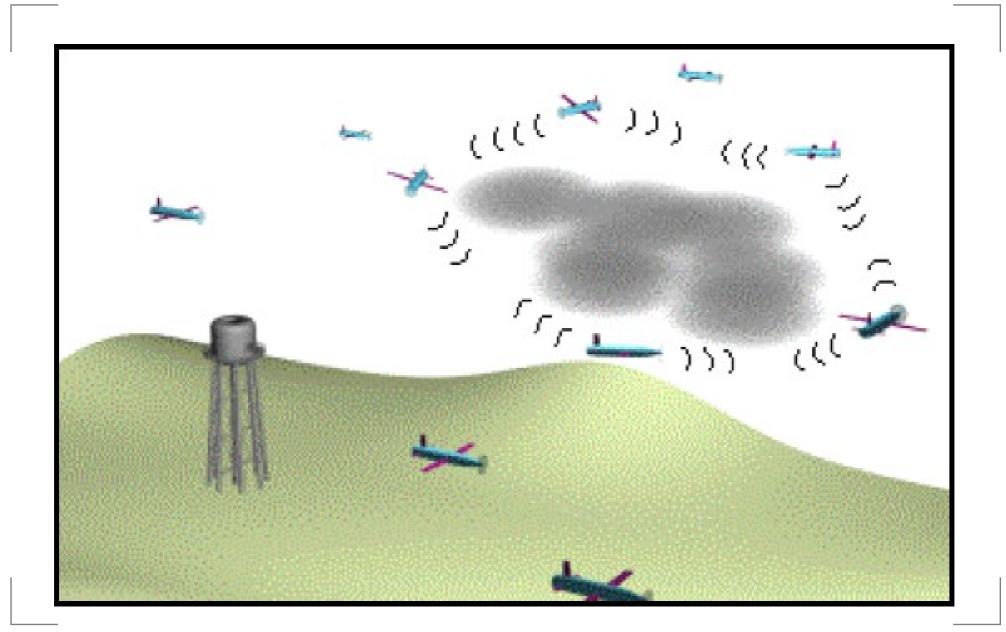
- Swarm reasoning for the four-color mapping problem
- Mars exploration using "tumbleweeds"
- Extending swarm programming with aspect-oriented programming

Highlights

- Develop decentralized algorithms for small collections of UAVs
- Constrained vehicles
 - Limited communication
 - Limited flight capabilities
 - Binary sensors
- Explore potential emergent behavior of small collections of agents







UAV Characteristics

- UAV flight model
 - Point mass

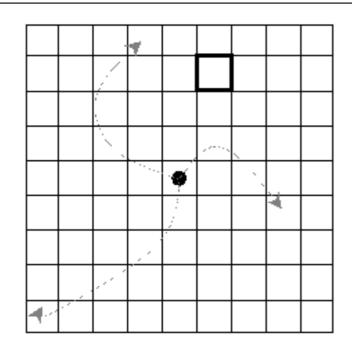
$$\begin{cases}
\dot{x} = v_C \cos(\theta) \\
\dot{y} = v_C \sin(\theta) \\
\dot{\theta} = \omega
\end{cases}$$

- Fixed turning radius
- Constant speed
- Geometric path planner
- 30 minute power supply
- Binary chemical sensor

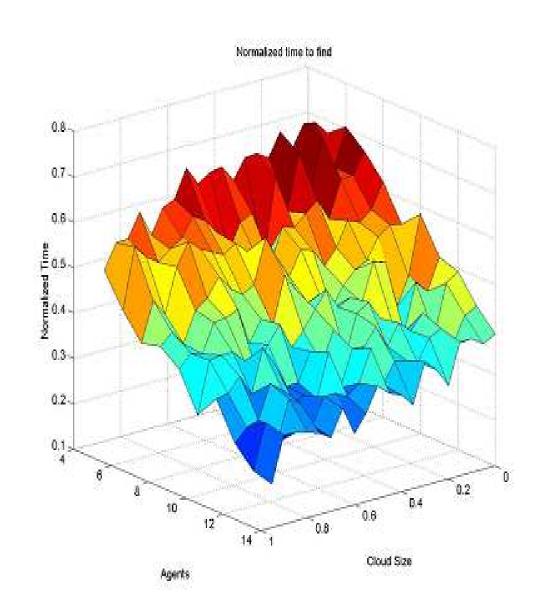
Data Collection

- Cloud detection only
- 20,000 simulations
 - 5 to 15 agents
 - 20 cloud sizes
- 30 minute power supply
- 40 knots constant speed
- Constant wind speed and direction

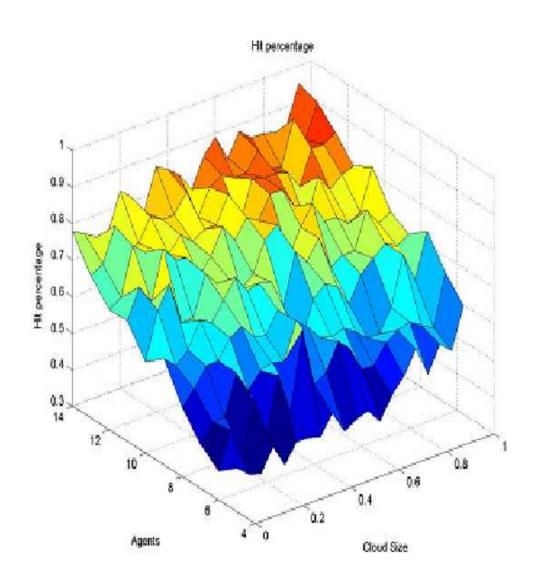
```
generateRandomPath()
loop
  if endOfPath() or rand() < .1
  then
    generateRandomFlightPlan()
  end if
end loop</pre>
```



- Normalized search time
- Speed increases with swarm and cloud size
- Larger swarms are faster
- Bigger clouds are easier



- Detection rate
- Rate increases with swarm and cloud size
- Larger swarms are more accurate
- More UAVs, more area covered



Autogenerating Swarm Behaviors

Why autogenerate swarm behaviors?

- Trial-and-error gets tedious
- Complexity can quickly increase
- Emergence not always obvious
- Move away from low-level swarm programming

Autogenerating Swarm Behaviors

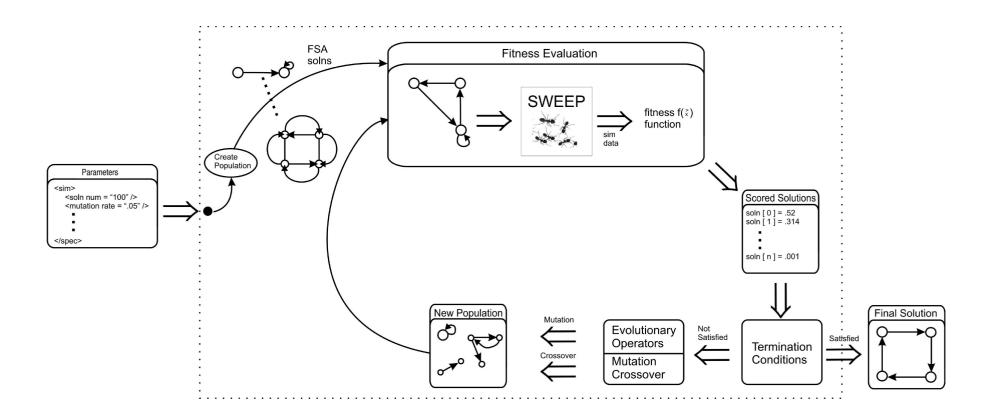
Why autogenerate swarm behaviors?

- Trial-and-error gets tedious
- Complexity can quickly increase
- Emergence not always obvious
- Move away from low-level swarm programming

What is needed?

- Specify high-level goals
- Define lower-level behaviors, sensors, . . .
- Use simulation to evaluate performance

ECS Overview



ECS - System Parameters

Parameters		
Objective	Dispersion	
Max. Generations	500	
Population Size	32	
Number of Sims	2	

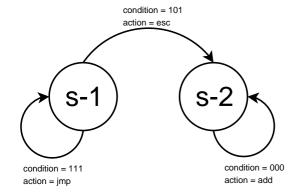
Mutations	
Change-Sensor-Value	top 6 + 2 random
Add-Transition	top 6 + 2 random

	•	
Actions	Sensors	
move-random	too-many neighbors	
move-none	chemical-present	
Simulation		
Number of Agents	100	
Environment	50 imes 50 arid	

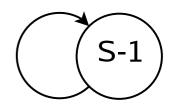
ECS - Solution Representation

SWEEP XML state machine

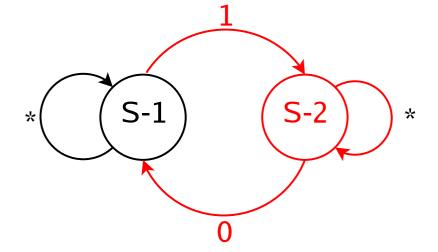
- Simple but expressive
- Graph-based
- Robust to random modification



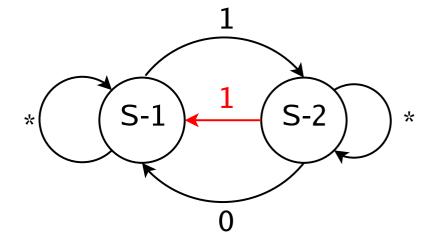
- AddState
- AddTransition
- ChangeNextState
- InvertSensor
- ChangeAction



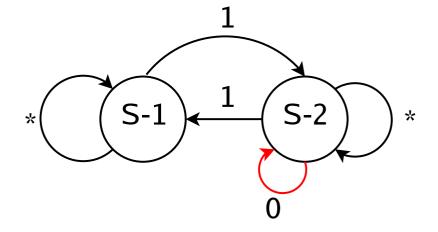
- AddState
- AddTransition
- ChangeNextState
- InvertSensor
- ChangeAction



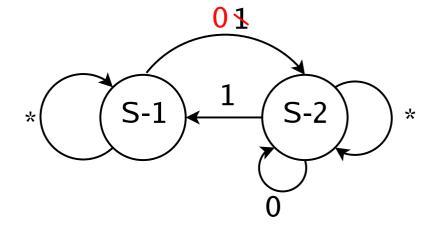
- AddState
- AddTransition
- ChangeNextState
- InvertSensor
- ChangeAction



- AddState
- AddTransition
- ChangeNextState
- InvertSensor
- ChangeAction



- AddState
- AddTransition
- ChangeNextState
- InvertSensor
- ChangeAction



ECS - Fitness Evaluation

- Differentiate good and bad solutions, imposes order
- Solutions simulated in SWEEP
 - One state machine solution → single agent program
 - Homogeneous swarm
- Multiple runs, remove biases
- Calculate fitness from raw SWEEP output
- Error proportional to fitness, normalized
- Example

```
sweep(s_1) = 7 sweep(s_2) = 12

error(s_1) = 20-7 = 13 error(s_2) = 20-12 = 8

fitness(s_1) = 13/20 = 0.65 fitness(s_2) = 12/20 = 0.40
```

 s_2 more fit

Evolving Swarm Algorithms

Four scenarios examined:

- Agent Dispersion
- Object Collection
- Object Destruction
- Object Manipulation
 Simultaneous object collection and destruction

Two types of objects

- ullet C o objects to be collected
- ightharpoonup D
 ightharpoonup objects to be destroyed

Swarm Goal

- Collect all C objects
- Destroy all D objects

Approach

- 1. Collection
- 2. Destruction
- 3. Collection and Destruction

Behavior	Scenarios		
	Collection	Destruction	Manipulation
move-up	х	Х	х
move-down	X	X	x
move-left	X	X	x
move-right	X	X	x
move-random	X	X	x
pick-up	X		x
put-down	X		x
move-to-goal	X		x
broadcast_C	X		x
move-to-object_C	X		x
first-attack		X	x
second-attack		X	x
broadcast_D		X	x
move-to-object_D		x	Х

Sensor	Scenarios			
Selisoi	Collection	Destruction	Manipulation	
near-object_C	Х		Х	
on-object_C	X		x	
holding-object_C	X		x	
on-goal	X		x	
near-object_D		Х	х	
on-object_D(untouched)		X	x	
on-object_D(damaged)		Х	x	

Fitness Metric	Description
c_1	number of objects picked up but not put in the goal
c_2	number of objects not collected
d_1	number of objects in the partially destroyed state
d_2	number of objects in the untouched state
t	number of time steps

The challenge

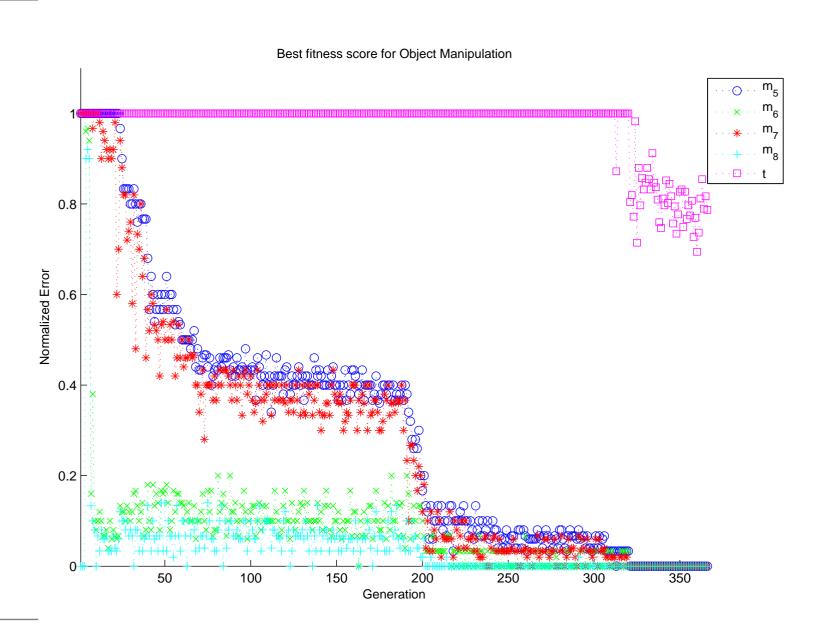
Collection and destruction metrics are independent but equally weighted

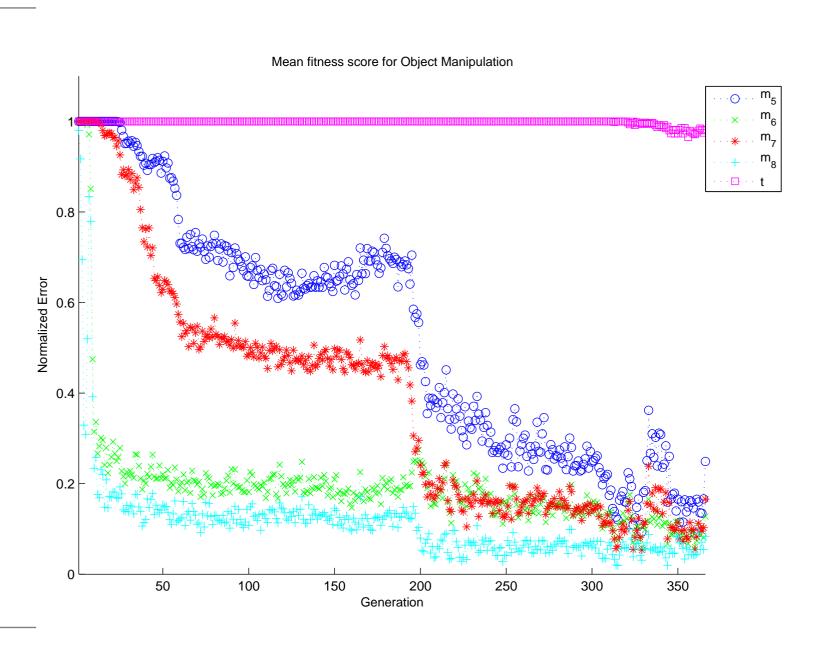
- Imposing an order skews evolution
- "Experts" are evolved
- Solution
 - Construct new composite metrics
 - Eliminate sequential dependencies
 - Rank solutions using radix-based sorting

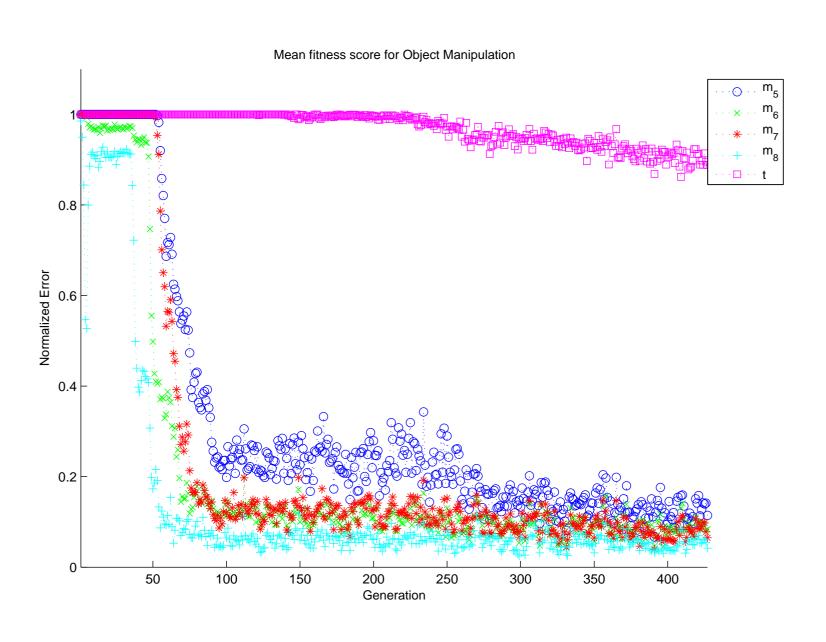
Composite Metric	Composition	Description
$\overline{m_1}$	$\sim c_1 \wedge \sim d_1$	flag, fully performing both
m_2	$\sim c_2 \wedge \sim d_2$	flag, partially performing both
m_3	$\sim c_1 \lor \sim d_1$	flag, fully performing either
m_4	$\sim c_2 \lor \sim d_2$	flag, partially performing either
m_5	$\max(c_1,d_1)$	select the weakest
m_6	$\max(c_2, d_2)$	select the weakest
m_7	$\min(c_1,d_1)$	select the strongest
m_8	$\min(c_2,d_2)$	select the strongest
m_9	ig t	number of timesteps

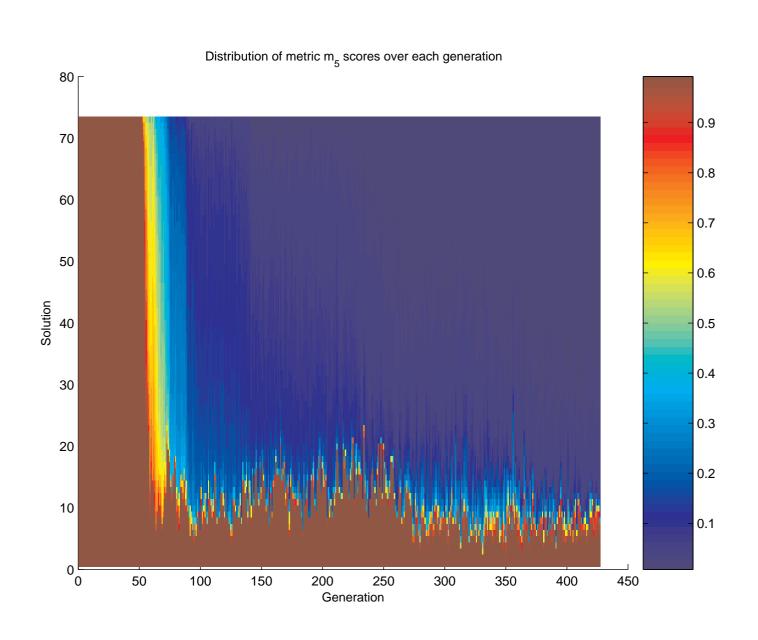
Parameters

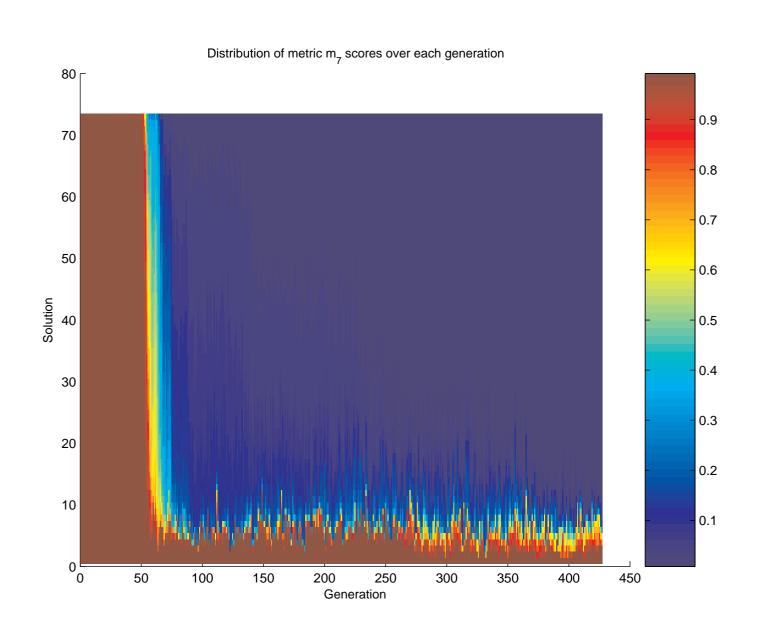
- Population: 32
- Mutations: all top 6 + 2 random
- \blacksquare SWEEP: 100 agents, 50×50 grid
- \bullet C objects = 50
- *D* objects = 30
- Broadcast range = 25
- Sensing range = 5











Conclusions

- Re-designed and Implemented SWEEP
 - Demonstrated the capabilities of SWEEP
 - Better suited for larger/more complex problems
 - Successfully used in applications outside this work
- Designed and implemented ECS
- Established the feasibility of evolving state machines for swarm algorithms
- Successfully generated swarm algorithms for a number of different scenarios
- Demonstrated the use of composite metrics and radix-based ranking to address multi-objective problems

Future Work

- More efficient Sweep core
- Build a standard SWEEP component library
- Use aspect-oriented programming for probing
- Explore other solution encodings
- Attempt more difficult problems
- Autogenerate composite metrics from high-level goals
- Methods of detecting / measuring emergent behaviors

Acknowledgments

Advisor(s):

- Dr. Michael Branicky
- Dr. Dan Palmer
- Dr. Ravi Vaidyanathan

Committee:

- Dr. Randall Beer
- Dr. Roger Quinn

Also:

Orbital Research, Inc.

Questions

Backup Slides

Definitions

Beni, Hackwood, and Wang Unintelligent agents with limited processing capabilities, but possessing behaviors that collectively are intelligent

Definitions

Bonabeau, Dorigo, and Theraluz

Any attempt to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies and other animal societies

Definitions

Clough

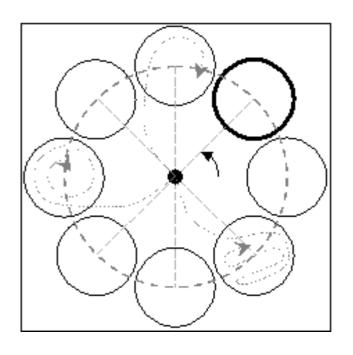
A collection of simple autonomous agents that depend on local sensing and reactive behaviors to emerge global behaviors

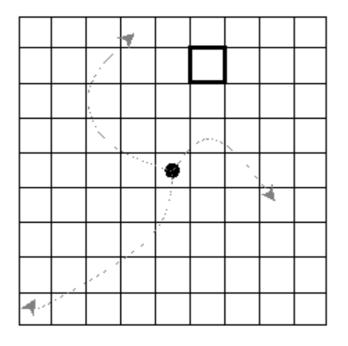
Benefits of swarm intelligence

- Robust
- Distributed
- Parallel
- Simple agents
- Scalability
- Effort Magnification

UAV Chemical Cloud Tracking

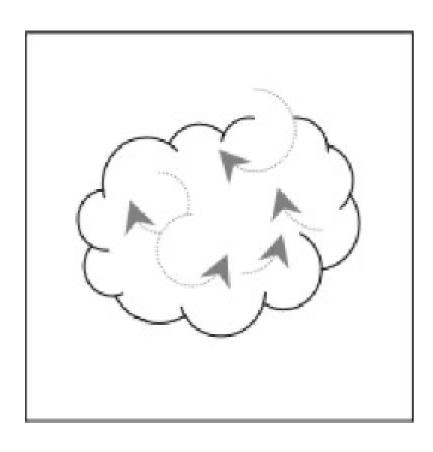
Searching

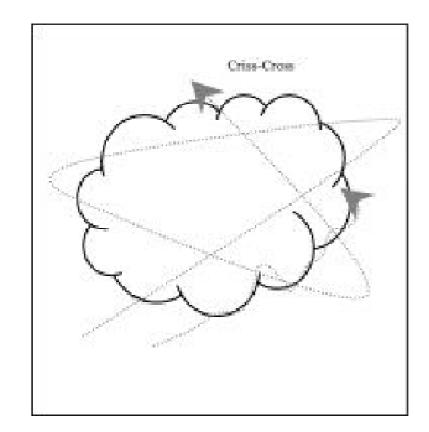


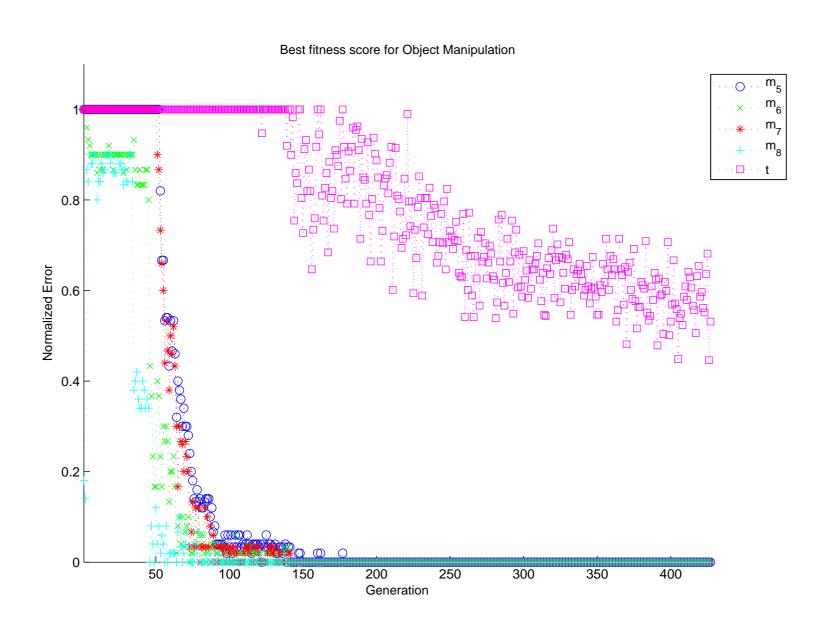


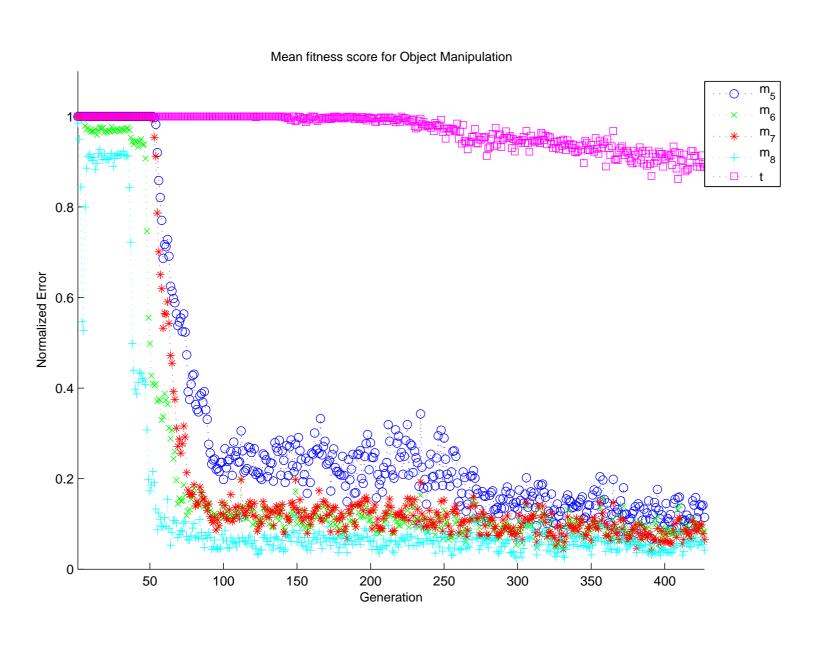
UAV Chemical Cloud Tracking

Mapping



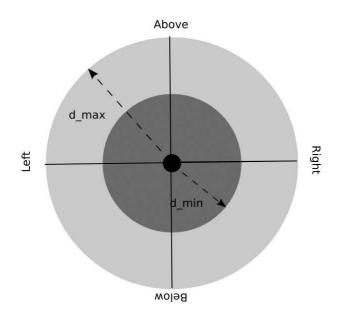






Dispersion

- Swarm Goal: achieve a density level
- Agent Goal:
 - neighbor at least d_{min} units away
 - neighbor not more than d_{max} units away



Dispersion

Fitness: Number of agents violating dispersion criteria

Actions	Sensors
move-up	neighbor-above
move-down	neighbor-below
move-left	neighbor-left
move-right	neighbor-right

Population: 32

Mutations: all top 6 + 2 random

 \bullet Sweep: 100 agents, 50×50 grid

• $d_{min} = 2$, $d_{max} = 4$, range = 6

Dispersion

