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ABSTRACT

The distributions of many financial quantities are well-known to have heavy tails, exhibit

skewness, and have other non-Gaussian characteristics. In this dissertation we study an

especially promising family: the multivariate generalized hyperbolic distributions (GH). This

family includes and generalizes the familiar Gaussian and Student t distributions, and the

so-called skewed t distributions, among many others.

The primary obstacle to the applications of such distributions is the numerical difficulty

of calibrating the distributional parameters to the data. In this dissertation we describe a

way to stably calibrate GH distributions for a wider range of parameters than has previously

been reported. In particular, we develop a version of the EM algorithm for calibrating GH

distributions. This is a modification of methods proposed in McNeil, Frey, and Embrechts

(2005), and generalizes the algorithm of Protassov (2004). Our algorithm extends the

stability of the calibration procedure to a wide range of parameters, now including parameter

values that maximize log-likelihood for our real market data sets. This allows for the first

time certain GH distributions to be used in modeling contexts when previously they have

been numerically intractable.

Our algorithm enables us to make new uses of GH distributions in three financial

applications. First, we forecast univariate Value-at-Risk (VaR) for stock index returns, and

we show in out-of-sample backtesting that the GH distributions outperform the Gaussian

distribution. Second, we calculate an efficient frontier for equity portfolio optimization

under the skewed-t distribution and using Expected Shortfall as the risk measure. Here,

we show that the Gaussian efficient frontier is actually unreachable if returns are skewed t

distributed. Third, we build an intensity-based model to price Basket Credit Default Swaps

by calibrating the skewed t distribution directly, without the need to separately calibrate

xi



the skewed t copula. To our knowledge this is the first use of the skewed t distribution in

portfolio optimization and in portfolio credit risk.
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CHAPTER 1

Introduction

1.1 Calibration of Generalized Hyperbolic
Distributions

It has long been known that financial returns distributions are often not normally distributed,

but the technical difficulties of dealing with non-normal distributions have often stood in the

way of using them in financial modeling. In this dissertation, we address some of these

problems in the context of the generalized hyperbolic (GH) distributions, a parametric

family that has some useful properties and includes many familiar distributions such as the

Student t, Gaussian, Cauchy, variance gamma, and others.

Barndorff-Nielsen (1977) introduced generalized hyperbolic distributions in the study of

grains of sand. Later, Blæsild and Sørensen (1992) developed a computer program called

HY P to fit hyperbolic distributions by using a maximum log-likelihood method. They

reported it is impossible to calibrate the hyperbolic distribution if the dimension is greater

or equal to four. Prause (1999) provided detailed derivations of the derivatives of the log-

likelihood function for generalized hyperbolic distributions in his dissertation, and he applied

HY P to calibrate the three dimensional generalized hyperbolic distributions. Eberlein and

Keller(1995) fit the univariate hyperbolic distribution to return series of German equities

and get a high accuracy fit. It is very time consuming to calibrate multivariate generalized

hyperbolic distributions if we maximize the log-likelihood directly so that there have been

very few applications of multivariate generalized hyperbolic distributions. Prause (1999)

simplified the calculation by considering the much simpler symmetric generalized hyperbolic

distributions. It is clear from this work that the calibration of generalized hyperbolic

distributions has been difficult.

The EM algorithm is a powerful method for calibration that has been used for some time

1



in various contexts. Dempster, Laird and Rubin(1977) showed that the EM(expecation

maximization) algorithm can be used to find maximum likelihood estimates. Liu and

Rubin(1995) used the EM algorithm and its extensions ECME(expectation conditional

maximization either) and MCECM(multi cycle expectation conditional maximization) to

calibrate the Student t distribution. The EM algorithm was used by Protassov(2004) to

calibrate the λ fixed multivariate generalized hyperbolic distributions by maximizing the

augmented log-likelihood. He also reported he is the first one who can calibrate multivariate

generalized hyperbolic distributions when the dimension is greater than three. He fit the five

dimensional normal inverse Gaussian(NIG) distribution to returns series on foreign exchange

rates. Aas and Hobæk Haff(2005a and 2005b)and Aas, Dimakos and Hobæk Haff(2005c) used

NIG and skewed t to model financial returns using EM algorithm.

All this work uses a particular parametrization of the GH family introduced by Barndorff-

Nielsen (1977), in part because that is the parametrization implemented in the HY P pro-

gram. It is consistent with the description of GH by Barndorff-Nielsen and Blæsid (1981) as

normal mean variance mixtures (see chapter 2), where the mixing distribution is a generalized

inverse Gaussian distribution(GIG). However, under this standard parametrization, the

parameters of the underlying GIG distribution are not preserved by linear transformations.

An important innovation was made by McNeil, Frey and Embrechts(2005), where they

gave a new parametrization of GH and the EM algorithm under this parametrization. Under

this new parametrization, the linear transformation of generalized hyperbolic distributions

remains in the same sub-family characterized by the the parameters of GIG.

We follow the framework of Liu and Rubin(1995), Protassov(2004) and McNeil, Frey and

Embrechts(2005)’s EM algorithm and provide our own algorithm. Protassov’s algorithm

can be regarded as a special case of our algorithm. McNeil et al.(2005) mentioned that his

algorithm might be unstable. Protassov’s might be unstable too although he didn’t mention

this. Our algorithm solves the stability problem and we can calibrate the whole family of

generalized hyperbolic distributions. Importantly, we provide a fast algorithm for some sub-

families of GH such as normal inverse gaussian (NIG), variance gamma (V G), skewed t,

and Student t etc.

2



1.2 Applications

We apply generalized hyperbolic distributions in three financial applications: risk manage-

ment, portfolio optimization and pricing of portfolio credit risk, as we now describe.

Risk management. Value at Risk (V aR) based on the normal distribution has been

considered as the standard risk measure since J.P. Morgan launched RiskMetrics in 1994. In

1995, the Basel Committee on Banking Supervision suggested using the 10 day V aR at the

99% level. Yet, the financial return series is heavy tailed and leptokurtic; large losses occur

far away from the V aR based on a normal distribution. For financial return series, at the

99% level, V aR based on a normal distribution usually underestimates the true risk.

Risk managers can not neglect this problem. V aRα depends only on the choice of

underlying distribution. Semi heavy tailed GH has been considered as an alternative.

Barbachan, Farias and Ornelas(2003) and Fajardo and Farias (2003) applied univariate

generalized hyperbolic distributions (with the usual parametrization) to model the Brazilian

data to get more accurate V aR measurements. We use the new parametrization of

generalized hyperbolic distributions to fit the univariate return series and calculate the

corresponding V aRα.

Typical the financial return series usually is not independently and identically distributed

(i.i.d.), so before modeling returns with a particular choice of distribution, we need to filter

the data. We use a GARCH(1, 1) filter with Student t or Gaussian innovations to filter our

data.

After we get the i.i.d. return series, we calibrate NIG, V G, skewed t and hyperbolic

distributions chosen from the general GH family and then implement a V aR backtesting

procedure suggested by McNeil(1999). We show that use of GH distributions leads to better

V aR forecasts than Gaussian.

Portfolio optimization. Portfolio optimization is based on trading off risk and return.

The construction of an efficient frontier – portfolios with minimum risk for a given return –

depends on two inputs: the choice of risk measure, and the probability distribution used to

model returns.

For this purpose one needs to employ some precise concept of “risk” and a accurate

description of the distribution of returns.

Markowitz (1952) suggested using the standard deviation of portfolio return as a risk

3



measure, and, thinking of returns as normally distributed, described the efficient frontier,

which is composed of fully invested portfolios having minimum risk for a given specified

return. However, using standard deviation as the risk measure has the drawback that it

is generally insensitive to extreme events. V aR can describe more about extreme events,

but it can not aggregate risk in the sense of being subadditive on portfolios. This is a well-

known difficulty that is addressed by the concept of a “coherent risk measure” in the sense

of Artzner, Delbaen, Eber, and Heath(1999). A popular example of a coherent risk measure

is the expected shortfall (ES).

It turns out, by a result of Embrechts, McNeil, and Straumann (2001), that when the

underlying distribution is Gaussian – or more generally any “elliptical” distribution – no

matter what positive homogeneous and translation invariant risk measure, no matter what

confidence level, the optimized portfolio composition given a certain return will be the same

as the traditional Markowitz style portfolio composition. Only the choice of distribution

will affect the optimized portfolio. As mentioned before, portfolio managers can not neglect

the deviation of financial returns series from a multivariate normal distribution. Other

heavy tailed elliptical distributions, such as Student t and symmetric generalized hyperbolic

distributions, and non-elliptical distributions, such as the skewed t distribution, can be used

to model financial returns series.

Rockafellar and Uryasev (1999) showed that the minimization of ES does not require

knowing V aR first, and construct a new objective function. By minimizing this new objective

function, we can get V aR and ES. We carry this out and use Monte Carlo simulation to

approximate that new objective function by sampling the multivariate distributions. This

allows us to construct efficient frontiers for a variety of distributions. One consequence we

describe is that the usual Gaussian efficient frontier is actually unreachable if we believe

returns are Student t or skewed t distributed.

Correlations, copulas, and Credit Risk. Copulas have become a popular way to

describe and construct the dependence structure of multivariate distributions. Credit events

tend to happen together because of connections in business. Corresponding to the heavy

tail property in univariate distributions, tail dependence is used to model the co-occurrence

of extreme events. The Student t copula is tail dependent while the Gaussian copula is tail

independent.

The calibration of a Student t copula is separate from the calibration of marginal

4



distributions. It is generally suggested to use the empirical distributions to fit the margins.

In the pricing of multiname credit derivatives such as basket credit default swaps (CDS),

and collateralized debt obligations (CDO), the most important issue is the correlations

between those default obligors. Copulas can be introduced to model these correlations by

using the correlations of corresponding equity prices. We show that Kendall’s τ correlation

remains invariant under monotone transformations. This is the foundation of modeling the

correlation of credit events by using the correlation of underlying equities via copulas, though

nobody mentions this correlation invariance property.

In fact, we can also use a multivariate distribution of underlying equity prices instead

of using copulas to model the correlation of credit events with the correlation of underlying

equities by using this correlation invariance property. The only difference between a copula

approach and a distribution approach lies in the calibration procedure. For a copula

approach, the calibrations of marginal distributions and copula are separate, while for a

distribution approach, the two are jointly calibrated.

For the Student t copula, there is still no good method to calibrate the degree of freedom

ν except to find it by direct search. The calibration of Student t copula takes days while the

calibration of skewed t or Student t distribution takes minutes.

We use the Student t and skewed t distributions to model the correlations of default

obligors in the final chapter.
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CHAPTER 2

Calibration of Multivariate Generalized Hyperbolic

Distributions

Generalized hyperbolic distributions can be parameterized in several ways. Most of

the literature defines the density of generalized hyperbolic distributions directly, such as

Prause(1999) and Protassov(2004). However, such definition makes the application of multi-

variate generalized hyperbolic distributions inconvenient since some important characterizing

parameters are not invariant under linear transformations. We follow McNeil , Frey, and

Embrechts(2005) to introduce the generalized hyperbolic distributions from the definition

of generalized inverse Gaussian distributions by mean-variance mixing method. Under this

parametrization, the linear transformations of generalized hyperbolic random vectors remain

in the same sub family of generalized hyperbolic distributions which is characterized by some

type parameters.

We introduce the building block, generalized inverse Gaussian distributions, in Section

2.1 and generalized hyperbolic distributions in Section 2.2. Some univariate sub families of

generalized hyperbolic distributions have been applied successfully in the modeling of finan-

cial returns, which can be found in Eberlein and Keller(1995), and Barndorff-Nielsen(1997)

etc. We discuss some sub families in Section 2.2 after we introduce the generalized hyperbolic

distributions. In Section 2.3, we discuss the one dimensional generalized hyperbolic distribu-

tions and their tail behavior. We try to explain the role that the parameters of generalized

hyperbolic distributions play in the modeling of the distributions. In Section 2.4, we give

detailed EM algorithms for the multivariate generalized hyperbolic distributions and all

their well known limiting distributions by following the EM algorithm in McNeil , Frey, and

Embrechts(2005). In Section 2.5, we calibrate real financial returns series for generalized

hyperbolic distributions and the limiting or special distributions using McNeil et al(2005),

6



Protassov(2004) and our EM algorithm and compare the performance.

2.1 The Generalized Inverse Gaussian Distributions

Definition 2.1.1 Gamma Distribution. The random variable X is said to have a gamma

distribution, written as X ∼ Gamma(α, β), if its probability density function is

f(x) = βαxα−1e−βx/Γ(α), x > 0, α > 0, β > 0. (2.1.1)

We have the following formulas:

E(X) =
α

β
, (2.1.2)

V ar(X) =
α

β2
, (2.1.3)

E(log(x)) = ψ(α)− log(β), (2.1.4)

where ψ(x) = d log(Γ(x))/dx is digamma function. When X ∼ Gamma(ν/2, 1/2), we say

X is χ2
v distributed ∗.

Definition 2.1.2 Inverse Gamma Distribution. The random variable X is said to have

an inverse gamma distribution, written as X ∼ InverseGamma(α, β), if its probability

density function is

f(x) = βαx−α−1e−β/x/Γ(α), x > 0, α > 0, β > 0. (2.1.5)

If X ∼ Gamma(α, β), then 1/X ∼ InverseGamma(α, β).

We have following formulas which are needed later,

E(X) =
β

α− 1
, if α > 1 (2.1.6)

V ar(X) =
β2

(α− 1)2(α− 2)
, if α > 2 (2.1.7)

E(log(x)) = log(β)− ψ(α). (2.1.8)

∗In some papers and Matlab, a gamma distributed random variable with parameters (a, b), is defined to
be X ∼ Gamma(a, 1/b), where a = α, b = 1/β.
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Definition 2.1.3 Modified Bessel Function of the Third Kind with Index λ. The

integral presentation of the modified Bessel function of the third kind with index λ can be

found in Barndorff-Nielsen et al. (1981),

Kλ(x) =
1

2

∫ ∞

0

yλ−1e−
x
2
(y+y−1)dy, x > 0. (2.1.9)

Definition 2.1.4 Generalized Inverse Gaussian distribution(GIG). The random

variable X is said to have a generalized inverse gaussian(GIG) distribution if its probability

density function is

h(x;λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

xλ−1exp

(
−1

2
(χx−1 + ψx)

)
, x > 0, (2.1.10)

where Kλ is a modified Bessel function of the third kind with index λ and the parameters

satisfy 
χ > 0, ψ ≥ 0 ifλ < 0
χ > 0, ψ > 0 ifλ = 0
χ ≥ 0, ψ > 0 ifλ > 0

In short, we write X ∼ N−(λ, χ, ψ) if X is GIG distributed.

The following formulas for GIG distributed variable X when χ > 0 and ψ > 0 may be

needed later,

E(Xα) =

(
χ

ψ

)α/2
Kλ+α(

√
χψ)

Kλ(
√
χψ)

, (2.1.11)

especially when α = ± 1 and 2, and

E(log(X)) =
dE(Xα)

dα
|α=0, (2.1.12)

where equation 2.1.12 needs to be evaluated numerically. More details of GIG can be found

in Jørgensen(1982) and Barndorff-Nielsen and Stelzer(2004).

The generalized hyperbolic distributions can be introduced from GIG distributions and

their properties are greatly characterized by the corresponding GIG distributions. Therefore,

it is meaningful to discuss some special cases of GIG distributions.

When λ = −0.5, GIG becomes the inverse Gaussian distribution and its corresponding

generalized hyperbolic distribution is the normal inverse Gaussian distribution. In addition,

we have an explicit form of the Bessel function,

K 1
2
(x) =

√
π

2
x−1/2e−x. (2.1.13)

8



When χ = 0 and λ > 0, GIG becomes the so-called gamma distribution and it is

denoted by X ∼ Gamma(λ, ψ/2). This limiting case of GIG will lead to the limiting case

of generalized hyperbolic distributions: the variance gamma distribution. The following

asymptotic formula is useful when calculating the limiting density of GIG and GH,

Kλ(x) ∼ Γ(λ)2λ−1x−λ as x ↓ 0. (2.1.14)

When ψ = 0 and λ < 0, GIG becomes the so-called inverse gamma distribution and

it is denoted by X ∼ InverseGamma(−λ, χ/2). This limiting case of GIG will lead to a

limiting case of generalized hyperbolic distributions called the skewed t distribution, under

some conditions mentioned in Section 2.2.2. The following asymptotic formula is useful when

calculating the limiting density of GIG and GH,

Kλ(x) ∼ Γ(−λ)2−λ−1xλ as x ↓ 0. (2.1.15)

The following fact of Bessel function is also very useful,

Kλ(x) = K−λ(x). (2.1.16)

More details about the limiting case of GIG can be found in Eberlein and Hammer-

stein(2003).

2.2 The Multivariate Generalized Hyperbolic
Distributions

Generalized hyperbolic distributions can be represented as a normal mean-variance mixture

where the mixture variable is GIG distributed.

Definition 2.2.1 Normal Mean-Variance Mixture. The random variable X is said to

have a multivariate normal mean-variance mixture distribution if

X
d
= µ +Wγ +

√
WAZ, where (2.2.1)

1. Z ∼ Nk(0, Ik),

2. W ≥ 0 is a positive, scalar-valued r.v. which is independent of Z,

3. A ∈ Rd×k is a matrix,
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4. µ and γ are parameter vectors in Rd.

From the definition, we can see that

X | W ∼ Nd(µ +Wγ,WΣ), (2.2.2)

where Σ = AA′. This is also why it is called normal mean-variance mixture distribution.

We can get the following moment formulas easily from the mixture definition

E(X) = µ + E(W )γ, (2.2.3)

COV (X) = E(W )Σ + var(W )γγ ′, (2.2.4)

when the mixture variable W has finite variance var(W ).

The mixture variable W can be explained as a shock which changes the volatility and

mean of the normal distribution in economics.

If the mixture variable W is GIG distributed, then X is said to have a generalized

hyperbolic distribution.

If γ = 0, then X is said to have a symmetric generalized hyperbolic distribution and

Schmidt(2003a) showed that it is also an elliptical distribution; otherwise, it is not elliptical.

More details of elliptical distributions can be found in Fang, Kotz and Ng(1990).

Theorem 2.2.2 Generalized Hyperbolic Distributions(GH)(McNeil , Frey, and

Embrechts(2005)). If the mixing variable W ∼ N−(λ, χ, ψ), then the joint density of d-

dimensional generalized hyperbolic distributions in the non-singular case (Σ has rank d) is

given by,

f(x) = c
Kλ− d

2

(√
(χ+ (x − µ)′Σ−1(x − µ)) (ψ + γ′Σ−1γ)

)
e(x − µ)′

Σ−1γ(√
(χ+ (x − µ)′Σ−1(x − µ)) (ψ + γ′Σ−1γ)

) d
2
−λ

, (2.2.5)

where the normalizing constant is

c =
(
√
χψ)−λψλ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ| 12Kλ(

√
χψ)

,

and | · | denotes the determinant.
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Proof: From the definition of normal mean-variance mixture distribution, the joint density

of X is given by

f(x) =

∫ ∞

0

1

(2π)
d
2 |Σ| 12w d

2

exp

{
−(x − µ − wγ)′(wΣ)−1(x − µ − wγ)

2

}
h(w)dw,

where h(w) is the density of W . f(x) can be rewritten as,

f(x) =

∫ ∞

0

e(x − µ)
′
Σ−1γ

(2π)
d
2 |Σ| 12w d

2

exp

{
−(x − µ)′Σ−1(x − µ)

2w
− γ′Σ−1γ

2/w

}
h(w)dw.

From equation 2.1.10, after some rearrangements, we can get the following,

f(x) =
(
√
χψ)−λψλe(x − µ)

′
Σ−1γ

(2π)
d
2 |Σ| 12Kλ(

√
χψ)

×

1

2

∫ ∞

0

wλ−
d
2
−1exp

{
−(x − µ)′Σ−1(x − µ) + χ

2w
− γ′Σ−1γ + ψ

2/w

}
dw.

By setting,

y = w

√
(ψ + γ′Σ−1γ)√

(χ+ (x − µ)′Σ−1(x − µ))
,

after some rearrangements, we can get,

f(x) = c
e(x − µ)′

Σ−1γ(√
(χ+ (x − µ)′Σ−1(x − µ)) (ψ + γ′Σ−1γ)

) d
2
−λ
×

1

2

∫ ∞

0

yλ−
d
2
−1exp

{
−1

2

√
(χ+ (x − µ)′Σ−1(x − µ)) (ψ + γ′Σ−1γ)

[
1

y
+ y

]}
dy

By definition 2.1.3, we can get the density of generalized hyperbolic distributions.

In the sequel, we denote the quadratic form by

ρx = (x − µ)′Σ−1(x − µ). (2.2.6)

By equation 2.1.11, equation 2.2.3 and equation 2.2.4, the mean and covariance of GH

distributed random vector X are given by

E(X) = µ + γ

(
χ

ψ

)1/2
Kλ+1(

√
χψ)

Kλ(
√
χψ)

, (2.2.7)
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COV (X) =

(
χ

ψ

)1/2
Kλ+1(

√
χψ)

Kλ(
√
χψ)

Σ+γγ ′

(χ
ψ

)
Kλ+2(

√
χψ)

Kλ(
√
χψ)

−

((
χ

ψ

)1/2
Kλ+1(

√
χψ)

Kλ(
√
χψ)

)2
 ,

(2.2.8)

when the mixing variable W has finite variance.

For a d-dimensional normal distributed random vector, X ∼ Nd(µ,Σ), it is well known

that the characteristic function is

φX (t) = E(eit
′X ) = eit

′µ−t′
Σt/2. (2.2.9)

From the mean-variance mixture definition, we can get the characteristic function of the

generalized hyperbolic distributed random vector X,

φX (t) = E
(
E(eit

′X |W )
)

= E(eit
′
(µ+Wγ)−Wt′

Σt/2) (2.2.10)

= eit
′µĤ(t′Σt/2− it′γ),

where Ĥ(θ) = E(e−θW ) is the Laplace transform of the GIG distribution. The form

of the characteristic function of the generalized hyperbolic distributions shows that the

parameters coming from GIG play important roles in modeling GH. We use the notation

X ∼ GHd(λ, χ, ψ,µ,Σ,γ). The first three parameters are from the mixing distribution,

while the last three are location, scale, and skewness parameters.

The characteristic function can be used to show that generalized hyperbolic distributions

are closed under linear transformations.

Proposition 2.2.3 Linear Transformations of Generalized Hyperbolic Distribu-

tions(McNeil , Frey, and Embrechts(2005)). If X ∼ GHd(λ, χ, ψ,µ,Σ,γ) and

Y = BX + b where B ∈ Rk×d and b ∈ Rk, then Y ∼ GHk(λ, χ, ψ,Bµ + b, BΣB′, Bγ).

Proof:

φY (t) = E(eit
′
(BX+b)) = eit

′bφX (B′t)

= eit
′
(Bµ+b)Ĥ(t′BΣB′t/2− it′Bγ).
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This proposition shows that the linear transformations of generalized hyperbolic distri-

bution still remain in the generalized hyperbolic distribution class generated by the same

generalized inverse Gaussian distribution N−(λ, χ, ψ) and this property is very useful in the

portfolio management.

Corollary 2.2.4 Weighted Sum of Generalized Hyperbolic Random Variables. If

B = ωT = (ω1, · · · , ωd), and b = 0, then the portfolio y = ωTX is a one dimensional

generalized hyperbolic distribution, and

y ∼ GH1(λ, χ, ψ,ω
Tµ,ωTΣω,ωTγ). (2.2.11)

Gaussian distributions and Student t distributions are closed under linear transformations.

Generalized hyperbolic distributions are also closed under linear transformations. This corol-

lary shows that the method used in portfolio risk management based on Gaussian or Student

t distribution can also be used in generalized hyperbolic distributions. Gaussian distributions

and Student t distributions are elliptical, while Generalized hyperbolic distributions are not,

so that they can capture more characteristics about financial data series such as asymmetry

but do not incur more difficulty in application. We can calculate the portfolio risk such as

standard deviation, V aR, and ES etc. without Monte Carlo simulation. This corollary also

shows that the marginal distributions are automatically obtained once we have calibrated

the multivariate generalized hyperbolic distributions, i.e., Xi ∼ GH1(λ, χ, ψ, µi,Σii, γi).

2.2.1 Parameterizations

We can see from equation 2.2.5 that for any c > 0,

GHd(λ, χ/c, cψ,µ, cΣ, cγ) = GHd(λ, χ, ψ,µ,Σ,γ). (2.2.12)

This identification problem does cause a lot of trouble in the calibration, where the

redundant information causes the algorithm to be unstable. In practice, many people set

the determinant of Σ to be 1 when fitting the data and call this new dispersion matrix ∆.

McNeil , Frey, and Embrechts(2005) mentioned that after rescaling, we can obtain the

usual definition of generalized hyperbolic distributions by following the transformation

β = ∆−1γ, δ =
√
χ, α =

√
ψ + β′∆β. (2.2.13)
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These parameters must satisfy the constraints:
δ > 0, α2 ≥ β′∆β ifλ < 0
δ > 0, α2 > β′∆β ifλ = 0
δ ≥ 0, α2 > β′∆β ifλ > 0.

We will discuss more about the equivalence in one dimension in Section 2.3. Blæsild(1981)

used this parametrization to show that generalized hyperbolic distributions are closed under

linear operations and conditioning; however, unfortunately, α, and δ are not generally

invariant. More details can be found in Prause(1999).

McNeil , Frey, and Embrechts (2005) set the determinant of Σ to be the determinant of

the sample covariance matrix. From our calibration experience, the most stable way is to

set χ to be a constant if λ > −1 and to set ψ to be a constant if λ < 1. See Section 2.4 for

the difference of the algorithms.

2.2.2 Some Special Cases

Hyperbolic Distributions:

If λ = 1, we get the multivariate generalized hyperbolic distribution whose univariate

margins are one-dimensional hyperbolic distributions.

If λ = (d+ 1)/2, we get the d-dimensional hyperbolic distribution, however, its marginal

distributions are not hyperbolic distributions any more.

The one dimensional hyperbolic distribution is widely used in the modeling of univariate

financial data, such as Eberlein and Keller(1995), Fajardo and Farias(2003).

Normal Inverse Gaussian Distributions(NIG):

If λ = −1/2, then the distribution is known as normal inverse Gaussian (NIG). NIG

is largely used in the modeling of univariate financial return too. For NIG distribution,

we have a fast algorithm to calibrate it. See Section 2.4 for the details of the algorithm.

Variance Gamma Distribution(V G):

If λ > 0 and χ = 0, then we get a limiting case known as the variance gamma distribution.

For the variance gamma distribution, we can calibrate all the parameters including λ. See

Section 2.4 for the details of the algorithm.

By replacing χ by 0 and χ−λ/2

Kλ(
√
χψ)

by ψλ/2

Γ(λ)2λ−1 in equation(2.2.5), we can get the density

function of variance gamma.
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The mean and covariance of a variance gamma distributed random vector X are

E(X) = µ + γ
2λ

ψ
, (2.2.14)

COV (X) =
2λ

ψ
Σ + γγ ′4λ

ψ2
. (2.2.15)

Skewed t Distribution:

If λ = −ν/2, χ = ν and ψ = 0, we get a limiting case which is called the skewed t

distribution by Demarta and McNeil(2005). The Student t distribution is widely used in

the modeling of univariate financial data since we can model the heaviness of the tail by

controlling the degree of freedom, ν. It can be used in the modeling of multivariate financial

data too since the EM algorithm can be used to calibrate it. It is also widely used to

model dependence by creating a Student t copula from the Student t distribution. Student t

copulas are widely used in the modeling of financial correlations since they are upper tail and

lower tail dependent and very easy to calibrate. However, they are symmetric and bivariate

exchangeable. It is arguable that one should not use symmetric and exchangeable copulas

since financial events tend to crash together more than boom together. Schmidt(2003a)

showed that all copulas created from symmetric generalized hyperbolic distributions are

tail independent. A Student t distribution is a limiting case of symmetric generalized

hyperbolic distributions. It may be interesting to create the skewed t copula from skewed

t distributions. More discussions about symmetry and exchangeability of Student t copula

and its extension, skewed t copula, can be found in Demarta and McNeil(2005) and McNeil,

Frey and Embrechts(2005).

By replacing ψ by 0, χ by ν, λ by −ν/2 and ψλ/2

Kλ(
√
χψ)

by νν/4

Γ(ν/2)2ν/2−1 in equation(2.2.5),

we can get the density function of skewed t distribution.

Definition 2.2.5 Skewed t Distribution. If X is skewed t distributed, then the joint

density function is given by

f(x) = c
K ν+d

2

(√
(ν + ρx) (γ′Σ−1γ)

)
e(x − µ)′

Σ−1γ(√
(ν + ρx) (γ′Σ−1γ)

)− ν+d
2

(1 + ρx

ν
)

ν+d
2

, (2.2.16)
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where the normalizing constant is

c =
21− ν+d

2

Γ(ν
2
)(πν)

d
2 |Σ| 12

.

The mean and covariance of skewed t distributed random vector X are

E(X) = µ + γ
ν

ν − 2
, (2.2.17)

COV (X) =
ν

ν − 2
Σ + γγ ′ 2ν2

(ν − 2)2(ν − 4)
, (2.2.18)

where the covariance matrix is only defined when ν > 4.

Furthermore, if γ = 0, using equation 2.1.14, we get the Student t distribution.

Definition 2.2.6 Student t Distribution. If X is t distributed, then the joint density

function is given by

f(x) =
Γ(ν+d

2
)

Γ(ν
2
)(πν)

d
2 |Σ| 12

(1 +
ρx

ν
)−

ν+d
2 . (2.2.19)

The mean and covariance of Student t distributed random vector X are

E(X) = µ, (2.2.20)

COV (X) =
ν

ν − 2
Σ, (2.2.21)

where the covariance matrix is only defined when ν > 2.

2.3 One Dimensional Generalized Hyperbolic
Distributions

One dimensional generalized hyperbolic distributions, especially, the hyperbolic distribution

and normal inverse Gaussian distribution, are well known for their better fit to univariate

financial data. They provide heavy, or at least semi-heavy tailed distribution. In equation

2.2.5, setting d = 1 and Σ = σ2, we can get the one dimensional generalized hyperbolic

distributions.
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Definition 2.3.1 Density Function of One Dimensional Generalized Hyperbolic

Distributions(1dGH). If X is one-dimensional generalized hyperbolic distributed, then

the density function is given by

f(x;λ, χ, ψ, µ, σ, γ) =
(
√
ψχ)−λψλ(ψ + γ2

σ2 )
0.5−λ

√
2πσKλ(

√
ψχ)

(2.3.1)

×
Kλ−0.5

(√(
χ+ (x−µ)2

σ2

)(
ψ + γ2

σ2

))
e

γ(x−µ)

σ2(√(
χ+ (x−µ)2

σ2

)(
ψ + γ2

σ2

))0.5−λ

where Kλ denotes a modified Bessel function of the third kind with index λ, and x ∈ R. The

domain of variations of the parameters are µ ∈ R and
χ > 0, ψ ≥ 0 ifλ < 0
χ > 0, ψ > 0 ifλ = 0
χ ≥ 0, ψ > 0 ifλ > 0.

If we set γ̃ = γ
σ
, then we can see that σ is the scale parameter and µ is the location

parameter since only the termx−µ
σ

and not x alone appears in the density function.

By setting,

c =
1

σ2
, β =

γ

σ2
, δ =

√
χ

c
, α =

√
ψ

σ2
+ β2,

we can get the following definition used in most of the literature by some algebra.

Theorem 2.3.2 Density Function of 1-d GH Distributions Used in Most Litera-

ture. If X is one-dimensional generalized hyperbolic distributed, then the density function

is given by

gh(x;λ, α, β, δ, µ) = a(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ−0.5)/2
(2.3.2)

×Kλ−0.5

(
α
√
δ2 + (x− µ)2

)
exp (β(x− µ)) ,

and the normalizing constant is,

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ−0.5δλKλ

(
δ
√
α2 − β2

) .
The domain of variations of the parameters are µ ∈ R and

δ > 0, |β| ≤ α ifλ < 0
δ > 0, |β| < α ifλ = 0
δ ≥ 0, |β| < α ifλ > 0.
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By setting λ = −1/2 in equation 2.3.1, we get the one-dimensional normal inverse

Gaussian distribution.

Definition 2.3.3 Density Function of NIG. If X is one-dimensional NIG distributed,

then the density function is given by

f(x;λ, χ, ψ, µ, σ, γ) =
χ1/2(ψ + γ2

σ2 )

πσe−
√
χψ

(2.3.3)

×
K1

(√(
χ+ (x−µ)2

σ2

)(
ψ + γ2

σ2

))
e

γ(x−µ)

σ2(√(
χ+ (x−µ)2

σ2

)(
ψ + γ2

σ2

))
By setting λ = −1/2, γ = 0, and ψ → 0, we get the one-dimensional Cauchy distribution.

Definition 2.3.4 Density Function of Cauchy Distribution. If X is one-dimensional

Cauchy(µ, δ) distributed, then the density function is given by

f(x) =
δ

π(δ2 + (x− µ)2)
, (2.3.4)

where δ = σ
√
χ.

The stable distribution† is well known for its heavy tail and is widely used in the modeling

of univariate financial data and portfolio management. Theoretical framework can be found

in Nolan(2005) and financial applications can be found in Rachev and Mittnik(2000).

Definition 2.3.5 Stable Distribution. A random variable X is said to have a stable

distribution if there are parameters α ∈ (0, 2], a ∈ [0,∞), β ∈ [−1, 1] and b ∈ R such that its

characteristic function has the following form:

ΨX(t) =

{
exp

{
−aα|t|α

(
1− iβ(sign t) tan πα

2
+ ibt

)}
if α 6= 1

exp
{
−a|t|

(
1 + iβ 2

π
(sign t) ln |t|

)
+ ibt

}
if α = 1

where α is the index of stability, a is scale parameter, b is location parameter and β is

skewness parameter. If β and µ are zero, X is said to be symmetric stable, which is denoted

X ∼ SαS.

†The calibration of stable distribution can be found in http://pws.prserv.net/jpnolan/
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A Gaussian distribution N(µ, σ2) is stable with( α = 2, β = 0, a = σ/
√

2 and b = µ). A

Cauchy (µ, δ) distribution is stable with( α = 1, β = 0, a = δ and b = µ).

However, a common criticism of the stable distribution, such by as Eberlein et al.(1995),

is that their tails are too heavy.

Tails of Some Distributions:

1. Tails of Cauchy Distribution. If X is of Cauchy distribution, then

f(x) ∼ c

x2
as x→ ±∞, (2.3.5)

where c is a constant. Cauchy distribution has neither mean nor variance.

2. Tail of Stable Distribution(Nolan(2005)). If X is of stable distribution, then

f(x) ∼ cx−α−1 as x→∞, (2.3.6)

which means that the tail is a power function. For 0 < α < 2, E|X|p <∞ if 0 < p < α.

In particular EX2 = ∞ for all non-Gaussian stable distributions, which means they

have infinity second moment.

3. Tails of Gaussian Distribution. If X is of Gaussian distribution, then

f(x) ∼ ce−x
2/2 as x→ ±∞, (2.3.7)

which means that the tail is an exponential function of square function. Both tails are

very thin.

4. Tails of Student t Distribution. If X is of Student t distribution, then

f(x) ∼ c|x|−ν−1 as x→ ±∞, (2.3.8)

which means that the tail is a power function.

From equation 2.3.1, we can get the tails of generalized hyperbolic distributions.

Theorem 2.3.6 Tails of Generalized Hyperbolic Distributions. If X is of generalized

hyperbolic distributions, then

fGH(x;λ, χ, ψ, µ, σ, γ) ∼ c|x|λ−1e−α|x|+βx as x→ ±∞, (2.3.9)
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where c is a constant, α =
√

ψ+γ2/σ2

σ2 , and β = γ
σ2 . In addition, the right tail will be heavier

if γ > 0 and the heavier right tail decays as

fGH(x;λ, χ, ψ, µ, σ, γ) ∼ cxλ−1e−αx+βx as x→ +∞ ifγ > 0, (2.3.10)

and the heavier left tail decays as

fGH(x;λ, χ, ψ, µ, σ, γ) ∼ c|x|λ−1eαx+βx as x→ −∞ ifγ < 0. (2.3.11)

This theorem shows that the tail is the product of a power function and an exponential

function. Generalized hyperbolic distributions can be regarded as semi-heavy tailed distri-

butions.

Theorem 2.3.7 Tails of Skewed t Distribution. If X is of skewed t distribution, then

f(x; ν, µ, σ, γ) ∼ c|x|−ν/2−1e−α|x|+βx as x→ ±∞, (2.3.12)

where c is a constant, α = |γ|
σ2 , and β = γ

σ2 . In addition, the heavier right tail decays as

f(x; ν, µ, σ, γ) ∼ c|x|−ν/2−1 as x→ +∞ if γ > 0, (2.3.13)

and the heavier left tail decays as

f(x; ν, µ, σ, γ) ∼ c|x|−ν/2−1 as x→ −∞ if γ < 0. (2.3.14)

We can see that the tail of skewed t can decay as a power function and it is heavier than

Student t distribution.

As we see before, there are six type of parameters in generalized hyperbolic distributions.

We will show by some exhibits to see how these parameters play roles in the generalized

hyperbolic distributions.

The Role of λ:

λ defines a sub-family of the generalized hyperbolic distributions. When λ = 1, it is

hyperbolic distribution, and when λ = −0.5, it is normal inverse Gaussian distribution.

We set µ = 0, γ = 0, ψ = 1, χ = 1 and σ to be a constant so that the variance of the

generalized hyperbolic distribution is 1 and mean is 0. In addition, we compare the density

of standard Gaussian distribution with GH distributions.
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Figure 2.1: The density of GH and Gaussian

The log density of hyperbolic distribution is a hyperbola, while the log density of Gaussian

distribution is a parabola. From Figure 2.1, We can see that hyperbolic, and normal inverse

Gaussian obviously have heavier tails than Gaussian distribution. NIG has slightly heavier

tails than Hyperbolic distribution(see McNeil et al.(2005)).
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In the following exhibit, let us explore how the λ influences the tails and kurtosis. We

let λ vary from -10 to 10, set µ = 0, γ = 0, ψ = 1, χ = 1 and σ to be a constant so that the

variance of the generalized hyperbolic distribution is 1 and mean is 0.
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Figure 2.2: The density of GH and Gaussian
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Figure 2.3: The density of GH and Gaussian at right tail

From Figure 2.2 and Figure 2.3, we can see that λ plays an important role in the

generalized hyperbolic distributions. For all λ tested in this exhibit, all have heavier tails

than Gaussian distribution and both NIG and λ = −1 cases have the heaviest tail among 9

tested generalized hyperbolic distributions. When |λ| is small, the tails are heavy. When |λ|
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Figure 2.4: The density of GH with large |λ|and Gaussian

becomes much larger, the tails become thinner. Actually, when |λ| is very large, symmetric

generalized hyperbolic distributions look like the Gaussian distribution, which can be seen

from figure 2.4.

The Role of χ:

We set µ = 0, γ = 0, ψ = 1, λ = 5, let χ vary from 100 to 0.1 and σ to be a constant for

the generalized hyperbolic distributions so that they have mean 0 and variance 1. We set

µ = 0, γ = 0, ψ = 1, λ = 5 and and σ to be a constant for the variance gamma distribution

so that it has mean 0 and variance 1. From Figure 2.5, we can see that variance gamma

distribution is the limiting distribution of generalized hyperbolic distributions when χ goes

to 0, and variance gamma has the heaviest tail among those tested distributions.

The Role of ψ:

We set µ = 0, γ = 0, χ = 5, λ = −2.5, let ψ vary from 100 to 0.01 and σ to be a constant

for the generalized hyperbolic distributions so that they have mean 0 and variance 1. We
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Figure 2.5: The density of Gaussian, GH with χ decreasing to 0 and variance gamma

set µ = 0, γ = 0, ν = 5 and σ to be a constant for the skewed t distribution so that it has

mean 0 and variance 1.

From Figure 2.6, we can see that skewed t distribution is the limiting distribution of

generalized hyperbolic distributions when ψ goes to 0, and λ = −ν/2 and skewed t has the
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Figure 2.6: The density of Gaussian, GH with ψ decreasing to 0 and skewed t

heaviest tail among those tested distributions.

The Role of γ, µ, σ: µ is the location parameter, σ is the scale parameter and γ is

skewness parameter. The location and scale parameters are common for all distributions.

The skewness parameter is very useful in the modeling financial return data. It is believed

26



that for a large part of the financial return data the left tail is slightly heavier than the right

tail. From equation 2.3.9, we can see that when γ is negative, the left tail is slightly heavier

than the right tail.

2.4 EM Algorithm for The Estimation of Generalized
Hyperbolic Distributions

While univariate generalized hyperbolic models have been applied widely in the modeling

of financial data, little work has been done about the multivariate generalized hyperbolic

distributions. Maximizing the log-likelihood of multivariate generalized hyperbolic distri-

butions is not very tractable. The conventional HY P program developed by Blæsid and

Sörensen(1992) can not handle the calibration when the dimension is greater than three since

there are too many parameters. Prause(1999) can only calibrate the symmetric generalized

hyperbolic distributions at any dimension using HY P .

However, the mean-variance representation of generalized hyperbolic distributions has a

great advantage. The EM algorithm can be applied to such a representation. The generalized

hyperbolic random variable can be represented as a conditional normal distribution so that

most of the parameters (Σ,µ,γ) can be calibrated like a Gaussian distribution if other three

type parameters (λ, χ, ψ) are already estimated or assumed to be some values.

We follow the EM algorithm framework of McNeil , Frey, and Embrechts(2005) for

generalized hyperbolic distributions and provide our algorithm for generalized hyperbolic

distributions with large |λ| and call it ψ algorithm and χ algorithm. Importantly, we provide

our special algorithms for the limiting or special cases: V G, skewed t, NIG, and Student t

distributions.

Assume that we have i.i.d. data‡ x1, · · · ,xn, where xi ∈ Rd and we want to fit these

data by multivariate generalized hyperbolic distributions . The parameters are denoted by

ζ = (λ, χ, ψ,Σ,µ,γ). The log-likelihood function that we want to maximize is

logL(ζ;x1, · · · ,xn) =
n∑
i=1

log fXi
(xi; ζ). (2.4.1)

It is almost impossible to maximize the above objective function directly if the dimension is

greater than three. The idea of the EM algorithm is to introduce the latent mixing variables

‡Usually, the financial data is not i.i.d., we will solve this problem in Section 3.3 by using GARCH filter.
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w1, · · · , wn and suppose they were observable at the beginning and optimize the following

quasi or augmented log-likelihood function,

log L̃(ζ;x1, · · · ,xn, w1, · · · , wn) =
n∑
i=1

log fXi,Wi
(xi, wi; ζ). (2.4.2)

By the mean-variance mixture definition of generalized hyperbolic distributions, the log-

likelihood function can be rewritten as

log L̃(ζ;x1, · · · ,xn, w1, · · · , wn) =
n∑
i=1

log fXi|Wi
(xi|wi; µ,Σ,γ) +

n∑
i=1

log hWi
(wi;λ, χ, ψ) = (2.4.3)

L1(µ,Σ,γ;x1, · · · ,xn|w1, · · · , wn) + L2(λ, χ, ψ;w1, · · · , wn),

where X|W ∼ N(µ + wγ, wΣ) and fX|W (x|w) is the density of conditional normal

distribution, and h(w) is the density function GIG distributed mixing random variable.

We can see from the above equation that the calibration of Σ,µ,γ and λ, χ, ψ can be

separate by maximizing L1, and L2 respectively.

Following the same procedure in the proof of Theorem 2.2.2, the density of conditional

normal distribution can be rewritten as,

fX|W (x|w) =
1

(2π)
d
2 |Σ| 12w d

2

e(x−µ)′Σ−1γe
−ρ
2w e−

w
2
γ ′Σ−1γ ,

where

ρ = (x− µ)′Σ−1(x− µ).

Then, we can get the log-likelihood function L1,

L1(µ,Σ,γ;x1, · · · ,xn|w1, · · · , wn) = (2.4.4)

−n
2

log |Σ| − d

2

n∑
i=1

logwi +
n∑
i=1

(xi − µ)′Σ−1γ

−1

2

n∑
i=1

1

wi
ρi −

1

2
γ ′Σ−1γ

n∑
i=1

wi.
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From equation 2.1.10, we can get the log-likelihood function L2,

L2(λ, χ, ψ;w1, · · · , wn) = (2.4.5)

(λ− 1)
n∑
i=1

logwi −
χ

2

n∑
i=1

w−1
i − ψ

2

n∑
i=1

wi −
nλ

2
logχ

+
nλ

2
logψ − n log (2Kλ(

√
χψ)).

Estimation of Σ,µ,γ is obtained by maximizing L1. Suppose that the latent mixing

variables w1, · · · , wn are observable. Following the standard routine of optimization, we take

the partial derivative of L1 with respect to Σ, µ, and γ, and set

∂L1

∂µ
= 0

∂L1

∂γ
= 0 (2.4.6)

∂L1

∂Σ
= 0.

From the above equation array, we can get the following estimations§,

γ =
n−1

∑n
i=1w

−1
i (x̄− xi)

n−2 (
∑n

i=1wi)
(∑n

i=1w
−1
i

)
− 1

(2.4.7)

µ =
n−1

∑n
i=1w

−1
i xi − γ

n−1
∑n

i=1w
−1
i

(2.4.8)

Σ =
1

n

n∑
i=1

w−1
i (xi − µ)(xi − µ)′ − 1

n

n∑
i=1

wiγγ ′. (2.4.9)

Estimation of λ, χ, ψ is obtained by maximizing L2. In general, we assume λ to be a

constant. Nobody reports that one can calibrate λ for multivariate generalized hyperbolic

distributions until now. To maximize L2, we take the partial derivative with respect to χ

and ψ and solve the following equation array,

∂L2

∂χ
= 0 (2.4.10)

∂L2

∂ψ
= 0.

§To solve this equation array, some knowledge of multivariate statistics algebra is required. Most standard
multivariate statistics books have this in the introduction chapter or appendix.
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Solving the above equation array leads us to solve θ =
√
χψ from the following equation

first,

n−2

n∑
i=1

wi

n∑
j=1

w−1
j K2

λ(θ)θ + 2λKλ+1(θ)Kλ(θ)− θK2
λ(θ) = 0¶. (2.4.11)

We find θ by zero-finder routine in Matlab, fzero. Once θ is solved, we can get parameters

(χ, ψ),

χ =
n−1θ

∑n
i=1wiKλ(θ)

Kλ+1(θ)
, (2.4.12)

ψ =
θ2

χ
. (2.4.13)

Especially, when λ = −0.5, we have the normal inverse Gaussian distribution, and we

are able to get θ explicitly since K−λ(x) = Kλ(x) for any λ,

θ =
2λ

1− n−2
∑n

i=1wi
∑n

j=1w
−1
j

. (2.4.14)

Therefore, for NIG, we have a comparatively fast algorithm. Protassov(2004) successfully

fit NIG to five dimensional currency data.

When χ = 0, and λ > 0, it is variance gamma distribution and we are able to get λ by

setting ∂L2

∂λ
= 0 from the following equation,

log(λ)− log(n−1

n∑
i=1

wi) + n−1

n∑
i=1

log(wi)− φ(λ) = 0, (2.4.15)

where φ(λ) is the di-gamma function. We can get

ψ =
2λ

n−1
∑n

i=1wi
. (2.4.16)

When ψ = 0, it is an unknown distribution, however, if we continue to set λ = −ν/2, and

χ = ν, we can get skew t distribution with degree of freedom ν. Following standard routine

mentioned above, the only type parameter, ν, can be solved from the following equation,

− ψ(
ν

2
) + log(ν/2) + 1− n−1

n∑
i=1

w−1
i − n−1

n∑
i=1

log(wi) = 0. (2.4.17)

However, the latent mixing variables w1, · · · , wn are not observable. An iteration

procedure consisting of E-step and M-step is needed. The E-step is called the estimation

¶This equation is similar to equation 2.4.36 and we prove equation 2.4.36 in the appendix.
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step. In this step, the conditional expectation of the augmented log-likelihood function given

current parameter estimates and sample data is calculated. Suppose that we are at step k,

we need to calculate the following conditional expectation and get a new objective function

to be maximized,

Q(ζ; ζ [k]) = E
(
log L̃(ζ;x1, · · · ,xn,W1, · · · ,Wn)|x1, · · · ,xn; ζ [k]

)
.

In the M-step, we maximize the above new objection function to get updated estimates

ζ [k+1]. From equation 2.4.4 and 2.4.5, we can see that it is equivalent to updating all the

wi, w
−1
i , and log(wi) in the augmented log-likelihood function by their conditional estimates

E(Wi|xi; ζ[k]), E(W−1
i |xi; ζ[k]), and E(log(Wi)|xi; ζ[k]). In this way, Q(ζ; ζ [k]) is expressed

by observations and known conditional expectations so that it can be maximized as we have

just done. To calculate those conditional expectations, we need the following conditional

density function,

f
W |X (w|x; ζ) =

f(x|w; ζ)h(w; ζ)

f(x; ζ)

By some algebra work, we can get,

Wi|X i ∼ N−(λ− d

2
, ρi + χ, ψ + γ ′Σ−1γ). (2.4.18)

In the following, we calculate E(Wi|xi; ζ[k]), E(W−1
i |xi; ζ[k]), and E(log(Wi)|xi; ζ[k]) for

generalized hyperbolic distributions and the limiting distributions such as variance gamma,

skewed t and Student t etc.

For convenience, we use the standard notation of Liu and Rubin(1995), Protassov(2004)

and McNeil, Frey, and Embrechts(2005),

δ
[·]
i = E

(
W−1
i |xi; ζ [·]

)
, η

[·]
i = E

(
Wi|xi; ζ [·]

)
, ξ

[·]
i = E

(
log(Wi)|xi; ζ [·]

)
, (2.4.19)

and

δ̄ =
1

n

n∑
1

δi, η̄ =
1

n

n∑
1

ηi, ξ̄ =
1

n

n∑
1

ξi. (2.4.20)

For the generalized hyperbolic distributions, by using equation 2.1.11 and 2.1.12 we get,

δ
[k]
i =

(
ρ

[k]
i + χ[k]

ψ[k] + γ [k]′Σ[k]−1γ [k]

)− 1
2 Kλ− d

2
−1

(√
(ρ

[k]
i + χ[k])(ψ[k] + γ [k]′Σ[k]−1γ [k])

)
Kλ− d

2

(√
(ρ

[k]
i + χ[k])(ψ[k] + γ [k]′Σ[k]−1γ [k])

) (2.4.21)
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η
[k]
i =

(
ρ

[k]
i + χ[k]

ψ[k] + γ [k]′Σ[k]−1γ [k]

) 1
2 Kλ− d

2
+1

(√
(ρ

[k]
i + χ[k])(ψ[k] + γ [k]′Σ[k]−1γ [k])

)
Kλ− d

2

(√
(ρ

[k]
i + χ[k])(ψ[k] + γ [k]′Σ[k]−1γ [k])

) (2.4.22)

ξ
[k]
i =

1

2
log

(
ρ

[k]
i + χ[k]

ψ[k] + γ [k]′Σ[k]−1γ [k]

)
+ (2.4.23)

∂K
λ− d

2 +α

(√
(ρ

[k]
i +χ[k])(ψ[k]+γ [k]′Σ[k]−1γ [k])

)
∂α

|α=0

Kλ− d
2

(√
(ρ

[k]
i + χ[k])(ψ[k] + γ [k]′Σ[k]−1γ [k])

) .
We use numerical method to calculate above derivatives at zero. In general, we do not need

ξ
[k]
i when λ is fixed. We do need it in the calibration of skewed t distribution mentioned

later.

For the variance gamma distribution, we have

Wi|X i ∼ N−(λ− d

2
, ρi, ψ + γ ′Σ−1γ), (2.4.24)

and we just need to set χ = 0 in all the above three equations.

For the multivariate skewed t distributions, we have

Wi|X i ∼ N−(−d+ ν

2
, ρi + ν,γ ′Σ−1γ), (2.4.25)

and

δ
[k]
i =

(
ρ

[k]
i + ν [k]

γ [k]′Σ[k]−1γ [k]

)− 1
2 K ν+d+2

2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

)
K ν+d

2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

) (2.4.26)

η
[k]
i =

(
ρ

[k]
i + ν [k]

γ [k]′Σ[k]−1γ [k]

) 1
2 K ν+d−2

2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

)
K ν+d

2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

) (2.4.27)

ξ
[k]
i =

1

2
log

(
ρ

[k]
i + ν [k]

γ [k]′Σ[k]−1γ [k]

)
+ (2.4.28)

∂K
− ν+d

2 +α

(√
(ρ

[k]
i +ν[k])(γ [k]′Σ[k]−1γ [k])

)
∂α

|α=0

K ν+d
2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

) .
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Especially, for the popular multivariate Student t distribution, i.e., when γ = 0, the

conditional distributions of latent mixing variables are in the following simpler form,

Wi|X i ∼ InverseGamma(
d+ ν

2
,
ρi + ν

2
). (2.4.29)

Thus we have greatly simplified formulas for those conditional expectation estimates,

δ
[k]
i =

ν [k] + d

ρ
[k]
i + ν [k]

(2.4.30)

η
[k]
i =

ρ
[k]
i + ν [k]

ν [k] + d− 2
(2.4.31)

ξ
[k]
i = log(

ρ
[k]
i + ν [k]

2
)− ψ(

d+ ν [k]

2
). (2.4.32)

In the M-step, we just need to replace the latent variables w−1
i by δ

[k]
i , wi by η

[k]
i , log(wi)

by ξ
[k]
i in the maximization.

From the maximization of conditional expectation of L1, we can get the following k-step

estimations,

γ [k+1] =
n−1

∑n
i=1 δ

[k]
i (x̄− xi)

δ̄[k]η̄[k] − 1
(2.4.33)

µ[k+1] =
n−1

∑n
i=1 δ

[k]
i xi − γ [k+1]

δ̄[k]
(2.4.34)

Σ[k+1] =
1

n

n∑
i=1

δ
[k]
i (xi − µ[k+1])(xi − µ[k+1])′ − η̄[k]γ [k+1]γ [k+1]′ . (2.4.35)

From the maximization of conditional expectation of L2, we can get the estimation of

θ[k+1] from the following equation first,

η̄[k]δ̄[k]K2
λ(θ)θ + 2λKλ+1(θ)Kλ(θ)− θK2

λ(θ) = 0‖. (2.4.36)

We can get other parameters by

χ[k+1] =
θ[k+1]η̄[k]Kλ(θ

[k+1])

Kλ+1(θ[k+1])
, (2.4.37)

ψ[k+1] =
θ[k+1]2

χ[k+1]
. (2.4.38)

‖Proof can be found in the appendix.
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There is an identification problem for generalized hyperbolic distributions. McNeil et

al.(2005) set the determinant of Σ to be c, the determinant of sample covariance matrix

to solve this problem by using equation 2.2.12 and set

Σ[k+1] :=
c1/dΣ[k+1]

|Σ[k+1]|1/d
(2.4.39)

From our calibration experience, there is a problem here. When |λ| is large, there may be

no zeros in equation 2.4.36 so that the program will crash.

We find out that when λ is greater than a certain number(say -1), we set χ to be a

constant and solve θ[k+1] from following equation,

θη̄[k]Kλ(θ)−Kλ+1(θ)χ = 0 (2.4.40)

and solve ψ[k+1] from

ψ[k+1] =
θ[k+1]2

χ
, (2.4.41)

and that when λ is smaller than a certain number(say 1), we set ψ to be a constant and

solve θ[k+1] from following equation,

θδ̄[k]Kλ(θ)−Kλ−1(θ)ψ = 0∗∗ (2.4.42)

and solve χ[k+1] from

χ[k+1] =
θ[k+1]2

ψ
. (2.4.43)

We set χ to be some constant and call this the χ algorithm when λ is larger than some

number(say -1) and set ψ to be some constant when λ is less than some number(say 1) and

call this the ψ algorithm. From our experience, different choices of constant χ or ψ lead to

different calibration speeds.

It is noted that Protassov(2004) set χ to be 1 to simplify the derivations although he

did not mention this. In addition, his framework is in the usual definition of GH. From

our experience, his algorithm is not stable when λ is small. His algorithm is a special case

of our algorithm when λ is greater than a certain number. Our algorithm can calibrate all

the sub-family defined by λ ∈ R. To our knowledge, we are the first who can calibrate the

generalized hyperbolic distributions when |λ| is large††.

∗∗Proof of this equation and equation 2.4.40 can be found in the appendix.
††When |λ| is greater than a very large number(say 100), the Bessel function is non tractable. Usually, we

set |λ| < 10.
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For normal inverse Gaussian distribution, we can get θ[k+1] explicitly,

θ[k+1] =
2λ

1− η̄[k]δ̄[k]
. (2.4.44)

For variance gamma distribution, we can get λ[k+1] from following equation,

log(λ)− log(η̄[k]) + ξ̄[k] − φ(λ) = 0, (2.4.45)

and

ψ[k+1] =
2λ

η̄[k]
. (2.4.46)

For skewed t distribution, degree of freedom ν can be solved from the following equation,

− ψ(
ν

2
) + log(ν/2) + 1− ξ̄[k] − δ̄[k] = 0. (2.4.47)

The calibration of multivariate Student t, i.e., when γ = 0, can also use above procedures. In

addition, we can maximize the original log-likelihood function given current estimates to get

a fast algorithm. This is called ECME algorithm. In this case, we can solve the following

equation for ν to get ν [k+1],

ψ(
ν + d

2
)− ψ(

ν

2
) + log(

ν

ν + d
) + 1− 1

n

n∑
i=1

(
log δ

[k]
i − δ

[k]
i

)
= 0. (2.4.48)

More details of ECME can be found in Liu and Rubin(1995).

After we update all the parameters, one iteration of standard EM algorithm is completed.

Some argue that we should recalculate δ, η and ξ, and call them δ
[k,1]
i , η

[k,1]
i , and ξ

[k,1]
i after

the k-step estimation of Σ[k+1], γ [k+1], and γ [k+1] to estimate χ[k+1], ψ[k+1] and λ[k+1](in

some cases), and it is called MCECM algorithm. We do not use this technique for variance

gamma distribution and skewed t distribution since the calibration of those two distributions

will need to calculate the extra ξ, which may lower the calibration speed. McNeil, Frey, and

Embrechts(2005) argued that we might be able to maximize the original log-likelihood for

the generalized hyperbolic distributions as in Student t case in the estimation of χ[k+1],

ψ[k+1] and λ[k+1], and it is called ECME algorithm. From our calculation, ECME and EM

algorithm are equivalent for generalized hyperbolic distributions, and both algorithms will

lead to equation 2.4.36 to solve θ.

The iteration will stop if the relative increment of log-likelihood is trivial.
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2.5 Empirical Experiments

2.5.1 Fitting Financial Market Data

In the maximization of L2, McNeil et al(2005) set the determinant of dispersion matrix to be

the determinant of sample covariance matrix and argued that that this usually gives a stable

performance for the algorithms. Protassov(2004) set χ to be 1 though he did not mention

this and his algorithm is in the usual parametrization.

We compare the performance of those four algorithms(McNeil et al., Protassov, χ and

ψ algorithm) for one dimensional and five dimensional hyperbolic distribution ‡‡. We

also compare the performance of the limiting or special cases, V G, skewed t and NIG

distributions. Table 2.1 shows the time spent in calibrating the one dimensional or five

dimensional distribution and the corresponding log likelihood. This table shows that McNeil

et al (2005) algorithm is quite stable and fast for hyperbolic distribution since their L2

is optimized over two variables (χ, ψ)and rescale all the parameters at the end of each

EM iteration step. Our algorithm and Protassov’s algorithm use the same idea and L2

is optimized over one variable, though Protassov set χ to be 1 to simply the derivation

of the algorithm and his algorithm is in the usual parametrization. If we choose suitable

parameters, our algorithm may outperform McNeil et al(2005) and Protassov(2004).

Table 2.1: Calculation time and log likelihood for generalized hyperbolic distributions

Model 1d likelihood time(seconds) 5d likelihood time
Hyperbolic(McNeil et al.) -1043.49 65 -4891.46 17

Hyperbolic(Protassov) -1043.84 690 -4891.46 340
Hyperbolic(χ) -1043.50 18 -4891.15 250
Hyperbolic(ψ) -1043.52 18 -4891.46 95

V G -1044.97 130 -4901.74 28
NIG -1042.76 140 -4884.15 28

Skewed t -1039.70 118 -4873.91 27

‡‡We use the data from chapter 4, i.e., most recent five dimensional 750 filtered i.i.d. returns data. For
the one dimensional calibration, we use the first column of the data. These four algorithms use the same
initial parameters and the same termination condition(For one dimension, the absolute relative increment
of log likelihood is less than than e−6, while for five dimension, e−8). We set χ to be 5 for 1d and 1.5 for
5d. We set ψ to be 5 for 1d and 3 for 5d. We use a laptop with centrino 1.3GHZ CPU and 1GB PC2700
memory. Software is Matlab R14.
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However, McNeil et al(2005)’s algorithm will crash when |λ| is greater than some

number(say 2.5) since there is no zero in equation 2.4.36. Protassov(2004)’s algorithm will

crash too when λ is less than some number(say -4). Our algorithm is stable. We can calibrate

any generalized hyperbolic distribution. In figure 2.7, we plot the log likelihood of calibrated

one dimensional generalized hyperbolic distributions versus λ. From this figure, we can see

that the generalized hyperbolic distribution with λ = −5 or −6 has highest log likelihood.

This method can be regarded as a rough method to calibrate λ. Both Protassov(2004) and

McNeil et al.(2005) could not calibrate the generalized hyperbolic distribution when λ = −5

or −6.
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Figure 2.7: Log likelihood of generalized hyperbolic distributions versus λ

A hybrid method may consider to use χ or ψ algorithm at the beginning phase of

calibration and use McNeil et al.(2005)’s algorithm later to get fast algorithm.

Furthermore, from table 2.1 and figure 2.7, we can see that skewed t distribution has

fewest number of parameters and largest log likelihood comparing with GH when we loop λ

from -10 to 10 with step size 1 and the calibration is fast so that skewed t is very promising

in the applications.
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2.5.2 Fitting Simulated Skewed t

In this section, we test the validity of our calibration algorithm for the case of the skewed t

distribution, which is relatively easy to simulate. We generate simulated data from a known

choice of skewed t parameters, and then check to see that our calibration algorithm correctly

recovers those parameters.

We simulate 10,000 samples from two dimensional skewed t with parameters (µ1, µ2)
T =

(0, 0)T , (γ1, γ2)
T = (−0.2, 0.2)T , ν = 6 and Σ = [1, 0.5; 0.5, 1] and fit the simulated

10,000 samples by skewed t distribution. We try 10 simulations and take the average of

those 10 estimations. The calibrated parameters (µ1, µ2)
T = (−0.007, 0.003)T , (γ1, γ2)

T =

(−0.192, 0.199)T , ν = 5.993 and Σ = [0.999, 0.503; 0.503, 1.012].

The results of this experiment support the validity of our EM algorithm for skewed t

distributions, and lend confidence to the general case.

2.6 Conclusion

We follow McNeil, Frey and Embrechts(2005)’s parametrization to introduce generalized

hyperbolic distributions from generalized inverse Gaussian distributions. The linear transfor-

mation of generalized hyperbolic distributions remains in the same sub-family of generalized

hyperbolic distributions. Generalized hyperbolic distributions have semi-heavy tails so that

they may be good candidates for risk management. We follow Liu and Rubin(1995),

McNeil, Frey and Embrechts(2005) and Protassov(2004)’s EM algorithm and provide our

EM algorithm to calibrate multivariate generalized hyperbolic distributions and all the well

known limiting distributions. We find that the algorithm of Protassov(2004) under usual

parametrization is a special case of our algorithm. From our experience, the algorithms in

McNeil, Frey, and Embrechts(2005)and Protassov(2004) sometimes are not stable , while

our algorithm is stable. We provide fast algorithms for NIG and skewed t under this new

parametrization. We usually fix λ to calibrate the generalized hyperbolic distributions. We

can also find λ by looping. For variance gamma distribution, we can calibrate λ. In addition,

we find that skewed t distribution has fewest number of parameters and larger log likelihood

with fast calibration speed so that skewed t distribution is very promising in the applications.
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CHAPTER 3

A GARCH −GH model for V aR Risk Management

Value at Risk (V aR) based on the normal distribution has been considered as the standard

risk measure since J.P. Morgan launched RiskMetrics in 1994. In 1995, the Basel Committee

on Banking Supervision suggested using the 10 day V aR at the 99% level. If the underlying

loss distribution is strictly increasing, then V aR at confidence level α is defined as

V aRα = F−1(α), (3.0.1)

where F−1 is the inverse of the cumulative distribution function of the loss random variable.

We can see that V aRα depends only on the choice of underlying distribution.

Yet, financial return series is heavy tailed and leptokurtic; large losses occur far away from

the V aR based on normal distribution. At the 95% level, V aR based on a normal distribution

is usually good enough. However, at the 99% level, V aR based on a normal distribution

usually underestimates the true risk. Risk managers can not neglect this problem, and

generalized hyperbolic distributions(GH) has been considered as an alternative. The tails of

GH decay as |x|λ−1e−α|x|+βx. Generalized hyperbolic distributions have at least semi-heavy

tails and both tails decay as the product of a power function and an exponential function.

For the limiting distribution known as the skewed t distribution, the tail can even decay as a

power function x−ν/2−1 and it is heavier than the symmetric Student t, whose tails decay as

x−ν−1 (The Gaussian distribution’s tails decay as e−x
2/2 and the tails are very thin compared

to generalized hyperbolic distributions.).

Two special cases of generalized hyperbolic distributions: normal inverse Gaussian (NIG)

and hyperbolic distributions are widely used in the modeling of univariate financial data for

their better fit. Barndorff-Nielsen (1997) argued that the NIG is slightly superior to the

hyperbolic as a univariate model for return data. Two limiting cases: skewed t and variance
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gamma distribution(V G) are rarely known in the modeling of financial data. In fact, both

limiting cases have heavier tails than the Gaussian distribution, and they have fast algorithms

calibrating all the parameters. Barbachan, Farias and Ornelas (2003) and Fajardo and Farias

(2003) used univariate generalized hyperbolic distributions to model the Brazilian data to

get more accurate V aR measurements. Aas and Hobæk Haff(2005a) used skewed t to model

V aR (All previous work uses the usual parametrization.). We use the new parametrization

of generalized hyperbolic distributions to fit the univariate return series and calculate the

corresponding V aRα in this chapter.

In the last chapter we developed the EM algorithms for the multivariate generalized

hyperbolic distributions and their limiting cases. If we set the dimension to be one, then the

algorithm becomes the one dimensional EM algorithm. In this chapter we model the negative

log return of the stock index S&P500 and Dow Jones Industrial Average, respectively, by

using generalized hyperbolic distributions.

The maximization of likelihood assumes that the return series is i.i.d.. However, typical

financial return series usually is not independently and identically distributed (i.i.d.), so

before modeling returns with a particular choice of distribution, we need to filter the data.

We use a GARCH(1, 1) filter with Student t innovations to filter our data.

After we get the i.i.d. return series, we calibrate NIG, V G, skewed t and hyperbolic

distributions chosen from the general GH family and then implement a V aR backtesting

procedure suggested by McNeil(1999). We show that use of GH distributions leads to better

V aR forecasts than Gaussian.

This chapter is organized as following. We give a precise definition of V aR in Section

3.1. We plot the autocorrelation function(ACF) of return series in 3.2 and we will see that

the return series is not i.i.d.. We solve this problem by introducing a GARCH filter with

student t innovations in Section 3.3 to get filtered return series. The filtered return series is

approximately i.i.d.. In Section 3.4, we use QQ-plots to show that the normal distribution is

too thin-tailed. We use heavy tailed generalized hyperbolic distributions in Section 3.5 to fit

the univariate filtered S&P500 and Dow index, respectively. We backtest and compare V aR

forecasts based on generalized hyperbolic distributions and normal distribution in Section

3.6.
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3.1 Value at Risk(V aR)

Definition 3.1.1 Value at Risk(V aR). V aR at confidence level α ∈ (0, 1) for loss L of a

security or a portfolio is defined to be

V aRα = inf{l ∈ R : FL(l) ≥ α}, (3.1.1)

where F is the distribution function of loss L.

If the loss distribution function F is strictly increasing, then V aRα = F−1(α). In practice,

the confidence level ranges from 95% through 99.5%, though Basel committee recommends

99%. Sometimes, V aRmean
α := V aRα − µ, where µ is the mean of loss, is used instead of

ordinary V aR.

If L is of normal distribution N(µ, σ2), then

V aRα = µ+ σΦ−1(α), (3.1.2)

where Φ−1(α) is the α quantile of standard normal.

It also means that if a loss random variable is normally distributed, 95% of observations

will lie within 1.65 standard deviations of the mean and 99% will lie within 2.33 standard

deviations.

If L is of Student t distribution t(ν, µ, σ2), then

V aRα = µ+ σt−1
ν (α), (3.1.3)

where t−1
ν (α) is the α quantile of standard t with degree of freedom ν.

3.2 Data Sets

The S&P500 index is based on a portfolio of 500 different stocks in the United States. This

index accounts for the 80% market capitalization of all the stocks listed on NYSE. The Dow

index is based on a portfolio of 30 blue-chip stocks in the United States. The adjusted daily

close prices∗ range from 4/18/1989 to 7/29/2005. There are 4108 observations in total. The

daily close prices are converted to daily negative log returns.

∗The data are pulled out from finance.yahoo.com
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We have mentioned in Section 2.4 that the maximization of log likelihood assumes that the

data series is approximately independent and identically distributed(i.i.d). It is commonly

believed that financial data is not i.i.d. although they show little evidence of serial correlation.

Squared return or absolute return series does show some evidence of serial correlation. In

addition, return series is heteroscedastic, i.e., volatilities vary over time and extreme events

appear in clusters.
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Figure 3.1: Correlograms for SP500 negative log return series

We use the most recent 1500 daily negative log return data of SP500 to plot the sample

autocorrelation function(ACF ). From figure 3.1, we can see that the ACF of the negative

log return series shows little evidence of serial correlation, while the ACF of squared return

series does show evidence of serial dependence. The GARCH model can be introduced to

model the persistence in the volatility.

3.3 GARCH Filter

Definition 3.3.1 ARMA process with GARCH errors. Let Zt be standard white noise

SWN(0, 1). The process (Xt) is an ARMA(p1, q1) process with GARCH(p2, q2) errors if it
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is covariance stationary and satisfies the following equations,

Xt = µt + σtZt, (3.3.1)

µt = µ+

p1∑
i=1

φi(Xt−i − µ) +

q1∑
j=1

θj(Xt−j − µt−j),

σ2
t = α0 +

p2∑
i=1

αi(Xt−i − µt−i)
2 +

q2∑
j=1

βjσ
2
t−j

where α0 > 0,αi ≥ 0,βj ≥ 0 and
∑p2

i=1 αi +
∑q2

j=1 βj < 1. The innovation Zt is independent

of (Xs)s<t.

McNeil et al. (2005) argued that a GARCH(1, 1) model with Student t innovations is enough

to remove the dependence in return series. The ARMA term usually is not necessary, i.e.,

we set p1 = 0 and q1 = 0. Sometimes, an filter with normal innovations is enough too. The

filtered return series, which is defined to be,

X̂t =
Xt − µ

σt
(3.3.2)

should be approximately i.i.d. series†.

From figure 3.2, we can see that the ACF of both filtered return series and squared

filtered return series for SP500 show little evidence of serial correlation.

3.4 Tails and Extreme Events

It is commonly believed that the return series is leptokurtic. It has more mass around the

center and heavier tails than Gaussian distribution. A QQ-plot‡ can be used to compare

the empirical quantiles with quantiles of a designated distribution. Let us plot the QQ-

plot against a Gaussian distribution for filtered return series of S&P500 and Dow index.

From figure 3.3, we can see that both filtered returns series have heavier tails than normal

distribution on both tails.

A Gaussian distribution has a kurtosis value of 3, and if the kurtosis of a distribution is

greater than 3, we say this distribution is leptokurtic. The kurtosis of S&P500 return series

is 3.73 and the kurtosis of Dow return series is 4.18.

Heavy tailed distributions allow more extreme events to happen. This property is valuable

for risk management. Generalized hyperbolic distributions provide at least semi-heavy tails.

†We call garchfit in Matlab to calibrate GARCH model.
‡We call qqplot in Matlab to plot the normal QQ-plot.
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Figure 3.2: Correlograms for SP500 filtered negative log return series
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Figure 3.3: QQ-plot of S&P500 and Dow versus Normal
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3.5 Density Estimation

The filtered data are now approximately i.i.d. so that we can calibrate the generalized

hyperbolic distributions and the limiting cases by EM algorithm. We use the most recent

1500 data, which is about 6 years, to calibrate hyperbolic, NIG, skewed t, V G, Student t,

and Gaussian distributions. We report the calibrated parameters and the corresponding log

likelihood in table 3.1 for S&P500 index and table 3.2 for Dow index.

Table 3.1: Calibrated parameters of S&P500

Model λ or ν χ ψ µ σ2 γ Likelihood
Skewed t 13.88 -0.17 0.85 0.18 -2120.69

VG 5.15 10.11 -0.20 0.97 0.23 -2120.91
NIG -0.5 4.00 6.78 -0.18 1.29 0.29 -2120.94

Hyperbolic 1(fixed) 102.78 0.1 -0.15 0.021 0.004 -2121.83
Student t 13.95 0.03 0.86 -2121.66
Gaussian 0.04 1 -2129.53

Table 3.2: Calibrated parameters of Dow

Model λ or ν χ ψ µ σ2 γ Likelihood
Skewed t 12.72 -0.19 0.83 0.19 -2117.52

VG 4.93 9.69 -0.18 0.97 0.20 -2119.06
NIG -0.5 3.67 6.14 -0.18 1.28 0.28 -2118.48

Hyperbolic 1 101.30 0.1 -0.13 0.021 0.003 -2119.35
Student t 12.11 0.02 0.83 -2118.83
Gaussian 0.03 1 -2131.27

From the viewpoint of maximization of log likelihood, skewed t has the largest log

likelihood among all the distributions tested. NIG has slightly higher log likelihood than

hyperbolic. V G has second largest log likelihood in the modeling of S&P500, but third

largest in the modeling of Dow. NIG and hyperbolic are well known in the modeling of

financial data, however, currently skewed t are rarely known comparing with those two.

In addition, skewed t has the fewest number of parameters among the four generalized

hyperbolic distributions.
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After we calibrate the distributions, we calculate the V aRα
§ and list the results in table

3.3.

Table 3.3: V aRα of sample, normal, Student t, and generalized hyperbolic distributions for
S&P500 in the past 1500 days

α sample normal Student t skewed t VG NIG hyperbolic stable
0.95 1.65 1.68 1.66 1.69 1.71 1.70 1.72 1.67

0.975 2.05 2.0 2.02 2.07 2.10 2.08 2.12 2.02
0.99 2.34 2.37 2.46 2.55 2.57 2.56 2.64 2.47

0.995 2.51 2.62 2.79 2.91 2.92 2.91 2.02 2.86
0.999 4.35 3.13 3.54 3.74 3.67 3.69 3.87 4.64

0.9999 4.88 3.76 4.65 5.02 4.69 4.78 5.07 13.97
0.99999 4.88 4.31 5.86 6.90 6.90 7.05 6.82 45.13

From figure 3.4 and figure 3.6, we can see that generalized hyperbolic distributions, the

empirical distribution¶ and the stable distribution all have higher kurtosis than the normal

distribution and they all have heavier tails than the normal distribution.

From figure 3.5, figure 3.7 and table 3.3, we can see more about the right tail. The empiri-

cal distribution has very poor performance on the tails. Generalized hyperbolic distributions

provide a way to extrapolate outside the historical extreme events. Extrapolation is very

desirable by allowing the estimation of V aR outside the historical record, and this property

is invaluable for risk management applications. Generalized hyperbolic distributions have no

big difference in the modeling of tails. It is commonly criticized that stable distribution has

too fat tails. Skewed t has heavier tails than Student t because of the skewness parameters.

From figure 3.8, figure 3.9, figure 3.10, and figure 3.11, we can see that QQ-plots also show

that generalized hyperbolic distributions have heavier tails than the normal distribution.

3.6 Backtesting of V aR

After we calibrate the filtered negative log return series using generalized hyperbolic

distributions, we can calculate the α quantile, zα = F−1(α) for filtered negative return

series, where F is some distribution function. Suppose that we are standing at time t, we

§For generalized hyperbolic distributions, we get V aRα by finding y from
∫ y

−∞ f(x)dx− α = 0.
¶We call ksdensity in Matlab to plot the empirical density.
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Figure 3.4: The density of Gaussian, stable, empirical and generalized hyperbolic distribu-
tions for S&P500

then de-filter the value at risk(V aR) of filtered return series to get the estimation of V aR of

negative log return series at time t+ 1.
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Figure 3.5: The density of Gaussian, stable, empirical and generalized hyperbolic distribu-
tions for S&P500 at right tail

ˆV aRα(Xt+1|Ft) = σ̂t+1zα + µ, (3.6.1)

where σt+1 can be forecasted by using equation 3.3.1 and it is known at time t.
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Figure 3.6: The density of Gaussian, stable, empirical and generalized hyperbolic distribu-
tions for Dow

We have 4108 observations for both S&P and Dow index. We use the most recent

N = 3001 observations to backtest the V aR violations. For each day, we use previous

1000 observations to train the generalized hyperbolic distributions. We recalibrate the
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Figure 3.7: The density of Gaussian, stable, empirical and generalized hyperbolic distribu-
tions for Dow at right tail

model at each day by initializing the parameters using last day’s and recalibrate the model

by initializing the parameters using new set of parameters every 400 days. In this way,

the calibration is always online, and the recalibration every 400 days by initializing the
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Figure 3.8: QQ-plot of S&P500 versus Skewed t and V G
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Figure 3.9: QQ-plot of S&P500 versus NIG and hyperbolic

parameters using brand new parameters avoids over estimation. At time t+1, where t is

from 1000 from 3999, we use (xt−1000+1, . . . , xt−1, xt) to calibrate the generalized hyperbolic
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Figure 3.10: QQ-plot of Dow versus Skewed t and V G
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Figure 3.11: QQ-plot of Dow versus NIG and hyperbolic

distributions and estimate V ARα(Xt+1|Ft) for α = 0.95,α = 0.975,α = 0.99, and α = 0.995.

A violation occurs if xt+1 > ˆV ARα(Xt+1|Ft). The number of total violations during those
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N tests is denoted to be n. The actual violation probability is n/N , while the expected

violation probability, q, should be 0.05, 0.025, 0.01 and 0.005 respectively.

To evaluate the V aR backtesting, we use the likelihood ratio statistic by Kupiec(1995).

The null hypothesis is that the expected violation probability is equal to q. Under null

hypothesis, the likelihood ratio given by

− 2[(N − n) log(1− q) + n log(q)] + 2[(N − n) log(1− n/N) + n log(n/N)], (3.6.2)

is asymptotically χ2(1) distributed.

We list the results of V aR backtesting in table 3.4 for S&P500 index and in table 3.5

for Dow index. We calculate the actual violation probability at level q, where the expected

violation probability, q, is 0.05, 0.025, 0.01 and 0.005 respectively, and its corresponding

p-value‖ for the likelihood ratio test. We backtest normal distribution and four generalized

hyperbolic distributions in this paper. we can see that all generalized hyperbolic distributions

pass the test. The normal distribution fails the test at 0.005 level and 0.01 level for both

S&P500 and Dow index and at 0.025 level for S&P500∗∗.

Table 3.4: V aR violation backtesting for S&P500

Model 0.05 p 0.025 p 0.01 p 0.005 p
Normal 0.0477 0.5547 0.0313 0.0324 0.0177 0.0001 0.0117 0.0000

Skewed t 0.0487 0.7365 0.0260 0.7274 0.0093 0.7105 0.0043 0.5962
VG 0.0460 0.3085 0.0257 0.8159 0.0103 0.8552 0.0053 0.7979

NIG 0.0467 0.3971 0.0253 0.9071 0.0093 0.7105 0.0047 0.7935
Hyperbolic 0.0453 0.2337 0.0240 0.7240 0.0097 0.8536 0.0047 0.7935

3.7 Conclusion

The normal distribution tends to underestimate the risk since it is a thin tailed distribution.

Generalized hyperbolic distributions have semi-heavy tails so that they may be good

candidates for risk management. We use a GARCH model to filter the negative return

series to get i.i.d. filtered negative return series and forecast the volatility. After we get i.i.d.

‖We call CHIDIST(x,1) in Excel to calculate the p-value, where x is the value of likelihood ratio statistic.
∗∗When p value is less than 0.05, we reject the null hypothesis.
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Table 3.5: V aR violation backtesting for Dow

Model 0.05 p 0.025 p 0.01 p 0.005 p
Normal 0.0487 0.7365 0.0303 0.0701 0.0160 0.0024 0.0113 0.0000

Skewed t 0.0480 0.6130 0.0247 0.9067 0.0100 1.0000 0.0063 0.3202
V G 0.0463 0.3511 0.0240 0.7240 0.0107 0.7166 0.0073 0.0904
NIG 0.0470 0.4465 0.0240 0.7240 0.0100 1.0000 0.0070 0.1431

Hyperbolic 0.0460 0.3085 0.0240 0.7240 0.0093 0.7105 0.0067 0.2183

filtered negative return series, we can calibrate the generalized hyperbolic distributions and

calculate the α quantile. Using the forecasted volatility and α quantile for filtered negative

return series, we can restore the V aRα for negative return series. We backtest V aR based

on generalized hyperbolic distributions and normal distribution and find that all generalized

hyperbolic distributions pass the V aR test while normal distribution fails at 99% V aR for

both Dow and S&P500 index, even at 97.5% level for S&P500.

The use of the skewed t distribution is rarely known. Actually, it has the fewest number of

parameters among all generalized hyperbolic distributions and a fast calibration algorithm.

In addition, it has the largest log likelihood among all generalized hyperbolic distributions,

Student t, and Gaussian distributions. We will focus on this distribution later.
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CHAPTER 4

A GARCH-Skewed t-ES Portfolio Optimization Model

Portfolio optimization is based on trading off risk and return. For this purpose one needs to

employ some precise concept of “risk”. Markowitz (1952) suggested using the standard

deviation of portfolio return as a risk measure, and, thinking of returns as normally

distributed, described the efficient frontier, which is composed of fully invested portfolios

having minimum risk for a given specified return. This concept has been extremely valuable

in portfolio management because any rational portfolio manager will always choose to invest

on this frontier.

However, using standard deviation as the risk measure has the drawback that it is

generally insensitive to extreme events, and sometimes these are of most interest to the

investor.

Value at Risk (V aR) can describe more about extreme events, but it can not aggregate

risk in the sense of being subadditive on portfolios (which means risk is diversified). This is

a well-known difficulty that is addressed by the concept of a “coherent risk measure” in the

sense of Artzner, Delbaen, Eber, and Heath(1999). A popular example of a coherent risk

measure is the expected shortfall (ES), though V aR is still more commonly seen in practice.

The construction of an efficient frontier – portfolios with minimum risk for a given return

– depends on two inputs: the choice of risk measure (such as standard deviation, V aR, or

ES), and the probability distribution used to model returns.

It turns out, by a result of Embrechts, McNeil, and Straumann (2001), that when the

underlying distribution is Gaussian – or more generally any “elliptical” distribution – no

matter what positive homogeneous and translation invariant risk measure(such as V aR, or

ES), no matter what confidence level, the optimized portfolio composition given a certain

return will be the same as the traditional Markowitz style portfolio composition obtained by
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minimizing standard deviation. Only a difference in distribution leads to different portfolio

compositions.

As mentioned in last chapter, portfolio managers can not neglect the deviation of

financial returns series from a multivariate normal distribution. Other heavy tailed elliptical

distributions, such as Student t and symmetric generalized hyperbolic distributions, and

non-elliptical distributions, such as the skewed t distribution, can be used to model financial

returns series. If the underlying is Gaussian distributed, then the portfolio return is Gaussian

distributed too. More generally, if the underlying is generalized hyperbolic distributed, then

the portfolio return remains in the same sub-family of generalized hyperbolic distributions

since they are closed under linear transformations. The usual parametrization of generalized

hyperbolic distributions generally does not exhibit this property. In addition, for Gaussian,

Student t and symmetric generalized hyperbolic distributions, the portfolio variance is in

quadratic form so that it is easy to minimize.

For non-elliptical distributions, different risk measures, or the same risk measure with

different confidence levels, lead to differing portfolio compositions given a fixed return.

Rockafellar and Uryasev (1999) showed that the minimization of ES does not require

knowing V aR first, and construct a new objective function. By minimizing this new objective

function, we can get V aR and ES. We carry this out and use Monte Carlo simulation to

approximate that new objective function by sampling the multivariate distributions. This

allows us to construct efficient frontiers for a variety of distributions.

From the last chapter, we can see that the skewed t distribution has the largest log

likelihood and the fewest number of parameters among the four generalized hyperbolic

distributions tested when we model the univariate Dow and S&P 500 index daily close price

series. In addition, skewed t has a fast calibration algorithm among all the tested generalized

hyperbolic distributions. It is natural to extend the univariate application of skewed t to

the multivariate case. To our knowledge, this is first use of skewed t distribution in portfolio

optimization.

This chapter is organized as following. We consider an equity portfolio of 5 stocks chosen

from components of the Dow index and filter the data to get i.i.d. filtered returns series in

Section 4.1. After we get the i.i.d. filtered returns series, we fit the five dimensional data by

normal inverse Gaussian(NIG), hyperbolic, skewed t and variance gamma (V G) in Section

4.2 using EM algorithm and find that skewed t has the largest log likelihood and the fewest
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number of parameters among the four tested generalized hyperbolic distributions . In Section

4.3, we discuss coherent risk measure: ES, and portfolio optimization theory under elliptical

distributions. In Section 4.4, we plot the normal frontier, Student t frontier, and skewed t

frontier. One consequence we describe is that the usual Gaussian efficient frontier is actually

unreachable if we believe that returns are Student t or skewed t distributed.

4.1 Data Sets

We construct the portfolio by choosing 5 stocks from the components of the Dow index.

They are WALT DISNEY, EXXON MOBIL, PFIZER, ALTRIA GROUP and INTEL∗. We

use the adjusted close data ranged from 7/1/2002 to 08/04/2005. The daily close data are

converted to log return. Figure 4.1 illustrates the relative price movements of each index

using most recent 750 returns. The initial price of each stock is rescaled to one to facilitate

the comparison of relative performance.
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Figure 4.1: Relative price of 5 stocks

From figure 4.2, we can see that squared returns series show some evidence of serial

correlation as before.

∗The data set is obtained from finance.yahoo.com.
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Figure 4.2: Correlograms of squared log return series for 5 stocks

4.1.1 GARCH Filter

A GARCH(1, 1) model with Gaussian innovation is used to remove the dependence. We

set the constant µ in equation 3.3.1 to be zero. From figure 4.3, we can see that squared

filtered returns series show no evidence of serial correlation. From figure 4.4, we can see that

heteroscedasticity clearly exists in 5 stocks.

4.2 Multivariate Density Estimation

After we get the approximately i.i.d. training data, we can estimate the multivariate density.

From QQ-plots versus normal for those 5 stocks in figure 4.5, we can see that normal

distribution has very thin tails so that it may not be used to handle the risk management.

We use generalized hyperbolic distributions to model the multivariate density. Table

Model Normal Student t Skewed t VG Hyperbolic NIG
Log Likelihood -5095.01 -4877.76 -4873.91 -4901.74 -4891.46 -4884.15

Table 4.1: Log likelihood of estimated multivariate density
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Figure 4.3: Correlograms of squared filtered log return series for 5 stocks
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Figure 4.4: GARCH volatility of log return series for 5 stocks over time

4.1 shows the maximized log likelihood. It shows again that all generalized hyperbolic

distributions have higher log likelihood than normal distribution and skewed t has the highest
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Figure 4.5: QQ-plot versus normal distribution of 5 stocks

log likelihood. In the sequel, we will largely use skewed t in the multivariate modeling and

correlation modeling.

4.3 Risk Measure and Portfolio Optimization

Suppose ωT = (ω1, · · · , ωd) is the capital amount invested on each risky security in a

portfolio, and XT = (X1, · · · , Xd) is the return of each risky security. Let L(ω,X) =

−
∑d

i=1 ωiXi = −ωTX denote the loss of of this portfolio over a fixed time interval ∆ and

FL is its distribution function. Usually, the time interval ∆ is one or ten days for equity

portfolio management.

If X is of normal distribution denoted by X ∼ Nd(µ,Σ), then

L ∼ N1(-ω
Tµ,ωTΣω) (4.3.1)

If X is of Student t distribution denoted by X ∼ td(ν,µ,Σ), then

L ∼ t1(ν,−ωTµ,ωTΣω) (4.3.2)

Both normal distribution and Student t distribution are elliptical distributions.
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If X is of skewed t distribution denoted by X ∼ SkewedTd(ν,µ,Σ,γ), then

L ∼ SkewedT1(ν,−ωTµ,ωTΣω,−ωTγ) (4.3.3)

Skewed t distribution is not elliptical when γ 6= 0.

We have talked about two risk measures before, standard deviation and value at risk.

Standard deviation is still commonly used in Markowitz style portfolio management. V aR

is the standard risk measure used by regulators and investment banks. Standard deviation

risk measure is criticized by its inability to describe the rare events and V aR is criticized by

its inability to aggregate risk. Standard deviation is not a coherent risk measure. V aR is a

coherent measure if the underlying distribution is elliptical.

Definition 4.3.1 Expected Shortfall(ES). For a continuous loss distribution with∫
R |l|dFL(l) <∞, the ESα at confidence level α ∈ (0, 1) for loss L of a security or a portfolio

is defined to be

ESα = E(L|L ≥ V aRα) =

∫∞
V aRα

ldFL(l)

1− α
. (4.3.4)

If L is of normal distribution N(µ, σ2), then

ESα = µ+ σ
ψ(Φ−1(α))

1− α
, (4.3.5)

where ψ is the density of standard normal distribution and Φ−1(α) is the α quantile of

standard normal.

If L is of Student t distribution t(ν, µ, σ2), then

ESα = µ+ σ
fν(t

−1
ν (α))

1− α

(
ν + (t−1

ν (α))2

ν − 1

)
, (4.3.6)

where fν is density function of standard t with degree of freedom ν and t−1
ν (α) is the α

quantile of standard t with degree of freedom ν.

For skewed t, there is no closed solution for or V aR or ES. To calculate V aR or ES,

we can use numerical integration and a zero-finder routine. We can also use Monte Carlo

simulation by using the following definition to get ES:

Definition 4.3.2 Expected Shortfall(ES). If the density function of X is f(x), the

expected shortfall at confidence level α ∈ (0, 1) for loss L of a security or a portfolio is

defined to be

ESα = E(L|L ≥ V aRα) =

∫
I{−(ωT x)≥V aRα} − (ωTx)f(x)dx

1− α
. (4.3.7)
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Expected shortfall is a coherent risk measure.

Definition 4.3.3 Coherent Risk Measure(Artzner, Delbaen, Eber and Heath(1999)).

A real valued function ρ of a random variable is a coherent risk measure if it satisfies the

following properties,

1. Subadditivity. For any two random variables X and Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

2. Monotonicity. For any two random variables X ≥ Y , ρ(X) ≥ ρ(Y ).

3. Positive homogeneity. For λ ≥ 0, ρ(λX) = λρ(X).

4. Translation invariance. For any a ∈ R, ρ(a+X) = a+ ρ(X).

Proposition 4.3.4 Portfolio Optimization under Elliptical Distributions. (Em-

brechts, McNeil and Straumann(2001)). Suppose X is of elliptical distribution with

finite variance for all univariate marginals. Let

P = {Z =
d∑
i=1

ωiXi|ωi ∈ R}

be the set of all linear portfolios. Then:

1. Subadditivity of V aR. For any two portfolios Z1 and Z2 ∈ P, and 0.5 ≤ α < 1,

V aRα(Z1 + Z2) ≤ V aRα(Z1) + V aRα(Z2)

2. Equivalence of variance and any other positive homogeneous risk measure.

Let ρ be a risk measure depending only on the distribution of a random variable X that

is positively homogeneous. Then for Z1 and Z2 ∈ P,

ρ(Z1 − E(Z1)) ≤ ρ(Z2 − E(Z2)) ⇐⇒ σ2
Z1
≤ σ2

Z2

3. Markowitz risk minimizing portfolio. Let ρ be as in (2) and also translation

invariant, and let

Q = {Z =
d∑
i=1

ωiXi|ωi ∈ R,
d∑
i=1

ωi = 1, E(Z) = r}

be the subset of P with given expected return r , then

argminZ∈Qρ(Z) = argminZ∈Qσ
2
Z .
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This proposition shows that if we assume that the underlying distribution is elliptical, then

the Markowitz mean variance optimized portfolio, for a given return, will be the same

as the optimized portfolio by minimizing any other translation invariant and positively

homogeneous risk measure, such as V aR or ES. Only a difference in distribution will lead to

a different portfolio allocation at a given return. The thin tailed normal distribution is not

required in portfolio management. Portfolio managers may consider heavy tailed elliptical

distributions such as Student t, and symmetric generalized hyperbolic distributions etc.

For some elliptical distributions such as the normal distribution, Student t distribution,

and symmetric generalized hyperbolic distributions, we can get the frontier by minimizing

the portfolio variance. The portfolio variance is in quadratic form so that it is easy to

optimize. We can also optimize portfolio V aR and ES directly if they are in closed form.

After we get the optimized portfolio, we can get other portfolio risk measures. If we try to

minimize V aR or ES instead of variance, for a give return, the portfolio composition is the

same.

The generalized hyperbolic distribution is not elliptical if γ 6= 0. From corollary 2.2.4

and equation 2.2.8, we can see that the portfolio variance is not in quadratic form anymore.

We will turn to Monte Carlo simulation to minimize a coherent risk measure. Specifically,

we minimize ES at confidence level α by sampling the multivariate distribution of returns.

Without doubt, we can also try this method for all elliptical distributions mentioned above.

From definition 4.3.2, we can rewrite the definition of expected shortfall as following,

ESα = V aRα +

∫
[−(ωTx)− V aRα]

+f(x)dx

1− α
,

where [x]+ := max(x, 0).

We get a new objective function by replacing V aR by p,

Fα(ω, p) = p+

∫
[−(ωTx)− p]+f(x)dx

1− α
. (4.3.8)

Rockafellar and Uryasev(2001) showed that

minp∈RFα(ω, p) = min(ω,p)∈Rd×RFα(ω, p).

If the p minimizing equation 4.3.8 with respect to p is unique, then by minimizing

equation 4.3.8 with respect to (ω, p), we obtain (ω∗, p∗), where ω∗ is the optimized portfolio

composition and p∗ is the corresponding portfolio’s V aR at confidence level α.
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We can sample the multivariate density by Monte Carlo simulation to estimate the

Fα(ω, p) by the following

F̂α(ω, p) = p+

∑n
k=1[−(ωTxk)− p]+

n(1− α)
, (4.3.9)

where xk is the k-th sample from some distribution and n is the number of samples.

4.4 Efficient Frontier Analysis

Suppose that we are standing at Aug 4,2005, i.e. the last date in our data set and the

holding period is one day. 750 sample data are used in the calibration. The one day ahead

forecasted GARCH volatilities for all the stocks are σ = (σ1, · · · , σd)T at that date. The

weight constraint condition is written as

d∑
i=1

ωi = 1, (4.4.1)

where we assume the initial capital is 1 and ωi is the capital invested in risky stock i. If no

short sales allowed, we set ωi > 0. We suppose short sales are allowed.

Suppose that the calibrated expected return of stock i is µ̂i, then the de-filtered forecasted

expected return is µi = σiµ̂i and let

µ = (µ1, · · · , µd)T ,

then the expected portfolio return † is ωTµ. We set the expected portfolio return to be a

constant series,

ωTµ = c. (4.4.2)

The objective function to be optimized can be portfolio variance, V aR, ES and equation

4.3.9 etc. The constraints are equation 4.4.1 and equation 4.4.2.

In the following, we construct normal, Student t, and skewed t efficient frontiers versus

different risk measures for the 5 stocks chosen from Dow index components.

Normal Frontier

†If the holding period is 1 day, there is no too much difference between logarithmic return and arithmetic
return. If holding period is over a certain days, to get the portfolio return, it is suggested to convert the
logarithmic returns into arithmetic returns and get the portfolio arithmetic return by summing the weighted
arithmetic returns, and finally convert the portfolio arithmetic return back to logarithmic return.
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Table 4.2 shows the expected log return for the filtered data and theGARCH volatility on

Aug 4, 2005. Table 4.3 shows the covariance matrix(upper triangular), the variance(diagonal)

and correlation matrix(lower triangular) for the 5 stocks.‡

Table 4.2: Expected filtered log return and one day ahead forecasted GARCH volatility on
08/04/2005

Stock Disney Exxon Pfizer Altria Intel
Expected filtered return 0.040 0.073 -0.015 0.039 0.027

GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

Table 4.3: Covariance and correlation matrix of normal distribution for filtered returns
series: the diagonal are variance, the upper triangular is covariance and the lower triangular
is correlation

Stock Disney Exxon Pfizer Altria Intel
Disney 1.009 0.372 0.340 0.191 0.428
Exxon 0.367 1.015 0.364 0.199 0.309
Pfizer 0.337 0.359 1.008 0.217 0.302
Altria 0.189 0.197 0.215 1.009 0.171
Exxon 0.420 0.303 0.297 0.168 1.027

We try to minimize the portfolio variance §and 99% ES¶ to get the normal frontier. We

also use Monte Carlo simulation to minimize 99% ES‖. We generate 1,000,000 samples in the

Monte Carlo simulation. Table 4.4 shows the portfolio compositions and the corresponding

standard deviation, 99% V aR and 99% ES. These three methods all get the same portfolio

composition for a given return. Figure 4.6 shows the three efficient frontiers based on three

different methods using 99% ES as the risk measure are the same. In addition, no matter

‡The expected return µ̂ and covariance matrix Σ̂ are calibrated using filtered return. We need to restore
the original expected return µ and covariance matrix Σ by µi = µ̂iσi and Σ = AΣ̂A, where A=Diag(σ).
Furthermore, for the negative return series, the mean of the loss is −µ and the covariance matrix is Σ.

§We call quadprog in Matlab.
¶We call fmincon in Matlab, where the function to be optimized is the explicit form of 99% ES.
‖We call fmincon in Matlab, where the function to be optimized is the Monte Carlo simulation of 99%

ES.
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what confidence level α we choose, the portfolio composition at a given return will not

change.

Table 4.4: Portfolio composition and corresponding standard deviation, 99%V aR and
99%ES for normal frontier

Return deviation 99%V aR 99% ES Disney Exxon Pfizer Altria Intel
0 0.0096 0.0223 0.0256 0.319 -0.206 0.528 0.320 0.040

0.0002 0.0084 0.0194 0.0222 0.318 -0.038 0.344 0.333 0.043
0.0004 0.0079 0.0180 0.0207 0.318 0.131 0.161 0.345 0.045
0.0006 0.0082 0.0186 0.0214 0.317 0.300 -0.023 0.358 0.048
0.0008 0.0093 0.0209 0.0241 0.317 0.468 -0.206 0.371 0.050
0.001 0.0109 0.0244 0.0281 0.316 0.637 -0.390 0.384 0.052

0.0012 0.0129 0.0287 0.0331 0.316 0.806 -0.573 0.397 0.055
0.0014 0.0150 0.0335 0.0386 0.316 0.974 -0.757 0.409 0.057
0.0016 0.0173 0.0386 0.0444 0.315 1.143 -0.940 0.422 0.060
0.0018 0.0196 0.0438 0.0505 0.315 1.312 -1.124 0.435 0.062
0.002 0.0220 0.0492 0.0567 0.314 1.480 -1.307 0.448 0.065
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Figure 4.6: Markowitz efficient frontier

Student t Frontier
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Table 4.5 shows the expected log return for the filtered data using Student t distribution.

The degree of freedom is 5.87. Table 4.6 shows the dispersion matrix(upper triangular), and

correlation matrix(lower triangular) for the 5 stocks∗∗.

Table 4.5: Expected filtered log return

Stock Disney Exxon Pfizer Altria Intel
Expected filtered return 0.015 0.077 -0.018 0.069 0.030

GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

Table 4.6: Dispersion and correlation matrix of Student t distribution: the diagonal are
diagonal of dispersion matrix, the upper triangular is dispersion matrix and the lower
triangular is correlation matrix

Stock Disney Exxon Pfizer Altria Intel
Disney 0.709 0.268 0.267 0.159 0.332
Exxon 0.363 0.771 0.274 0.170 0.244
Pfizer 0.378 0.373 0.702 0.155 0.250
Altria 0.265 0.271 0.259 0.511 0.138
Exxon 0.460 0.324 0.349 0.225 0.734

We also have three methods to get the Student t frontier. The methods are the same as

the methods used in obtaining normal frontier. Table 4.7 shows the portfolio compositions

and the corresponding standard deviation, 99% V aR and 99% ES. These three methods all

get the same results. In addition, no matter what confidence level α we choose, the portfolio

composition at a given return will not change. From this table, we can see that the portfolio

compositions are different from normal frontier. Figure 4.8 shows these three methods are

equivalent.

From table 4.4, table 4.7 and figure 4.8, we can see that normal frontier can not be

reached if the risk measure is 99% ES and if we believe the true distribution is Student

t. Multivariate Student t distribution fits the returns data better than multivariate normal

∗∗The expected return µ̂ and dispersion matrix Σ̂ are calibrated using filtered return. We need to restore
the original expected return µ and dispersion matrix Σ by µi = µ̂iσi and Σ = AΣ̂A, where A=Diag(σ).
Furthermore, for the negative return series, the mean of the loss is −µ and the dispersion matrix is Σ.
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Table 4.7: Portfolio composition and corresponding standard deviation, 99%V aR and
99%ES for Student t frontier

Return deviation 99%V aR 99% ES Disney Exxon Pfizer Altria Intel
0 0.0095 0.0245 0.0316 0.494 -0.153 0.447 0.247 -0.035

0.0002 0.0086 0.0218 0.0281 0.410 -0.048 0.315 0.336 -0.014
0.0004 0.0080 0.0203 0.0262 0.326 0.057 0.184 0.425 0.008
0.0006 0.0081 0.0201 0.0261 0.242 0.162 0.052 0.515 0.030
0.0008 0.0086 0.0214 0.0278 0.158 0.267 -0.080 0.604 0.051
0.001 0.0097 0.0238 0.0310 0.074 0.371 -0.211 0.693 0.073

0.0012 0.0110 0.0271 0.0352 -0.010 0.476 -0.343 0.782 0.094
0.0014 0.0126 0.0309 0.0402 -0.094 0.581 -0.474 0.871 0.116
0.0016 0.0143 0.0352 0.0457 -0.178 0.686 -0.606 0.961 0.138
0.0018 0.0161 0.0396 0.0515 -0.262 0.791 -0.737 1.050 0.159
0.002 0.0180 0.0443 0.0576 -0.347 0.895 -0.869 1.139 0.181
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Figure 4.7: Student t and normal efficient frontier versus standard deviation and 99%V aR

distribution. If we use other measures such as V aR or standard deviation, we will get

opposite conclusion as figure 4.7 shows that when the expected return is greater than some

point, the normal frontier is contained in t frontier.

68



0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3 Efficient student t frontier by minimizing variance, 99% ES and Monte Carlo simulation 

Ex
pec

ted
 log

 re
tur

n

99% ES

Variance
99% ES
Monte Carlo
Normal

Figure 4.8: Student t efficient frontier and normal frontier versus 99% ES

Skewed t Frontier

Table 4.8 shows the location parameters and skewness parameters for the filtered data

using skewed Student t distribution. The degree of freedom is 5.93. Table 4.9 shows

the dispersion matrix(upper triangular), and correlation matrix(lower triangular) for the

5 stocks.

Table 4.8: Expected filtered log return and skewness parameters for skewed t distribution

Stock Disney Exxon Pfizer Altria Intel
location parameters -0.071 0.089 -0.030 0.161 0.042

skewness parameters 0.073 -0.010 0.010 -0.079 -0.010
GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

We use Monte Carlo simulation†† to get skewed t frontier by minimizing expected

††We use the filtered returns series to calibrate skewed t distribution and then use the mean-variance
mixture definition to sample the multivariate skewed t distribution to get the 1,000,000 samples X̂1000000×5.
Specifically, in Matlab, we generate 1,000,000 multivariate normal distributed random variables with
mean 0 and covariance Σ̂, which is calibrated using filtered returns series, then we generate 1,000,000
InverseGamma(ν/2, ν/2) distributed random variables, finally, we get 1,000,000 multivariate skewed t
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Table 4.9: Dispersion and correlation matrix of skewed t distribution: the diagonal are
diagonal of dispersion matrix, the upper triangular is dispersion matrix and the lower
triangular is correlation matrix

Stock Disney Exxon Pfizer Altria Intel
Disney 0.706 0.269 0.267 0.164 0.333
Exxon 0.360 0.773 0.275 0.171 0.244
Pfizer 0.377 0.373 0.704 0.157 0.251
Altria 0.254 0.273 0.258 0.509 0.139
Exxon 0.458 0.324 0.349 0.226 0.736

shortfall. Table 4.10 shows the 99% level portfolio compositions and the corresponding

99% ES and table 4.11 shows the 95% level portfolio compositions and the corresponding

95% ES. From table 4.10, we can see that the portfolio compositions in skewed t frontier

are different from those compositions in normal and Student t frontier at 99% level. Since

skewed t distribution is not of elliptical distributions, the 99% level and 95% level produce

slightly different portfolio compositions.

Table 4.10: Portfolio composition and corresponding 99%ES for skewed t frontier

Return 99% ES Disney Exxon Pfizer Altria Intel
0 0.0320 0.393 -0.219 0.515 0.337 -0.026

0.0002 0.0280 0.383 -0.058 0.328 0.363 -0.015
0.0004 0.0263 0.374 0.101 0.139 0.389 -0.003
0.0006 0.0274 0.381 0.259 -0.051 0.406 0.006
0.0008 0.0312 0.399 0.415 -0.244 0.416 0.013
0.001 0.0367 0.428 0.573 -0.436 0.415 0.021

0.0012 0.0433 0.456 0.733 -0.626 0.413 0.024
0.0014 0.0506 0.485 0.892 -0.817 0.409 0.031
0.0016 0.0583 0.514 1.052 -1.007 0.406 0.036
0.0018 0.0662 0.549 1.209 -1.200 0.404 0.038
0.002 0.0744 0.587 1.365 -1.394 0.399 0.042

distributed random variables by using the mean-variance mixture definition. The restored samples X = X̂A,
where A = Diag(σ). The restored mean µi = (µ̂i + ν

ν−2 γ̂i)σi where µ̂ and γ̂ are location and skewness
parameters respectively calibrated using filtered data.
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Table 4.11: Portfolio composition and corresponding 95%ES for skewed t frontier

Return 95% ES Disney Exxon Pfizer Altria Intel
0 0.0215 0.354 -0.222 0.515 0.367 -0.013

0.0002 0.0187 0.348 -0.065 0.325 0.393 -0.002
0.0004 0.0175 0.349 0.094 0.136 0.415 0.006
0.0006 0.0182 0.356 0.253 -0.054 0.430 0.014
0.0008 0.0206 0.369 0.412 -0.245 0.442 0.023
0.001 0.0242 0.386 0.570 -0.435 0.449 0.029

0.0012 0.0285 0.407 0.730 -0.625 0.453 0.036
0.0014 0.0333 0.426 0.889 -0.816 0.459 0.042
0.0016 0.0383 0.447 1.047 -1.007 0.466 0.047
0.0018 0.0436 0.470 1.206 -1.197 0.468 0.053
0.002 0.0489 0.492 1.366 -1.387 0.472 0.057

From figure 4.9, we can see the t frontier can not be reached at both 95% and 99% level

if we believe in skewed t distribution. Multivariate skewed t distribution fits financial data

a little better than t distribution because of its ability of modeling the skewness.
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Figure 4.9: Skewed t efficient frontier at 99% ES or 95% ES versus t frontier
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4.5 Hedge Equity Portfolio Using Index Futures

There are many index futures which are actively traded in CME and CBOT, especially the

mini versions, such as the mini Dow and mini S&P500. Other actively traded futures are

Midcap 400, Nasdaq 100 and Russell 2000.

The Dow has only 30 components so that it is not difficult to replicate this index. If

we buy the portfolio, we want to sell a certain amount of mini Dow futures to hedge the

position. We can get the hedge ratio by a simple linear regression of dollar value change in

portfolio versus dollar value change in future or a simple ratio of the dollar value of portfolio

to the face value of future. The transaction cost of futures is less than for equity and it is

more liquid than equity so that it is easy to trade.

4.6 Conclusion

Standard deviation and V aR usually are not coherent risk measures, while ES is. Under

an elliptical distribution, no matter what confidence level it is, minimizing any translation

invariant and positive homogenous risk measure will produce the same portfolio composition

as Markowitz style portfolio composition given a certain return. Only the difference

in distribution leads to different portfolio compositions. We should choose heavy tailed

distributions to model the portfolio risk.

We use multivariate generalized hyperbolic distributions to fit the filtered i.i.d. five

dimensional returns series. Skewed t has the largest log likelihood and fewest number of

parameters among the four tested generalized hyperbolic distributions. Student t has the

second largest log likelihood. Student t is elliptical, while skewed t is not.

We try to get the normal, Student t and skewed t efficient frontier under risk measure ES.

The portfolio composition is different at a given return if we choose different distributions.

For normal frontier or Student t frontier, different confidence levels still lead to the same

portfolio compositions, while for skewed t distribution, different confidence levels lead

to slightly different portfolio compositions. Under 99% ES, if we believe in Student t

distribution, normal frontier is unreachable, and if we believe in skewed t distribution,

Student t frontier is unreachable.
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CHAPTER 5

Portfolio Credit Risk

Copulas have become a popular way to describe and construct the dependence structure

of multivariate distributions. There are two types of copulas. The first type of copulas

are the bivariate Archimedean copulas, which have been successfully used in the modeling

of bivariate distributions. We can follow Frees and Valdez (1997) to choose the best-fit

Archimedean copula. The Archimedean copula can be extended to n dimensions, but we

will lose almost all dependence information since all pairs of variables have the same Kendall’s

tau correlation coefficient. The second type of copulas are the elliptical copulas. Gaussian

and Student t distributions are elliptical distributions. Gaussian and Student t copulas are

derived from Gaussian and Student t distributions, respectively.

Corresponding to the heavy tail property in univariate distributions, tail dependence is

used to model the co-occurrence of extreme events. Upper tail dependence is used to model

the probability that two uniform random variables tend to go to the largest value 1 together;

lower tail dependence similarly for the smallest value 0.

The success of copulas greatly depends on the availability of a fast algorithm to

calculate the cumulative distribution functions (CDF ) and quantiles of the corresponding

one dimensional Gaussian and Student t distributions. The Student t copula is tail dependent

while the Gaussian copula is tail independent. Schmidt(2003a) showed that all generalized

hyperbolic copulas derived from symmetric generalized hyperbolic distributions are tail

independent except for the Student t copula. The calibration of a Student t copula is

very fast if we fix the degree of freedom ν, which in turn is optimized by maximizing a

log likelihood. Detailed algorithms for calibrating Student t copulas can be found in the

work of many researchers, such as Di Clemente and Romano (2003a), Demarta and McNeil

(2005), Mashal and Naldi(2002) and Galiani(2003). The calibration of a Student t copula
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is separate from the calibration of marginal distributions. It is generally suggested to use

the empirical distributions to fit the margins, but empirical distributions tend to have poor

performance in the tails. A hybrid of the parametric and non parametric method considers

the use of the empirical distribution in the body and generalized Pareto distribution (GPD)

in the tails. Some use Gaussian distribution in the body. Di Clemente and Romano (2003a)

used Student t copula and Gaussian distribution in the center and left tail and GPD in the

right tail for the margins to model the multivariate losses. We will be able to avoid these

issues because we can effectively calibrate the full distribution directly by using skewed t or

Student t distributions.

Credit risk modeling has two popular approaches, structural and reduced form. In the

structural approach, in which default is modeled as a first passage time across a barrier,

the default time τ is predictable, so that the short credit spread tends to zero, which is not

consistent with market observations. In reduced form, or stochastic intensity modeling, τ is

unpredictable and the short credit spread tends to the intensity. In addition, the stochastic

intensity can be modeled like an interest rate process. For these reasons we focus on the

reduced form approach to credit risk models in this dissertation. An excellent book about

interest rate modeling is Brigo and Mercurio(2005). Another is Schönbucher (2003), who

uses the Heath-Jarrow-Morton framework to describe the term structure of a defaultable

bond.

In the pricing of multiname credit derivatives such as basket credit default swaps (CDS),

and collateralized debt obligations (CDO), the most important issue is the correlations

between those default obligors. Defaults are rarely observed. Copulas can be introduced to

model these correlations by using the correlations of corresponding equity prices. We show

that Kendall’s τ correlation remains invariant under monotone transformations. This is the

foundation of modeling the correlation of credit events by using the correlation of underlying

equities via copulas, though nobody mentions this correlation invariance property. Under our

setting of portfolio credit risk, the default times are increasing functions of copula uniform

random variables, which are the cumulative distribution function(CDF ) transformations

of corresponding equity prices, so that default times are increasing transformations of

corresponding equity prices. Therefore, the Kendall’s τ correlations of default times are

the same as the correlations of corresponding equities. Recently, several researchers have

discussed the pricing of basket CDS and CDO via copulas, such as Galiani (2003), Mashal
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and Naldi (2002), and Meneguzzo and Vecchiato (2002), among others.

In fact, we can also use a multivariate distribution of underlying equity prices instead

of using copulas to model the correlation of credit events with the correlation of underlying

equities by using this correlation invariance property. The only difference between a copula

approach and a distribution approach lies in the calibration procedure. For a copula

approach, the calibrations of marginal distributions and copula are separate, while for a

distribution approach, the two are jointly calibrated.

There are many applications of multivariate distributions or multivariate copulas. Di

Clemente and Romano (2003b) used copulas to minimize expected shortfall(ES) in modeling

operational risk. Di Clemente and Romano (2004) applied the same framework in the

portfolio optimization of CDS. Masala, Menzietti and Micocci (2004) used the Student

t copula and the transition matrix with gamma distributed hazard rate and beta distributed

recovery rate to get the efficient frontier for credit portfolios by minimizing ES.

We applied the generalized hyperbolic distributions to model the multivariate equity

returns by using the EM algorithm in last chapter. We showed that skewed t has better

performance and a fast algorithm compared with other generalized hyperbolic distributions.

Furthermore, for the Student t distribution, we have greatly simplified formulas and a faster

algorithm than for the skewed t distribution. For the Student t copula, there is still no

good method to calibrate the degree of freedom ν except to find it by direct search. The

calibration of student t copula takes days while the calibration of skewed t or Student t

distribution takes minutes.

We use the Student t and skewed t distributions to model the correlations of default

obligors in this final chapter.

This chapter is organized as following. In Section 5.1, we follow Rutkowski (1999) to

price the single name credit risk. We give an introduction to copula in Section 5.2. We show

that the rank correlation Kendall’s tau remains invariant under monotone transformation in

Section 5.3. In Section 5.4, we follow Schönbucher (2003) to provide our model setup for

calculating default probabilities for the k-th to default using copulas. In addition, we show

that we can use the distributions of underlying equities to model the correlations instead

of using copulas. In Section 5.5, we do some default probabilities analysis for the k-th to

default using different copulas. In Section 5.6, we use (skewed) t distributions and t copula

to price the basket credit default swaps. To our knowledge, we are the first to apply skewed
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t or Student t distribution to price basket credit default swaps.

5.1 An Introduction to Credit Risk

There are two popular approaches in the credit risk modeling: the reduced form approach

and the structural approach. In structural modeling, the default time τ is predictable, so that

the short credit spread tends to zero, which is not consistent with market observation. In

reduced form modeling, τ is unpredictable and the short credit spread tends to the intensity.

Many people call the reduced form modeling stochastic intensity modeling.

For the single name credit risk, we follow the reduced form approach of Rutkowski (1999).

Suppose that τ is the default time of a firm. Let Ht = Iτ≤t, and Ht = σ(Hs : s ≤ t) denote

the default time information filtration. We denote by F the right-continuous cumulative

distribution function of τ , i.e., F (t) = P (τ ≤ t).

Definition 5.1.1 Hazard Function. The function Γ : R+ → R+ given by

Γ(t) = − log (1− F (t)),∀t ∈ R+ (5.1.1)

is called the hazard function or cumulative hazard function. If F is absolutely continuous,

i.e., F (t) =
∫ t

0
f(u)du, then we have

F (t) = 1− e−
∫ t
0 λ(u)du, (5.1.2)

where λ is called intensity function or hazard rate.

The following is the probability density function of default time τ

f(t) = λ(t)S(t), (5.1.3)

where S(t) = 1− F (t).

Suppose the risk free interest rate r is a non-negative deterministic function so that

the price at time t of a unit of default free zero coupon bond with maturity T equals

B(t, T ) = e−
∫ T

t r(u)du.

We have the following pricing formulas when the only information is default time.

Proposition 5.1.2 Rutkowski(1999). Assume that t ≤ T . If

Yt = I{t<τ≤T}h(τ)e
−

∫ τ
t r(u)du + I{τ > T}ce−

∫ T
t r(u)du,
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where c is a constant, and if Γ(t) is absolutely continuous, then

E(Yt|Ht) = I{τ>t}

(∫ T

t

h(u)λ(u)e−
∫ u

t r̂(v)dvdu+ ce−
∫ T

t r̂(u)du

)
, (5.1.4)

where r̂(v) = r(v) + λ(v).

The first term is the price of default payment, while the second term is the price of survival

payment. Note that in the first term we use equation 5.1.3 to denote the probability density

function of τ . The second term tells us that a defaultable instrument can be valued as if

it were default free by replacing the interest rate by the sum of interest rate and default

intensity. We use this proposition to price basket credit default swaps.

Let Ft = σ(Vs : s ≤ t), where{Vt : 0 ≤ t ≤ T} is the firm’s price series, denote the asset

price information, and Gt = Ft ∨ Ht denote all the information, until time t. Let us define

Ft = P (τ ≤ t|Ft).

Definition 5.1.3 Martingale Hazard Process. Assume that Ft < 1 for every t ∈ R+.

The F-martingale hazard process of τ denoted by Γ is defined through

exp(−Γt) = P (τ > t|Ft) = 1− Ft. (5.1.5)

We have the following pricing formulas when we have all the information.

Proposition 5.1.4 Rutkowski(1999). Assume that t ≤ T . If Γ is well defined, then we

have

E[I{τ>t}Y |Gt] = I{τ>t}
E[I{τ>t}Y |Ft]
P [τ > t|Ft]

= I{τ>t}E[I{τ>t}Y e
Γt|Ft]. (5.1.6)

Furthermore, if Y is a FT -measurable random variable.

E[I{τ>T}Y |Gt] = I{τ>t}E[exp(Γt − ΓT )Y |Ft]. (5.1.7)

This proposition tells us the pricing under all information is reduced to the pricing under

asset information filtration.

Corollary 5.1.5 For t ≤ T , we have

P [τ > T |Gt] = I{τ>t}
P [τ > T |Ft]
P [τ > t|Ft]

. (5.1.8)
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Definition 5.1.6 If Γ is absolutely continuous, i.e. Γt =
∫ t

0
λudu, then λ is called the

F-intensity of a random time τ .

Corollary 5.1.7 Stochastic Intensity. For t ≤ T , we have the following so called

stochastic intensity,

λtI{τ>t} = − ∂

∂T
P [τ > T |Gt]|T=t = lim

T↓t

1

T − t
P [t < τ ≤ T |Gt]. (5.1.9)

5.2 An Introduction to Copula

Copulas are used to model dependence. One of the definitions can be found in Li (1999),

the first one who uses copula to price portfolio credit risk.

5.2.1 Definition and Basic Properties of Copula Functions

Definition 5.2.1 Copula Function. For d uniform random variables,U1, U2, · · · , Ud, the

joint distribution function C,defined as

C(u1, u2, · · · , ud) = P [U1 ≤ u1, U2 ≤ u2, · · · , Ud ≤ ud],

is called a copula function.

Proposition 5.2.2 Sklar’s Theorem(Sklar(1959)). Let F be a joint distribution

function with margins F1, F2, · · · , Fd, then there exists a copula C such that for all

(x1, x2, · · · , xd) ∈ Rd,

F (x1, x2, · · · , xd) = C(F1(x1), F2(x2), · · · , Fd(xd)). (5.2.1)

If F1, F2, · · · , Fd are continuous, then C is unique. Conversely, if C is a copula and

F1, F2, · · · , Fd are distribution functions, then the function F defined by equation 5.2.1 is

a joint distribution function with margins F1, F2, · · · , Fd.

The name copula means a function that couples a joint distribution function to

its marginal distributions. If X1, X2, · · · , Xd are random variables with distributions

F1, F2, · · · , Fd respectively and a joint distribution F , then copula C is also called the copula

of X1, X2, · · · , Xd, and (U1, U2, · · · , Ud) = (F1(X1), F2(X2), · · · , Fd(Xd)) also has a copula

C. We will use this property to price basket credit default swaps later.
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We usually assume the marginal distributions to be empirical distributions. Suppose that

the sample data is xi = (xi,1, · · · , xi,d), where i = 1, · · · , n, then the empirical estimator of

jth marginal distribution function

F̂j(x) =

∑n
i=1 I{xi,j≤x}

n+ 1
. (5.2.2)

Demarta and McNeil(2005) suggested to divide by n + 1 to keep the estimation away from

the boundary 1. By using different copulas and empirical or other margins, we can create

a rich family of multivariate distributions. It is not required that the margins and joint

distribution must be the same type of distribution; however, when we make copulas, we do

require this, which can be seen from following corollary.

Corollary 5.2.3 If F1, F2, · · · , Fm are continuous, then, for any u = (u1, · · · , um) ∈ [0, 1]m,

we have

C(u1, u2, · · · , um) = F (F−1
1 (u1), F

−1
2 (u2), · · · , F−1

m (um)), (5.2.3)

where F−1
i (ui) denotes the inverse of the cumulative distribution function, namely, for

ui ∈ [0, 1], F−1
i (ui) = inf{x : Fi(x) ≥ ui}.

Two types of copulas are widely used now. They are elliptical copulas and Archimedean

copulas. Elliptical copulas are created from multivariate elliptical distributions. Gaussian

and Student t are elliptical distributions. Gaussian and t copula are multivariate elliptical

copulas which are created from Gaussian and Student t distribution respectively. Frank,

Gumbel and Clayton copula are bivariate Archimedean copulas.

The copula remains invariant under increasing transformation (See Section 5.3). The

copula remains invariant under the standardizations of marginal distributions. This means

we can create elliptical copulas from standardized multivariate elliptical distributions.

Definition 5.2.4 Multivariate Gaussian Copula. Let R be a symmetric, positive

definite matrix with diag(R) = 1 and let ΦR be the standardized multivariate normal

distribution function with correlation matrix R. Then the multivariate Gaussian copula

is defined as

C(u1, u2, · · · , um;R) = ΦR(Φ−1(u1),Φ
−1(u2), · · · ,Φ−1(um)), (5.2.4)

where Φ−1(u) denotes the inverse of the standard univariate normal cumulative distribution

function.
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Definition 5.2.5 Multivariate Student’s t Copula. Let R be a symmetric, positive

definite matrix with diag(R) = 1 and let TR,ν be the standardized multivariate Student

t distribution function with correlation matrix R and ν degrees of freedom. Then the

multivariate Student t copula is defined as

C(u1, u2, · · · , um;R, ν) = TR,ν(T
−1
ν (u1), T

−1
ν (u2), · · · , T−1

ν (um)), (5.2.5)

where T−1
ν (u) denotes the inverse of standard univariate Student t cumulative distribution

function.

Definition 5.2.6 Archimedean Copula. An Archimedean Copula function C : [0, 1]2 →
[0, 1] is an function which can be represented in the following form:

C(u, v) = φ[−1] (φ(u) + φ(v)) , (5.2.6)

where φ : [0, 1] → [0,∞] is a continuous, strictly decreasing and convex function satisfying

φ(1) = 0, and φ is called the generator of the copula. The pseudo-inverse of φ , φ[−1] :

[0,∞] → [0, 1] is given by

φ[−1](t) =

{
φ−1(t) for 0 ≤ t ≤ φ(0)
0 for φ(0) ≤ t ≤ ∞.

(5.2.7)

Furthermore, if φ(0) = ∞, then φ[−1] = φ−1(t), and we call φ and C respectively a strict

generator and a strict Archimedean copula.

Gumbel Copula. Let φ(t) = (− ln t)θ with θ ≥ 1. Then, from equation(5.2.6), we have

CGumbel
θ (u, v) = φ−1[φ(u) + φ(v)] = exp

{
−
[
(− lnu)θ + (− ln v)θ

] 1
θ

}
. (5.2.8)

Clayton Copula. Let φ(t) = (t−θ−1)/θ with θ ∈ [−1,∞)\{0}. Then, from equation(5.2.6),

we have

CClayton
θ (u, v) = max

[
(u−θ + v−θ − 1)−1/θ, 0

]
. (5.2.9)

Note that if θ > 0, then φ(0) = ∞, and we can get the strict copula,

CClayton
θ (u, v) = (u−θ + v−θ − 1)−1/θ. (5.2.10)

Frank Copula. Let φ(t) = − ln e−θt−1
e−θ−1

with θ ∈ R\{0}. Then, from equation(5.2.6), we

have

CFrank
θ (u, v) = −1

θ
log

{
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

}
. (5.2.11)
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A lot of other copula generators can be found in Joe(1997). The Archimedean copulas

can be used to construct a very rich family of bivariate distributions. Frees and Valdez(1997)

provides a way to choose best-fit bivariate Archimedean copulas. Archimedean copulas have

only one parameter so that they are easy to calibrate.

5.3 Measure of Dependence

In this chapter, when we talk about correlation, we mean Kendall’s tau rank correlation.

5.3.1 Rank Correlation

Definition 5.3.1 Kendall’s Tau. Kendall’s tau correlation for the bivariate random vector

(X,Y ) is defined as

τ(X, Y ) = P ((X − X̂)(Y − Ŷ ) > 0)− P ((X − X̂)(Y − Ŷ ) < 0), (5.3.1)

where (X̂, Ŷ ) is an independent copy of (X, Y ).

As suggested by Meneguzzo& Vecchiato(2002), the sample consistent estimator of Kendall’s

tau is given by

τ̂ =

∑n
i,j=1,i<j sign[(xi − xj)(yi − yj)]

n(n− 1)/2
, (5.3.2)

where sign(x) = 1 if x ≥ 0, otherwise sign(x) = 0, and n is the number of observations.

Nelson(1999) showed that Kendall’s tau τ depends only on the copula of (X, Y ), and it

is given by

τ(X, Y ) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1. (5.3.3)

It has nothing to do with the marginal distributions. Sometimes, we may need the following

formula

τ(X, Y ) = 1− 4

∫ ∫
[0,1]2

Cu(u, v)Cv(u, v)dudv, (5.3.4)

where Cu denotes the partial derivative of C(u, v) with respect to u and Cv denotes the

partial derivative of C(u, v) with respect to v.

Lindskog et al. (2003) showed that for elliptical distributions,

τ(X, Y ) =
2

π
arcsin(ρ), (5.3.5)
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where ρ is the Pearson’s linear correlation coefficient between random variable X and Y .

Nelson (1999) showed that for Archimedean copulas,

τ(X,Y ) = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt. (5.3.6)

We can use equation 5.3.2 to get the sample Kendall’s tau and then use equation 5.3.5

or equation 5.3.6 to estimate the copula parameters. This is a very rough solution. Most

people use this method to get an initial guess of copula parameters when they calibrate a

copula.

Proposition 5.3.2 Copula of Transformations(Nelson 1999). Let X and Y be

continuous random variables with copula CXY . If both α(X) and β(Y ) are strictly increasing

on RanX and RanY respectively, then Cα(X)β(Y ) = CXY . If both α(X) and β(Y ) are strictly

decreasing on RanX and RanY respectively, then Cα(X)β(Y )(u, v) = u + v − 1 + CXY (1 −
u, 1− v).

Theorem 5.3.3 Invariability of Kendall’s Tau Under Monotone Transformation

. Let X and Y be continuous random variables with copula CXY . If both α(X) and

β(Y ) are strictly increasing or strictly decreasing on RanX and RanY respectively, then

τα(X)β(Y ) = τXY .

Proof: we just need to show the second part. If both α(X) and β(Y ) are strictly decreasing,

then Cα(X)β(Y )(u, v) = u+ v − 1 + CXY (1− u, 1− v). From equation 5.3.4, we have

τα(X)β(Y ) = 1− 4

∫ ∫
[0,1]2

(1− C1(1− u, 1− v))(1− C2(1− u, 1− v))dudv

where Ci denotes the partial derivative with respect to ith variable to avoid confusion. By

replacing 1− u by x and 1− v by y, we have

τα(X)β(Y ) = 1− 4

∫ ∫
[0,1]2

(1− C1(x, y))(1− C2(x, y))dxdy.

Since ∫ ∫
[0,1]2

C1(x, y)dxdy =

∫
[0,1]

ydy = 0.5,

we have τα(X)β(Y ) = τXY .
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This theorem is the foundation of modeling of default correlation in the pricing of portfolio

credit risk. In fact, the default time is a increasing transformation of the price of underlying

equity, which can seen in Section 5.4, so that the correlation of default times is the same

as the correlation of underlying equities. Most people use a copula to model the correlation

by assuming the marginal distributions. No-one seems to be aware, that, actually, we can

use the distribution of equity prices to model the correlation of default times too. We do

not need to assume the marginal distributions at all when we model the correlations via the

multivariate distribution. The calibration of multivariate distributions is integrative, while

calibration via copulas is separated into two steps, where one is for marginal distributions

and another one is for dependence.

5.3.2 Tail Dependence

Corresponding to the heavy tail property in univariate distributions, tail dependence is used

to model the co-occurrence of extreme events. For credit risk, firms tend to crash together

because of their connection in business.

Definition 5.3.4 Tail Dependence Coefficient(TDC). Let (X1, X2) be a bivariate

vector of continuous random variables with marginal distribution function F1 and F2. The

level of upper tail dependence λU and lower tail dependence λL are given respectively by,

λU = lim
u↑1

P [X2 > F−1
2 (u)|X1 > F−1

1 (u)], (5.3.7)

λL = lim
u↓0

P [X2 ≤ F−1
2 (u)|X1 ≤ F−1

1 (u)]. (5.3.8)

If λU ∈ (0, 1], then the two random variables (X1, X2) are said to be asymptotically dependent

in the upper tail. If λU = 0, then the two random variables (X1, X2) are said to be

asymptotically independent in the upper tail. If λL ∈ (0, 1], then the two random variables

(X1, X2) are said to be asymptotically dependent in the lower tail. If λL = 0, then the two

random variables (X1, X2) are said to be asymptotically independent in the lower tail.

Joe(1997) gave the copula version of TDC,

λU = lim
u↑1

[1− 2u+ C(u, u)]

1− u
, (5.3.9)

λL = lim
u↓0

C(u, u)

u
. (5.3.10)
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For elliptical copulas, λU = λL, and we just denote them by λ. Embrechts et al. (2001)

showed that for a Gaussian copula, λ = 0, and for a Student t copula,

λ = 2− 2tν+1

(√
ν + 1

√
1− r√
1 + r

)
. (5.3.11)

We can see that λ is an increasing function of the Pearson correlation coefficient r and a

decreasing function of the degree of freedom ν. The Student t copula is a tail dependent

copula. We can see the difference of the tail dependence between Gaussian copula and

Student t copula from figure 5.1.
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Figure 5.1: 1000 samples of Gaussian and Student t copula with Kendall’s τ = 0.5. There
are more points in both corners for Student t copula.

The Clayton copula is lower tail dependent for θ > 0 and λL = 2−1/θ, but it is upper tail

independent.

The Gumbel copula is upper tail dependent for θ > 1 and λU = 2− 21/θ, but it is lower

tail independent.

The Frank copula is tail independent. We can see difference in the tail dependence among

these three Archimedean copulas from figure 5.2.
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Figure 5.2: 1000 samples of Clayton, Frank, and Gumbel copula with Kendall’s τ = 0.5

5.4 Portfolio Credit Risk

5.4.1 Copula Approach Setup

We provide our setup of portfolio credit risk by following Schönbucher(2003). Suppose that

we are standing at time t=0.

Assumption 5.4.1 Suppose there are d firms. For each obligor i ≤ d, we define

1. The default intensity λi(t): a deterministic function. We usually assume it to be a step

function.

2. The survival function Si(t):

Si(t) := exp

(
−
∫ t

0

λi(u)du

)
. (5.4.1)

3. The default trigger variables 1 − Ui: uniform random variables on [0, 1]. The d-

dimensional vector 1−U = (1−U1, 1−U2, · · · , 1−Ud) is distributed according to the

d-dimensional copula C(cf. definition 5.2.1).
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4. The time of default τi of obligor i, where i = 1, · · · , d,

τi := inf{t : Si(t) ≤ 1− Ui}. (5.4.2)

The copula of U is denoted by Ĉ. It is also called survival copula of 1−U. See Georges,

Lamy, Nicolas, Quibel and Roncalli(2001) for more details about survival copulas.

From equation 5.4.2, we can see that the default time τi is a increasing transformation

of uniform random variable Ui, so that the rank correlation Kendall’s tau between default

times is the same as Kendall’s tau between the uniform random variables, and the copula

of τ equals the copula of U, in other words, the copula of 1−U, is the survival copula of

τ . In fact, the defaults rarely happen. In practice, people usually take the correlation of

underlying equities as the correlation of default times. The uniform random variables Ui

satisfies Ui = Fi(Xi), where Fi is the distribution function of obligor i’s equity price Xi and

we usually assume it to be empirical distribution. Therefore, τi is a increasing transformation

of underlying equity price Xi so that the Kendall’s tau between default times is the same as

Kendall’s tau between the underlying equities. The copula of X is the same as the copula

of U.

Theorem 5.4.2 Joint Survival Probabilities. The joint survival probabilities of

(τ1, τ2, · · · , τd) are given by

P [τ1 > T1, τ2 > T2, · · · , τd > Td] = C(S1(T1), · · · , Sd(Td)). (5.4.3)

Proof: From the definition of default in equation 5.4.2, we have

P [τ1 > T1, · · · , τd > Td] = P [1− U1 < S1(T1), · · · , 1− Ud < Sd(Td)].

By the definition of copula of 1−U we have

P [τ1 > T1, · · · , τd > Td] = C
(
S1(T1), · · · , Sd(Td)

)
,

where C is the copula of 1 − U and it is also the survival copula of (τ1, τ2, · · · , τd).

Let us denote the default function, F i(t) = 1− Si(t).

Theorem 5.4.3 Joint Default Probabilities. The joint default probabilities of (τ1, τ2, · · · , τd)
are given by

P [τ1 ≤ T1, τ2 ≤ T2, · · · , τd ≤ Td] = Ĉ(F 1(T1), · · · , F d(Td)). (5.4.4)
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Proof: From the definition of default in equation 5.4.2, we have

P [τ1 ≤ T1, · · · , τd ≤ Td] = P [1− U1 ≥ S1(T1), · · · , 1− Ud ≥ Sd(Td)].

By the definition of copula of U we have

P [τ1 ≤ T1, · · · , τd ≤ Td] = Ĉ
(
F 1(T1), · · · , F d(Td)

)
,

where Ĉ is the copula of U and it is also the copula of (τ1, τ2, · · · , τd).

In the Monte Carlo simulation, we calibrate and simulate the copula of X, which is also

the copula of τ or U, i.e. copula Ĉ.

5.4.2 Distribution Approach

We can also use multivariate distributions of equity prices to model the correlation of default

times. After we calibrate the full multivariate distribution, we can get the margins and take

marginal transformations to get uniform random variables, Ui = Fi(Xi), so that default

time τi is a increasing transformation of underlying equity price Xi. In this way, the rank

correlation Kendall’s tau remains unchanged. As noted in Proposition 5.2.2, the copula of

U is the same as the copula of X. All the setup are the same as in the copula approach

except the calibration procedure. The calibration of a Student t copula is separate from

the calibration of marginal distributions. It is generally suggested to use the empirical

distribution to fit the margins, but empirical distributions tend to have poor performance

in the tails. A hybrid of the parametric and non parametric method considers the use of

the empirical distribution in the body and generalized Pareto distribution (GPD) in the

tails. Some use Gaussian distribution in the body. In addition, there is no good method

to optimize the degree of freedom for Student t copula. We will be able to avoid these

issues because we can effectively calibrate the full distribution such as Student t or skewed

t directly.

In our setting, the default times are increasing transformations of corresponding equity

prices. If the equity price is higher, the firm is healthier so that the default time is longer.

It is noted that under the setting of Schönbucher(2003) of portfolio credit risk, the default

times are decreasing transformations of corresponding equity prices. If we use symmetric

copulas or distributions such as Student t copula, Gaussian copula and Student t distribution
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etc, then both settings are equivalent since for a symmetric copula C, the survival copula is

itself. If we use skewed t distribution, then these two settings are different.

5.5 K-th to Default Probabilities Analysis Using
Copulas

In this Section, we show by some experiments how to calculate the k-th to default

probabilities, especially, first to default(FTD) and last to default (LTD) and sensitivity

analysis of copula. K denotes the order of default in a basket of firms.

5.5.1 Algorithm

We calculate the k-th to default probabilities using the following procedures.

1. We use Matlab copula toolbox 1.0 to simulate Gaussian, Student t, Clayton and

Gumbel copulas uniform variables ui,jwith the same Kendall’s tau correlation, where

i = 1, · · · , d, j = 1, · · · , n and n is the number of samples ∗.

2. From equation(5.4.2), we get τi,j and sort according to column. The k-th row is a series

of k-th to default times τ ki .

3. Divide the interval from year 0 to year 5 into 500 small sub intervals and count the

number of points that τ ki falls into those sub intervals and divide by the number of

samples to get the default probabilities during those small sub intervals. Finally, we

get the default probability before time t by summing all the default probabilities over

all the sub intervals before time t, where t is from 0 to 5.

In the following, we assume that there are two firms, there is no default until now, the

Kendall’s τ = 0.5 for all copulas, the default intensity λ1 = 0.05, λ2 = 0.03, degree of

freedom of t copula is 5, and all the Monte Carlo simulations have 1,000,000 runs.

5.5.2 The Default Probabilities of Last to Default(LTD)

We can see from Figure 5.3 that a copula function with lower tail dependence (Clayton

copula) leads to highest default probabilities for LTD, while the copula function with upper

∗Note that we use the copula of U, Ĉ, to simulate the copula random variables. This method is also used
in the pricing of basket credit default swaps in the next section, where we calibrate the copula Ĉ from the
underlying equity prices.
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Figure 5.3: Default probabilities of LTD.

tail dependence (Gumbel copula) leads to lowest default probabilities. The tail dependent

copula (Student t copula) leads to higher default probabilities than tail independent

copula(Gaussian copula). The default events happen when the uniform random variables

are small(close to 0). The last to default requires that both uniform variables in the basket

are small. A lower tail dependent copula has more chance that both uniform variables are

small than a tail independent copula.

5.5.3 The Default Probabilities of First to Default(FTD)

We can see from Figure 5.4 that a copula function with lower tail dependence (Clayton

copula) leads to the lowest default probabilities for FTD, while a copula function with

upper tail dependence(Gumbel copula) leads to the highest default probabilities. The first

to default requires that only one or more of the uniform variables in the basket is small.

Lower tail dependent copula has less chance that one or more uniform variables are small

than tail independent copula.

Since defaults rarely occur, we are especially interested in the FTD. Archimedean

copulas can only model bivariate distributions or correlations. The Student t copula is

more promising than the Gaussian copula for its lower tail dependence.
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Figure 5.4: Default probabilities of FTD.

5.6 Pricing of Basket Credit Default Swap Using
Elliptical Copulas and Skewed t Distribution

5.6.1 Credit Default Swaps

A credit default swap(CDS) is a contract that provides insurance against the risk of default

of a particular company. The buyer of a CDS contract obtains the right to sell a particular

bond issued by the company for its par value once a default occurs. The buyer pays a periodic

payment, at time t1, · · · , tn, as the fraction of nominal value M , to the seller until the end of

the life of the contract T = tn or until a default time τ < T occurs. If a default occurs, the

buyer still needs to pay the accrued payment from last last payment time to default time.

There are 1/∆ payments a year, and every payment is ∆kM . Usually, ∆ = 1/2.

5.6.2 Valuation of Credit Default Swaps

Set the current time t0 = 0. Let us suppose the only information available is the default

information, the interest rate follows a deterministic function, recovery rate is a constant and

the expectation operator E(·) is under the risk neutral world. We use Proposition 5.1.2 to

get the premium leg, accrued payment and default leg. The premium leg is the current price
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of periodic payments and the accrued payment is the current price of accumulated payment

from last payment to default time. Default leg is the current price of default payment.

PL = M∆k
n∑
i=1

E(B(0, ti)I{τ > ti}) (5.6.1)

= M∆k
n∑
i=1

B(0, ti)e
−

∫ ti
0 λ(u)du,

AP = M∆k
n∑
i=1

E

(
τ − ti−1

ti − ti−1

B(0, τ)I{ti−1 < τ ≤ ti}
)

(5.6.2)

= M∆k
n∑
i=1

∫ ti

ti−1

u− ti−1

ti − ti−1

B(0, u)λ(u)e−
∫ u
0 λ(s)dsdu,

DL = M(1−R)E
(
B(0, τ)I{τ≤T}

)
(5.6.3)

= M(1−R)

∫ T

0

B(0, u)λ(u)e−
∫ u
0 λ(s)dsdu.

The spread price k∗ is the k such that the value of credit default swap is zero,

PL(k∗) + AP (k∗) = DL(k∗). (5.6.4)

5.6.3 Calibration of Default Intensity

Hull(2002) mentioned that the credit default swap market is so liquid that we can use the

credit default swap spread data to calibrate the default intensity using equation 5.6.4.

In table 5.1, we have the credit default spread data on 07/02/2004 from GFI

(http://www.gfigroup.com). The spread price is quoted in basis points. It is the payment

made by the buyer of the CDS per year per dollar. The mid price is the average of bid price

and ask price.

We denote the maturities of the CDS contract as (T1, · · · , T5) = (1, 2, 3, 4, 5). It is

usually assumed that the default intensity is a step function, with step size to be 1 year, and

it can be expressed in the following form,

λ(t) =
5∑
i=1

ciI(Ti−1,Ti](t)
† (5.6.5)

†T0 = 0.
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Table 5.1: Credit default swaps middle point quote

Company Year 1 Year 2 Year 3 Year 4 year 5
AT&T 144 144 208 272 330

Bell South 12 18 24 33 43
Century Tel 59 76 92 108 136

SBC 15 23 31 39 47.5
Sprint 57 61 66 83 100

We can get c1 by using the 1 year CDS spread price first. Knowing c1, we can estimate

c2 using the 2 year CDS spread price. Following this procedure, we can estimate all the

constant ci for the default intensity.

In our calibration, we assume that recover rate is 0.4, risk free interest rate is 0.045 and

the payment is paid semiannually. Under this setting, we can get PL, AP and DL explicitly.

The calibrated default intensity is shown in table 5.2.

Table 5.2: Calibrated default intensity

Company Year 1 Year 2 Year 3 Year 4 year 5
AT&T 0.0237 0.0237 0.0599 0.0893 0.1198

Bell South 0.0020 0.0040 0.0061 0.0105 0.0149
Century Tel 0.0097 0.0155 0.0210 0.0271 0.0469

SBC 0.0025 0.0052 0.0080 0.0109 0.0144
Sprint 0.0094 0.0108 0.0127 0.0235 0.0304

5.6.4 Pricing of Basket Credit Default Swaps

Suppose that there are I firms now. We try to price the 5 year basket credit default swaps.

All the settings are the same as the single CDS except that the default event is triggered by

the k-th default in the basket, where k is the seniority level of this structure. The seller of

the basket CDS will face the default payment upon the k-th default, and the buyer will pay

the spread price until k-th default or until maturity T . Let (τ1, · · · , τI) denote the default

order.

We can use Proposition 5.1.2 to get the premium leg, accrued payment and default leg,
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PL = M∆k
n∑
i=1

E(B(0, ti)I{τk > ti}), (5.6.6)

AP = M∆k
n∑
i=1

E

(
τk − ti−1

ti − ti−1

B(0, τk)I{ti−1 < τk ≤, ti}
)
, (5.6.7)

DL = M(1−R)E
(
B(0, τ)I{τk≤T}

)
. (5.6.8)

The spread price k∗ is the k such that the value of credit default swap is zero, i.e.,

PL(k∗) + AP (k∗) = DL(k∗). (5.6.9)

The most important issue in the pricing of a basket CDS is the correlation of those defaults.

Default data is rarely observable. It is a common experience that we use correlation of

underlying equities to model the correlation of defaults because of the correlation invariance

property though this theorem appears not to be stated in the literature.

It is not easy to get the distribution of τk so that it is difficult to calculate the expectations

in all the legs. Monte Carlo simulation‡ can be used to get the spread price k∗ of k-th to

default.

We use two approaches to apply the Monte Carlo simulation. One is the popular Student

t copula approach. The Student t copula has tail dependence, which is good to model

the co-occurance of credit events. However, it is also often argued that its symmetry and

bivariate exchangeability are not realistic. We can also use skewed t distribution to model

the correlation. The only difference between a distribution and a copula is that we need

to specify marginal distributions for the copula, but we do not need to for the distribution

approach. The calibration of a Student t copula is fast if we fix ν, but there is no good method

to calibrate the degree of freedom ν. The calibration of a Student t copula for fixed ν can

be found in a lot of current literature, such as Di Clemente and Romano (2003a), Demarta

and McNeil (2005), and Galiani (2003). The skewed t distribution has better performance

than the t distribution because of its ability to model skewness. It has heavier tails than

the t distribution, which is good for risk management. At this time, we can not calibrate

the skewed t copula suggested by Demarta and McNeil (2005), but we can try the skewed

‡Standard procedure can be found in Galiani(2003) etc.
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t distribution since it is easy to calibrate and simulate by using the mean-variance mixture

definition of GH discussed earlier.

We get the adjusted close prices for the five underlying stocks from finance.yahoo.com.

The data is ranged from 07/02/1998 to 07/02/2004.

Copula Approach. We use the empirical distribution to model the marginal distributions

and transform the equity prices into uniform variates. Then, we can estimate a Student t

copula or Gaussian copula using those uniform variables. The log likelihood of the Gaussian

copula is 936.90, while the log likelihood of the Student t copula is 1043.94. The Student t

copula is far better than the Gaussian copula. The degree of freedom of the Student t copula

is 7.406, which is found by maximizing log likelihood using direct search. The usual method

is to loop ν from 2.001 to 20 and step size is 0.001. Each loop takes about 5 seconds and

the calibration takes about 24 hours.

After we calibrate the copula, we sample the copula to get uniform random variables

using the approach mentioned in Section 5.5, use equation 5.4.2 to get default times, and

use equation 5.6.9 to find the spread price for k-th to default.

Distribution Approach. We calibrate the multivariate Student t or multivariate skewed

t distribution first using EM algorithm discussed in chapter 2. The calibration is very fast,

which takes less than 1 minute. The calibrated degree of freedom for both Student t and

skewed t is 4.313. The log likelihood for skewed t is 18420.58, while for Student t is 18420.20.

Then, we sample Student t or skewed t random variables and transform them into uniform

random variables by the marginal CDF transformations. Then we follow the same procedure

as for the copula approach to get the spread price for k-th to default.

Table 5.3: Spread price for k-th to default using different models

Model FTD 2TD 3TD 4TD LTD
Gaussian copula 525.6 141.7 40.4 10.9 2.2
Student t copula 506.1 143.2 46.9 15.1 3.9

Student t distribution 498.4 143.2 48.7 16.8 4.5
Skewed t distribution 499.5 143.9 49.3 16.8 4.5

We calculate the spread prices from FTD to LTD and report the results in table 5.3.

We can see that lower tail dependent copula leads to higher default probability for LTD
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and lower probability for FTD, thus leads to higher spread price for LTD and lower spread

price for FTD. Student t has almost the same log likelihood and almost the same spread

price of k-th to default as skewed t distribution. Both distributions lead to higher spread

price for LTD and lower spread price for FTD.

The calibration of Student t distribution is integrated while to calibrate Student t copula,

we need to assume marginal distributions first and we have no good method the calibrate the

degree of freedom ν. Basket credit default swaps or collateralized debt obligations usually

have a large number of securities. For example, a synthetic CDO called EuroStoxx50 issued

on May 18, 2001 has 50 single name credit default swaps on 50 credits that belong to the

DJ EuroStoxx50 equity index. In this case, the calibration of Student t copula will be super

slow.

This indicates that the t distribution is more promising than the commonly used Student

t copula when modeling the default correlations. Skewed (Student) t distribution has

potential to become a powerful tool for quantitative analyst doing rich-cheap analysis of

credit derivatives.

5.7 Conclusion

We show that Kendall’s tau remains under monotone transformations so that both copula

and distribution can be used to model the correlation of default times by the correlation of

underlying equities.

We follow Rukowski’s (1999) single name credit risk modeling and Schöbucher’s (2003)

portfolio credit risk modeling to price the basket credit default swaps.

The Student t copula is widely used in the pricing of basket credit default swaps for

its lower tail dependence. However, we need to specify the marginal distributions first and

calibrate the marginal distributions and copula separately. In addition, there is no good

method to calibrate the degree of freedom ν. The calibration is very slow.

We use a fast EM algorithm for Student t distribution and skewed t distribution. All

the parameters are calibrated together. To our knowledge, we are the first to introduce

distribution to price basket credit default swaps.

The Student t copula leads to higher default probabilities and spread price of basket

credit default swaps for LTD and lower default probabilities and spread price for FTD than

the Gaussian copula.
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Both the Student t distribution and the skewed t distribution lead to higher spread prices

of basket credit default swaps for LTD and lower spread prices for FTD than the Student

t copula.
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APPENDIX A

Proof of equation 2.4.36, 2.4.40 and 2.4.42

We need following Bessel derivative formulas to prove those equations.

Derivatives of Bessel function. (Abramowitz and Stegun(1968) and Barndorff-

Nielsen and Blæsild(1981)).

(logKλ(x))
′
=
λ

x
− Kλ+1(x)

Kλ(x)
, (5.7.1)

and

(logKλ(x))
′
= −λ

x
− Kλ−1(x)

Kλ(x)
, (5.7.2)

where the first derivative equation is used to show equations 2.4.36 and 2.4.40 and the second

derivative equation is used to show equation 2.4.42.

After we replace w−1
i , wi and log(wi) by their conditional expectations δ

[·]
i , η

[·]
i and ξ

[·]
i ,

the log likelihood L2, i.e. equation 2.4.5 can be rewritten as

L2(λ, χ, ψ) = (λ− 1)nξ̄ − χ

2
nδ̄ − ψ

2
nη̄ − nλ

2
logχ+

nλ

2
logψ − n log (2Kλ(

√
χψ)).

In the maximization of L2, we usually set λ to be a constant.

By setting ∂L2

∂χ
= 0§, we can get

δ̄ +
2λ

χ
−

√
ψ

χ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

= 0. (5.7.3)

By setting ∂L2

∂ψ
= 0¶, we can get

χ =
θη̄Kλ(θ)

Kλ+1(θ)
. (5.7.4)

By plugging equation 5.7.4 back to equation 5.7.3, we can get equation 2.4.36.

If we set χ to be a constant, from equation 5.7.4, we can get equation 2.4.40.

If we set ψ to be a constant,by setting ∂L2

∂χ
= 0‖, we can get equation 2.4.42.

§We use equation 5.7.1.
¶We use equation 5.7.1.
‖We use equation 5.7.2.
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