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ABSTRACT 
A whole program path (WPP) is a complete control flow 
trace of a program's execution. Recently Larus [18] showed 
that although WPP is expected to be very large (lOfts of 
MBytes), it can be greatly compressed (to 10's of MBytes) 
and therefore saved for future analysis. While the compres- 
sion algorithm proposed by Larus is highly effective, the 
compression is accompanied with a loss in the ease with 
which subsets of information can be accessed. In particular, 
path traces pertaining to a particularj function cannot gen- 
erally be obtained without examining the entire compressed 
WPP representation. To solve this problem we advocate 
the application of compaction techniques aimed at provid- 
ing easy access to path traces on a per function basis. 

We present a W P P  compaction algorithm in which the WPP 
is broken into path traces corresponding to individual func- 
tion cMls. All of the path traces for a given function are 
stored together as a block. Ability to construct the complete 
WPP from individual path traces is preserved by maintain- 
ing a dynamic call graph. The compaction is achieved by 
eliminating redundant path traces that result from different 
calls to a function and by replacing a sequence of static basic 
block ids that correspond to a dynamic basic block by a sin- 
gle id. We transform a compacted WPP representation into 
a timestamped WPP (TWPP) representation in which the 
path traces are organized from the perspective of dynamic 
basic blocks. TWPP representation also offers additional 
opportunities for compaction. 

Experiments show that  our algorithm compacts the WPPs 
by factors ranging from 7 to 64. At the same time informa- 
tion is organized in a highly accessible form which speeds 
up the responses to queries requesting the path traces of a 
given function by over 3 orders of magnitude. 
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1. INTRODUCTION 
Profile data, in the form of basic block and edge profiles, 
has been extensively used for guiding the application of per- 
formance improving code transformations including global 
instruction scheduling [11]. Till recently it was believed that 
collecting path profiles is too expensive. However, Ball and 
Larus [4] showed that cost of acyclic path profiling is merely 
double the cost of collecting edge profiles. Encouraged by 
this result, Larus [18] further demonstrated that  collecting 
a whole program path (WPP), which is the complete control 
flow trace of a program's execution, is also feasible. This is 
because, although a WPP is typically very large (100's of 
MBytes), it can be greatly compressed (to 10's of MBytes) 
and therefore saved for future analysis. 

While the compression algorithm proposed by Larus is highly 
effective, the compression is accompanied with a loss of ease 
in accessibility to information. For example, path traces 
pertaining to a particular function cannot generally be ob- 
tained without examining the entire compressed WPP rep- 
resentation. This is a serious drawback because typically an 
application using the WPP can be expected to make a series 
of requests for profile data for individual functions, that is, 
each request is only for a small subset of the overall infor- 
mation contained in a WPP. Repeated extraction operations 
to satisfy these requests are likely to result in high analysis 
time costs. Therefore it is important to design a representa- 
tion from which path traces of individual functions can be 
rapidly accessed. 

We believe that  the above loss of accessibility is a natu- 
ral consequence of treating the entire control flow trace as 
a single data stream during compression. As a result the 
information corresponding to a given function is scattered 
through out the compressed trace and can in general be lo- 
cated only by examining the entire compressed trace. In 
order to solve this problem we advocate the application of 
compaction techniques which are aimed at simultaneously 
reducing the size of the WPP and providing easy access to 
subsets of information within the WPP. We present one such 
WPP compaction algorithm in this paper. In this algorithm 
the WPP is broken into path traces corresponding to indi- 
vidual function calls and all of the path traces for a given 
function are stored together as a block. Therefore informa- 
tion regarding a specific function can be readily accessed. 
In order to ensure that  the complete WPP can be recon- 
structed from individual path traces, a dynamic call graph 
which links the path traces together is also maintained. 
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The compaction of W P P s  is achieved by compacting the 
path traces using two techniques. First we eliminate dupli- 
cate path traces that  result from different calls to the same 
function. This technique is very effective and resulted in re- 
ductions in the sizes of WPPs  by a factors ranging from 5.66 
to 9.5 in our experiments. This is because although many 
functions are called numerous times, they tend to follow one 
of a small subset of paths through the function body. For 
example, in a W P P  collected from executing g¢¢ we found 
that function _rtx_equal_p was called 355189 times but it 
generated only 35 unique path traces. The second technique 
we employ replaces a sequence of static basic block ids, that  
correspond to a dynamic basic block, by a single id. A dy- 
namic basic block belonging to a path trace is a sequence 
of static basic blocks that  is always entered from the first 
block and exited from the last block in the path trace. Since 
dynamic basic blocks often appear inside loops, they can be 
repeated many times in a path trace. Thus, replacing them 
by a single id can significantly reduce the size of the WPP. 
We typically observed reductions by factors ranging from 
1.35 to 4.24 using this technique in our experiments. 

While compacted W P P s  provide easy access to information, 
they still do not represent path traces in a form that is suit- 
able for analysis which is performed from the perspective 
of basic blocks. In particular, we consider a class of ap- 
plications that  perform data flow analysis on the program 
and utilize the W P P  information to gather data flow facts, 
including frequencies of data flow facts [20, 7, 13, 14, 15], 
which can be observed to hold during the program execution 
represented by the WPP.  Applications that fall in this cate- 
gory include identification of hot data flow facts for profile- 
guided code optimizers (static and dynamic) as well as de- 
bugging aids (dynamic slicing and currency determination 
algorithms). We refer to such analysis as profile-limited data 
flow analysis. 

To address the above issue, we transform a compacted WPP  
representation into a timestamped W P P  (TWPP) represen- 
tation in which the trace information is organized from the 
perspective of dynamic basic blocks since data flow analysis 
is carried out from the perspective of dynamic basic blocks. 
We demonstrate that  T W P P s  can be conveniently used by 
applications that  need to perform profile-limited data flow 
analysis including profile-guided optimizers and dynamic de- 
bugging algorithms. The T W P P  representation also offers 
opportunities for compaction leading to compacted TWPPs 
with sizes that  are significantly smaller than that of com. 
pacted WPPs. Compaction opportunity arises because when 
a sequence of t imestamp values are used to identify the po- 
sitions in a path trace corresponding to a block's execution, 
often these sequences form an arithmetic series which can be 
represented compactly. Our experiments indicate that  the 
size of a compacted T W P P  is often much smaller than that 
of a compacted WPP.  

In summary the contributions of this paper are as follows: 

• We replace the compression strategy proposed by Larus 
[18] by a compaction strategy which is also effective in 
reducing W P P  sizes. Moreover compacted WPPs  or- 
ganize trace information in an accessible form which 
allows quick access to path traces of any given func- 

tion. [Section 2] 

, We propose the timestamped WPP (TWPP)  represen- 
tation which organizes trace information from the per- 
spective of dynamic basic blocks. This form is highly 
suitable for applications that use WPPs  to perform 
profile-limited data flow analysis. [Section 2] 

® Overall the above techniques were observed to com- 
pact the original traces by factors ranging from 7 to 
64 and at the same time speedups of over 3 orders of 
magnitude was observed in responding to queries re- 
questing the path traces of a given function. Our tech- 
niques also compares favorably with Larus's technique 
for compressing WPPs.  [Section 3] 

® Finally we present demand-driven algorithms for profile- 
limited data flow analysis and illustrate their use in 
two applications: code optimizers and debugging tools. 
[Section 4] 

2. COMPACTION ALGORITHM 
As mentioned earlier, a whole program path (WPP) is a 
complete control flow trace of a program execution. Con- 
sider the program and a sample W P P  shown in Figure 1. 
The W P P  shows that the loop in main iterates 5 times and 
in each iteration the function f is called. The loop in func- 
tion :f iterates 3 times for each call. Looking at the W P P  
for a small program we observe two things: W P P s  for real 
applications can be expected to be quite large (e.g., 100's of 
MBytes) and in its current linear form W P P  is difficult to 
use (e.g., in order to extract trace information for a subpath 
in main or function :f, we must examine the entire WPP) .  
Next we present a step by step transformation of the above 
WPP  to achieve two goals: compaction of the W P P  to re- 
duce memory requirements and organization of the W P P  
information for faster access to path traces of individual 
functions. 

Partitioning WPP into path traces. 
We partition the W P P  into path traces corresponding to in- 
dividual function calls and all of the path traces for a given 
function are stored together as a block. Therefore informa- 
tion regarding a specific function can be readily accessed. 
In order to ensure that  the complete W P P  can be recon- 
structed from individual path traces, a dynamic call graph 
(DCG) which links the path traces together is also main- 
tained. Figure 2 shows this representation of the W P P  for 
our example program. Clearly from this representation the 
WPP  form of Figure 1 can be easily constructed. More im- 
portantly one can rapidly search for occurrences of a given 
path (intraprocedural or interprocedural). The path traces 
of interest are located and then examined for desired infbr- 
mation. To search for an occurrence of a path in main we 
need to only examine 0ne-sixth of the total trace in Figure 2. 

Eliminating redundant path traces. 
The W P P  can be greatly reduced in size by eliminatin9 du- 
plicate path traces generated by different calls to the same 
function. In Figure 2, corresponding to the 5 calls to func- 
tion :f, there are only two unique path traces. Therefore 
the W P P  representation can be transformed to eliminate 
redundant path traces as shown in Figure 3. This technique 
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is very effective because although many functions are called 
numerous times, they tend to follow one of a small sub- 
set of paths through the function body. For example, in a 
WPP collected from executing gcc we found that function 
_rtx_equal_p was called 355189 times but it generated only 
35 unique path traces. 

fo 

main 

CD 

main( 1.2.3.f(1.2.7.8.9.6.2,7.8.9.6.2.7.8.9.6. IO) A. 
2.3.f(1.2.7.8.9.6.2.7.g.9.6.2.Tg.9,6.10)A. 
2.3.f(t .2.3.4.5.5.2.3.4..5.6.2.3.4.5.6.10).4. 
2.3 . f (1 .2 .7 .8 .9 .6 .2 .7 .8 .9 .6 .2 .7 .8 .9 .6 .10) .4 .  

2.3 .ff 1.2.3.4.5.6.2.3.4.5.6.2.3 A.5.6.10k4.6~ 

Figure  1: A n  u n c o m p a c t e d  W P P .  

DCG Path Traces 

I 

. . . . . . . . . . . . . . . . . . . . . . . . .  ~ 1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10 I 

Figure 2: W P P  organized  using the  D C G .  

DCG Path Traces 

~ '  12'4 6 4 4 
. . . . . . . .  ........... 

........ '.'.'.".'.'." ..... : : : : : : : : : : : : : : : : : : : :  1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10 ] 

Figure 3: W P P  after r e d u n d a n t  p a t h  t race  removal.  

Creating dictionaries of dynamic basic blocks. 
Another technique that we employ replaces a sequence of 
static basic block ids that correspond to a dynamic basic 
block by a single id. A dynamic basic block (DBB) belonging 
to a path trace is a sequence of static basic blocks that is 
always entered from the first block and exited from the last 
block in the path trace. Since DBBs can often appear inside 
loops, they are often repeated many times in a path trace. 
Thus, replacing them by a single id can significantly reduce 
the size of the WPP. 

Each path trace is processed as follows: a dictionary of 
DBBs is created by constructing a dynamic control flow 
graph and finding chains of static blocks representing DBBs 
in it. Each DBB is assigned the block id of the first static 
block in it and accordingly the path trace is modified by 
deleting all but the first id in each occurrence of a DBB. 
Once all compacted path traces and dictionaries are ob- 
tained, duplicate path traces and dictionaries are also elim- 
inated. In this transformed form, each node in the dynamic 
call graph has an associated tuple (t, d) where t is a path 
trace and d is a dictionary. Figure 4 shows the chains of 
static basic blocks that form dynamic basic blocks for the 
three path traces in Figure 3. After creating dictionaries 
and compacting path traces, we are left with one path trace 
and two dictionaries for function :f as shown in Figure 5. 

main 

C© 

G 3  
1.2,3,4.Z3.4.2.3A.. 
2.3.4.2.3.4,2.3.4.5 

fo f0 

CD 

1.2.3.4,5.6.2.3.4, l .'2.7.8.9.6.2.7.8. 
5.6,2.3.4.5.6.10 9.6.2.7,8.9.6.10 

Figure 4: D B B s  and  dynamic  control  flow graphs.  

DCG Path Traces DBB Dictionaries 

~ _ ~  i 
ll.2.2.,. .2.0I I 12.3.4 I 

© © ( D  GD © ....... : ................................ 

..................... 'iiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiii!iiii! .... 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . .  £, 

Figure 5: W P P  after creating dictionaries of DBBs.  

Timestamped WPP representation. 
In the WPP representation described so far the execution 
trace of a given function invocation is represented by a se- 
quence of basic blocks visited during its execution. While 
such a path trace representation is adequate for identifying 
hot paths through a program, it is not the most appropri- 
ate for performing data flow analysis. Since profile-limited 
data flow analysis is carried out from the perspective of basic 
blocks, it is more appropriate to organize the traces from the 
perspective of dynamic basic blocks. Next we describe the 
timestamped WPP (TWPP) representation which achieves 
this goal. 

The execution of the function can be viewed from the per- 
spective of time steps, where each time step corresponds 
to the execution of a dynamic basic block. Therefore a 
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path trace for a function call in W P P  representation can 
be viewed as a mapping between time steps, or timestamps, 
and dynamic basic blocks. In contrast, the TWPPs  rep- 
resent a mapping between dynamic basic blocks and an or- 
dered sets of timestamps. Let T,  B, and "P(T) denote the set 
of timestamps, set of dynamic basic blocks, and the power 
set of t imestamps associated with the path trace of a given 
function call f .  A path trace in W P P  and T W P P  forms is 
represented by the following mappings: 

W P P P a t h ' I Y a c e / :  T ~ B 
T W P P P a t h T r a c e y  : B ~ P (T)  

Consider the W P P  of Figure 5. The W P P  trace 1.2.2.2.2.2.6 
corresponds to the following T ~ / 3  mapping: {1 ~ 2, 2 
2, 3 --~ 2, 4 ~ 2, 5 ~ 2, 6 -~ 2, 7 ~ 6}. When transformed 
to T W P P  form it is represented by the following B ~ P ( T )  
mapping: {1 ~ {1}, 2 ~ {2,3,4,5,6}, 6 ~ {7}}. The 
complete uncompacted T W P P  for this example is shown in 
Figure 6. 

DCG Path Traces DBB Dictionaries 

.......... ! .............................. ] i  ................. 
1 !! I l,t l 

• a * ~ ]  

i 
............................. i . .+  ...~ .................... ~.-i ..... 

................................................... i ....~ .......................... i ~ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! 

F i g u r e  6: T W P P  form.  

C o m p a c t i n g  T W P P  p a t h  t r a c e s .  
The path traces in T W P P  form can be further compacted 
because often a subsequence of timestamp values correspond- 
ing a dynamic basic block forms an arithmetic series. This 
situation arises particularly when the same path within a 
loop body is traversed repeatedly during different loop it- 
erations. The subsequences that  form arithmetic series are 
compacted yielding a sequence of entries which are of the 
following form: l (singleton), l : h ( l . l+ 1.l+2...h, i.e., series 
with step 1), or l : h : s (I.l + s.l + 2s...h, i.e., series with 
step s). As we can see, depending upon its form, an entry is 
represented using one, two or three positive integer values. 
We store the timestaanps corresponding to a block merely 
as a sequence of integers. For correct interpretation of the 
information we need to encode the boundaries that separate 
the variable length entries. This information is encoded in 
the signs (+ or -) of the values and therefore it does not 
require any increase in the size of the path trace. In partic- 
ular, the last number in a each entry is stored as a negative 
number. By using the sign to encode the end of an entry 
we limit the largest t imestamp value that  is available to us 
since we can no longer use unsigned integers. However, our 
experience with the benchmarks considered shows that  the 
timestamp value does not overflow because individual path 
traces are much smaller than the complete WPP. 

Notice that  the sequence of t imestamps assigned to dynamic 
basic block 2 in Figure 6 form an arithmetic series since block 

D C G  P a t h  T r a c e s  D B B  D i c t i o n a r i e s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ] 

B 1 I 2  6 

[ T [ ; 1 1 . 2 : - 4 ,  I "51 

................................................. ~--...: ......................... i..,; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! 

Figure  7: C o m p a c t e d  T W P P .  

2 is executed repeatedly during successive loop iterations. 
Theretbre the T W P P  can be compacted into: {1 ~ { -1} ,  
2 ~ {2 : -6} ,  6 ~ {-7}}.  Notice tha t  the last number 
in each sequence is a negative number. The complete com- 
pacted form of T W P P  for our running example is shown in 
Figure 7. 

C o m p a c t i n g  t h e  D C G .  

The dynamic call gral~hS resulting from executions of large 
application programs can also be quite large. Therefore in 
addition to compacting the path traces, we also compress the 
DCG. For this purpose we considered the popular dictionary 
based approaches proposed by Ziv and Lempel [28, 29]. In 
particular, we used Welch's variation of Ziv and Lempel's 
adaptive dictionary based technique which is also referred 
to as the LZW algorithm [26]. 

3. EXPERIMENTAL RESULTS 
We have implemented the algorithm described in the pre- 
ceding section and used it to compact WPPs  for several 
benchmark programs from the SPECint95 suite. The origi- 
nal W P P s  used in the experiments were generated using the 
Trimaran compiler infrastructure [24]. A W P P  consists of 
two parts: the dynamic call graph (DCG) and the individ- 
ual traces for function calls (which we will collectively refer 
to as the W P P  traces). The sizes of W P P s  used in our ex- 
periments are shown in Table 1. The experiments are aimed 
at studying the effectiveness of our compaction techniques 
in reducing memory requirements and the effectiveness of 
organization of the W P P  information for faster access. 

P r o g r a m  D C G  W P P  Tota l  
. . . . .  (M B) t r aces  ,/MB) size (MB.). 

9.99.go 6.0 170.0 176:0 
126.gcc 34:7 489.5 524.2 
130. l i  8.6 78.3 84.9 
1 3 2 . i j p e g  1.7 266.9 268.6 
1:,.34. per1  3.4 41.5 ..... 44.9 

Table  1= Sample  i n p u t  t r a ce s  u s e d  in t h e  exper i -  
men t s .  

C o m p a c t i o n  study. 
Table 2 shows the sizes of the W P P  traces in their various 
forms. As we can see, the three compacting transforma- 
tions, removal of redundant path traces, creation of DBB 
dictionaries, and transformation to compacted T W P P  form 
are all very effective in reducing the W P P  trace size. The 
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OWPP / WPP trace after Compacted OWPP / 
Program Redundancy Dictionary TWPP trace CTWPP 

removal - MB creation- MB - MB 
099.go 27.0 (x6.30) 17.1 (xl.58) 17.6 (x0.97) 9.7 
126.gee 86.5 (x5.66) 50.8 (xl.70) 32.9 (xl.54) 14.9 
130.ii 8.5 (x9,2 .) 5.3 (xl:60) 1.1 (x4.81) 71.2 
132.ijpeg 28.1 (x9.~0) 20.8 (xl.35) 5.7 (x3.65) 46.8 
134.per1 7.2 (x5.7 }) 1.7 (x4.24) 0.02 (x85.0) 2075 .... 

T a b l e  2: W P P  t r a c e  c o m p a c t i o n  d u e  to  v a r i o u s  t r a n s f o r m a t i o n s .  

Program 

099.go 
126.gee 
130.1i 

132.ijpeg 
134.perl 

Compacted Compacted TWPP (MB) ] Total Compaction 
DCG (MB) Traces I Dictionaries I (MB) factor 

6.6 17.6 2.3 26.5 7 
13.8 32.9 4.9 51.6 10 
5.3 1.1 0.04 6.4 13 
1.0 5.7 0.6 7.3 37 
0.7 0.02 0.02 0.7 64 

T a b l e  3: O v e r a l l  c o m p a c t i o n  f a c t o r .  

ratio of the sizes of original W P P  traces (OWPP)  and com- 
pacted T W P P  traces ( C T W P P )  gives us the  compression 
factor which varies from 9.7 to  2075 for our sample traces. 
The sizes of the  W P P  traces after each of the three trans- 
formations as well as the  compression factors corresponding 
to each of the  t ransformations are also shown separately in 
parenthesis in Table 2. The results show tha t  each of the 
transformations-is  an impor tan t  source of compaction. 

A large factor of size reduction comes from removing redun- 
dant  (duplicate) pa th  traces (5.66 - 9.50). The reason for 
this large reduct ion becomes clear when we examine the da ta  
in Figure 8. This figure gives the  percentage of total  func- 
t ion calls (p lo t ted  along Y-axis) tha t  can be a t t r ibuted  to 
functions with at  most  N unique pa th  traces (N  is plot ted 
along the X-axis).  For 130 .1 i ,  132 . i j peg ,  and 1 3 4 . p e r l  
programs 57-80% of all function calls are a t t r ibutable  to 
functions with at most  5 unique pa th  traces. For 126. gcc 
and 099. go over 50% of function calls are a t t r ibu tab le  to 
functions wi th  at  most 25 and 50 unique traces respectively. 
Given tha t  the  number  of function calls made  during the 
runs of these benchmarks  were in hundreds of thousands, 
we can see t ha t  the degree of redundancy in pa th  traces is 
very high. 

80 

60 

40 

j / f  

/ . - /  ,,j 

/ __o o 
...... 134.perl 

f 
0 0 100 200 

Number  of unique trsces 
300 

Figure 8: Trace redundancy. 

The creation of dictionaries results in compact ion of W P P  
traces by factors ranging from 1.35 to 4.24. The  conversion 
into compacted T W P P  form results in fur ther  reductions. 
For four out  of five benchmarks,  compacted T W P P  traces 
provide reductions in the sizes of W P P  traces by factors 
ranging from 1.55 to 85. The only case in which compacted 
T W P P  trace is slightly larger is the 099. go program where 
the compacted  T W P P  trace was 3% larger than  compacted 
W P P  trace prior to its conversion to T W P P  form. These 
results are very encouraging because not  only is the  T W P P  
representat ion sui table for profile-limited d a t a  flow analysis, 
it  is also compact .  

The breakdown of different components  of a W P P  and the 
overall compaction factors for the complete  W P P  (DCG + 
W P P  trace) are given in the Table 3. For the  sample W P P s  
used in these experiments the  overall W P P  compact ion fac- 
tor ranges from 7 to 64. 

Access time study. 
To s tudy the impact  of reductions in the  W P P  size on the 
speed with which the pa th  traces can be accessed, we con- 
ducted an experiment  which measured the t ime it took to 
ext rac t  the pa th  traces corresponding to a single function 
from the complete WPP.  The  speedups we can expect  resalt  
from two sources. Fi rs t  due to the compact ion of the  W P P  
we have to read through a smaller file. Second we organize 
the contents of the  file to allow faster access. Followed by the 
dynamic call graph, the  pa th  traces (including dictionaries) 
of the  most frequently called function are s tored first and 
tha t  of least frequently called function are s tored last. By 
remembering the position of information for each function in 
the file, and storing it as a header in the compacted  T W P P  
file, we can access the  pa th  traces for individual  functions 
rapidly. 

Table 4 shows the t imes taken to extract  a function 's  trace 
in the  following scenarios: extract ion from uncompacted  file 
(column U); and  extract ion from compacted  file (column 
C). Both the  average and maximum times for U and C are 
given. On art average the access t imes are reduced by over 
3 orders of magnitude.  
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Program _]~]-::avg'U(m§] max ) ]avg.C/mSm)ax_~ Speedup 
. . . .  c/c(avg.)] 

099.g0 ~033 83s3 8 143s ::193 t 
126. gcc 22879 29672 6 528 
i32.~jpeg -~ 7615 11447 6 258 1269 
130.1i -~390 3263 2 124 ~ 4  s 
134.perl 1303 ' 1873 0.2 3 

T a b l e  4: E x t r a c t i o n  t imes  for  a single func t ion .  

Larus ' s Sequitur based  compression algorithm. 
We have also implemented Larus's compression algorithm 
which is based upon Sequitur [19]. This algorithm produces 
the compressed W P P  representation which is in the form of 
a grammar that  generates a single string - the original trace. 
We compared the Sequitur generated grammar representa- 
tion with the T W P P s  generated using our approach in two 
ways: their sizes and the access times to individual function 
traces. 

The results of this comparison are shown in Table 5. On 
an average, the total size of the grammar produced by Se- 
quitur is smaller than the corresponding size of the com- 
pacted T W P P  by a factor of 3.92. Now lets consider the 
time it takes to extract the trace corresponding to a single 
function from the complete compacted trace. The extraction 
of a function's trace from the Sequitur generated grammar 
essentially requires two steps: reading in the grammar and 
then processing it to generate a subgrammar corresponding 
to the functions trace. The total time taken for extraction, 
and the times for each of the steps, are shown in Table 5. 
These numbers represent averages over all functions present 
in the respective programs. These times range from 10's to 
1000's of milliseconds. In contrast, the T W P P  is so orga- 
nized that  we can locate and extract the trace in few (< 10) 
milliseconds. The access times for Sequitur grammars are 
greater than access times of T W P P s  by factors ranging from 
89 to 553. In summary, although T W P P s  are larger in size 
by an average factor of 3.92, they provide access times that 
are lower by an average factor of 309. These experiments 
simply show that  the two representations embody design 
decisions with different space time trade-offs. 

Program I Compacted"size [ Extraction time 

I Sequitur TWPP Sequiturr ( m s )  TWPP 
(MB) ] (MS). [read+process=total ~ms) 

099.g0 8.4 26.5 622 + 1315 = 1937 8 
126.gcc 11.2 51.6 898 + 2423 =3321 6 '  
132.ijp~g 0:7 ..... 6.4 .... 544'+ 1650 = 2194 6 
130.1i 7'~8 ' 7.3 47 + 132 = 179 2 .... 
134.per1 0.4 0.7 . 29 + 30 ---- 59 0.2 

Table 5: C o m p a c t e d  trace sizes and extraction 
t imes.  

Apart  from the different size and access time characteristics, 
the two representations also impact on the design of analysis 
algorithms that  will use them. While Larus's techniques is 
suitable for analysis of hot paths (i.e., collection of data  flow 
facts that  hold along frequently executed paths), our repre- 
sentation is suitable for collecting hot data flow facts (data 
flow facts tha t  hold frequently at various program points). 
One of the advantages of our approach is that  T W P P s  are 
in the form required for profile-limited analysis. In contrast 

the compressed WPPs  produced by Sequitur require some 
amount of preprocessing before they can be used by an ap- 
plication. In the next section we demonstrate the use of 
T W P P s  in carrying out profile-limited data flow analysis. 

4. P R O F I L E - L I M I T E D  DATA F L O W  
Next we present a systematic approach for profile-limited 
data flow analysis which is aimed at answering data flow 
queries with respect to a given WPP.  Examples of such 
queries are: does a data flow ]ac~ hold? or how often does 
a data flow fact hold at a program point? with respect 
to a given WPP. Such analysis is useful for profile-guided 
compile-time optimization of programs [2, 7, 3, 11, 23, 13, 
14, 15], dynamic optimization of programs [3, 6] (here the 
profile represents a partial execution history of the program 
which is used to optimize the remainder of the program's 
execution), and debugging of programs [10, 17, 1]. 

The analysis we present focuses on gathering hot data ~low 
facts that  hold during the execution of frequently called 
functions. Such analysis can be used to clone and create a 
specialized (optimized) copy of the function. For this anal- 
ysis, we do not need access to the entire T W P P  but only a 
subset of information corresponding to the function under 
consideration. In particular, we use a t imestamp annotated 
dynamic control flow graph for the given path trace which 
is described below. 

4.1 T i m e s t a m p  annota ted  d y n a m i c  C F G  
This representation consists of the dynamic control flow 
graph in which DBBs are annotated with t imestamp vec- 
tors. This representation is quite adequate for data flow 
analysis because we can trace the W P P  using the times- 
tamp vectors associated with the dynamic basic blocks and 
limit the exploration of only those control subpaths that  
appear as part  of the W P P  during data  flow analysis. The 
following characteristics make this proposed representation 
particularly attractive for profile-limited data flow analysis. 

First it allows efficient backward and forward traversal of 
the path trace starting from any arbitrary point in the path 
trace. A timestamp and program point pair (t, n) together 
specify a particular point in the path trace. The preceding 
point is (t - 1, m) where m is the predecessor of n in the 
dynamic control flow graph labeled with timestamp t - 1. 
Similarly the succeeding point is ( t + l ,  s) where s is a succes- 
sor of n in the dynamic control flow graph which is labeled 
with timestamp t + 1. 

Second it allows efficient simultaneous traversals of multiple 
subpaths in the path trace. A vector of timestamps at a pro- 
gram point ('~, n) can be used to represent multiple traversal 
points. Each element in the vector can be incremented or 
decremented and resulting timestamps can be matched with 
timestamps of predecessors and successors to continue si- 
multaneous traversal along multiple subpaths. Compaction 
of tirnestamps directly attributes to the e~ciency of traver- 
sals. For example consider a series of timestamps repre- 
sented by (2:20:2) in our representation. A simple incre- 
ment/decrement resulting in (3:21:2)/(1:I9:2) corresponds 
to simultaneous forward/backward traversal along 10 sub- 
paths in the path trace. 
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An indicator of the relative costs of profile-limited analysis 
and traditional static analysis are the cumulative sizes of 
static and dynamic fiowgraphs (see Table 6). ~Ve compared 
the total number of nodes (N) and edges (E) in the static 
and dynamic flow graphs. For a given function multiple 
dynamic flow graphs can result because of multiple unique 
traces associated with it. The nodes and edges in all of 
these graphs were counted in computing the cumulative size 
of the dynamic flow graphs. From the results in Table 6 we 
can see that  the number of nodes and edges in the dynamic 
graphs axe typically much smaller than those in the static 
graphs. However, the cost of profile-limited analysis is also 
dependent upon the size of t imestamp vector associated with 
each node. Average size of the t imestamp vector is shown 
in the last column of Table 6 (the value in parenthesis is the 
size of the vector before compaction - the results show that 
t imestamp vector is significantly reduced in size using our 
compaction technique). In summary, the data in Table 6 
indicates tha t  while, as expected, profile-limited analysis is 
more expensive than static analysis, it has a reasonable cost. 

Program ] Sta t icFG I DynamicFG 
N '  1 ,,E ~ N  I ~ E  ] avg. I'~[ 

.O99.g0 10823 16236 4739 16591 11.9 (15.7) 
126.gcc 66571 104379 8838 20012 14.0 (33.1) 
130.1i 2701 3536 265 289 51.2 (410.3) 
132.ijpeg 57i8 ! 8105 754 1213 18.1 (109.7) 
134.per1 13117 19539 501 674 3.9 (616.8) 

Tab le  6: Sizes o f  s t a t i c  a n d  d y n a m i c  flow graphs. 

4.2 Demand-driven analysis 
It is natural to formulate profile-limited analysis in a demand- 
driven fashion [9, 21]. This is because the applications of 
profile-limited analysis request information incrementally. 
For example, during debugging a user typically makes a re- 
quest for the dynamic slice corresponding to only one vari- 
able at a fixed program point (i.e., we only need to com- 
pute subset of data  flow information for subset of program 
points). Similarly during profile-guided or dynamic code 
optimization, subset of profile-limited data flow information 
may be requested by the optimizer for subset of program 
points in hot  regions of the program [6]. 

Queries for profile-limited data flow. 
A profile-limited data flow query is of the form < T,  n >a, 
where n is a node, T is a subset of t imestamps for n in the 
path trace, i.e., T C T(n), and d is the data flow fact of 
interest. This query represents a request for determining 
whether or not d holds true prior to n's executions corre- 
sponding to timestamp values in T. Therefore the query 
< T(n) ,  n >d determines the data flow solution correspond- 
ing to all executions of n in a given path trace. The solution 
to this query allows us to determine if d always holds true, 
never holds true, and holds true sometimes for the given 
path trace. In fact solving such queries allows us to deter- 
mine the frequency with which d holds true with respect to 
the given path trace [20, 7, 13, 14, 15]. 

Query propagation. 
We consider profile-limited demand-driven backward propa- 
gation of queries for GEN-KILL problems because they arise 

both during code optimization and debugging. For simplic- 
ity, we consider the analysis of intraprocedural paths. How- 
ever, in analyzing these paths we will take into account the 
effects of any function calls that  a path trace may contain. 
Our techniques can be easily extended to handle interproce- 
dural paths by analyzing path traces of multiple functions in 
concert and propagating queries along interprocedural paths 
[9]. 

The demand-driven propagation begins at a point n when 
the query < T, n >a is raised. For GEN-KILL pr%blems it 
is appropriate to propagate a timestamp vector, T, which 
contains one slot for every timestamp, or more precisely, for 
every entry in the compacted T W P P  path trace. The propa- 
gation should be viewed as simultaneous (or parallel) search 
for data flow solutions corresponding to each t imestamp in 
T. Each slot in "T is initialized to the t imestamp value(s) to 
which it corresponds. The propagation of this 'T begins at 
n. 

We must ensure tha t  query propagation is consistent with 
the path trace under consideration. As discussed earlier in 
this section, this goal is easily accomplished using the times- 
tamp annotated dynamic control flow graph representation. 
It is possible to correctly manipulate the t imestamp vector 
during propagation such that  the t imestamps in the vector 
are propagated only to the appropriate predecessors. When 
a node that  answers the query (true or false) with respect 
to a particular t imestamp is encountered, the propagation 
on behalf of that  t imestamp ceases. Otherwise equivalent 
queries are generated and propagated along the path trace. 

The query < T, n > represents the search for dynamic GEN- 
KILL points correspor~ding to t imestamps of n for which 
slots were created in T. For carrying out the propagation 
we must first compute dynamic GEN-KILL sets (i.e, sets 
wrt to a given T W P P )  for a data flow fact d which are 
denoted as DGENn d and DKILLdn. Although n is a dy- 
namic basic block, to simplify the presentation we assume 
that  n contains a single statement. If node n contains a 
call to function f ,  then the traces for calls made by the 
n's instances corresponding to T(n) axe examined. The set 
GEN](T(n)) (KILL~ (T(n))) contains the subset of times- 
tamps from T(n) for which call to function f generates 
(kills) d. If  node n simply contains a statement, the dy- 
namic sets are computed from the static GEN and KILL 
sets for node n denoted below as SGENn and SKILLs. 

{ GEN~(T(n)) i fncallsf  
DGEN~ = T(n) elseif d 6 SGENn 

q) otherwise 
{ KILL~(T(n)) i fncal ls f  

DKILLdn ---- T(n) el~eif d e SKILLn 
¢ otherwise ..... 

Now let us consider query propagation. The t imestamp val- 
ues in '~ axe each decremented by 1 during every step of 
backward propagation. Only those resulting t imestamp val- 
ues which are present in T(m),  where m is a predecessor 
node, are propagated to m. At m the query for a times- 
tamp may be resolved as true Oft  E DGENd~) or as false (if 
t E DKILLdm). If it is not resolved, then the above process 
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is repeated starting with the decrementing of the timestamp 
and propagation continues. It should be noted that only a 
subset of slots may be relevant for a given predecessor node; 
thus the other slots will contain a null value denoted by 1 .  
The above rules are stated precisely below and are further 
illustrated by example applications discussed in the subse- 
quent sections. 

Propagation of < U,n > 
N--oration: T/7  -¢ is a timestamp vector st 
_(~/W')/= if (T)i E 7-' then (U)/ else ±. 
Slots in T resolved as true are slots in vectors 

U ( T -  1) / DGEN~ which do not contain k. 
~nEpred(n) 
Slots in U resolved as false are slots in vectors 

(¢ - •) / DKILLdm which do not contain .1.. 
raepred(n) 
Queries propagated for unresolved slots in 

[_J < ( : -  f) / (T(m) - DGENa~ - DgInLam),m > 
mEpred(n) 

4.3 Applications 
In this section we illustrate the use of timestamp annotated 
dynamic CFG and the demand driven analysis described in 
the preceding section. 

4.3.1 Profile-guided Optimization 
A profile-guided optimizer identifies data flow facts that  axe 
observed to hold for hot regions of the code and exploits 
them to generate highly optimized code. This approach has 
been shown to be effective for variety of optimization tasks 
[7, 3, 11, 23, 13, 14, 15]. Both non-speculative [22, 16] and 
speculative [14, 15, 7] transformations have been developed 
for specialization of code along hot program paths. 

In this section we illustrate the use of profile-limited analysis 
in profile-guided optimization. Consider a load instruction 
which is executed frequently and often causes cache misses 
to occur. In order to reduce the number of times this in- 
struction is executed, we would like to determine the degree 
of redundancy in this instruction, that  is, how often is the 
load is redundant because the loaded value is already avail- 
able in some register. Rough estimate of the frequency of 
the data flow fact, the load is redundant, can be estimated 
using techniques based upon edge frequencies [20, 5, 7, 8] 
or acyclic path profiles [4, 13, 14, 15]. However, to obtain 
a precise value of degree of redundancy we require the use 
of an analysis based upon WPPs  such as the profile-limited 
analysis. 

Let us assume that  we are interested in computing the de- 
gree of redundancy present in the load instruction in node 
4 (4_Load) of the example shown in Figure 9. This load is 
redundant due to the load in node 1 (l_Load) as long as we 
arrive at it without visiting node 6 which contains a killing 
store (6_Store). Let us assume that the loop is executed 100 
times during which it follows the given path trace. If we 
simply consider the execution frequencies of the nodes we 
cannot determine the degree of redundancy. We know that 
4_Load executes 60 times, 1.Load executes 100 times, and 
6_Store executes 40 times. However, from these frequencies 
we cannot tell how often l_Load is killed by 6_Store prior to 
reaching 4_Load. While bounds on the degree of redundancy 

can be computed using techniques in [5, 8], precise degree 
of redundancy cannot always be found. On the other hand 
if we make use of profile-limited analysis which exploits the 
timestamps labeling the nodes, we can easily determine that  
4_Load is always redundant for the given path trace. This 
information can be used by the optimizer to transform the 
program using code motion and/or restructuring [22, 16, 14, 
7]. 

The query propagation that identifies that  the redundancy 
count for 4_Load is 60, that is, degree of redundancy is 
100%, is also shown in Figure 9. As we can see, the degree 
of redundancy has been computed using a single backward 
pass through the loop body and only 6 queries were gener- 
ated in this process. This example illustrates the benefit.,; of 
demand-driven analysis and compaction of the timestamps. 
Although the loop executes for 100 iterations, demand-driven 
analysis begins by considering the 60 iterations during which 
4_Load is executed. Instead of dealing with each of the 
60 timestamps of 4..Load individually, we are able to effi- 
ciently manipulate the compacted timestamps collectively 
during query propagation. This is analogous to the manner 
in which many array data flow analysis techniques achieve 
efficiency by propagating ranges representing array sections, 
as opposed to propagating individual array elements [12, 27]. 

I--> 1:496:5 Load ]~ 

2-->2:297:5 

3-->3:198:5 7-->203:498:5 

4 - -  

WPP: (L2.3,4.5)~0 (I.2.7.4.5)^20 (1.6.7.5)~10 

<[4:299:5],4> 

<[3: lig:51,3> <[203:298:51,7> 

<12,197:51,2> <1~2:297 51,2 • 

<11:196:51,1> <[201:2~:51,| > 

GEN GEN 
(fr~, = 40) (freq. = 20) 

Figu re  9: D e t e c t i n g  d y n a m i c  load  r e d u n d a n c y .  

4.3.2 Program Debugging 
During debugging the user typically interrupts program ex- 
ecution and requests information specific to that  particular 
program execution. The T W P P  corresponding to partial 
program execution up to the breakpoint can be quite useful 
in accurately answering user queries. There are two spe- 
cific debugging problems that can use profile-limited anal- 
ysis: dynamic slicing and dynamic currency determination 
during symbolic debugging of optimized code. 

Dynamic program slicing. 
Static backward program slicing was first proposed by Weiser 
as a debugging aid [25]. An even more precise form of slic- 
ing, called dynamic slicing was proposed by Korel and Laski 
[17]. Most recently Agrawal and Horgan [1] developed three 
dynamic slicing algorithms which trade-off precision in the 
computed slice with the time it takes to compute the slice. 
Each of these algorithms constructs a different specialized 
program dependence graph (PDG) to capture the depen- 
dences exercised in a given execution. A backward traver- 
sal over the graph is used to compute ~he dynamic slice 
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as a t ransi t ive closure over da t a  and control dependences. 
Each of the above dynamic  slicing algorithms can be imple- 
mented using one common representation,  the  t imes tamped  
dynamic control flow graph, and thus we can avoid con- 
structing specialized graphs suggested in [1]. 

Next we describe the implementat ions of the three dynamic 
slicing algori thms in [1] and show how they can implemented 
using our approach. We will i l lustrate these algori thms using 
the example program and its execution history shown in 
Figure 10. 

A p p r o a c h  1: This method marks  all executed nodes in the 
PDG during the execution. The  backward traversal  to iden- 
tify the  s ta tements  in the dynamic  slice is allowed to visit 
only the marked nodes. These marked nodes are essentially 
the nodes with non-empty t imes tamp sets in our T W P P  
representation. Therefore in our implementat ion the back- 
ward traversal of a query through the t imes tamp annota ted  
CFG is allowed to traverse only nodes that  have a non-empty 
t imestamp set. When  a dependence is identified under  such 
a traversal,  the  s ta tement  a t  which the dependence origi- 
nates is added  to the  dynamic  slice. In our example,  all 
s ta tements  are executed. Therefore the  dynamic slice is the 
same as a s ta t ic  slice, which contains all nodes except node 
10. 

A p p r o a c h  2: This method  marks all executed edges in the 
PDG during the execution. The backward traversal  to iden- 
tify the s ta tements  in the dynamic  slice is allowed to only 
traverse marked edges. Our backward analysis uses times- 
t amps  to find dependences can carry out a similar traversal 
by ensuring tha t  an edge from node n to node m is traversed 
only if the query at  node rn contains t imes tamp t and the 
t imes tamp t - 1 is associated with node n. More over since 
this algori thm does not  distinguish between different times- 
t amps  corresponding to a node, when a dependence is found, 
and new queries are generated at  a node, all t imes tamps  of 
tha t  node are included in the newly generated query for fur- 
ther propagation.  In the example,  we will be able to get the 
dynamic slice which inlcudes all nodes except node 3 and 
10. 

A p p r o a c h  3: This method  duplicates executed node and 
its dependence edges during the execution so tha t  it  can dis- 
t inguish between the instances of a given s ta tement .  This 
expanded graph is t raversed to find the precise dynamic 
slice. Our backward analysis uses t imes tamps  to find de- 
pendences and  when a dependence is found we only a single 
t imes tamp is added to the newly generated queries. In other 
words we identify the  precise instance of the assignment (for 
da t a  dependence) and predicate  (for control dependence) 
which is the  source of the dependence and generate queries 
only for the  corresponding instances of variables tha t  are 
read by the assignment or predicate.  In our example,  note 
tha t  al though s ta tements  8 and 3 are executed, they are not 
included in the slice because the value of Z at  13 depends 
only upon the  values of Y and J computed  by  s ta tements  7 
and 1L 

The detai led propagat ion of queries for the three  algorithms 
are shown in Figure 11. The queries of the  form < T,n  >v 
where 7" is the t imes tamp vector, n is the  node at  which 

the query is to be evaluated, and V is the variable whose 
definition is to be found. Therefore, a request for a slice on 
Z at  line 14 is t ranslated into the query < [30], 14 > z .  In 
case of the first algori thm the t imes tamp is not  needed and 
therefore the query has the form < . ,  14 > z .  All queries 
generated axe given in the  first column of Figure  11. The 
upda ted  slice after the  processing of a query is given in the 
corresponding entry of the second column and the type  of 
dependence (control or data)  tha t  caused the  addi t ion of a 
s ta tement  to the slice is also indicated. 

1 -+ 1 read N 
2 - + 2  I----1 
3 - + 3  J = 0  
4 - + 4 : 2 8 : 8  w h i l e I <  N d o  
5 - + 5 : 2 1 : 8  readX 
6 -+ 6 : 22 : 8 if X < 0 then 
7 -+ 7,23 Y ---- ffl(X) 
8 -+ 15 else Y = f2(X) 
9 -+ 8 : 24 : 8 Z = f3(Y) 
10-+ 9 : 25 : 8 write Z 
1 1 - + 1 0 : 2 6 : 8  J = 1  
12-+ 1 1 : 2 7 : 8  I - - I + l  

endwhile 
13--+29 Z = Z + J  
14 -+ 30 breakpoint - request slice for Z 

Input: (N = 3, X = -4, 3, -2) 
WPP: 1.2.3.4.5.6.7.9.10.11.12 

4.5.6.8.9.10.11.12 
4.5.6.7.9.10.11.12 
4.13.14 

F i g u r e  10: D y n a m i c  s l i c i ng  e x a m p l e  

Finally the worst case t ime complexi ty of our implementa-  
tion is the same as tha t  of Agrawal and Horgan 's  algorithm. 
Pr imary  cost of both  algorithms comes from processing the 
control flow trace. Our algori thm must  examine the entire 
trace to compute the T W P P  pa th  trace representat ion while 
their algori thm must  examine the t race to construct  a dy- 
namic dependence graph. The  main difference between the 
two approaches is as follows. Agrawal et al. compute  all dy- 
namic dependences first and construct  a graph using which 
any dynamic slice request can be processed using a simple 
traversal. In  contrast  our approach computes  relevant de- 
pendences for slicing requests upon demand  (like Weiser 's  
algorithm [25]). Since the same dependences may be  rele- 
vant to different slicing requests, their  recomputa t ion  must  
be avoided by caching the computed  dependences. In other 
words our approach builds the  dynamic  dependence graph 
incrementally as slicing requests are processed. 

Dynamic currency determination. 
Profile-limited analysis can be used to  address the  problem 
of dynamic currency determination.  The user carries out  
debugging from the perspect ive of an unopt imized program; 
however, the  code being executed is an opt imized version of 
the program. Therefore when the user requests the  value of 
some variable at  a breakpoint ,  the value of the  variable may 
or may not be current, tha t  is, it may or may  not  correspond 
to the value tha t  would have been observed by executing 
the unoptimized program. As shown in [10], t imes tamping 
of basic block executions is needed for dynamic  currency de- 
termination.  The t imes tamp annota ted  dynamic  flow graph 
is therefore adequate  for solving this problem. 
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Approach  l : S l i c i n g  request:  < *, 14 > ~  
Q u e r y  S l i ce  D e p e n d e n c e  
< * , 1 4 >  Z 
< *,13 >Z < *,13 > j  
< *,4 >Z < *,4 > d <  *,4 > i <  *,4 >N 
< *, 3 >Z < *' 3 >1< *, 3 >N < *, 12 > Z <  *, 12 > j <  *, 12 > i <  *, 12 > N  
< *,2 > Z <  *,2 > N <  *,11 > Z <  *,11 > i <  *,11 >N 
< *, 1 >Z < *, i0 >Z < *, 10 > i <  *, 1O >N 
< *,9 > y <  *,9 >1< *,9 >N 
< *,8 > X  < * ,8  >i¢~ *,S >N < *,7 >X < *,7 > i <  *,7 > N  
< *,6 > X <  *,6  > i <  *,6 >N 
<2 *,5 > i <  * ,5  >N 
< *~4 > ( <  * ,4  >M 

{14} 
{13,14} 
{4,13,14} 
{3 ,4 ,12 ,13 ,14}  
{2,3,4,11,12,13,14} 
{ 1,2,3,4 ,i 1,12)i3,14} 
{ 1,2,3~4,9,11,12)13,14} 
{ 1,2,3,4,7,8,9,11 ,I 2,13,14} 
{I,2,8,4,6,7,8,9,11,12,13,14} 
{1,2,3,4,5,6,7,8,9,11,12,13,14~ 
{ 1,2,3,4,5)6,7,8,9,11,12,13,14~ 

d a t a  
contro l  
d a t a  
d a t a  
d a t a  
d a t a  
d a t a  
d a t a , c o n t r o l  
d a t a  
s o l v e d  querlea 

Q u e r y  
Approach  2: S l i c i n g  request:  < [301, 14 > ~  

< [30], 14 >Z 
< [29],18 > Z <  [29], 13 > j  
< [28],4 > Z <  [28], 4 > j <  [4 : 28 : 8],4 > i <  [4 : 28 : 8],4 >24 

[27], 12 >Z < [27], 12 > j <  [3],3 > i <  [11 : 27 : 8], 12 > i <  [3],3 >N < Ell : 27 : 8]) 12 >N 
< [26], 11 >Z < [10 : 26 : 8], II > / <  [2],2 >N < [10 : 26 : 8], i i  >N 
< {26], I0 > z  < [9 : 25 : 8}, 1o > i <  [9 ~ 25 : 8], io >N 
< [8 : 24 : 8],9 > y <  [8 : 24 : 8],9 > i <  [8 : 24 : 8],9 >N 
< [7,23], 7 >X < [15],8 > X <  [7,23], 7 > i <  [15], 8 > i <  [7,23], 7 > N <  [15],8 >N 
< [6 : 22 : 8],6 > / <  [6 : 22 : 8],6 >1< [6 : 22 : 8],6 >N 
< [5 : 21 : 8],5 > / <  [5 : 21 : 8],8 > N  
< [4 : 23 : 8],4 > i <  [4 : 28 : 3],4 > N  

Approach  3: S l i c i n g  request:  < [30], 14 > ~  
Q u e r y  
< [30], 14 > z  
< [29], 13 > z  < [29], 18 > j  
< [28],4 > Z <  [28l, 13 > j <  [28],4 > i <  [28],4 > N  
< [27], 12 > Z <  [27], 12 > j <  [27], 12 > 1 <  [27], 12 >N 
~ 26],11 > Z <  [26], 11 > i <  [26], 11 >N 

[25], 10 > Z <  [25], 10 >1< [25], I0 >N 
< [24],9 > y <  [24],9 > l <  [241,9 > N  
< [23], 7 > X <  [23],7 > i <  [23], 7 > N 
< [22],6 >X < [22],6 > i <  [22],6 >N 

< [3],8 > 1 <  [3],3 >N 
< [2I, 2 > N 

Sl ice  D e p e n d e n c e  
{14} 
{13,14) 
{4 ,13 ,14}  
{4,13,13,14} 
{2,4,11,12,13)14} 
{1,2,4,11,12,13,14} 
{ 1,2,4,9,11,12,13,14} 
{ 1,2,4,7)8,9,11)I 2,13,14} 
{ 1,2,4,6,7,8,9,11,12,13~14} 
{1,2,4,5,6,7,8,9,11,12,18,14} 
{1,2,4,5,6,7,8,9,11,12,13,14} 

d a t a  
contro l  
d a t a  
d a t a  
d a t a  
d a t a  
d a t a  
d a t a , c o n t r o l  
d a t a  
s o l v e d  q u e r i e s  

S l i ce  
(14} 
{13,14} 
{4,13,14) 
{ 4 , 1 2 , i 3 , i 4 }  
{4,11,12,13,14} 
{4,11,12,13,14} 
{4,9,11,12,13,14} 
{4,7,9,I 1,12,13,14} 
{4,6,7,9,11,12,13,14} 

{ 2,4,5,6,7,9,11,12,13,14} 
{ 1,2,4,5,6,7,9.11,12,13,14} 

D e p e n d e n c e  

d a t a  
contro l  
d a t a  
d a t a  
d a t a  
d a t a  
data  
contro l  

d a t a  
d a t a  

F i g u r e  11: I m p l e m e n t i n g  A g r a w a l  and H o r g a n ' s  d y n a m i c  s l ic ing  a l g o r i t h m s .  

The example in Figure 12 illustrates currency determina- 
tion. Assuming that block 2 contains the last use of the 
value of variable X ,  the second assignment to X in block 1 
can be moved to block 2 by the partial dead code elimination 
optimization. During the execution of the optimized code 
the user may request the value of X at a breakpoint placed 
in block 3. Depending upon the path taken to arrive at 
the breakpoint the value of X may or may not be current. 
The WPP captures the path history and therefore allows 
us to make the correct assertions as shown in Figure 12. 
The determination requires propagating a query to locate 
the definition of X that reaches block 3 and then ensuring 
that this is the same definition that would have provided 
the value of X in the unoptimized code. 

5. CONCLUDING REMARKS 
In this paper we have demonstrated the following. 

® We presented profile-limited data flow analysis for GEN- 
KILL problems and demonstrated its application to 
data flow frequency analysis for profile-guided opti- 
mization as well as debugging of programs. 

I ) 

X=. 

] ..= 

Before optimization After optimization. 

* WPPs  can be compacted without compromising acces- 
sibility to profile data. The proposed techniques of 
redundant path trace elimination and dynamic basic 
block dictionary creation effectively compact the WPP 
without compromising accessibility. 

* An organization of trace information based upon the 
dynamic call graph and timestamped dynamic basic blocks 
is particularly appropriate for performing profile-limited 
data flow analysis. This representation is compact and 
provides rapid access to path traces of a given function. 

i 

i 

2 - - > 9 9  ..= 4-->99 

3 --> I00 ~ \~----~> 100 

breakpoint breakpoint 
X is current, x is non-current. 

* Overall our techniques were observed to compact the 
original traces by factors ranging from 7 to 64 and at 
the same t ime speedups of over 3 orders of magnitude 
were observed in responses to queries requesting all of 
the trace information of a given function. 

F i g u r e  12: D e t e c t i n g  d y n a m i c  c u r r e n c y .  
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