
Timestamped Whole Program Path
and its Applications

Representation

Youtao Zhang Rajiv Gup ta

Depar tment of Computer Science

The University of Arizona

Tucson, Arizona 85721

ABSTRACT
A whole program path (WPP) is a complete control flow
trace of a program's execution. Recently Larus [18] showed
that although WPP is expected to be very large (lOfts of
MBytes), it can be greatly compressed (to 10's of MBytes)
and therefore saved for future analysis. While the compres-
sion algorithm proposed by Larus is highly effective, the
compression is accompanied with a loss in the ease with
which subsets of information can be accessed. In particular,
path traces pertaining to a particularj function cannot gen-
erally be obtained without examining the entire compressed
WPP representation. To solve this problem we advocate
the application of compaction techniques aimed at provid-
ing easy access to path traces on a per function basis.

We present a W P P compaction algorithm in which the WPP
is broken into path traces corresponding to individual func-
tion cMls. All of the path traces for a given function are
stored together as a block. Ability to construct the complete
WPP from individual path traces is preserved by maintain-
ing a dynamic call graph. The compaction is achieved by
eliminating redundant path traces that result from different
calls to a function and by replacing a sequence of static basic
block ids that correspond to a dynamic basic block by a sin-
gle id. We transform a compacted WPP representation into
a timestamped WPP (TWPP) representation in which the
path traces are organized from the perspective of dynamic
basic blocks. TWPP representation also offers additional
opportunities for compaction.

Experiments show that our algorithm compacts the WPPs
by factors ranging from 7 to 64. At the same time informa-
tion is organized in a highly accessible form which speeds
up the responses to queries requesting the path traces of a
given function by over 3 orders of magnitude.

*Supported by DARPA award no. F29601-00-1-0183 and
National Science Foundation grants CCR-0096122, EIA-
9806525, and CCR-9996362 to the University of Arizona.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PLDI 2001 6/01 Snowbird, Utah, USA
© 2001 ACM ISBN 1-58113-414-2/01/06... $5.00

1. INTRODUCTION
Profile data, in the form of basic block and edge profiles,
has been extensively used for guiding the application of per-
formance improving code transformations including global
instruction scheduling [11]. Till recently it was believed that
collecting path profiles is too expensive. However, Ball and
Larus [4] showed that cost of acyclic path profiling is merely
double the cost of collecting edge profiles. Encouraged by
this result, Larus [18] further demonstrated that collecting
a whole program path (WPP), which is the complete control
flow trace of a program's execution, is also feasible. This is
because, although a WPP is typically very large (100's of
MBytes), it can be greatly compressed (to 10's of MBytes)
and therefore saved for future analysis.

While the compression algorithm proposed by Larus is highly
effective, the compression is accompanied with a loss of ease
in accessibility to information. For example, path traces
pertaining to a particular function cannot generally be ob-
tained without examining the entire compressed WPP rep-
resentation. This is a serious drawback because typically an
application using the WPP can be expected to make a series
of requests for profile data for individual functions, that is,
each request is only for a small subset of the overall infor-
mation contained in a WPP. Repeated extraction operations
to satisfy these requests are likely to result in high analysis
time costs. Therefore it is important to design a representa-
tion from which path traces of individual functions can be
rapidly accessed.

We believe that the above loss of accessibility is a natu-
ral consequence of treating the entire control flow trace as
a single data stream during compression. As a result the
information corresponding to a given function is scattered
through out the compressed trace and can in general be lo-
cated only by examining the entire compressed trace. In
order to solve this problem we advocate the application of
compaction techniques which are aimed at simultaneously
reducing the size of the WPP and providing easy access to
subsets of information within the WPP. We present one such
WPP compaction algorithm in this paper. In this algorithm
the WPP is broken into path traces corresponding to indi-
vidual function calls and all of the path traces for a given
function are stored together as a block. Therefore informa-
tion regarding a specific function can be readily accessed.
In order to ensure that the complete WPP can be recon-
structed from individual path traces, a dynamic call graph
which links the path traces together is also maintained.

180

The compaction of W P P s is achieved by compacting the
path traces using two techniques. First we eliminate dupli-
cate path traces that result from different calls to the same
function. This technique is very effective and resulted in re-
ductions in the sizes of WPPs by a factors ranging from 5.66
to 9.5 in our experiments. This is because although many
functions are called numerous times, they tend to follow one
of a small subset of paths through the function body. For
example, in a W P P collected from executing g¢¢ we found
that function _rtx_equal_p was called 355189 times but it
generated only 35 unique path traces. The second technique
we employ replaces a sequence of static basic block ids, that
correspond to a dynamic basic block, by a single id. A dy-
namic basic block belonging to a path trace is a sequence
of static basic blocks that is always entered from the first
block and exited from the last block in the path trace. Since
dynamic basic blocks often appear inside loops, they can be
repeated many times in a path trace. Thus, replacing them
by a single id can significantly reduce the size of the WPP.
We typically observed reductions by factors ranging from
1.35 to 4.24 using this technique in our experiments.

While compacted W P P s provide easy access to information,
they still do not represent path traces in a form that is suit-
able for analysis which is performed from the perspective
of basic blocks. In particular, we consider a class of ap-
plications that perform data flow analysis on the program
and utilize the W P P information to gather data flow facts,
including frequencies of data flow facts [20, 7, 13, 14, 15],
which can be observed to hold during the program execution
represented by the WPP. Applications that fall in this cate-
gory include identification of hot data flow facts for profile-
guided code optimizers (static and dynamic) as well as de-
bugging aids (dynamic slicing and currency determination
algorithms). We refer to such analysis as profile-limited data
flow analysis.

To address the above issue, we transform a compacted WPP
representation into a timestamped W P P (TWPP) represen-
tation in which the trace information is organized from the
perspective of dynamic basic blocks since data flow analysis
is carried out from the perspective of dynamic basic blocks.
We demonstrate that T W P P s can be conveniently used by
applications that need to perform profile-limited data flow
analysis including profile-guided optimizers and dynamic de-
bugging algorithms. The T W P P representation also offers
opportunities for compaction leading to compacted TWPPs
with sizes that are significantly smaller than that of com.
pacted WPPs. Compaction opportunity arises because when
a sequence of t imestamp values are used to identify the po-
sitions in a path trace corresponding to a block's execution,
often these sequences form an arithmetic series which can be
represented compactly. Our experiments indicate that the
size of a compacted T W P P is often much smaller than that
of a compacted WPP.

In summary the contributions of this paper are as follows:

• We replace the compression strategy proposed by Larus
[18] by a compaction strategy which is also effective in
reducing W P P sizes. Moreover compacted WPPs or-
ganize trace information in an accessible form which
allows quick access to path traces of any given func-

tion. [Section 2]

, We propose the timestamped WPP (TWPP) represen-
tation which organizes trace information from the per-
spective of dynamic basic blocks. This form is highly
suitable for applications that use WPPs to perform
profile-limited data flow analysis. [Section 2]

® Overall the above techniques were observed to com-
pact the original traces by factors ranging from 7 to
64 and at the same time speedups of over 3 orders of
magnitude was observed in responding to queries re-
questing the path traces of a given function. Our tech-
niques also compares favorably with Larus's technique
for compressing WPPs. [Section 3]

® Finally we present demand-driven algorithms for profile-
limited data flow analysis and illustrate their use in
two applications: code optimizers and debugging tools.
[Section 4]

2. COMPACTION ALGORITHM
As mentioned earlier, a whole program path (WPP) is a
complete control flow trace of a program execution. Con-
sider the program and a sample W P P shown in Figure 1.
The W P P shows that the loop in main iterates 5 times and
in each iteration the function f is called. The loop in func-
tion :f iterates 3 times for each call. Looking at the W P P
for a small program we observe two things: W P P s for real
applications can be expected to be quite large (e.g., 100's of
MBytes) and in its current linear form W P P is difficult to
use (e.g., in order to extract trace information for a subpath
in main or function :f, we must examine the entire WPP) .
Next we present a step by step transformation of the above
WPP to achieve two goals: compaction of the W P P to re-
duce memory requirements and organization of the W P P
information for faster access to path traces of individual
functions.

Partitioning WPP into path traces.
We partition the W P P into path traces corresponding to in-
dividual function calls and all of the path traces for a given
function are stored together as a block. Therefore informa-
tion regarding a specific function can be readily accessed.
In order to ensure that the complete W P P can be recon-
structed from individual path traces, a dynamic call graph
(DCG) which links the path traces together is also main-
tained. Figure 2 shows this representation of the W P P for
our example program. Clearly from this representation the
WPP form of Figure 1 can be easily constructed. More im-
portantly one can rapidly search for occurrences of a given
path (intraprocedural or interprocedural). The path traces
of interest are located and then examined for desired infbr-
mation. To search for an occurrence of a path in main we
need to only examine 0ne-sixth of the total trace in Figure 2.

Eliminating redundant path traces.
The W P P can be greatly reduced in size by eliminatin9 du-
plicate path traces generated by different calls to the same
function. In Figure 2, corresponding to the 5 calls to func-
tion :f, there are only two unique path traces. Therefore
the W P P representation can be transformed to eliminate
redundant path traces as shown in Figure 3. This technique

181

is very effective because although many functions are called
numerous times, they tend to follow one of a small sub-
set of paths through the function body. For example, in a
WPP collected from executing gcc we found that function
_rtx_equal_p was called 355189 times but it generated only
35 unique path traces.

fo

main

CD

main(1.2.3.f(1.2.7.8.9.6.2,7.8.9.6.2.7.8.9.6. IO) A.
2.3.f(1.2.7.8.9.6.2.7.g.9.6.2.Tg.9,6.10)A.
2.3.f(t .2.3.4.5.5.2.3.4..5.6.2.3.4.5.6.10).4.
2.3 . f (1 .2 .7 .8 .9 .6 .2 .7 .8 .9 .6 .2 .7 .8 .9 .6 .10) .4 .

2.3 .ff 1.2.3.4.5.6.2.3.4.5.6.2.3 A.5.6.10k4.6~

Figure 1: A n u n c o m p a c t e d W P P .

DCG Path Traces

I

. ~ 1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10 I

Figure 2: W P P organized using the D C G .

DCG Path Traces

~ ' 12'4 6 4 4
.

........ '.'.'.".'.'." : 1.2.7.8.9.6.2.7.8.9.6.2.7.8.9.6.10]

Figure 3: W P P after r e d u n d a n t p a t h t race removal.

Creating dictionaries of dynamic basic blocks.
Another technique that we employ replaces a sequence of
static basic block ids that correspond to a dynamic basic
block by a single id. A dynamic basic block (DBB) belonging
to a path trace is a sequence of static basic blocks that is
always entered from the first block and exited from the last
block in the path trace. Since DBBs can often appear inside
loops, they are often repeated many times in a path trace.
Thus, replacing them by a single id can significantly reduce
the size of the WPP.

Each path trace is processed as follows: a dictionary of
DBBs is created by constructing a dynamic control flow
graph and finding chains of static blocks representing DBBs
in it. Each DBB is assigned the block id of the first static
block in it and accordingly the path trace is modified by
deleting all but the first id in each occurrence of a DBB.
Once all compacted path traces and dictionaries are ob-
tained, duplicate path traces and dictionaries are also elim-
inated. In this transformed form, each node in the dynamic
call graph has an associated tuple (t, d) where t is a path
trace and d is a dictionary. Figure 4 shows the chains of
static basic blocks that form dynamic basic blocks for the
three path traces in Figure 3. After creating dictionaries
and compacting path traces, we are left with one path trace
and two dictionaries for function :f as shown in Figure 5.

main

C©

G 3
1.2,3,4.Z3.4.2.3A..
2.3.4.2.3.4,2.3.4.5

fo f0

CD

1.2.3.4,5.6.2.3.4, l .'2.7.8.9.6.2.7.8.
5.6,2.3.4.5.6.10 9.6.2.7,8.9.6.10

Figure 4: D B B s and dynamic control flow graphs.

DCG Path Traces DBB Dictionaries

~ _ ~ i
ll.2.2.,. .2.0I I 12.3.4 I

© © (D GD © :

..................... 'iiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiii!iiii!
. ; . £,

Figure 5: W P P after creating dictionaries of DBBs.

Timestamped WPP representation.
In the WPP representation described so far the execution
trace of a given function invocation is represented by a se-
quence of basic blocks visited during its execution. While
such a path trace representation is adequate for identifying
hot paths through a program, it is not the most appropri-
ate for performing data flow analysis. Since profile-limited
data flow analysis is carried out from the perspective of basic
blocks, it is more appropriate to organize the traces from the
perspective of dynamic basic blocks. Next we describe the
timestamped WPP (TWPP) representation which achieves
this goal.

The execution of the function can be viewed from the per-
spective of time steps, where each time step corresponds
to the execution of a dynamic basic block. Therefore a

182

path trace for a function call in W P P representation can
be viewed as a mapping between time steps, or timestamps,
and dynamic basic blocks. In contrast, the TWPPs rep-
resent a mapping between dynamic basic blocks and an or-
dered sets of timestamps. Let T, B, and "P(T) denote the set
of timestamps, set of dynamic basic blocks, and the power
set of t imestamps associated with the path trace of a given
function call f . A path trace in W P P and T W P P forms is
represented by the following mappings:

W P P P a t h ' I Y a c e / : T ~ B
T W P P P a t h T r a c e y : B ~ P (T)

Consider the W P P of Figure 5. The W P P trace 1.2.2.2.2.2.6
corresponds to the following T ~ / 3 mapping: {1 ~ 2, 2
2, 3 --~ 2, 4 ~ 2, 5 ~ 2, 6 -~ 2, 7 ~ 6}. When transformed
to T W P P form it is represented by the following B ~ P (T)
mapping: {1 ~ {1}, 2 ~ {2,3,4,5,6}, 6 ~ {7}}. The
complete uncompacted T W P P for this example is shown in
Figure 6.

DCG Path Traces DBB Dictionaries

.......... !] i
1 !! I l,t l

• a * ~]

i
............................. i . .+ ...~ ~.-i

... i~ i ~
. : . !

F i g u r e 6: T W P P form.

C o m p a c t i n g T W P P p a t h t r a c e s .
The path traces in T W P P form can be further compacted
because often a subsequence of timestamp values correspond-
ing a dynamic basic block forms an arithmetic series. This
situation arises particularly when the same path within a
loop body is traversed repeatedly during different loop it-
erations. The subsequences that form arithmetic series are
compacted yielding a sequence of entries which are of the
following form: l (singleton), l : h (l . l+ 1.l+2...h, i.e., series
with step 1), or l : h : s (I.l + s.l + 2s...h, i.e., series with
step s). As we can see, depending upon its form, an entry is
represented using one, two or three positive integer values.
We store the timestaanps corresponding to a block merely
as a sequence of integers. For correct interpretation of the
information we need to encode the boundaries that separate
the variable length entries. This information is encoded in
the signs (+ or -) of the values and therefore it does not
require any increase in the size of the path trace. In partic-
ular, the last number in a each entry is stored as a negative
number. By using the sign to encode the end of an entry
we limit the largest t imestamp value that is available to us
since we can no longer use unsigned integers. However, our
experience with the benchmarks considered shows that the
timestamp value does not overflow because individual path
traces are much smaller than the complete WPP.

Notice that the sequence of t imestamps assigned to dynamic
basic block 2 in Figure 6 form an arithmetic series since block

D C G P a t h T r a c e s D B B D i c t i o n a r i e s

. ; .]

B 1 I 2 6

[T [; 1 1 . 2 : - 4 , I "51

... ~--...: i..,;
. !

Figure 7: C o m p a c t e d T W P P .

2 is executed repeatedly during successive loop iterations.
Theretbre the T W P P can be compacted into: {1 ~ { -1} ,
2 ~ {2 : -6} , 6 ~ {-7}}. Notice tha t the last number
in each sequence is a negative number. The complete com-
pacted form of T W P P for our running example is shown in
Figure 7.

C o m p a c t i n g t h e D C G .

The dynamic call gral~hS resulting from executions of large
application programs can also be quite large. Therefore in
addition to compacting the path traces, we also compress the
DCG. For this purpose we considered the popular dictionary
based approaches proposed by Ziv and Lempel [28, 29]. In
particular, we used Welch's variation of Ziv and Lempel's
adaptive dictionary based technique which is also referred
to as the LZW algorithm [26].

3. EXPERIMENTAL RESULTS
We have implemented the algorithm described in the pre-
ceding section and used it to compact WPPs for several
benchmark programs from the SPECint95 suite. The origi-
nal W P P s used in the experiments were generated using the
Trimaran compiler infrastructure [24]. A W P P consists of
two parts: the dynamic call graph (DCG) and the individ-
ual traces for function calls (which we will collectively refer
to as the W P P traces). The sizes of W P P s used in our ex-
periments are shown in Table 1. The experiments are aimed
at studying the effectiveness of our compaction techniques
in reducing memory requirements and the effectiveness of
organization of the W P P information for faster access.

P r o g r a m D C G W P P Tota l
. (M B) t r aces ,/MB) size (MB.).

9.99.go 6.0 170.0 176:0
126.gcc 34:7 489.5 524.2
130. l i 8.6 78.3 84.9
1 3 2 . i j p e g 1.7 266.9 268.6
1:,.34. per1 3.4 41.5 44.9

Table 1= Sample i n p u t t r a ce s u s e d in t h e exper i -
men t s .

C o m p a c t i o n study.
Table 2 shows the sizes of the W P P traces in their various
forms. As we can see, the three compacting transforma-
tions, removal of redundant path traces, creation of DBB
dictionaries, and transformation to compacted T W P P form
are all very effective in reducing the W P P trace size. The

183

OWPP / WPP trace after Compacted OWPP /
Program Redundancy Dictionary TWPP trace CTWPP

removal - MB creation- MB - MB
099.go 27.0 (x6.30) 17.1 (xl.58) 17.6 (x0.97) 9.7
126.gee 86.5 (x5.66) 50.8 (xl.70) 32.9 (xl.54) 14.9
130.ii 8.5 (x9,2 .) 5.3 (xl:60) 1.1 (x4.81) 71.2
132.ijpeg 28.1 (x9.~0) 20.8 (xl.35) 5.7 (x3.65) 46.8
134.per1 7.2 (x5.7 }) 1.7 (x4.24) 0.02 (x85.0) 2075

T a b l e 2: W P P t r a c e c o m p a c t i o n d u e to v a r i o u s t r a n s f o r m a t i o n s .

Program

099.go
126.gee
130.1i

132.ijpeg
134.perl

Compacted Compacted TWPP (MB)] Total Compaction
DCG (MB) Traces I Dictionaries I (MB) factor

6.6 17.6 2.3 26.5 7
13.8 32.9 4.9 51.6 10
5.3 1.1 0.04 6.4 13
1.0 5.7 0.6 7.3 37
0.7 0.02 0.02 0.7 64

T a b l e 3: O v e r a l l c o m p a c t i o n f a c t o r .

ratio of the sizes of original W P P traces (OWPP) and com-
pacted T W P P traces (C T W P P) gives us the compression
factor which varies from 9.7 to 2075 for our sample traces.
The sizes of the W P P traces after each of the three trans-
formations as well as the compression factors corresponding
to each of the t ransformations are also shown separately in
parenthesis in Table 2. The results show tha t each of the
transformations-is an impor tan t source of compaction.

A large factor of size reduction comes from removing redun-
dant (duplicate) pa th traces (5.66 - 9.50). The reason for
this large reduct ion becomes clear when we examine the da ta
in Figure 8. This figure gives the percentage of total func-
t ion calls (p lo t ted along Y-axis) tha t can be a t t r ibuted to
functions with at most N unique pa th traces (N is plot ted
along the X-axis). For 130 .1 i , 132 . i j peg , and 1 3 4 . p e r l
programs 57-80% of all function calls are a t t r ibutable to
functions with at most 5 unique pa th traces. For 126. gcc
and 099. go over 50% of function calls are a t t r ibu tab le to
functions wi th at most 25 and 50 unique traces respectively.
Given tha t the number of function calls made during the
runs of these benchmarks were in hundreds of thousands,
we can see t ha t the degree of redundancy in pa th traces is
very high.

80

60

40

j / f

/ . - / ,,j

/ __o o
...... 134.perl

f
0 0 100 200

Number of unique trsces
300

Figure 8: Trace redundancy.

The creation of dictionaries results in compact ion of W P P
traces by factors ranging from 1.35 to 4.24. The conversion
into compacted T W P P form results in fur ther reductions.
For four out of five benchmarks, compacted T W P P traces
provide reductions in the sizes of W P P traces by factors
ranging from 1.55 to 85. The only case in which compacted
T W P P trace is slightly larger is the 099. go program where
the compacted T W P P trace was 3% larger than compacted
W P P trace prior to its conversion to T W P P form. These
results are very encouraging because not only is the T W P P
representat ion sui table for profile-limited d a t a flow analysis,
it is also compact .

The breakdown of different components of a W P P and the
overall compaction factors for the complete W P P (DCG +
W P P trace) are given in the Table 3. For the sample W P P s
used in these experiments the overall W P P compact ion fac-
tor ranges from 7 to 64.

Access time study.
To s tudy the impact of reductions in the W P P size on the
speed with which the pa th traces can be accessed, we con-
ducted an experiment which measured the t ime it took to
ext rac t the pa th traces corresponding to a single function
from the complete WPP. The speedups we can expect resalt
from two sources. Fi rs t due to the compact ion of the W P P
we have to read through a smaller file. Second we organize
the contents of the file to allow faster access. Followed by the
dynamic call graph, the pa th traces (including dictionaries)
of the most frequently called function are s tored first and
tha t of least frequently called function are s tored last. By
remembering the position of information for each function in
the file, and storing it as a header in the compacted T W P P
file, we can access the pa th traces for individual functions
rapidly.

Table 4 shows the t imes taken to extract a function 's trace
in the following scenarios: extract ion from uncompacted file
(column U); and extract ion from compacted file (column
C). Both the average and maximum times for U and C are
given. On art average the access t imes are reduced by over
3 orders of magnitude.

184

Program _]~]-::avg'U(m§] max)]avg.C/mSm)ax_~ Speedup
. . . . c/c(avg.)]

099.g0 ~033 83s3 8 143s ::193 t
126. gcc 22879 29672 6 528
i32.~jpeg -~ 7615 11447 6 258 1269
130.1i -~390 3263 2 124 ~ 4 s
134.perl 1303 ' 1873 0.2 3

T a b l e 4: E x t r a c t i o n t imes for a single func t ion .

Larus ' s Sequitur based compression algorithm.
We have also implemented Larus's compression algorithm
which is based upon Sequitur [19]. This algorithm produces
the compressed W P P representation which is in the form of
a grammar that generates a single string - the original trace.
We compared the Sequitur generated grammar representa-
tion with the T W P P s generated using our approach in two
ways: their sizes and the access times to individual function
traces.

The results of this comparison are shown in Table 5. On
an average, the total size of the grammar produced by Se-
quitur is smaller than the corresponding size of the com-
pacted T W P P by a factor of 3.92. Now lets consider the
time it takes to extract the trace corresponding to a single
function from the complete compacted trace. The extraction
of a function's trace from the Sequitur generated grammar
essentially requires two steps: reading in the grammar and
then processing it to generate a subgrammar corresponding
to the functions trace. The total time taken for extraction,
and the times for each of the steps, are shown in Table 5.
These numbers represent averages over all functions present
in the respective programs. These times range from 10's to
1000's of milliseconds. In contrast, the T W P P is so orga-
nized that we can locate and extract the trace in few (< 10)
milliseconds. The access times for Sequitur grammars are
greater than access times of T W P P s by factors ranging from
89 to 553. In summary, although T W P P s are larger in size
by an average factor of 3.92, they provide access times that
are lower by an average factor of 309. These experiments
simply show that the two representations embody design
decisions with different space time trade-offs.

Program I Compacted"size [Extraction time

I Sequitur TWPP Sequiturr (m s) TWPP
(MB)] (MS). [read+process=total ~ms)

099.g0 8.4 26.5 622 + 1315 = 1937 8
126.gcc 11.2 51.6 898 + 2423 =3321 6 '
132.ijp~g 0:7 6.4 544'+ 1650 = 2194 6
130.1i 7'~8 ' 7.3 47 + 132 = 179 2
134.per1 0.4 0.7 . 29 + 30 ---- 59 0.2

Table 5: C o m p a c t e d trace sizes and extraction
t imes.

Apart from the different size and access time characteristics,
the two representations also impact on the design of analysis
algorithms that will use them. While Larus's techniques is
suitable for analysis of hot paths (i.e., collection of data flow
facts that hold along frequently executed paths), our repre-
sentation is suitable for collecting hot data flow facts (data
flow facts tha t hold frequently at various program points).
One of the advantages of our approach is that T W P P s are
in the form required for profile-limited analysis. In contrast

the compressed WPPs produced by Sequitur require some
amount of preprocessing before they can be used by an ap-
plication. In the next section we demonstrate the use of
T W P P s in carrying out profile-limited data flow analysis.

4. P R O F I L E - L I M I T E D DATA F L O W
Next we present a systematic approach for profile-limited
data flow analysis which is aimed at answering data flow
queries with respect to a given WPP. Examples of such
queries are: does a data flow]ac~ hold? or how often does
a data flow fact hold at a program point? with respect
to a given WPP. Such analysis is useful for profile-guided
compile-time optimization of programs [2, 7, 3, 11, 23, 13,
14, 15], dynamic optimization of programs [3, 6] (here the
profile represents a partial execution history of the program
which is used to optimize the remainder of the program's
execution), and debugging of programs [10, 17, 1].

The analysis we present focuses on gathering hot data ~low
facts that hold during the execution of frequently called
functions. Such analysis can be used to clone and create a
specialized (optimized) copy of the function. For this anal-
ysis, we do not need access to the entire T W P P but only a
subset of information corresponding to the function under
consideration. In particular, we use a t imestamp annotated
dynamic control flow graph for the given path trace which
is described below.

4.1 T i m e s t a m p annota ted d y n a m i c C F G
This representation consists of the dynamic control flow
graph in which DBBs are annotated with t imestamp vec-
tors. This representation is quite adequate for data flow
analysis because we can trace the W P P using the times-
tamp vectors associated with the dynamic basic blocks and
limit the exploration of only those control subpaths that
appear as part of the W P P during data flow analysis. The
following characteristics make this proposed representation
particularly attractive for profile-limited data flow analysis.

First it allows efficient backward and forward traversal of
the path trace starting from any arbitrary point in the path
trace. A timestamp and program point pair (t, n) together
specify a particular point in the path trace. The preceding
point is (t - 1, m) where m is the predecessor of n in the
dynamic control flow graph labeled with timestamp t - 1.
Similarly the succeeding point is (t + l , s) where s is a succes-
sor of n in the dynamic control flow graph which is labeled
with timestamp t + 1.

Second it allows efficient simultaneous traversals of multiple
subpaths in the path trace. A vector of timestamps at a pro-
gram point ('~, n) can be used to represent multiple traversal
points. Each element in the vector can be incremented or
decremented and resulting timestamps can be matched with
timestamps of predecessors and successors to continue si-
multaneous traversal along multiple subpaths. Compaction
of tirnestamps directly attributes to the e~ciency of traver-
sals. For example consider a series of timestamps repre-
sented by (2:20:2) in our representation. A simple incre-
ment/decrement resulting in (3:21:2)/(1:I9:2) corresponds
to simultaneous forward/backward traversal along 10 sub-
paths in the path trace.

185

An indicator of the relative costs of profile-limited analysis
and traditional static analysis are the cumulative sizes of
static and dynamic fiowgraphs (see Table 6). ~Ve compared
the total number of nodes (N) and edges (E) in the static
and dynamic flow graphs. For a given function multiple
dynamic flow graphs can result because of multiple unique
traces associated with it. The nodes and edges in all of
these graphs were counted in computing the cumulative size
of the dynamic flow graphs. From the results in Table 6 we
can see that the number of nodes and edges in the dynamic
graphs axe typically much smaller than those in the static
graphs. However, the cost of profile-limited analysis is also
dependent upon the size of t imestamp vector associated with
each node. Average size of the t imestamp vector is shown
in the last column of Table 6 (the value in parenthesis is the
size of the vector before compaction - the results show that
t imestamp vector is significantly reduced in size using our
compaction technique). In summary, the data in Table 6
indicates tha t while, as expected, profile-limited analysis is
more expensive than static analysis, it has a reasonable cost.

Program] Sta t icFG I DynamicFG
N ' 1 ,,E ~ N I ~ E] avg. I'~[

.O99.g0 10823 16236 4739 16591 11.9 (15.7)
126.gcc 66571 104379 8838 20012 14.0 (33.1)
130.1i 2701 3536 265 289 51.2 (410.3)
132.ijpeg 57i8 ! 8105 754 1213 18.1 (109.7)
134.per1 13117 19539 501 674 3.9 (616.8)

Tab le 6: Sizes o f s t a t i c a n d d y n a m i c flow graphs.

4.2 Demand-driven analysis
It is natural to formulate profile-limited analysis in a demand-
driven fashion [9, 21]. This is because the applications of
profile-limited analysis request information incrementally.
For example, during debugging a user typically makes a re-
quest for the dynamic slice corresponding to only one vari-
able at a fixed program point (i.e., we only need to com-
pute subset of data flow information for subset of program
points). Similarly during profile-guided or dynamic code
optimization, subset of profile-limited data flow information
may be requested by the optimizer for subset of program
points in hot regions of the program [6].

Queries for profile-limited data flow.
A profile-limited data flow query is of the form < T, n >a,
where n is a node, T is a subset of t imestamps for n in the
path trace, i.e., T C T(n), and d is the data flow fact of
interest. This query represents a request for determining
whether or not d holds true prior to n's executions corre-
sponding to timestamp values in T. Therefore the query
< T(n) , n >d determines the data flow solution correspond-
ing to all executions of n in a given path trace. The solution
to this query allows us to determine if d always holds true,
never holds true, and holds true sometimes for the given
path trace. In fact solving such queries allows us to deter-
mine the frequency with which d holds true with respect to
the given path trace [20, 7, 13, 14, 15].

Query propagation.
We consider profile-limited demand-driven backward propa-
gation of queries for GEN-KILL problems because they arise

both during code optimization and debugging. For simplic-
ity, we consider the analysis of intraprocedural paths. How-
ever, in analyzing these paths we will take into account the
effects of any function calls that a path trace may contain.
Our techniques can be easily extended to handle interproce-
dural paths by analyzing path traces of multiple functions in
concert and propagating queries along interprocedural paths
[9].

The demand-driven propagation begins at a point n when
the query < T, n >a is raised. For GEN-KILL pr%blems it
is appropriate to propagate a timestamp vector, T, which
contains one slot for every timestamp, or more precisely, for
every entry in the compacted T W P P path trace. The propa-
gation should be viewed as simultaneous (or parallel) search
for data flow solutions corresponding to each t imestamp in
T. Each slot in "T is initialized to the t imestamp value(s) to
which it corresponds. The propagation of this 'T begins at
n.

We must ensure tha t query propagation is consistent with
the path trace under consideration. As discussed earlier in
this section, this goal is easily accomplished using the times-
tamp annotated dynamic control flow graph representation.
It is possible to correctly manipulate the t imestamp vector
during propagation such that the t imestamps in the vector
are propagated only to the appropriate predecessors. When
a node that answers the query (true or false) with respect
to a particular t imestamp is encountered, the propagation
on behalf of that t imestamp ceases. Otherwise equivalent
queries are generated and propagated along the path trace.

The query < T, n > represents the search for dynamic GEN-
KILL points correspor~ding to t imestamps of n for which
slots were created in T. For carrying out the propagation
we must first compute dynamic GEN-KILL sets (i.e, sets
wrt to a given T W P P) for a data flow fact d which are
denoted as DGENn d and DKILLdn. Although n is a dy-
namic basic block, to simplify the presentation we assume
that n contains a single statement. If node n contains a
call to function f , then the traces for calls made by the
n's instances corresponding to T(n) axe examined. The set
GEN](T(n)) (KILL~ (T(n))) contains the subset of times-
tamps from T(n) for which call to function f generates
(kills) d. If node n simply contains a statement, the dy-
namic sets are computed from the static GEN and KILL
sets for node n denoted below as SGENn and SKILLs.

{ GEN~(T(n)) i fncallsf
DGEN~ = T(n) elseif d 6 SGENn

q) otherwise
{ KILL~(T(n)) i fncal ls f

DKILLdn ---- T(n) el~eif d e SKILLn
¢ otherwise

Now let us consider query propagation. The t imestamp val-
ues in '~ axe each decremented by 1 during every step of
backward propagation. Only those resulting t imestamp val-
ues which are present in T(m), where m is a predecessor
node, are propagated to m. At m the query for a times-
tamp may be resolved as true Oft E DGENd~) or as false (if
t E DKILLdm). If it is not resolved, then the above process

186

is repeated starting with the decrementing of the timestamp
and propagation continues. It should be noted that only a
subset of slots may be relevant for a given predecessor node;
thus the other slots will contain a null value denoted by 1 .
The above rules are stated precisely below and are further
illustrated by example applications discussed in the subse-
quent sections.

Propagation of < U,n >
N--oration: T/7 -¢ is a timestamp vector st
_(~/W')/= if (T)i E 7-' then (U)/ else ±.
Slots in T resolved as true are slots in vectors

U (T - 1) / DGEN~ which do not contain k.
~nEpred(n)
Slots in U resolved as false are slots in vectors

(¢ - •) / DKILLdm which do not contain .1..
raepred(n)
Queries propagated for unresolved slots in

[_J < (: - f) / (T(m) - DGENa~ - DgInLam),m >
mEpred(n)

4.3 Applications
In this section we illustrate the use of timestamp annotated
dynamic CFG and the demand driven analysis described in
the preceding section.

4.3.1 Profile-guided Optimization
A profile-guided optimizer identifies data flow facts that axe
observed to hold for hot regions of the code and exploits
them to generate highly optimized code. This approach has
been shown to be effective for variety of optimization tasks
[7, 3, 11, 23, 13, 14, 15]. Both non-speculative [22, 16] and
speculative [14, 15, 7] transformations have been developed
for specialization of code along hot program paths.

In this section we illustrate the use of profile-limited analysis
in profile-guided optimization. Consider a load instruction
which is executed frequently and often causes cache misses
to occur. In order to reduce the number of times this in-
struction is executed, we would like to determine the degree
of redundancy in this instruction, that is, how often is the
load is redundant because the loaded value is already avail-
able in some register. Rough estimate of the frequency of
the data flow fact, the load is redundant, can be estimated
using techniques based upon edge frequencies [20, 5, 7, 8]
or acyclic path profiles [4, 13, 14, 15]. However, to obtain
a precise value of degree of redundancy we require the use
of an analysis based upon WPPs such as the profile-limited
analysis.

Let us assume that we are interested in computing the de-
gree of redundancy present in the load instruction in node
4 (4_Load) of the example shown in Figure 9. This load is
redundant due to the load in node 1 (l_Load) as long as we
arrive at it without visiting node 6 which contains a killing
store (6_Store). Let us assume that the loop is executed 100
times during which it follows the given path trace. If we
simply consider the execution frequencies of the nodes we
cannot determine the degree of redundancy. We know that
4_Load executes 60 times, 1.Load executes 100 times, and
6_Store executes 40 times. However, from these frequencies
we cannot tell how often l_Load is killed by 6_Store prior to
reaching 4_Load. While bounds on the degree of redundancy

can be computed using techniques in [5, 8], precise degree
of redundancy cannot always be found. On the other hand
if we make use of profile-limited analysis which exploits the
timestamps labeling the nodes, we can easily determine that
4_Load is always redundant for the given path trace. This
information can be used by the optimizer to transform the
program using code motion and/or restructuring [22, 16, 14,
7].

The query propagation that identifies that the redundancy
count for 4_Load is 60, that is, degree of redundancy is
100%, is also shown in Figure 9. As we can see, the degree
of redundancy has been computed using a single backward
pass through the loop body and only 6 queries were gener-
ated in this process. This example illustrates the benefit.,; of
demand-driven analysis and compaction of the timestamps.
Although the loop executes for 100 iterations, demand-driven
analysis begins by considering the 60 iterations during which
4_Load is executed. Instead of dealing with each of the
60 timestamps of 4..Load individually, we are able to effi-
ciently manipulate the compacted timestamps collectively
during query propagation. This is analogous to the manner
in which many array data flow analysis techniques achieve
efficiency by propagating ranges representing array sections,
as opposed to propagating individual array elements [12, 27].

I--> 1:496:5 Load]~

2-->2:297:5

3-->3:198:5 7-->203:498:5

4 - -

WPP: (L2.3,4.5)~0 (I.2.7.4.5)^20 (1.6.7.5)~10

<[4:299:5],4>

<[3: lig:51,3> <[203:298:51,7>

<12,197:51,2> <1~2:297 51,2 •

<11:196:51,1> <[201:2~:51,| >

GEN GEN
(fr~, = 40) (freq. = 20)

Figu re 9: D e t e c t i n g d y n a m i c load r e d u n d a n c y .

4.3.2 Program Debugging
During debugging the user typically interrupts program ex-
ecution and requests information specific to that particular
program execution. The T W P P corresponding to partial
program execution up to the breakpoint can be quite useful
in accurately answering user queries. There are two spe-
cific debugging problems that can use profile-limited anal-
ysis: dynamic slicing and dynamic currency determination
during symbolic debugging of optimized code.

Dynamic program slicing.
Static backward program slicing was first proposed by Weiser
as a debugging aid [25]. An even more precise form of slic-
ing, called dynamic slicing was proposed by Korel and Laski
[17]. Most recently Agrawal and Horgan [1] developed three
dynamic slicing algorithms which trade-off precision in the
computed slice with the time it takes to compute the slice.
Each of these algorithms constructs a different specialized
program dependence graph (PDG) to capture the depen-
dences exercised in a given execution. A backward traver-
sal over the graph is used to compute ~he dynamic slice

187

as a t ransi t ive closure over da t a and control dependences.
Each of the above dynamic slicing algorithms can be imple-
mented using one common representation, the t imes tamped
dynamic control flow graph, and thus we can avoid con-
structing specialized graphs suggested in [1].

Next we describe the implementat ions of the three dynamic
slicing algori thms in [1] and show how they can implemented
using our approach. We will i l lustrate these algori thms using
the example program and its execution history shown in
Figure 10.

A p p r o a c h 1: This method marks all executed nodes in the
PDG during the execution. The backward traversal to iden-
tify the s ta tements in the dynamic slice is allowed to visit
only the marked nodes. These marked nodes are essentially
the nodes with non-empty t imes tamp sets in our T W P P
representation. Therefore in our implementat ion the back-
ward traversal of a query through the t imes tamp annota ted
CFG is allowed to traverse only nodes that have a non-empty
t imestamp set. When a dependence is identified under such
a traversal, the s ta tement a t which the dependence origi-
nates is added to the dynamic slice. In our example, all
s ta tements are executed. Therefore the dynamic slice is the
same as a s ta t ic slice, which contains all nodes except node
10.

A p p r o a c h 2: This method marks all executed edges in the
PDG during the execution. The backward traversal to iden-
tify the s ta tements in the dynamic slice is allowed to only
traverse marked edges. Our backward analysis uses times-
t amps to find dependences can carry out a similar traversal
by ensuring tha t an edge from node n to node m is traversed
only if the query at node rn contains t imes tamp t and the
t imes tamp t - 1 is associated with node n. More over since
this algori thm does not distinguish between different times-
t amps corresponding to a node, when a dependence is found,
and new queries are generated at a node, all t imes tamps of
tha t node are included in the newly generated query for fur-
ther propagation. In the example, we will be able to get the
dynamic slice which inlcudes all nodes except node 3 and
10.

A p p r o a c h 3: This method duplicates executed node and
its dependence edges during the execution so tha t it can dis-
t inguish between the instances of a given s ta tement . This
expanded graph is t raversed to find the precise dynamic
slice. Our backward analysis uses t imes tamps to find de-
pendences and when a dependence is found we only a single
t imes tamp is added to the newly generated queries. In other
words we identify the precise instance of the assignment (for
da t a dependence) and predicate (for control dependence)
which is the source of the dependence and generate queries
only for the corresponding instances of variables tha t are
read by the assignment or predicate. In our example, note
tha t al though s ta tements 8 and 3 are executed, they are not
included in the slice because the value of Z at 13 depends
only upon the values of Y and J computed by s ta tements 7
and 1L

The detai led propagat ion of queries for the three algorithms
are shown in Figure 11. The queries of the form < T,n >v
where 7" is the t imes tamp vector, n is the node at which

the query is to be evaluated, and V is the variable whose
definition is to be found. Therefore, a request for a slice on
Z at line 14 is t ranslated into the query < [30], 14 > z . In
case of the first algori thm the t imes tamp is not needed and
therefore the query has the form < . , 14 > z . All queries
generated axe given in the first column of Figure 11. The
upda ted slice after the processing of a query is given in the
corresponding entry of the second column and the type of
dependence (control or data) tha t caused the addi t ion of a
s ta tement to the slice is also indicated.

1 -+ 1 read N
2 - + 2 I----1
3 - + 3 J = 0
4 - + 4 : 2 8 : 8 w h i l e I < N d o
5 - + 5 : 2 1 : 8 readX
6 -+ 6 : 22 : 8 if X < 0 then
7 -+ 7,23 Y ---- ffl(X)
8 -+ 15 else Y = f2(X)
9 -+ 8 : 24 : 8 Z = f3(Y)
10-+ 9 : 25 : 8 write Z
1 1 - + 1 0 : 2 6 : 8 J = 1
12-+ 1 1 : 2 7 : 8 I - - I + l

endwhile
13--+29 Z = Z + J
14 -+ 30 breakpoint - request slice for Z

Input: (N = 3, X = -4, 3, -2)
WPP: 1.2.3.4.5.6.7.9.10.11.12

4.5.6.8.9.10.11.12
4.5.6.7.9.10.11.12
4.13.14

F i g u r e 10: D y n a m i c s l i c i ng e x a m p l e

Finally the worst case t ime complexi ty of our implementa-
tion is the same as tha t of Agrawal and Horgan 's algorithm.
Pr imary cost of both algorithms comes from processing the
control flow trace. Our algori thm must examine the entire
trace to compute the T W P P pa th trace representat ion while
their algori thm must examine the t race to construct a dy-
namic dependence graph. The main difference between the
two approaches is as follows. Agrawal et al. compute all dy-
namic dependences first and construct a graph using which
any dynamic slice request can be processed using a simple
traversal. In contrast our approach computes relevant de-
pendences for slicing requests upon demand (like Weiser 's
algorithm [25]). Since the same dependences may be rele-
vant to different slicing requests, their recomputa t ion must
be avoided by caching the computed dependences. In other
words our approach builds the dynamic dependence graph
incrementally as slicing requests are processed.

Dynamic currency determination.
Profile-limited analysis can be used to address the problem
of dynamic currency determination. The user carries out
debugging from the perspect ive of an unopt imized program;
however, the code being executed is an opt imized version of
the program. Therefore when the user requests the value of
some variable at a breakpoint , the value of the variable may
or may not be current, tha t is, it may or may not correspond
to the value tha t would have been observed by executing
the unoptimized program. As shown in [10], t imes tamping
of basic block executions is needed for dynamic currency de-
termination. The t imes tamp annota ted dynamic flow graph
is therefore adequate for solving this problem.

188

Approach l : S l i c i n g request: < *, 14 > ~
Q u e r y S l i ce D e p e n d e n c e
< * , 1 4 > Z
< *,13 >Z < *,13 > j
< *,4 >Z < *,4 > d < *,4 > i < *,4 >N
< *, 3 >Z < *' 3 >1< *, 3 >N < *, 12 > Z < *, 12 > j < *, 12 > i < *, 12 > N
< *,2 > Z < *,2 > N < *,11 > Z < *,11 > i < *,11 >N
< *, 1 >Z < *, i0 >Z < *, 10 > i < *, 1O >N
< *,9 > y < *,9 >1< *,9 >N
< *,8 > X < * ,8 >i¢~ *,S >N < *,7 >X < *,7 > i < *,7 > N
< *,6 > X < *,6 > i < *,6 >N
<2 *,5 > i < * ,5 >N
< *~4 > (< * ,4 >M

{14}
{13,14}
{4,13,14}
{3 ,4 ,12 ,13 ,14}
{2,3,4,11,12,13,14}
{ 1,2,3,4 ,i 1,12)i3,14}
{ 1,2,3~4,9,11,12)13,14}
{ 1,2,3,4,7,8,9,11 ,I 2,13,14}
{I,2,8,4,6,7,8,9,11,12,13,14}
{1,2,3,4,5,6,7,8,9,11,12,13,14~
{ 1,2,3,4,5)6,7,8,9,11,12,13,14~

d a t a
contro l
d a t a
d a t a
d a t a
d a t a
d a t a
d a t a , c o n t r o l
d a t a
s o l v e d querlea

Q u e r y
Approach 2: S l i c i n g request: < [301, 14 > ~

< [30], 14 >Z
< [29],18 > Z < [29], 13 > j
< [28],4 > Z < [28], 4 > j < [4 : 28 : 8],4 > i < [4 : 28 : 8],4 >24

[27], 12 >Z < [27], 12 > j < [3],3 > i < [11 : 27 : 8], 12 > i < [3],3 >N < Ell : 27 : 8]) 12 >N
< [26], 11 >Z < [10 : 26 : 8], II > / < [2],2 >N < [10 : 26 : 8], i i >N
< {26], I0 > z < [9 : 25 : 8}, 1o > i < [9 ~ 25 : 8], io >N
< [8 : 24 : 8],9 > y < [8 : 24 : 8],9 > i < [8 : 24 : 8],9 >N
< [7,23], 7 >X < [15],8 > X < [7,23], 7 > i < [15], 8 > i < [7,23], 7 > N < [15],8 >N
< [6 : 22 : 8],6 > / < [6 : 22 : 8],6 >1< [6 : 22 : 8],6 >N
< [5 : 21 : 8],5 > / < [5 : 21 : 8],8 > N
< [4 : 23 : 8],4 > i < [4 : 28 : 3],4 > N

Approach 3: S l i c i n g request: < [30], 14 > ~
Q u e r y
< [30], 14 > z
< [29], 13 > z < [29], 18 > j
< [28],4 > Z < [28l, 13 > j < [28],4 > i < [28],4 > N
< [27], 12 > Z < [27], 12 > j < [27], 12 > 1 < [27], 12 >N
~ 26],11 > Z < [26], 11 > i < [26], 11 >N

[25], 10 > Z < [25], 10 >1< [25], I0 >N
< [24],9 > y < [24],9 > l < [241,9 > N
< [23], 7 > X < [23],7 > i < [23], 7 > N
< [22],6 >X < [22],6 > i < [22],6 >N

< [3],8 > 1 < [3],3 >N
< [2I, 2 > N

Sl ice D e p e n d e n c e
{14}
{13,14)
{4 ,13 ,14}
{4,13,13,14}
{2,4,11,12,13)14}
{1,2,4,11,12,13,14}
{ 1,2,4,9,11,12,13,14}
{ 1,2,4,7)8,9,11)I 2,13,14}
{ 1,2,4,6,7,8,9,11,12,13~14}
{1,2,4,5,6,7,8,9,11,12,18,14}
{1,2,4,5,6,7,8,9,11,12,13,14}

d a t a
contro l
d a t a
d a t a
d a t a
d a t a
d a t a
d a t a , c o n t r o l
d a t a
s o l v e d q u e r i e s

S l i ce
(14}
{13,14}
{4,13,14)
{ 4 , 1 2 , i 3 , i 4 }
{4,11,12,13,14}
{4,11,12,13,14}
{4,9,11,12,13,14}
{4,7,9,I 1,12,13,14}
{4,6,7,9,11,12,13,14}

{ 2,4,5,6,7,9,11,12,13,14}
{ 1,2,4,5,6,7,9.11,12,13,14}

D e p e n d e n c e

d a t a
contro l
d a t a
d a t a
d a t a
d a t a
data
contro l

d a t a
d a t a

F i g u r e 11: I m p l e m e n t i n g A g r a w a l and H o r g a n ' s d y n a m i c s l ic ing a l g o r i t h m s .

The example in Figure 12 illustrates currency determina-
tion. Assuming that block 2 contains the last use of the
value of variable X , the second assignment to X in block 1
can be moved to block 2 by the partial dead code elimination
optimization. During the execution of the optimized code
the user may request the value of X at a breakpoint placed
in block 3. Depending upon the path taken to arrive at
the breakpoint the value of X may or may not be current.
The WPP captures the path history and therefore allows
us to make the correct assertions as shown in Figure 12.
The determination requires propagating a query to locate
the definition of X that reaches block 3 and then ensuring
that this is the same definition that would have provided
the value of X in the unoptimized code.

5. CONCLUDING REMARKS
In this paper we have demonstrated the following.

® We presented profile-limited data flow analysis for GEN-
KILL problems and demonstrated its application to
data flow frequency analysis for profile-guided opti-
mization as well as debugging of programs.

I)

X=.

] ..=

Before optimization After optimization.

* WPPs can be compacted without compromising acces-
sibility to profile data. The proposed techniques of
redundant path trace elimination and dynamic basic
block dictionary creation effectively compact the WPP
without compromising accessibility.

* An organization of trace information based upon the
dynamic call graph and timestamped dynamic basic blocks
is particularly appropriate for performing profile-limited
data flow analysis. This representation is compact and
provides rapid access to path traces of a given function.

i

i

2 - - > 9 9 ..= 4-->99

3 --> I00 ~ \~----~> 100

breakpoint breakpoint
X is current, x is non-current.

* Overall our techniques were observed to compact the
original traces by factors ranging from 7 to 64 and at
the same t ime speedups of over 3 orders of magnitude
were observed in responses to queries requesting all of
the trace information of a given function.

F i g u r e 12: D e t e c t i n g d y n a m i c c u r r e n c y .

189 ~

6. REFERENCES
[1] H. Agrawal and J.R. Horgan, "Dynamic Program

Slicing," A CM SIGPLAN Conference on Programming
Language Design and Implementation, pages 246-256,
White Plains, NY, June 1990.

[2] G. Ammons and J.R. Larus, "Improving Data Flow
Analysis with Path Profiles," ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 72-84, Montreal, Canada, 1998.

[3] V. Bala, E. Duesterwald, and S. Banerjia, "Dynamo: A
Transparent Runtime Optimization System," ACM
SIGPLAN Conference on PTvgramming Language
Design and Implementation, pages 1-12, Vancouver,
Canada, June 2000.

[4] T. Ball and J. Larus, "Efficient Path Profiling," 29th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 46-57, Paris, France, 1996.

[5] T. Ball, P. Mataga, and M. Sagiv, "Edge Profiling
Versus Path Profiling: the Showdown," 25th ACM
SIGPLAN-SIGA CT Symposium on Principles of
Programming Languages, pages 134-148, San Diego, CA,
1998.

[6] R. Bodik, R. Gupta, and V. Sarkar, "ABCD:
Eliminating Array Bounds Checks on Demand," ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 321-333, Vancouver
B.C., Canada, June 2000.

[7] R. Bodik, R. Gupta, and M.L. Sofia, "Complete
Removal of Redundant Expressions," ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 1-14, Montreal, Canada, June
1998.

[8] R. Bodik, R. Gupta, and M.L. Sofia, "Load Reuse
Analysis: Design and Evaluation," ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 64-76, Atlanta, Georgia, May
1999.

[9] E. Duesterwald, R. Gupta, and M.L. Sofia,
"Demand-Driven Computation of Interprocedural Data
Flow," A CM Transactions on Programming Languages
and Systems, Vol. 19, No. 6, pages 992-1030, November
1997.

[10] D.M. Dhamdhere and K.V. Sankaranarayanan,
"Dynamic Currency Determination in Optimized
Programs," A CM Transactions on Programming
Languages and Systems, Vol.. 20, No. 6, pages
1111-1130, November 1998.

[11] J.A. Fisher, "Trace Scheduling: A Technique for
Global Microcode Compaction," IEEE Transactions on
Computers, C-30:478-490, 1981.

[12] T. Gross and P. Steenkiste, "Structured Dataflow
Analysis for Arrays and its use in an Optimizing
Compiler," Software - Practice and Experience, Vol. 20,
No. 2, pages 133-155, Feb. 1990.

[13] R. Gupta, D.A. Berson, and J.Z. Fang, "Path Profile
Guided Partial Dead Code Elimination using
Predication," International Conference on Parallel
Architecture and Compilation Techniques, San Francisco,
CA, 1997,

[14] R. Gupta, D. Berson, and J.Z. Fang, "Path Profile
Guided Partial Redundancy Elimination Using
Speculation," IEEE International Conference on
Computer Languages, pages 230-239, Chicago, Illinois,
May 1998.

[15] R. Gupta, D. Berson, and J.Z. Fang,
"Resource-Sensitive Profile-Directed Data Flow Anaty~ds
for Code Optimization," 30th Annual IEEE/A CM
International Symposium on Microarchitecture, pages
558-568, Research Triangle Park, North Carolina,
December 1997.

[16] J. Knoop, O. Ruthing, and B. Stefien, "Optimal Code
Motion: Theory and Practice," ACM ~D'ansactions on
Programming Languages and Systems, Vol. 16, No. 4,
pages 1117-1155, 1994.

[17] B. Korel and J. Laski, "Dynamic Program Slicing,"
~aformation Processing Letters, 29:155-163, October
1988.

[18] J. Larus, "Whole Program Paths," ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 259-269, Atlanta, GA, May 1999.

[19] C. G. Nevil-Manning and I.H. Witten, "Linear-time,
Incremental Hierarchy Inference for Compression," Data
Compression Conference, Snowbird, Utah, IEEE
Computer Society, pages 3-11, 1997.

[20] G. Ramalingam, "Data Flow Frequency Analysis,"
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 267-277,
Philadelphia, PA, May 1996.

[21] T. Reps, S. Horwitz, and M. Sagiv, "Precise
Interprocedural Data Flow Analysis via Graph
Reachability," 22nd ACM Symposium on Principles of
Programming Languages, pages 49-61, 1995.

[22] B. Stefien, "Property Oriented Expansion,"
International Static Analysis Symposium, LNCS 11~5,
Springer Verlag, pages 22-41, Germany, September 1996.

[23] M. Smith, "Better Global Scheduling Using Path
Profiles," 31th Annual IEEE/A CM International
Symposium on Microarchitecture, pages 115-126, Dallas,
Texas, Nov.-Dec. 1997.

[24] The Trimaran Compiler Research Infrastructure.
Tutorial Notes, November 1997.

[25] M. Weiser, "Program Slicing," IEEE Transactions on
Software Engineering, SE-10(4):352-357, July 1984.

[26] T.A. Welch, "A Technique for High-Performance Data
Compression," IEEE Computer, pages 8-14, June 1984.

[27] X. Yuan, R. Gupta, and R. Melhem, "Demand-Driven
Data Flow Analysis for Communication Optimization,"
Parallel Processing Letters, Vol. 7, No. 4, pages 359-370,
December 1997.

[28] J. Ziv and A. Lempel, "A Universal Algorithm for
Data Compression," IEEE Transactions on Information
Theory, Vol. 23, No. 3, pages 337-343, May 1977.

[29] J. Ziv and A. Lempel, "Compression of Individual
Sequences via Variable-Rate Coding," IEEE
Transactions on Information Theory, Vol. 24, No. 5,
pages 530-536, September 1978.

190

