
which implies the lemma. LetT 0 be an optimal broad-
cast schedule for forn processors that uses onlyqk. Cer-
tainly height(T ) � height(T 0). However,height(T 0) =
O(poly(lg n)) [3, 9].

Proof sketch of Lemma 3.7: The conditions of the
Lemma attempt to characterize a scheduleT for inputs
S;B; n that ends within timeH. We first explain the mean-
ing of the conditions in the Lemma. In general, these con-
ditions assert that each level (time point) in the schedule is
consistent, based on the consistency of previous levels. This
fact, together with a consistent starting/ending level, and a
total time/budget as required, is enough to assert the exis-
tence of the schedule.

Now, nt represents the number of new nodes at timet,
namely these nodes that correspond to processors that have
received the message at timet. These nodes are available to
immediately start transmitting the message to other nodes.
ot represents the number of available old nodes at timet;
namely, these nodes that have received the message at time
t�i�` for somei (we assume here that such nodes transmit
whenever possible, that is: every` units of time). There
are other nodes that might be in the middle of the setup
process for their next message, but these are not involved
in any action at timet, and will not be accounted for.eit
represents the number of services of typei that are used at
time t. Given this, Conditions 1-4 assert the consistency of
the schedule tree: Condition 1 is the initial situation: there
is a single node which is available at timet = 0. Condition
2 relates the edges to the nodes; it asserts that with every
serviceeit there is a node (at the end of this edge) at time
t + qi. Condition 3 states that the available old nodes at
time t are exactly the old and new nodes of timet � ` (for
which the setup time is just over). Condition 4 relates the
available nodes at timet to services used at timet, namely,
available nodes to send messages at timet are exactly the
old and new nodes at that time.

Conditions 5 and 6 assert the resource bounds of the
schedule: Condition 5 asserts that the schedule is a broad-
cast tree forn nodes; Condition 6 asserts that the total cost
of the schedule is bounded byB.

The formal proof is omitted here for lack of space.

4. Conclusion

Many “shopping problems” can be formalized in the
context of the model presented in this paper. In the context
of communication services, we gave an algorithm which
computes an optimal broadcast schedule.

There are still many related open questions. In partic-
ular the complexity of the broadcast decision problem is
not completely settled. A different direction is to enrich
the model by introducing probabilities of success, dealing
with randomized strategies, varying service loads, and other

real-world parameters. This direction will result in a “multi-
(parameter,cost)” optimization problems.
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Claim 3.4 For input S = f(ci; qi)ji = 1; :::; kg,l, n � 1
and t; 1 � t � qk + (n � 1)l, AlgorithmA2 computes
B(t; n) in O(k2n3l lg qk) steps.

We note here that the dependency inl is not polynomial
in the length of its description - this is indeed unsettled here,
although for practical purposesl should be taken as fairly
small, usuallyO(1) (see also Sec. 3.3).

3.3. Complexity issues

We have shown that for inputS = f(ci; qi)ji = 1; :::; kg
representing the services,l representing the setup time, and
integersB; n, representing a total budget and number of tar-
gets respectively, algorithmA2 takesO(k2n3l lg qk) steps.
This time bound is polynomial in the input length only if
n is given in unary andl = O(max(n; lg qk)). We can’t
expect a polynomial algorithm whose dependency inn is
poly(lg n) as the output size (the broadcast tree) is of size
�(n). However, the following is an associated decision
problem whose complexity is unsettled.

The broadcast decision problem: Given a setS of k ser-
vices, budgetB, a set-up delayl, the number of processors
n and the deadlineH, is there a broadcast scheduleT on
n nodes withheight(T ) � H;B(T ) � B (i.e., can we
broadcast ton processors within timeH and budgetB?)
Corresponding optimization problems would be to compute
the functionsB();H(); N ().

We assume thatl � q1 as we take the setup time to be
included in the delay and may always assume thatqi � H

andci < B, for all i (otherwise theith service cannot be
used and so can be ignored). Hence the length of the input is
poly(k; lgH; lgB; lgn) and algorithmA2 does not provide
a poly-time algorithm. Few remarks are due here.

� Fork = 1 (no optimization is needed) there is a poly-
time algorithm for the broadcast decision problem [8,
9].

� For k > 1 and general input service setS we do
not know any upper bounds for the complexity of the
broadcast decision problem except exponential-time
even fork = 2.

For the restricted problem in whichS is such thatqk =
O(poly(lg n)) the broadcast decision problem is inNP as
stated by the following theorem:

Theorem 3.5 Let S = f(ci; qi)ki = 1; : : : ; kg be a set of
services,l the setup time, andB; n;H, representing a total
budget, number of targets, and deadline respectively. As-
sume thatl � qk = O(poly(lgn)). Then the broadcast
decision problem is inNP .

The intuition behind the proof is the following: We first
show that if the services time is relatively small (qk =
O(poly(lg n)) ) then there is a shallow broadcast tree (this
is shown in Lemma 3.6). Next we show that any shallow
broadcast tree can be witnessed (and verified) by examin-
ing a relatively small amount of information, namely pro-
portional to the tree depth rather than to the tree size (this is
shown in Lemma 3.7). The reason for this is that to witness
a schedule, the tree structure is of no importance - the only
important data is how many services of each type are being
used at each point in time. However, this data is propor-
tional to the tree depth rather than to its size.

We now present the formal proof of the theorem.
Proof: The proof will follow from the Lemmata below.

Lemma 3.6 Let S = f(ci; qi)ki = 1; : : : ; kg; qk =
O(poly(lg n)). Then,H(n;B; S) = O(poly(lg n)).

Lemma 3.7 Let S = f(ci; qi)ki = 1; : : : ; kg, and
l; B; n;H as before. Then a broadcast treeT : kTk =
n;B(T ) � B; height(T ) � H, exists iff there arek se-
quences of non-negative integersfeitg

t=H
t=0 ; i = 1; :::; k

(representing the number of edges (services) of typei at time
t), two sequencesfntgt=Ht=0 andfotgt=Ht=0 (that represent the
number of new processors and available processors at time
t) that satisfy the following conditions:

1. n0 = 0; o0 = 1 - initial conditions.

2. nt = �i=k
i=1e

i
t�qi

- new nodes at timet.

3. ot = ot�l + nt�l - nodes become available again
after l steps of setup time.

4. �i=k
i=1e

i
t � nt+ ot - number of transmissions at time

t.

5. 1 + �ni = n - total number of processors.

6. �t=H�1
t=0 �i=k

i=1cie
i
t � B - total budget.

The theorem follows, as from the assumptions of Lemma
3.6 there is a valid broadcast scheduleT of time H 0 =
O(poly(lg n)). A Non-deterministicprocedure to verify the
existence of such scheduleT is to guessH 0, k sequences
feitg

t=H0

t=0 ; i = 1; :::; k (representing the number of edges
(services) of typei at time t), two sequencesfntgt=H

0

t=0

and fotgt=H
0

t=0 (that represent the number of new proces-
sors and available processors at timet) and to verify that
the conditions of Lemma 3.7 are met (which can be done in
O(poly(lg n; k; lgB)) time).

We now proceed to prove the Lemmata.
Proof (of Lemma 3.6): Given S = f(ci; qi)ki =

1; : : : ; kg, n, and a budgetB. Let T be an optimal broad-
cast schedule; we prove thatheight(T ) = poly(lg n)
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Figure 3. Switching fast and slow edges for Claim 2.2.

3.2. General Broadcast

In this section we present algorithms to compute optimal
schedules for the broadcast on a budget and broadcast with
a deadline. LetjSj = k, i.e. there arek services available.
SinceS remains fixed throughout this section, for the sake
of simplicity we omit it from all the notations.

Clearly, the cost of the cheapest possible broadcast isckn

(by using only thekth –cheapest– service), and this can be
done in timeH(n; qk); the fastest broadcast can be done in
H(n; q1) using only the fastest service.

We now present our first algorithm,A1, that computes
B(t; n) and the corresponding schedule inO(kn2(nl+qk))
steps. This time is polynomial inn; k (this is expected since
the output size is
(n)). However, it is proportional toqk
(andl � qk) which is exponentially larger than its descrip-
tion. We then show how to improve algorithmA1 to be-
come polynomial in the description ofqk too.

The algorithms use dynamic programming based on the
following claim.

Claim 3.2 For everym � 0 and everyt,

B(t;m) =1 for t < H(m; q1)

B(t; 0) = 0 for t � 0 = H(0; q1)

B(t;m) = min1�i�kmin1�r�m�1

ci +B(t � qi; r � 1) + B(t � l;m � r)(1)

Proof: The first two equalities are by convention. For the
third, any broadcast tom processors must start with send-
ing a message using one of thek services, after which the
receiving processor will broadcast to some otherr � 1 pro-
cessors. In the meantime, the origin is free to take care of

the remainingm � r processors, starting at the next time
step.
Algorithm A1.

form = 1; : : : ; n
for t = H(m; q1); : : : ;H(m; qk)

compute B(t;m) using Equation (1)

The corresponding scheduleT can be obtained by
straight-forward adjustments of the above algorithm.

Claim 3.3 AlgorithmA1 computesB(t; n) in O(kn2(nl+
qk) lg qk) steps.

Proof: Each application of Equation (1) takes
O(kn lg qk) steps (lg qk is for the numerical computations
involving qi). In order to computeB(t;m) over all the
range, no more thann�(qk+nl) such application are needed.

To improve the algorithm complexity to be polynomial
in lg qk (rather then inqk) we note thatB(t;m) need not be
computed for anyt in the rangeqk�1+(m� 1)l < t < qk.
The reason for this is that whent < qk thekth service can
not be used at all. Thus, the cheapest possible cost will be
ck�1m, which is obtained fort = qk�1+(m�1)l. Namely,
B(t;m) = ck�1m for eacht in the above range.

A similar argument applies tot in the rangeqi +
(m � 1)l< t <qi+1, for eachi = 1; :::; k� 1:

for each i = 1; :::; k� 1
qi + (m � 1)l < t <qi+1 �! B(t;m) = cim

(2)

We get the following improved algorithm
Algorithm A2

for i = 1; :::; k
for t = qii; :::; qii+ (n� 1)l
form = 1; :::; n compute B(t;m)
using Equations (1) and (2):
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Figure 2. Fast transmission edges should precede the slow ones in any trajectory (see Claim 2.1). Nodes
v; u; x; w all are on the same trajectory, in both T and T 0.

t0y = tx + qf + l = ty � qs + qf + l. Thus, for anyz in
Ty (but not inTw, for which the above takes precedence),
t0z = tz � qs + qf + l.

Finally, the result of movingv0 up l steps is that all its
children have their time improved byl (if v0 is in Ty this
saving is added to the above).

So, w.l.o.g. we can assume that all schedules are mono-
tone and service-layered.

3. Algorithms

3.1. Broadcasting with two services

Let S = f(cf ; qf ); (cs; qs)g, qs � qf + l. When the
number of services is only two it is easy to compute how
much each service should be used for an optimal broadcast
on a budget schedule: Letf be the number of expensive
transmissions and lets be the number of cheap transmis-
sion. Then

f � Cf + s � Cs � B and f + s = n:

Substitutings = n� f into the inequality we get

f � Cf + (n� f) �Cs = f � (Cf � Cs) + n � Cs � B

so we want the largest integralf such that

f �
B � n �Cs

Cf � Cs

and for simplicity, we assume in the sequel that equality
holds in the above equation.

Next, we consider a linear algorithm to obtain a
nearly optimal schedule. Denote byH(m; q) =

H(m; f(c; q)g;mc) the optimal broadcast time tom nodes
using a single service with the delayq. The optimal single
service schedules and their heights are computed in linear
time as in [8, 9].

Consider an optimal single service scheduleT f for
broadcasting a message tof processors using the fast ser-
vice only. Its height isheight(T f ) = H(f; qf ) and it can
be constructed (in linear time) by the algorithm of [8, 9].
Now using the same algorithm construct an optimal sched-
ule T s of heightheight(T s) = H(d s

f+1
e; qs), for broad-

casting tod s
f+1

e processors using only the slow service.
Construct the final scheduleT by appending a copy of

T s to each off + 1 leaf of T f (so that each leaf ofT f

becomes a root of a copy ofT s; some resulting nodes will
be unused).

Thenheight(T ) �H(f; qf ) +H(d s
f+1

e; qs). We show
that an optimal schedule can not be much better:

Claim 3.1 Let n; S;B; f; s be defined as above. Then
H(n; S;B) > H(f; qf ) +H(d s

f+1
e; qs)� qs � qf .

Proof: By Claim 2.2 there exists an optimal schedule
T such that if ~vw is the latest fast and~xy the earliest slow
message, thentv�tx < qs. Also, clearlytw � H(f; qf ), so
tv � H(f; qf )�qf . Combining these we gettx > tv�qs �
H(f; qf )� qf � qs.

W.l.o.g., there ared s
f+1

e processors inTx. So,
height(Tx) � H(d s

f+1
e; qs), and thereforeheight(T ) =

H(n; S;B) > H(f; qf ) � qf � qs +H(d s
f+1

e; qs).
Thus, schedules withinqs+qs from optimal can be com-

puted with only two applications of algorithms of [8, 9].



Broadcast on a budget: givenn; S and budgetB, com-
pute the fastest scheduleT to broadcast ton pro-
cessors and satisfying the budget:height(T ) =
H(n;B; S); B(T ) � B; kTk = n;

Broadcast with a deadline: given n; S and deadlinet,
compute the cheapest scheduleT satisfying the dead-
line : B(T ) = B(t; n; S); height(T ) � t; kTk = n;

Broadcast with a deadline and a budget: given services
S, budgetB and deadlinet, compute a scheduleT
to broadcast to the maximum number of processors
N (t; B; S) while satisfying both the deadline and the
budget :kTk = N (t; B; S); height(T ) � t; B(T ) �
B.

Given an algorithm to solve one of these problems, each
of the other two can be solved by binary search.

Let pv = p and the path inT from the rootr to v con-
tain now 6= v, such thatpw = p. Then this path is called
trajectory �p, and j�pj is the receiving timeof p. When-
ever two schedulesT; T 0 are considered,t; t0 (resp.�; � 0)
denote times (resp. trajectories) in the corresponding sched-
ules. Say, scheduleT 0 is a refinementof T (writeT 0 � T ),
if for every processorp of T its receiving timej� 0pj in T 0 is
no worse than inT : j� 0pj � j�pj.

We denote byTv a sub-tree (sub-schedule) ofT rooted
in v.

W.l.o.g we assume thatl and theqis are integral, other-
wise some normalization factor may be applied.

We note here that for the sake of generality we consider
S andl to be a part of the input and with unlimited size (in
terms ofn). However, the interesting practical applications
will commonly havel = O(1) as it is a fixed parameter of
the corresponding system, and typicallyS will be a fixed
set of services too, in which case theqi’s are allO(1).

2.2. Properties of Schedules

Intuitively, it seems that the faster messages should be
used first to maximize the number of sending nodes as fast
as possible. This intuition is only partly correct. For exam-
ple, ifS = f(c1 = 2; q1 = 1); (c2 = 1; q2 = 2)g andl = 1,
broadcasting to two processors with a budgetB = 3 is pos-
sible in time 2, but only if the root sends a slow message
first and the fast message second.

However, if we consider the messages along any single
trajectory, then the intuition is correct:

Say a trajectory ismonotoneif the transmission cost does
not increase when traversing the trajectory from the root
down. A schedule is monotone if all its trajectories are
monotone.

Claim 2.1 Any schedule has a monotone refinement.

Proof: Let scheduleT be non-monotone. ThenT has
a trajectory with a slower transmission edgees = ~vu pre-
ceding the fasteref = ~xw, tv < tx; qf < qs. Let T 0

be obtained fromT by switching the services ofes and
ef (see Fig. 2). Thentv = t0v; jtwj = jt0wj. Similarly,
the receiving times of the processors inTw; T 0w and outside
the subtreeTu; T 0u are the same. For anyx in Tu � Tw,
t0x = tx � (qs � qf ). Repeating the above, obtain the de-
sired monotone schedule.

In fact, the receiving times can be improved for some
nodes (without delays for the others) by making sure that
even on different trajectories the faster edges are not pre-
ceded too much by the slower ones:

Say, a scheduleT is service-layeredif whenever inT
transmissionef = ~vw uses service(cf ; qf), and transmis-
sion es = ~xy uses(cs; qs) such thatqs � qf � l, then
tv < tx + qs.

Claim 2.2 Every schedule has a service layered refinement.

Proof: Let T be a schedule with a faster edgeef = ~vw,
a setup edge~vv0 and a slower edgees = ~xy, such thatqs �
qf � l and ty = tx + qs < tv. We prove the claim by
showing that there is a scheduleT 0 such that

� for each processorp in Tw its receiving time inT 0 is
j� 0pj = j�pj � (tv � tx � qs);

� for eachp in Ty but not inTv its receiving time inT 0

is j� 0pj = j�pj � (qs � qf � l);

� for eachp in Tv0 but not inTy its receiving time is
j� 0pj = j�pj � l;

� for eachp in both Tv0 and Ty its receiving time is
j� 0pj = j�pj � (qs � qf � l)� l;

� for all other processors the receiving times inT; T 0 are
the same.

Thus, ifqs � qf+ l andtv�tx � qs thenT 0 is a refinement
of T . By repeating the above till there are no suches; ef
obtain the service-layered refinement ofT .

Consider the effect of changingT to T 0 as shown in
Fig. 3: slow transmission edge~xy is replaced with a fast
one ~xy0 followed by a setup~y0y, w now receives a slow
message fromy0 (that is why a setup edge~y0y is added);
sincev no longer sends a message (tow) its setup edge~vv0

is no longer needed, sov0 can be moved up intov; the rest
is unchanged.

Clearly, the nodes/processors outsideTy andTv are not
affected by the change fromT to T 0.

t0w = tx + qf + qs; tx = tw � qf � (tv � tx). So,
t0w = tw � tv + tx + qs. Thus, for everyz in Tw , t0z =
tz � (tv � tx � qs).



communication model [1, 6, 7]. Using multiple communi-
cation services is reminiscent of theMULTI MEDIA com-
munication model [9]. None of the previous communica-
tion models, however, is dealing with the quality-of-service
dimension.

The analysis of Lopsided Trees was given in [8]. The
relation of these trees and broadcast algorithms is discussed
in [9]. Algorithms that were given in these works are used
here as building blocks.

A previous work that does take quality-of-service into
account consider information gathering and searching on
the Internet [10]. Similar to this work, [10] is also dealing
with speed related quality-of-service in the context of data
gathering. [10] consider sources that have prices and proba-
bilities of providing the answer for the search, and presents
two models: thecost model, where the cost of a search is
the sum of the costs of the queried sources, and thereward
modelin which there is a certain delay for each source and
the price is the reward given to the first source which sup-
plies the answer. However, theMULTI SERVICE model is
drastically different from these two models in the use of
parallelism: In the models of [10] there is unbounded par-
allelism - namely the client can activate as many services it
wants. The task is then finished when the first of services
successfully ends. Solution is thus a linear schedule of the
services. In theMULTI SERVICE model, at each point, a
node (client or a commissioned service) may activate only
one service. The parallelism is obtained by the tree-like
structure of the schedule - namely, the fact that commis-
sioned services that already have been activated get to acti-
vate other services for the same original task.

2. Model

2.1. Notations and Definitions

Let there ben processors which must receive the broad-
cast message. Since each processor needs to receive it
exactly once, exactlyn messages must be sent during
the broadcast. Let the set of available services beS =
f(ci; qi)ki = 1; : : : ; kg, where thei-th service costsci for a
point-to-point message transmission with the quality of the
serviceqi denoting (an upper bound on) the transmission
time.

W.l.o.g., we assume thatci > ci+1 andqi+1 > qi, for
1 � i � k � 1, i.e. the services are listed in the order
of decreasing costs and the cheaper services are slower (a
service which is more expensive and slower than another
available one would not be used and can be ignored). Also,
we assume that for any service the delay includes the setup
for the next message, soqi > l for all i. Since the leaves
do not need to setup for the next message, the broadcasts’

times we compute below can be reduced byl steps. We
ignore this saving for the sake of simplicity.

A broadcast scheduleindicates where, in what order, and
using which service shouldeach processor forward the mes-
sageM when it receives it. We represent it as a tree (e.g.,
as in Figure 1): the nodes represent processors at different
times, and each edge represents either message transmission
or setup (cf. [9]).

More formally: A broadcastscheduleT is a directed
tree. Each nodev in the tree corresponds to some processor
pv at a timetv whenpv is receiving and/or sending a mes-
sage. The rootr corresponds to processorp0 (the original
sender of the message) at timetr = 0. Each non-leaf node
v has exactly two out-edges:

� A transmissionedgee = ~vw, corresponds to a mes-
sage sent, using some servicei, by processorpv at time
tv to pw(6= pv), and received attw = tv + qi.

� A setupedgee = ~vu corresponds to some processor
pv = pu during time fromtv to tu = tv + l whenpv is
preparing to send the next message.

In the figures we represent the setup edges with the dot-
ted vertical lines, while the solid lines depict the transmis-
sion edges.

In our model we restrict eachnode to have at most one
in-edge, at most one setup out-edge and at most one trans-
mission out-edge.1

ThecostB(T ) of the broadcast is the sum over all trans-
mission edges ofT of the costs associated with the cor-
responding services.S(T ) is the set of services used by
T . The number of leaves in a scheduleT is the number of
processors participating in the broadcast.kTk denotes the
number of receiving processors, i.e., the number of leaves
in T minus one.

Define H(n;B; S) = minfheight(T ) : kTk =
n;B(T ) � B; S(T ) � Sg be the minimum time required
to broadcast a message ton processors, given the services
S and budgetB. Similarly, letB(t; n; S) = minfB(T ) :
height(T ) � t; kTk = n; S(T ) � Sg be the minimal
cost of a broadcasting ton processors within time bound
t and using servicesS; and N (t; B; S) = maxfkTk :
height(T ) � t; B(T ) � B; S(T ) � Sg denote the maxi-
mal number of processors to which it is possible to broad-
cast a message within timet and budgetB, using services
S.

We consider the following related problems (assume
S(T ) � S everywhere below):

1Relaxing the last requirement one can obtainMULTI PORT(rather than
SINGLE PORT) model. Relaxing the bound on in-edges is meaningless,
and allowing multiple setup edges makes sense only in someMULTI PORT

models with different and parallel setup times.



taken into account when the related service is provoked. We
thus assume that it takes some overhead ofl steps for the
client to call a service. In particular,l may depend on the
size of some information which the client asks the service
to manipulate; In this paper we consider the distribution of
a single message, hence the setup timel will remain fixed
for all the transmissions throughout the paper.

After the service activation time, the client is free to start
another round, while the submitted message may still be on
its way to its target using the service’s resources. We note
that this mode of service-activation is different from the one
in [10] as it limits the amount of parallelism in calling the
services.

1.2. Broadcasting on a budget

The question we consider in this paper is how to dis-
seminate information to many cooperating clients as fast
as possible using a variety of point-to-point communication
services and a limited budget. We call this problembroad-
casting on a budget using multiple communication media,
or simply,broadcasting. A related problem is to broadcast
when some bound, or, a deadline, is put on the time to com-
plete it, and the objective is to minimize the cost. As it
turns out these two problems can be solved by using the
same tools.

Broadcasting in theMULTI SERVICE model involves
some characteristic features as follows. In the broadcast-
ing problem clients correspond to processors. The under-
lying services that we consider are message passing sys-
tems, in which any processor can submit to the network
a point-to-pointmessage destined at any other processor.
The service is responsible for delivering the messages from
their sources to their destinations. Each service corresponds
to some communication medium (or, bandwidth) which in-
volves a latency parameter measuring the time it takes the
communication service provider to deliver a message to its
destination.

The broadcast operation is as follows: There is a given
budgetB, and a messageM stored initially at a cer-
tain processor, say, processor0, and which is to be com-
municated ton other processors. There is a setS =
f(ci; qi)ki = 1; : : : ; kg of k point-to-point communication
services, whereci is the cost of using theith service, andqi
denotes the time within which theith service is guaranteed
to deliver messageM to the indicated (single) destination.
Calling a communication service involves a setup time ofl

steps. While handing another processor the messageM , the
sending processor may ask the receiving one to be in charge
of broadcastingM to a subset of the remaining destinations.
Hence the broadcast schedule has a tree-like structure, as
shown in Figure 1.

The rest of the paper is as follows. In Subsec. 1.3 we list
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(2,4)

(2,4)

(2,4)

(4,2)

(2,4)

=  (delay, cost)

Figure 1. A tree representing a broadcast sched-
ule for n = 5 processors. The algorithm for
scheduling uses two services of costs 2; 4 and
respective delays 4; 2. The arrows between tree
nodes of different id represent sending a mes-
sage, and the vertical arrows represent a setup
time of l steps between successive message
transmissions by the same processor. Initially,
processor 0 transmits the message to processor
2 in step 1 using a service of delay 2 and cost
4, then after a setup time of l steps it uses the
same service to send the message to processor
1. Meanwhile processor 2 uses the service of
delay 4 and cost 2 to transmit the message to
processor 4, etc. The total cost of this algorithm
is 18 and its total time is maxf2l + 2; l + 4; 6g.

some related work. In the Sec. 2 we give formal definitions
(Subsec. 2.1) and general properties of broadcast schemes
in our model (Subsec. 2.2). Section 3 gives algorithms for
computing efficient broadcasting schedules. Subsection 3.1
considers the case of just two services, while Subsection 3.2
solves the general problem for arbitrary number of services.
The complexity issues of these algorithms are addressed in
Subsec. 3.3.

1.3. Related Work

Our communication-oriented service model was inspired
by, and is generalizing, the successfulPOSTAL communi-
cation model that was introduced by Bar-Noy and Kipnis
in [3]. Indeed the two models coincide when the budget
is unlimited, or when there is only a single service avail-
able. Querying each service at a time corresponds to the
SINGLE PORT communication model [4, 3, 2, 5]. Using
multiple services has some similarity with theMULTI PORT
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Abstract

In this paper we introduce theMULTI SERVICE model
of network communication. This model attempts to cap-
ture recent communication technology trends, such as as-
pects of quality-of-service and their relation to the emerging
technology of automatic pricing, e.g. for Internet services.
TheMULTI SERVICE model differs from related models by
taking communication and service activation time into ac-
count, thus restricting parallelism to better fit reality. Thus,
our model extends and refines previous successful models
for network communication.

We consider the application of this model to communi-
cation problems, where the services are certain communica-
tion media, or, connection providers, with respective pricing
policies. We give some insights and an algorithm for opti-
mal dissemination of information in this model when given
a fixed, limited budget.

1. Introduction

1.1. Background

Many information services are available on the Internet
with the touch of a fingertip. Currently many of these are
offered free of charge. In part, this is probably due to the
lack of reliable pricing infrastructure. Once such pricing
technology is matured it will be integrated with the exist-
ing information browsing mechanisms, thus extending the
current information-fetchingdevice into an ultimate generic
servicing-and-billing platform. The variety of choices and
the related complexity involved in taking intelligent deci-
sions call for the development of computational models and
efficient algorithms for these purposes.

In the future, the services that will be provided over the
Internet are likely to include the following two parameters:

Price is what the service provider charges per service use,

Quality-of-service is a certain quality-related guarantee
(speed, reliability, etc.) that the vendor is committed
to provide for the service at the corresponding price.

For example, consider courier vs. regular mail where the
corresponding quality-of-service is the speed of delivery.

There may be some additional associated features that
are characteristic for any specific type of service, and must
be described in the context of the shopper’s objective func-
tion. Optimization becomes more complicated when the
same task is to be performed repeatedly several times, and
there is a given total budget which is not likely to cover the
best available service for all of these uses (“to which of the
addresses should I use the courier?”). Choice may get even
more complicated when the optimization of the global ob-
jective function depend in some non-trivial way on the order
of the chosen services, and their corresponding performance
(as in the case of broadcasting on a budget, considered be-
low).

Commonly, a shopper will be faced with a set ofk ser-
vicesS1; � � � ; Sk. To thei’th serviceSi corresponds a pair
(ci; qi), whereci corresponds to the cost of using the ser-
vice Si, andqi is this service performance, or: its guaran-
teed quality-of-service. This model may be used to deal
with the general shopping question, involving the coordina-
tion of several different tasks towards a common goal, and
finding service providers for each of these tasks.

Given a certain task and an allocated budget, the user will
have to choose a subset of the service providers and a sched-
ule for their activation which will guarantee that the task
will be carried satisfactorily while meeting the budget con-
straint. For example, the work of Etzioni et. al. [10] may be
viewed in this framework, where the quality-of-service cor-
responds to the probability of success and the needed time.
Alternatively, given a set of performance constraints (e.g.,
deadlines) the user needs to select and schedule the services
to minimize the cost. In this work we considercommuni-
cation services, of which the service quality is commonly
measured byspeed. Since the electronic communication
delays of activating these services seem to be very large (as
experienced by anyone browsing the Internet), they must be


