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Abstract
In this paper we use some well known theorems of algebraic geometry in reducing

polynomial Hermite interpolation and approximation in any dimension to the solution of
linear systems. We present a mix of symbolic and numerical algorithms for low degree
curve �ts through points in the plane, surface �ts through points and curves in space,
and in general, hypersuface �ts through points, curves, surfaces, and sub-varieties in n

dimensional space. These interpolatory and (or) approximatory �ts may also be made to
match derivative information along all the sub varieties. Such multi-dimensional hyper-
surface interpolation and approximation provides mathematical models for scattered data
sampled in three or higher dimensions and can be used to compute volumes, gradients,
or more uniform samples for easy and realistic visualization.

1. Introduction

Interpolation and approximation provide e�cient ways to �t analytic functions to sam-
pled data. Various scienti�c applications [12] require data visualization as well as math-
ematical models to be constructed from their data samples in quite high dimensions.
Motivated by computational e�ciency, this paper deals with constructing mathematical
models using polynomials as opposed to arbitrary analytic forms. One distinguishes be-
tween multivariate polynomial functions F : xn = f1(x1; : : : ; xn�1), multivariate rational

functions R : xn = f1(x1;:::;xn�1)
f2(x1;:::;xn�1)

and polynomial algebraic functions or implicitly de�ned

hypersurfaces H : f1(x1; : : : ; xn) = 0, where all fi are multivariate polynomials with coef-
�cients in IR. While prior work on interpolation has dealt with multivariate polynomial
functions F and rational functions R, see for e.g. [1, 7{9, 11], little work has been re-
ported on interpolation with implicitly de�ned hypersurfaces H. This paper extends the
results of [5, 6] of two and three dimensions to arbitrary dimensions. See also [4] which
summarizes prior work on implicit surface interpolation in three dimensions and provides
several additional references.
One primary motivation for considering implicit hypersurfaces is the extra degrees of

freedom that are available, while manipulating polynomials of the same degree. In IRn

if we consider only manipulating polynomials of degree d then functions F and R have

1Supported in part by NSF grants CCR 90-02228, DMS 91-01424 and AFOSR contract 91-0276

1



respectively
�
d+n�1

d

�
and 2

�
d+n�1

d

�
�1 degrees of freedom In comparison, the hypersurface

H has the considerably larger
�
d+n

d

�
� 1 degrees of freedom.

The rest of the paper is as follows. Section 2 establishes the mathematical notation and
facts that are required later in the paper. Section 3 presents several motivating examples
along with computational and implementation details of the multivariate interpolation
and approximation algorithms. In sections 4 and 5, we present details of the multivariate
Hermite interpolation and approximation algorithms, which generalizes the usual curve
�ts through points in the plane and surface �ts through both points and curves in space
to general hypersurface �ts through points, curves, surfaces, and any sub-varieties upto
dimension n�2 in n dimensional space together with the matching of speci�ed derivative
information along the sub-varieties. Section 6 presents the use of weighted least-squares
approximation for hypersurface selection from the families of Hermite interpolants. Fi-
nally, section 6 provides computational and implementation details of the multivariate
interpolation and approximation algorithms and also presents several examples.

2. Preliminaries

In this section we review some basic de�nitions and theorems from algebraic geometry
that we shall be using in subsequent sections. These and additional facts can be found
for example in [13, 14].
The set of real and complex solutions (or zero set Z(S)) of a collection S of polynomial

equations

H1 : f1(x1; :::; xn) = 0

:::

Hm : fm(x1; :::; xn) = 0 (1)

with coe�cients in IR is referred to as an algebraic set. The algebraic set de�ned by a
single equation (m = 1) is also known as a hypersurface. A algebraic set that cannot be
represented as the union of two other distinct algebraic sets, neither containing the other,
is said to be irreducible. An irreducible algebraic set is also known as an algebraic variety
V .
A hypersurface in IRn, an n dimensional space, is of dimension n � 1. The dimension

of an algebraic variety V is k if its points can be put in (1; 1) rational correspondence
with the points of an irreducible hypersurface in k + 1 dimensional space. An algebraic
set Z(S) on the other hand may have irreducible components or sub-varieties of di�erent
dimension. An algebraic set is called unmixed if all of its sub-varieties are of the same
dimension, and mixed otherwise. The dimension of the algebraic set Z(S) is considered
the maximumdimension of any of its sub-varieties. An algebraic variety of dimension 1 is
also called an algebraic space curve and of dimension 2 is also called an algebraic surface.
The following two lemmas summarize the resulting dimension of intersections of varieties
and sub-spaces of di�erent dimensions.
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Lemma 2.1 In IRn, an n dimensional space, a variety V1 of dimension k intersects a
general sub-space IRn�k+h, with k > h, in a variety V2 of dimension h.

Lemma 2.2 In IRn, a variety V1 of dimension k intersects a a variety V2 of dimension
h, with h � n� k, in an algebraic set Z(S) of dimension at least h+ k � n.

In the above lemma, the resulting intersection is termed proper if all subvarieties of Z(S)
are of the same minimumdimension h+k�n. Otherwise the intersection is termed excess
or improper.
The degree of an algebraic hypersurface is the maximum number of intersections be-

tween the hypersurface and a line, counting both real and complex intersections and at
in�nity. This degree is also the same as the degree of the de�ning polynomial. A degree
1 hypersurface is also called a hyperplane. The degree of an algebraic space curve is the
maximum number of intersections between the curve and a hyperplane, counting both
real and complex intersections and at in�nity The degree of a variety V of dimension h in
IRn is the maximum number of intersections between V and a sub-space IRn�h, counting
both real and complex intersections and at in�nity. The degree of an unmixed algebraic
set is the sum of the degrees of all its sub-varieties.
The following theorem, perhaps the oldest in algebraic geometry, summarize the result-

ing degree of intersections of varieties of di�erent degrees.

Theorem 2.1 (Bezout) A variety of degree d which properly intersects a variety of
degree e does so either in an algebraic set of degree at most d � e or in�nitely often.

The normal or gradient of a hypersurface H : f(x1; :::; xn) = 0 is the vector rf =
(fx1; fx2; : : : fxn). A point p = (a0; a1; : : : an) on a hypersurface is a regular point if the
gradient at p is not null; otherwise the point is singular. A singular point q is of multi-
plicity e for a hypersurface H of degree d if any line through q meets H in at most d� e

additional points. Similarly a singular point q is of multiplicity e for a variety V in IRn

of dimension k and degree d if any sub-space IRn�k through q meets V in at most d � e

additional points. It is important to note that even if two varieties intersect in a proper
manner, their intersection in general may consist of sub-varieties of various multiplicites.
The total degree of the intersection, however is bounded by the above Bezout's theorem.

3. Computational Details

In this section, we discuss some computational aspects of Hermite interpolation and
approximation, and give several examples of design, modelling and computer graphics
visualization. The basic method followed is:

1. properties of a desired hypersurface interpolant are described in terms of a combina-
tion of points, curves, surfaces, etc., with possibly associated \normal" directions,

2. these properties are translated into a homogeneous linear system of equationsMIx =
0
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3. nontrivial solutions of the above system are computed and a desirable solution
hypersurface is selected by weighted least-squares approximation from additional
points or simple hypersurfaces, minimize = kMAx� b k2.

We therefore solve the following, simultaneous interpolation and weighted least-squares
approximation problem below.

minimize kMAx� b k2

subject to MIx = 0,

where MI 2 IRni�q is the Hermite interpolation matrix, and MA 2 IRna�q and b 2 IRna

are matrix and vector, respectively, for contour level approximation, and x 2 IRq is
a vector containing coe�cients of a degree d algebraic hypersurface f(x1; : : : ; xn) = 0.

Hence, q =
�
d+n

n

�
).

3.1. Computing Nontrivial Interpolation Solutions
We �rst solve the linear system MIx = 0, in a computationally stable manner, by

computing the singular value decomposition (SVD) of MI [10]. Hence, MI is decom-
posed as MI = U�V T where U 2 IRni�p and V 2 IRq�q are orthonormal matrices,
and � = diag(�1; �2; � � � ; �r) 2 IRni�q is a diagonal matrix with diagonal elements
�1 � �2 � � � � � �r � 0 (r = minfni; qg). It can be proved that the rank s of MI

is the number of the positive diagonal elements of �, and that the last q � s columns of
V span the null space of MI. Hence, the nontrivial solutions of the homogeneous linear
system are expressed as :

fx (6= 0) 2 IRq jx =
Pq�s

i=1 wi�vs+i; where wi 2 IR; and vj is the jth column of V g.
Furthermore, x = Vq�sw compactly expresses all the degree d hypersurfaces which satisfy
the Hermite interpolation constraints.

3.2. Computing Least Squares Approximation
To solve the simultaneous interpolation and weighted least-squares approximation prob-

lem, we reduce k MAx � b k = k MAVq�sw � b k, by subsituting the basis of solution
hypersurfaces x = Vq�sw, which satisfy the interpolation constraints. Then, an orthogo-
nal matrix Q 2 IRna�na is computed such that

QTMAVq�s = R =

 
R1

0

!

where R1 2 IR(q�s)�(q�s) is upper triangular. (This factorization is called a Q-R factor-
ization [10]). Now, let

QTb =

 
c

d

!

where c is the �rst q� s elements. Then, kMAVq�sw�b k2 = k QTMAVq�sw�QTb k2

= k R1w � c k2 + k d k2. The solution w can be computed by solving R1w = c, from
which the �nal �tting surface is obtained as x = Vq�sw.
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Figure 1. A C1 Join of Cylinders with a Quartic Surface

Figure 2. (left) A Good C1 Join Quartic Surface (right) A Degenerate C1 Join Quartic
Surface

3.3. Examples
These examples were generated using the special case of Hermite interpolation in three

and four dimensional space.

Example 3.1 A Quartic Surface for Joining Four Orthogonal Cylinders

Here Hermite interpolation yields a quartic surface which smoothly joins the orthogonal
cylinders. The input is de�ned by CY L1 : x2+y2�1 = 0 for z � 1, CY L2 : x2+y2�1 = 0
for z � �1, CY L3 : y2 + z2 � 1 = 0 for x � 1, and CY L4 : y2 + z2 � 1 = 0 for x � �1.
Algorithms 1 and 2 produce 64 linear equations from the input, and so MI 2 IR64�35.

The � in the SVD2 of MI tells us that the rank of MI is 33, and the null space of
MI is x = r1 � v34 + r2 � v35. Hence, the Hermite interpolating surface is f(x; y; z) =
r1�(�0:239737466�x2�0:632096672�y2�0:239737466�z2+0:239737466�0:038155435�
x4+ 0:316048336 � x2 � y2+ 0:316048336 � x2 � z2 + 0:354203771 � y4 + 0:316048336 � y2 �

2The subroutine dsvdc of Linpack was used to compute the SVD of a matrix.
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Figure 3. A Quartic HyperSurface Interpolant of Two Spheres

z2 � 0:038155435 � z4) + r2 � (�0:470209927 � x2 + 0:170367911 � y2 � 0:470209927 �
z2 + 0:470209927 + 0:277696942 � x4 � 0:085183956 � x2 � y2 � 0:085183956 � x2 � z2 �
0:362880897 � y4� 0:085183956 � y2 � z2+0:277696942 � z4) = 0 which has one remaining
independent degree of freedom. Suitable solutions are obtained by computing values
for the parameters, r1 and r2, which yield a Hermite interpolating surface which is also
least-squares approximate from some given, simple algebraic surface.
The selected interpolating surface is shown in the left part of Figure 2 and its use

is shown in Figure 1. The least-squares approximating surface used was an ellipsoid
x2 + 0:2 � y2 + z2 � 1 = 0, which yielded values r1 = �0:458394 and r2 = �0:746194. It
should be noted that not every instance of the Hermite interpolant is always appropriate
for the geometric design application on hand. The degenerate surface shown in the right
part of Figure 2, is not useful (for several reasons) for the joining task shown in Figure 1,
however is in the same Hermite interpolating family with r1 = �0:899483 and r2 =
�0:436957 and was produced for the least-squares approximating surface x� z = 0.

Example 3.2 A Quartic Hypersurface Interpolant of Two Spheres

The input data consists of the unit two dimensional sphere given by [(x� 4)2 + y2 +
z2 � 1 = 0, w = 0] centered at (4; 0; 0; 0) and the unit two dimensional sphere given by
[x2+(y� 2)2+ z2� 4, w = 2] centered at (0; 2; 0; 2). The rank of the 15x32 interpolation
matrix is 13 and the two parameter, hypersurface interpolant family in four dimensional
space is given by f(x; y; z; w) = r1 � (0:834299517 +�0:444959743 � (x1) + 0:055619968 �
(x2) + 0:055619968 � (y2) + 0:055619968 � (z2) + 0:222479871 � (x1 �w1) +�0:111239936 �
(y1 � w1) + �0:166859903 � (w2) + �0:083429952 � (w1)) + r2 � (0:447213595 � (w2) +
�0:894427191 � (w1)) Figure 3, shows isosurfaces of the interpolating family with r1 = 1
and r2 = �1 and for values of w = 0; 0:5; 1; 1:5; 2.
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Figure 4. A Quartic HyperSurface Interpolant of Two Orthogonal Cylindrical Surfaces

Example 3.3 A Quartic Hypersurface Interpolant of Two Orthogonal Cylindrical Sur-
faces

The input data consists of the two dimensional cylinders given by [x2 + z2 � 1 = 0,
w = 0] and [y2+z2�1 = 0, w = 2]. The rank of the 21X58 interpolation matrix is 18 and
the three parameter, hypersurface interpolant family in four dimensional space is given
by f(x; y; z; w) = r1 � (0:534522210 � (1) + �0:534522210 � (x2) + �0:534522210 � (z2) +
0:000904961� (x1 �w1)+0:267261105� (x2 �w1)+�0:267261105� (y2 �w1)+0:000018271�
(y1 � w1) +�0:000452481 � (x1 � w2) + �0:000009135 � (y1 � w2)) + r2 � (�0:000537584 �
(1) + 0:000537584 � (x2) + 0:000537584 � (z2) + 0:886712345 � (x1 �w1) +�0:000268792 �
(x2 �w1) + 0:000268792 � (y2 �w1) + 0:117219484 � (y1 �w1) +�0:443356173 � (x1 �w2) +
�0:058609742 � (y1 �w2)) + r3 � (�0:000060052 � (1) + 0:000060052 � (x2) + 0:000060052 �
(z2) + 0:117219442 � (x1 � w1) + �0:000030026 � (x2 � w1) + 0:000030026 � (y2 � w1) +
�0:886712802 � (y1 � w1) +�0:058609721 � (x1 � w2) + 0:443356401 � (y1 � w2))
Figure 3, shows isosurfaces of the interpolating family with r1 = 2, r2 = �1 and r3 = 1

and for values of w = 0; 0:5; 1; 1:5; 2.

Example 3.4 Locally supported triangular C1 interpolants for smoothing polyhedra

The input is an arbitrary genus polyhedron. First a single normal is chosen at each
vertex endpoint, a necessary condition for obtaining a globally C1 smooth polyhedra.
Next a wireframe of cubics are constructed where each cubic replaces an edge and C1

interpolates the corresponding vertices of the edge. Furthermore, normals are constructed
for each curvilinear cubic edge of the wireframe and varying cubically along the edge. See
the left part of Figure 5.
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Figure 5. (left) An input polyhedron with a C1 cubic curve wireframe (right) A smooth
object with locally supported triangular C1 interpolants

The Hermite interpolation algorithm then constructs triangular C1 interpolants - a 5
parameter family of degree 7 surfaces, one family per triangular facet of the wireframe.
Instances of degree 7 surface patches generated for this example are displayed in the right
part of Figure 5.

4. Generalized Lagrange Interpolation

Our �rst problem deals with constructing C0 interpolatory hypersurfaces.

Problem 4.1 Construct a single real algebraic hypersurface H in IRn which C0 interpo-
lates a collection of l1 points pi, and lk sub-varieties Vjk of dimension k, k = 1 : : : n � 2
and degree e[k]jk.

Since a point is a variety of dimension 0 and hypersurfaces in IRn are of dimension n�1,
we note from Lemma 2.2 that a hypersurface in general will not contain a given point.
However, the hypersurface H : f(x1; :::; xn) = 0 of degree d, can be made to contain, i.e.
C0-interpolate, the point pi if the coe�cients of f satisfy the linear equation f(pi) = 0.
From Lemma 2.2 we note that a hypersurface in IRn will always intersect all sub-

varieties of dimension h, for h = 1 : : : n � 2. To increase the dimension of the intersection
or more precisely, to ensure that the hypersurface H : f(x1; :::; xn) = 0 of degree d

completely contains (i.e. C0-interpolates) a sub-variety V of dimension h and degree e[h]
we use the following algorithm:
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Algorithm 1 1. Select any set LV of nV =
�
d�e[h]+h

h

�
points on V , LV = fpi =

(xi[i]; : : : xn[i])ji = 1; : : : ; nV g. The set LV may be computed by a straightforward
generalization of computing random points on algebraic curves and surfaces. See [3]
for discussion of such techniques.

2. Next, set up nV homogeneous linear equations f(pj) = 0, for pj�LV . Any nontriv-
ial solution of this linear system will represent an H which interpolates the entire
subvariety V .

Correctness Proof: The proof of correctness of the above algorithm follows from Bezout's
theorem 2.1. By Bezout's theorem H intersects V in a sub-variety of degree at most
d � e[h] and dimension (n � 1) + h � n = h � 1. By making H contain nV =

�
d�e[h]+h

h

�
points of V , implies that H \ V could also de�ne a subvariety of dimension h � 1 and
degree greater than d � e[h]. This ensures that H must intersect V in�nitely often and
since V is irreducible, H must contain V . �
The irreducibility of the sub-variety is not a restriction, since an algebraic set can

be handled by treating each irreducible component separately. The situation is more
complicated in the real setting, if we wish to achieve separate containment of one of
possibly several connected real components of a single sub-variety. There is �rst of course
the nontrivial problem of specifying a single isolated real component of the sub-variety.
One solution to the problem of interpolating only with a single real component, is given in
[5] and uses weighted least squares approximation from additional data. See also [2] where
a solution to isolating real components of varieties is derived in terms of a decomposition
of space into sign-invariant cylindrical cells.
For the collection of l1 points p, and lk sub-varieties Vjk of dimension k, k = 1 : : : n� 2

and degree e[k]jk the above C
0 interpolation with a degree d hypersurface H, yields a sys-

temMI of
Pn�1

k=1 lk+
Pn�1

k=2

Plk
jk=1

�
d�e[k]jk+k

k

�
linear equations. RememberH : f(x1; :::; xn) =

0 of degree d has K =
�
n+d

n

�
� 1 independent coe�cient unknowns. C0-interpolation of

the entire collection of sub-varieties is achieved by selecting an algebraic hypersurface of
the smallest degree n such that K � r, where r (� k) is the rank of the system MI of
linear equations.

5. Generalized Hermite Interpolation

An algebraic hypersurface H : f(x1; :::; xn) = 0 is said to Hermite interpolate or C1-
interpolate a sub-variety V with associated derivative or \normal" information n(p) =
(nx1(p); : : : nxn(p)), de�ned for points p = (x1; : : : xn) on V if :

1. (containment condition) f(p) = 0 for all points p = (x1; : : : xn) of V .

2. (tangency condition) rf(p) is not identically zero and rf(p) = �n(p), for some
� 6= 0 and for all points p = (x1; : : : xn) of V .
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Our second problem then deals with constructing C1 interpolatory hypersurfaces.

Problem 5.1 Construct a single real algebraic hypersurface H in IRn which C1 inter-
polates a collection of l1 points pi with associated \normal" unit vectors ni(pi), and lk
sub-varieties Vjk of dimension k with k = 1 : : : n� 2 and degree e[k]jk together with associ-
ated \normal" unit vectors n[k]jk for all points on each sub-variety of the given collection.

In the previous section we have already shown that the containment condition reduces
to solving a system of linear equations. We now prove that meeting the tangency condition
for C1-interpolation reduces to solving an additional set of linear equations.
A hypersurface H : f(x1; :::; xn) = 0 of degree d, satis�es the tangency condition at the

point pi if the coe�cients of f satisfy, without loss of generality, the n� 1 homogeneous
linear equations

nx1 � fxj(pi)� nxj � fx1(pi) = 0 j = 2 : : : n (2)

For the above equations we assumed, without loss of generality, that nx1 6= 0 as the
given normal n is not identically zero at any point. To verify that the above equations
correctly satisfy the tangency condition, it su�ces to choose � =

fx1
nx1

for then each of the

fxj = �nxj . Also note that for the choice of nx1 6= 0, it must occur that fx1(pi) 6= 0, and
hence � 6= 0, for otherwise the entire rf(p) is identically zero.
To ensure that a hypersurface H : f(x1; :::; xn) = 0 of degree d meets the tangency

condition for C1-interpolation of a sub-variety V of dimension h and degree e[h] we use
the following algorithm:

Algorithm 2 1. Select a set of LNV of nNV =
�
(d�1)�e[h]+h

h

�
point-normal pairs [pj;n[h]j]

on V where pi�LV , with point set LV on V computed to meet the containment con-
dition.

2. Substitute each point-normal pair in LNV into the n � h � 1 equations

nx1 � fxi(p)� nxi � fx1(p) = 0 i = 2 : : : (n� h) (3)

to yield additionally (n � h � 1) � nNV linear equations in the coe�cients of the
f(x; y; z).

Correctness Proof: The proof of correctness of the above algorithm follows from the
following. We �rst note that even though each of the equations 3 above is evaluated at
only nNV =

�
(d�1)�e[h]+h

h

�
points of V it holds for all points on V . Each equation (3)

de�nes an algebraic hypersurface T of degree (d�1) which intersects V of degree e[h] in a
sub-variety of degree at most (d�1)e[h] and dimension h�1. Invoking Bezout's theorem,
and from the irreducibility of V , it follows that V must lie entirely on the hypersurface
T . Hence each equation (3) is satis�ed along the entire sub-variety V .
We now show that the n�h�1 equations 3 satis�es the tangency condition as speci�ed

earlier. Again we assume, without loss of generality, that nx1 6= 0 as the given normal
n is not identically zero at along Vh. Note that the containment i.e. C0 interpolation of
the dimension h variety Vh by the hypersurface H already guarantees that the h tangent
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directions on Vh at each point p of Vh are identical to h tangent directions of H at p
on H. Hence h components of the given normal vector n(p) (orthogonal to the tangent
directions of Vh) are already matched with h components of the gradient vector rf(p)
(orthogonal to the tangent directions of H). Assume, without loss of generality, that
these vector components are fxi = �nxi, i = (n � h + 1) : : : n, for any non-zero �. The
remaining n � h components of rf(p) of H are then matched up with the n � h � 1

equations 3 as follows. Let � =
fx1
nx1

. Then from the n � h � 1 equations 3 we note that

each of the n � h � 1 fxi = �nxi , i = 2 : : : (n � h) as required. Hence the entire vector
rf(p) = �n(p). Also note that for the choice of nx1 6= 0, it must occur that fx1(pi) 6= 0,
and hence � 6= 0, for otherwise the entire rf(p) is identically zero. �
For the collection of l1 points p, and lk sub-varieties Vjk of dimension k, k = 1 : : : n� 2

and degree e[k]jk to achieve the tangency condition with a degree d hypersurface H, re-

quires satisfying an additionally system of (n�1)�l1+
Pn�1

k=2

Plk
jk=1(n�k�1)�

�
(d�1)�e[k]jk+k

k

�
linear equations. For C1 interpolation we obtain a single homogeneous systemMI of lin-
ear equations consisting of the linear equations for C0 interpolation of section 4 together
with the above linear equations. Any non-trivial solution of this linear system MI, for
which additionally rf is not identically zero for all points of the collection, (that is, the
hypersurface H is not singular at all points or along any of the subvarieties Vk), will
represent a hypersurface which Hermite interpolates the collection.

6. Least Squares Approximation

The result of a Hermite interpolation of a collection of sub-varieties with associated
normals, is a family of algebraic hypersurfaces f(x1; : : : ; xn) = 0 with extra degrees of
freedom. This family is expressed as the nontrivial coe�cients vectors in the nullspace
of MI. To select a suitable hypersurface from the family, values must be speci�ed for
these extra degrees of freedom. We show that least squares approximation to additional
points or sub-varieties around the original data can be used for selecting a suitable non-
singular hypersurface from the family. Let S0 = fvi 2 IRnji = 1; � � � ; lg be a set of points
which approximately describes a desirable hypersurface. (These points can be selected for
example from a degree two hypersphere, or a hyperparaboloid etc., centered around the
orginal data). A linear systemMAx = 0, where each row of MA is constructed from the
linear conditions f(vi) = 0 with x containing the undetermined coe�cients of the family.
Conventional least squares approximation is to minimize kMAx k

2 over the nullspace of
MI. Though minimizing kMAx k

2 does yield a good distance approximation it does not
prevent the resulting hypersurface from self-intersecting, pinching or splitting.
To rid our solution hypersurfaces of such singularities and provide more geometric

control, we instead approximate a monotonic multivariate function w = f(x1; : : : ; xn)
rather than just the implicit hypersurface f(x1; : : : ; xn) = 0, the zero contour of the
function. From simple degree two hypersurfaces we �rst generate S0 = f(vi; ni)ji =
1; � � � ; lg where vi are approximating points, and ni are approximating gradient vectors
at vi in IR

n. Then, from this set, we construct two more sets S1 = fuijui = vi + �ni; i =
1; � � � ; lg, and S�1 = fwijwi = vi � �ni; i = 1; � � � ; lg for some small � > 0. Next we
set up the least squares system MA = b from the following three kinds of equations :
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f(vi) = 0, f(ui) = 1, and f(wi) = �1. These equations give an approximating contour
level structure of the function w = f(x1; : : : ; xn) near the orginal data. We found out
that forcing well behaved contour levels rids the selected hypersurfaces of self-intersection
in the spatial region enclosed by the points.

7. Conclusion

There are numerous open problems in the theory and application of multivariate inter-
polation. The primary problem amongst these stems from the non-uniqueness of inter-
polants in two and higher dimensions. There is an acute need for techniques of selecting
a suitable candidate solution for the given input data, from the K � r parameter family
of C1 interpolating hypersurfaces of degree d in n dimensional space. Here K =

�
n+d

n

�
�1

and r is the rank of the systemM of linear equations. We are still experimenting with the
use of weighted least squares approximation on additional constructed data coupled with
the interpolation of the given input data set as presented in sections 6, 3. One di�culty
of the selection problem is exhibited in the right part of Figure 2 of example 3.1 of the
previous section, where a certain choice of the approximating surface yields a degenerate
joining solution in real space. This joining solution leaves a hole in the join and further-
more obstructs the holes of the original cylinders. Other di�culties arise from ensuring
that the selected solution is also smooth (non-singular) in the domain of the input data.
We are actively pursuing schemes which will give more user control in selecting desirable
solutions of multivariate Hermite interpolation systems.

Acknowledgement I thank Susan Evans and Insung Ihm for the e�cient implementation
of the interpolation and display algorithms.
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