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Abstract. The classical Lovász conjecture says that every connected Cayley graph
is Hamiltonian. We present a short survey of various results in that direction and
make some additional observations. In particular, we prove that every finite group G
has a generating set of size at most log2 |G|, such that the corresponding Cayley graph
contains a Hamiltonian cycle. We also present an explicit construction of 3-regular
Hamiltonian expanders.

Introduction

Finding Hamiltonian cycles in graphs is a difficult problem, of interest in combi-
natorics, computer science, and applications. It is one of the classical NP-complete
problems, and thus not expected to have a simple solution [GJ]. In 1969 Lovász con-
jectured that every vertex-transitive graph has a Hamiltonian path [Lo1]. Despite
a significant effort [CG,WG], there has been very little progress towards resolving
this conjecture in full generality. Further, some authors strongly disbelieve the con-
jecture and see little hope in proving it (see section 4 for references and details). In
this paper we survey several little known results that until now were scattered in
literature. We prove these results in modern language, as well several new results.
In particular, we present a rare positive result for all finite groups:

Theorem 1. Every finite group G of size |G| ≥ 3 has a generating set S of
size |S| ≤ log2 |G|, such that the corresponding Cayley graph Γ(G, S) contains a
Hamiltonian cycle.

The result is optimal in a sense that the size of the smallest generating set of
group G, denoted d(G), is equal to log2 |G| for G = Zm

2 . Of course, for other groups
d(G) is much smaller. For example, d(G) = 2 for all finite simple groups [Go]. We
obtain optimal results in this case as well (see section 1).

Key words and phrases. Hamiltonian cycles and paths, simple groups, expander graphs, ex-
plicit constructions.
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Note that we cannot prove that all, or even most, Cayley graphs of a finite
group (with a fixed number of, say, d(G) generators) are Hamiltonian.1 Even for
simple groups, or for symmetric groups Sn (generated by two elements), Lovász
conjecture remains infeasible. Instead, Theorem 1 shows that every finite group G
has a Hamiltonian Cayley graph with a generating set of small size. The proof relies
on an explicit combinatorial construction and a consequence from the Classification
of Finite Simple Groups (CFSG).

Our second result is an explicit construction of 3-regular Hamiltonian expanders.
Expanders are highly connected graphs of bounded degree. They have a number of
useful graph theoretic properties, and have applications in a number of problems
in computer science, ranging from parallel computation to complexity theory, from
cryptography to coding theory, and, most recently, computational group theory
(see e.g. [AKS,G+,LP,SS,V,WZ].) It is well known that random d-regular graphs
are expanders with high probability, for d ≥ 3 [JLR]. However, finding explicit
constructions of expanders is an important problem of interest in Combinatorics
and Computer Science. The first such constructions were found in [M1,M2,LPS]
(see also [Lu1,RVW].)

In this paper we present a construction of Hamiltonian 3-regular Cayley graphs,
and prove that these are expanders. We should emphasize that the existence of
such expanders has been known for years since random d-regular graphs are Hamil-
tonian for all d ≥ 3 (see e.g. [RW]). Our construction is related to involutions of
Nuzhin [N4] and the expansion is proved by reduction to expanders of Lubotzky-
Phillips-Sarnak [LPS].

This paper is written in a mixture of research and survey styles. We start with
definitions and main results in section 1. Then, in section 2, we present proofs of
three interrelated combinatorial lemmas, two of which are known in the literature.
This is the heart of the paper. We prove theorems by technical arguments in
section 3. At this point point we switch to a survey style and in an extensive
section 4 we elaborate on the history behind this problem, connections to problems
in graph theory, probabilistic and geometric group theory, etc. We also include a
number of references and promising research venues.

Let us mention here the previous survey articles [CG,WG] which have virtually
no overlap with results in this paper. We really hope the reader enjoys this subject
as much as we do, and are looking forward to future progress in this direction.

1. Main Results

Let G be a finite group and let S be a generating set. A Cayley graph Γ = Γ(G, S)
is defined to be a graph with vertices g ∈ G, and edges (g, gs), (g, gs−1) ∈ G2,
where s ∈ S. We shall ignore labels and orientation of edges and treat Γ as a
simple graph on |G| vertices. Clearly, Γ is d-regular, where d = |S|. From this
point on, we consider only Cayley graphs.

A Hamiltonian path is a path in Γ which goes though all vertices exactly once.
A Hamiltonian cycle is a closed Hamiltonian path. Lovász conjecture claims that
every connected Cayley graph contains a Hamiltonian path.

1We refer to a graph as Hamiltonian, if it contains Hamiltonian cycle or Hamiltonian path,
depending on a context. We hope this will not lead to a confusion, as there is little difference
between these two notions.
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Let G be a finite group, and let `(G) be the number of composition factors of
G. Denote by r(G) and m(G) the number of abelian and nonabelian composition
factors, respectively. Clearly, `(G) = r(G) + m(G).

Theorem 2. Let G be a finite group, and let r(G) and m(G) be as above. Then
there exists a generating set S, 〈S〉 = G, with |S| ≤ r(G) + 2m(G), such that the
corresponding Cayley graph Γ(G, S) contains a Hamiltonian path.

Since the smallest nonabelian simple group has order |A5| = 60, one can show
that Theorem 2 implies Theorem 1 (see section 3).

For every subset of vertices X ⊂ G define ∂X to be the set of vertices v ∈ G−X,
which are connected to X by an edge. We say that a graph is ε-expander if for
every |X| ≤ |G|/2, we have |∂X| > ε|X|, for some fixed ε > 0.

Let p be a prime, p ≡ 1 mod 4. Let Fp be a finite field with p elements, and
a ∈ Fp such that a2 = −1. Consider a group SL(2, p) of two by two matrices
over Fp with determinant one. Let G = PSL(2, p) be a quotient of SL(2, p) by
the subgroup of diagonal matrices {±1}. By abuse of notation, we use matrices to
denote elements of PSL(2, p).

Consider three elements α, β, γ ∈ PSL(2, p), given by the matrices

α =
(

a 0
0 −a

)
, β =

(
0 1
−1 0

)
, γ =

(
a 0
a −a

)
.

These particular generators were introduced by Nuzhin in [N4]. One can easily
check that α2 = β2 = γ2 = 1 (see section 3). Now consider Cayley graphs

Γp = Γ
(
PSL(2, p), {α, β, γ}).

Theorem 3. Cayley graphs Γp defined as above contain Hamiltonian cycles
and are ε-expanders, for some ε > 0, independent of prime p ≡ 1 mod 4.

Note that one cannot hope to obtain a sharper result since connected 2-regular
graphs are simple cycles. Proof of Theorems 2 and 3 are based on combinatorial
lemmas of independent interest. We present these lemmas in the following section.

2. Combinatorial Conditions for Hamiltonicity

Let G be a finite group with a generating set S, and |S| ≤ 3. In this section
we consider simple relations on generators which suffice to prove that the Cayley
graph Γ(G,S) contains a Hamiltonian cycle.

An element α ∈ G is called an involution, if α2 = 1.

Lemma 1. (Rapaport-Strasser) Let G be a finite group, generated by three
involutions α, β, γ. Suppose αβ = βα. Then the Cayley graph Γ = Γ(G, {α, β, γ})
contains a Hamiltonian cycle.

Proof. For every z ∈ G and every X ⊂ G, denote

∂z(X) = {g ∈ G−X : g = x z, x ∈ X}.
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Denote by H = 〈β, γ〉 a subgroup of G of order |H| = 2m. Let X1 = H. Since
H is a dihedral group, X1 contains a Hamiltonian cycle:

(∗) 1 → β → βγ → βγβ → · · · → (βγ)m−1β → (βγ)m = 1.

We shall construct a Hamiltonian cycle in Γ by induction. At step i we obtain a
cycle which spans set Xi ⊂ G. Further, each Xi will satisfy the condition ∂β(Xi) =
∂γ(Xi) = ∅. This is equivalent to saying that each Xi is a union of left cosets of H.
By definition, ∂β(X1) = ∂γ(X1) = ∅. This establishes the base of induction.

Now suppose Xi is as above. Either ∂α(Xi) = ∅, in which case the spanning
cycle in Xi is a Hamiltonian cycle. Otherwise, there exists y ∈ ∂α(Xi) ⊂ G −Xi.
Observe that y H ∩Xi = ∅, since otherwise y · h = x ∈ Xi, for some h ∈ H. This
implies that y = x · h−1 ∈ Xi, since h ∈ 〈β, γ〉 and zβ, zγ ∈ X for all z ∈ X.

Let Xi+1 = Xi ∪ y H. Clearly, ∂β(Xi+1) = ∂γ(Xi+1) = ∅. By inductive assump-
tion, x = yα ∈ Xi lies on a cycle which spans Xi. Then x must be connected to xβ
and xγ, as xα = y /∈ Xi. Consider a cycle in y ·H, obtained by multiplying cycle
in (∗) by y. Recall that αβ = βα. This implies xβα = yβ. Remove edges (x, xβ)
and (y, yβ) from cycles in Xi and y H, and add (x, y), (xβ, yβ). This gives a cycle
which spans Xi+1, and completes the step of induction. ¤

Example 1. Consider G = S2n+1 and three involutions α = (1 2), β =
(1 2)(3 4) · · · (2n− 1 2n), γ = (2 3)(4 5) · · · (2n 2n + 1) (we use cycle notation here.)
Observe that

βγ = (1 3 5 . . . 2n− 1 2n + 1 2n 2n− 2 . . . 4 2),

so 〈α, β, γ〉 = S2n+1. Note also that αβ = βα. Then Lemma 1 implies that the
Cayley graph Γ(Sn, {α, β, γ}) contains a Hamiltonian cycle. This result goes back
to [RS] (cf. section 4).

The following result is not formally needed to prove Theorem 2, but is of inde-
pendent interest. It also gives new interesting examples and helps to smooth the
transition from the proof of Lemma 1 to the proof of Lemma 3.

Lemma 2. Let G be a finite group, generated by an involution β and an element
α. Let γ = βα := α−1βα. Then the Cayley graph Γ = Γ(G, {α, β, γ}) contains a
Hamiltonian cycle.

Proof. We use the same induction assumption as in the proof of Lemma 1, but
the induction step requires more cases to consider. As before, let H = 〈β, γ〉 ⊂ G.
Let X1 = H. We assume that Γ restricted to Xi contains a Hamiltonian cycle Ci,
and that ∂β(Xi) = ∂γ(Xi) = ∅. Further, we assume that in the sequence of labels
of the oriented Hamiltonian cycle Ci no label α−1 precedes label β or succeeds
label γ.2 Similarly, assume that in Ci no label α precedes label γ or succeeds
label β (other possibilities are allowed). We shall call these label conditions on the
cycle.

For the step of induction, recall that α is no longer an involution. Either
∂α(Xi) = ∂α−1(Xi) = ∅, in which case Xi = G and we are done, or at least
one of these subsets is nonempty. Suppose there exists y = xα ∈ ∂α(Xi) ⊂ G−Xi,

2We are using the terms precedes and succeeds as a shorthand for “occurs right before” and
“occurs right after”, respectively.
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where x ∈ Xi. Let Xi+1 = XityH, as in the proof of Lemma 1. It remains to show
that Xi+1 contains a Hamiltonian cycle Ci+1 in this case, satisfying conditions as
above.

Observe that of the three remaining possibilities (α−1, β, and γ) at least one of
the two edges adjacent to x in a Hamiltonian cycle Ci in Xi must be an involution
β or γ. In the first case, the cycles Ci in Xi and R in yH are connected by a square:

x → y = xα → yγ = xαγ → xαγα−1 → xαγα−1β = x,

so we can join the two cycles. Formally, remove edges (x, xβ) and (y, yγ) from the
union of two cycles Ci ∪ R, and add edges (x, y), (xβ, yγ). Clearly, the resulting
graph Ci+1 is a Hamiltonian cycle in Xi+1 indeed. We should note that Ci+1

inherits orientation from Ci, due to the fact that labels of R are all involutions
β and γ, and can be oriented accordingly. A simple check shows that the label
conditions for Ci+1 with respect to such orientation are all satisfied.

Now suppose neither of the two edges adjacent to x in Ci is β. By the label
conditions, label α cannot precede γ and thus must succeed it. Similarly, label α−1

cannot succeed γ and thus must precede it. But in both of these label arrangements
this contradicts the fact that an edge leaving x in Ci must have label α−1 (in
the direction of the cycle, opposite direction). Therefore we can discard these
possibilities, which finalizes the case y = xα.

Now, suppose y = xα−1 ∈ ∂α−1(Xi) ⊂ G − Xi. Since β = αγα−1, we can
proceed as before, with the roles of β and γ, α and α−1 interchanged. Note that
the label conditions are invariant under this transformation. This completes the
step of induction. ¤

Example 2. Let G = Sn, and let α = (1 2 . . . n), β = (1 2), γ = (2 3). Observe
that γ = α−1βα. Then Lemma 2 implies that the Cayley graph Γ(Sn, {α, β, γ})
contains a Hamiltonian cycle. In fact, a subgraph Γ(Sn, {α, β}) is already Hamil-
tonian [CW] (cf. section 4).

Lemma 3. (Rankin) Let G be a finite group, generated by two elements α
and β, such that (αβ)2 = 1. Then the Cayley graph Γ = Γ(G, {α, β}) contains a
Hamiltonian cycle.

Proof. Again, we use an inductive assumption with a new simple label condition.
Let H = 〈β〉, X1 = H, and assume that ∂α(Xi) = ∂α−1(Xi) = ∅. We also assume,
by induction, that restriction of Γ to Xi contains an oriented Hamiltonian cycle Ci,
which contains only labels β and α−1. We call these the label conditions.

The base of induction is obvious. For the step of induction, consider y = xα ∈
∂αXi−Xi. Note that the edge oriented towards x ∈ Xi in Ci cannot have label α−1

(otherwise it is (y, x), whereas y /∈ Xi) nor labels α, or β−1 (by the label conditions).
Therefore this edge has the only remaining label β, and (xβ−1, x) ∈ Ci. Now
consider a cycle R on yH with labels β on all edges, and observe that

x → xα = y → xαβ = yβ → xβ−1 = xαβα → x

is a square which connects R and Ci. Formally, let

Ci+1 = Ci ∪R + (x, y) + (yβ, xβ−1)− (xβ−1, x)− (y, yβ),
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and observe that Ci is a Hamiltonian cycle on Xi+1 = Xi ∪ yH. Let Ci+1 inherit
the orientation from Ci, and check that now Ci+1 satisfies the label conditions with
respect to this orientation.

In case when y = xα−1 /∈ Xi, we consider the edge leaving x ∈ Xi, and proceed
verbatim. If ∂αXi = ∂−1

α Xi = ∅, we have Xi = G, which completes the proof. ¤

Example 3. Let G = Sn, α = (1 2 . . . n), β = (2 3 . . . n). Then αβ−1 =
(1n) is an involution, and by Lemma 3 the Cayley graph Γ(Sn, {α, β}) contains
a Hamiltonian cycle. Incidentally, this Cayley graph is conjectured to have the
longest diameter and the largest mixing time of all Cayley graphs of Sn [B,D].

3. Proof of Theorems.

Proof of Theorem 1. We deduce it from Theorem 2. Fix a composition series
of G. Let r = r(G) and m = m(G). Denote by K1, . . . , Kr and L1, . . . , Lm

the of abelian and nonabelian composition factors of G, respectively. Recall that
|Lj | ≥ 60 > 4. We have:

2r+2m = 2r · 4m ≤
r∏

i=1

|Ki| ·
m∏

j=1

|Lj | = |G|.

Therefore, r(G) + 2m(G) ≤ log2 |G|, with the equality attained only for G ' Zn
2 .

In the latter case, when n ≥ 2, an elementary inductive argument (or a Gray
code [WG,Kn]) gives a Hamiltonian cycle. In other cases, one can add to a gener-
ating set one extra group element, which connects the endpoints of a Hamiltonian
path. This gives the desired Hamiltonian cycle and completes the proof. ¤

Proof of Theorem 2. It is a well known consequence of CFSG that every
nonabelian finite simple group can be generated by two elements, one of which is an
involution. Therefore Lemma 3 is applicable, and for every nonabelian finite simple
group produces a generating set S, with |S| = 2, such that the corresponding Cayley
graph contains a Hamiltonian cycle. If the group G is cyclic (G = Zp), a single
generator suffices, of course. We need the following simple “reduction lemma”:

Lemma 4 Let G be a finite group, a let H / G be a normal subgroup. Suppose
S = S1tS2 is a generating set of G, such that S1 ⊂ H, 〈S1〉 = H, and projection S′2
of S2 onto G/H generates G/H. Suppose both Γ1 = Γ(H, S1) and Γ2 = Γ(G/H,S′2)
contain Hamiltonian paths. Then Γ = Γ(G,S) also contains a Hamiltonian path.

We postpone the proof of lemma until after we finish the proof of the theorem.
Observe that in notation of Lemma 4, any generating set 〈S′2〉 = G/H can be lifted
to S2 ⊂ G, so that S = S1 t S2 is a generating set of G. Therefore, if H and
G/H have generating sets of size k1 and k2, respectively, so that the corresponding
Cayley graphs contain Hamiltonian paths, then G contains such a generating set
of size k1 + k2.

Now fix any composition series of a finite group G. By Lemma 4, we can construct
a generating set S of size r(G) + 2m(G), so that the corresponding Cayley graph
Γ(G,S) has a Hamiltonian path. This completes the proof of Theorem 2. ¤
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Proof of Lemma 4. We start with the following elementary observation.
Let Γ = Γ(G,S) be a Cayley graph which contains a Hamiltonian path. By vertex-
transitivity of Γ one can arrange this path to start at any vertex g ∈ G.

Let k = [G : H] = |G/H|, and let g1 = 1 ∈ G. Consider a Hamiltonian path in
the Cayley graph Γ(G/H, S′2):

H = Hg1 → Hg2 → Hg3 → · · · → Hgk .

Now proceed by induction in a manner similar to that in the proof of Lemma 1.
Fix a Hamiltonian path in the coset Hg1, so that 1 ∈ G is its starting point. Suppose
h1g1 is its end point. Add an edge (h1g1, h1g2) ∈ Γ. Consider a Hamiltonian path
path in the coset Hg2 starting at h1g2. Suppose h2g2 is its end point. Repeat until
the resulting path ends at hkgk. This completes the construction and proves the
Lemma. ¤

Proof of Theorem 3. We write A = ±B for matrices A,B ∈ SL(2, p), to
indicate that these elements map onto the same element in PSL(2, p).

For matrices α, β, γ as in section 1, note that:

α2 = γ2 =
(

a2 0
0 a2

)
= ±

(
1 0
0 1

)
, β2 = ±

(
1 0
0 1

)
,

α β =
(

0 a
a 0

)
, β α =

(
0 −a
−a 0

)
= ±α β,

γ α =
(

a2 0
a2 a2

)
= ±

(
1 0
1 1

)
, β γ α β = ±

(
1 −1
0 1

)
.

The first line shows that α, β, γ are indeed involutions in PSL(2, p). The second
line shows that α and β commute in PSL(2, p). Therefore, Lemma 1 implies that
the Cayley graphs Γp = Γ(PSL(2, p), {α, β, γ}) contain a Hamiltonian cycle.

Finally, the third line implies that elementary transvections

E =
(

1 1
0 1

)
, E−1 =

(
1 −1
0 1

)
, F =

(
1 0
1 1

)
, F−1 =

(
1 0
−1 1

)

can be obtained as words of length at most 4 in α, β, γ. The celebrated result
in [LPS] (see also [Lu1], Theorem 4.4.3) shows that the Cayley graphs

Γ̃p = Γ
(
PSL(2, p), {E, F})

are ε-expanders for some universal ε > 1/100. It is well known and easy to see (see
e.g. [Lu1]) that if a set Γ(G,S) is an expander with some ε > 0, and if elements of
S are the words of length at most C in generators S′, then Γ(G,S′) is an expander
with ε′ > 0 depending only on ε and C. Taking C = 4, this implies the result. ¤
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4. Historical remarks, connections and applications

1) It seems that the problem of finding Hamiltonian cycles in Cayley graphs
was suggested for the first time by Rapaport-Strasser [RS]. She was motivated by
bell ringing (cf. [Kn]) and “chess problem of the knight”, popular in recreational
literature.

As stated in [CG], versions of Lovász conjecture (for Cayley graphs, digraphs,
etc.) were proposed by “many people”. Lovász himself originally conceived it
as a special case of another then–problem of Gallai [Ga] in graph theory, which
asked whether all longest self-avoiding paths in simple connected graphs must have
a common vertex [Lo3]. In a special case of vertex-transitive graphs this would
imply that all such longest paths must have every vertex in common, and thus are
Hamiltonian. Gallai’s problem was later shown to have a negative answer [Wa].

Despite a very positive tone in [CG], there seems to be no consensus in the field
as to whether one should believe in Lovász conjecture. As opposed to conventional
wisdom, the original conjecture of Lovász puts it in the negative. Here is a full
and precise quote from [Lo1], stating it as a research problem: “Let us construct
a finite, connected undirected graph, which is symmetric and has no simple path
containing all the vertices. A graph is symmetric, if for any two vertices x and y,
it has an automorphism mapping x onto y.” Traditionally, however, the conjecture
is stated in the positive, as in the present paper.

In a survey article [B, §3.3], Babai is sharply critical of the Lovász conjecture:
“In my view these beliefs only reflect that Hamiltonicity obstacles are not well un-
derstood; and indeed, vertex-transitive graphs may provide a testing ground for the
power of such obstacles. We conjecture that for some c > 0, there exist infin-
itely many connected vertex-transitive graphs (even Cayley graphs) without cycles
of length ≥ (1− c)n.”

To avoid the controversy, we will not render our opinion on the matter.

2) Hamiltonian cycles in several classical vertex-transitive and Cayley graphs
play an important role in Combinatorics and applications. The story starts with
Gray codes which are Hamiltonian cycles in the hypercube Zn

2 (patented by F. Gray
in 1953). The recent treatise by Knuth [Kn] on the Hamiltonian cycles in Johnson’s
graph (on k-subsets of an n-set) and other graphs is a great source of references
and results.3

The case of Cayley graphs of the symmetric group is of particular interest. A
number of results are known for particular sets of generators, such as certain invo-
lutions [RS], transpositions [KoL], or a transposition and a long cycle [CW]. The ad
hoc argument in the latter paper proves the result in Example 2. Example 1 was
resolved in the early paper [RS], and was further investigated in [Kn]. We should
mention that the arguments in [CW,Kn] prove much more than a mere existence of
a Hamiltonian cycle, but also present algorithms for their construction with linear
space requirements. Note that our generic approach is inherently exponential (we
keep all elements of G in the memory.) We refer to survey papers [B,CG,Kn,WG]
for further references and generalizations.

3) The most general classes of finite groups for which Lovász conjecture was
proved include abelian groups, p-groups, dihedral groups, and certain extensions
(see e.g. [Lo2,Wi].) We refer to [B,CG,WG] for further references.

3See also a related concept of “universal cycles” in [CDG].
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4) If one ignores a tight bound and an explicit construction of the Cayley graphs
in Theorem 1, this result can be viewed as a corollary from the following natural
conjecture:

Conjecture 1. There exists a constant c ≥ 1, such that for every finite group G,
and every k ≥ c log2 |G|, the probability P (G, k) that the Cayley graph Γ = Γ(G, S)
with a random generating set S of size |S| = k contains a Hamiltonian cycle,
satisfies:

P (G, k) → 1 as |G| → ∞.

While, of course, Conjecture 1 is much weaker than the Lovász conjecture, it
may prove to be more feasible. It also does not contradict Babai’s conjecture (see
above). Until recently, the best known bound in this direction was in [MH], where
k ≥ |G|/3 bound was established. A recent work [KS], using sharp results of an
earlier paper [AR], reduces this bound down to k ≥ c log5 |G|. Interestingly enough,
papers [AR,KS] use no group theory to obtain the results. This suggests that there
might be an elementary, classification-free, proof of Theorem 1.

5) Following the paper of Pósa [Pó] (see also [Lo2]), the connection between
expansion and Hamiltonicity is well known, although yet to be fully understood
(see [KS,Pa]). In particular, all expanders on n vertices contain a self-avoiding
path of length > (1− c)n, where c = c(ε) is independent of n. It is easy to see that
the inverse is false. Whether expansion implies Hamiltonicity is yet to be seen, as a
weaker toughness condition of Chvátal (known to be true for all connected Cayley
graphs [B]) is conjectured to imply Hamiltonicity [Ch].

It is known that Cayley graphs with k > C log2 |G| are expanders w.h.p. [AR],
for a universal constant C > 1. This implies that they also have self-avoiding paths
of length (1− c)n. This view gives an extra support in favor of Conjecture 1.

6) Both Theorems 2 and 3 require some delicacy in understanding. We present
here few arguments and counterarguments which explain why neither theorem fol-
lows from known results.

We start with Theorem 2, which is somewhat more straightforward. In the case
of simple groups, for example, pairs of generators are well known. Can one, perhaps,
simply check whether the corresponding Cayley graphs contain Hamiltonian cycles?
The answer may be affirmative for sporadic group, even for the Monster (although
the size is prohibitively large), but for the series this is not so clear. As demonstrated
by papers [CW,GY,Sc], even for G = Sn or SL(2, p), proving Hamiltonicity requires
a substantial amount of work with no common approach in sight.

The same argument goes in defense of Theorem 3. Indeed, Lovász conjecture
states that Cayley graphs Γ̃p (see section 3) must contain Hamiltonian cycles,
which should imply the result. Unfortunately we do not know if graphs Γ̃p are
Hamiltonian. Even if they are, it is not easy to construct an explicit Hamiltonian
cycle in this case and we know of no fast algorithm which would do this in polyno-
mial time. On the other hand, an algorithm for constructing a Hamiltonian path
as in the proof of Lemma 1 works in time linear in the number of vertices.

Furthermore, one can propose a (2, p, 3)-generating set for PSL(2, p) considered
in [GY]. The authors prove that the corresponding Cayley graph contains a Hamil-
tonian cycle. A recent conjecture by Lubotzky [Lu2] (see also [Lu1]) claims that
every bounded size generating set of PSL(2, p) is an expander, with a universal



10 IGOR PAK, RADOŠ RADOIČIĆ

ε > 0 independent of p and the generating set. Would this imply that these Cayley
graphs are 3-regular Hamiltonian expanders? Well, we don’t know. Proving ex-
pansion (theoretically, or in practice) is not easier than Hamiltonicity, and for this
particular set of generators the expansion is unknown.

Let us comment also that in fact the expander graphs studied in [LPS] are Schrier
graphs and easily contain a Hamiltonian path.

7) One wonders whether Theorem 2 can be proved by using Lemma 1 or
Lemma 2. Indeed, Lemma 2 suffices, but gives a somewhat weaker constant: for
simple groups it requires 3 generators instead of 2 (note that the degrees of the
Cayley graphs are 4 in both cases). The situation with Lemma 1 is more interest-
ing, and may also seem promising in light of a well known result [MSW] that, with
one exception, all finite simple groups are generated by three involutions.

By now all finite simple groups generated by three involutions, two of which
commute, have been classified. In papers [N1-N4], Nuzhin completed classification
of all but sporadic simple groups which are generated by three involutions, two of
which commute (he refers to such groups as (2, 2× 2)-generated.) In particular, he
showed that all groups of Lie type of rank ≥ 4 have such generators (few series of
groups of small rank do not). A recent investigation of sporadic groups by means of
explicit computation and character analysis showed that all sporadic simple groups
except for M11, M22, M33 and M cL are (2, 2× 2)-generated [N5,Ti,Ma].

As there seem to be a confusion over the history of (2, 2×2)-generated groups, let
us add few more references for a complete picture. The problem was proposed by
Mazurov in 1980 (see [MK]). The case of alternating groups An, for n large enough,
was solved in a much greater generality in [Co]. He showed that An = 〈x, y, t〉, such
that x2 = y3 = t2 = (xt)2 = (yt)2 = 1, with (x, y, t) satisfying few other relations.
Taking α = t, β = xt, γ = yt gives the desired three involutions with αβ = βα.
In [N2], and, later, in [SC], the authors independently completed classification,
unaware of the previous work. Also, paper [TZ], independetly of [N3,N4] proves
that groups of Lie type of large enough rank are (2, 2× 2)-generated.

8) One can ask whether Hamiltonian 3-regular expanders can be obtained as
Schreier graphs of an infinite group with Kazhdan’s property (T), an approach
pioneered by Margulis [M1] (see also [Lu1]). In fact, one can indeed generate
SL(k,Z), k ≥ 3, by two elements, one of which is an involution, and then proceed
using Lemma 2 or 3. Since the resulting graphs are 4-regular, this result is a bit
weaker than that of Theorem 3. Since for every fixed k ≥ 3, these groups have (T),
the corresponding finite Schreier graphs are expanders.

Similarly, one can ask whether SL(k,Z) are (2, 2 × 2)-generated for k ≥ 3, so
that one can use Lemma 1 in this setting. It turns out that the group SL(3,Z)
is not (2, 2 × 2)-generated, as the following simple argument by Humphries [Hu2]
shows (see also [Hu1]): If SL(3,Z) = 〈α, β, γ〉, then the involutions α, β, γ have
2-dimensional (−1)–eigenspaces Vα, Vβ , Vγ . If αβ = βα, then Vα = Vβ . Therefore,
dim(W ) ≥ 1, where W = Vα ∩ Vβ ∩ Vγ . Since all three involutions fix W , this
implies that they cannot generate SL(3,Z).

On the other hand, it is was shown recently in [TZ] that the groups SL(k,Z) are
(2, 2× 2)-generated when k ≥ 14. The authors present an explicit triple of involu-
tions to prove the result. Taking appropriate quotients, this produces Hamiltonian
3-regular expanders in SL(k, q) for every fixed k ≥ 14, and all but finitely many
primes q. Similar results also hold for other types (see [TZ]). We leave the details
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to the reader.

9) Here is a straightforward way to obtain weaker versions of the theorems.
Recall a celebrated Fleischner Theorem in Graph Theory that the square of every
connected graph is Hamiltonian [F] (see also [Di], §10.3). Now take a Cayley graph
of a finite group G with k = d(G) generators and square it. The result is also a
Cayley graph of G with at most 2k2 +k generators (we need to include all pairwise
products of generators and their inverses, as well as the original generators). This
immediately implies the existence of O(log |G|) Hamiltonian generating set in every
finite group G. A similar construction implies existence of Hamiltonian expanders
that are also Cayley graphs of PSL(2, p). We omit the details.

10) Researching the literature we discovered references [RS] and [SC], the latter
of which seemed to contain Lemma 1. We found the proof very sketchy, as it uses
a rather unclear topological argument. In fact, another version of this argument
already appears in [RS], stated in a different (and somewhat archaic) language. A
posteriori, one can view our proof of Lemma 1 as a rigorous Combinatorial version
of the very same argument. Similarly, Lemma 3 and its proof are essentially the
same as in [Ra] (see Theorem 3.1). For the sake of consistency and completeness,
we decided not to alter the exposition.

11) Before we conclude, let us quote Babai [B] once again: “Even the following,
less ambitious problem is open: does every finite group have a minimum Cayley
graph with a Hamilton cycle?” In fact, our Theorem 2 is a step in this direction;
it is sharp for simple groups, but off for other classes of finite groups.

Denote by ζ(G) the smallest size of a generating set, such that the corresponding
Cayley graph contains a Hamiltonian path. Determining ζ(G) for various finite
groups G is a problem implicit in [RS]. Now Babai’s question can be interpreted
as to whether ζ(G) = d(G), the size of the smallest generating set. Lemma 4 is
equivalent to the inequality ζ(G) ≤ ζ(H) + ζ(G/H). Now Theorem 2 implies that
ζ(G) ≤ r(G) + 2m(G). In particular, for finite simple nonabelian groups G, we
have ζ(G) = d(G) = 2. Similarly, it implies that ζ(Zr

2) = d(Zr
2) = r, another sharp

result.
Little is known for general classes of groups. We suggest general nilpotent groups

as the first interesting case. Let G be a finite nilpotent group, and let G = G0 ⊃
G1 ⊃ . . . ⊃ G` = 1 be the lower central series Gi = [G, Gi−1], and let Hi =
Gi/Gi−1. It is easy to see that d(G) = d(G/[G,G]) = d(H1), while our bounds
give only ζ(G) ≤ ∑

i ζ(Hi) =
∑

i d(Hi). In a different direction, let Hp be Sylow
p-subgroups of G. From the theorem of Witte [Wi], we have ζ(G) ≤ ∑

p ζ(Hp) =∑
p d(Hp), while d(G) = maxp d(Hp). We believe one should be able to close this

gap.
To conclude, consider the case in which our bound ζ(G) is quite far from d(G).

Indeed, consider Gn = (An)n!/8. When n is large enough, these groups are 2-
generated, i.e. have d(Gn) = 2 [KaL] (see also [BP]). Theorem 2 gives a bound
ζ(Gn) ≤ n!/4, and this is the best bound we can prove. Improving this bound is an
ultimate challenge for the reader. Similarly, Philip Hall’s group G = A19

5 [Ha], with
d(G) = 2, is a beautiful (but computationally unapproachable) potential counterex-
ample to Lovász conjecture.

Finally, we should mention here that the authors inquired about a potential
counterexample: Cayley graph of A2

5 generated by two elements one of which is
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an involution. Both Bill Cook and Frank Ruskey independently reported that this
graph is Hamiltonian. Oh, well...
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