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A phylogeny is a tree graph representation of genealogical relationships between biological 
objects. It is of general interest to estimate the phylogeny of whole organisms (species trees) 
using bio-molecular sequences. When multiple sequences are available for each organism such 
as with whole genome data, individual phylogenies estimated by each molecule (gene trees) 
may not be concordant. The lack of concordance may be due to actual biological mechanisms 
such as horizontal transfer of the molecules. Here, we present a new phylogeny estimation 
method designed to estimate the species tree despite such horizontal transfer. It uses the idea 
that horizontal transfer distorts distance relationships between pairs of species but a median 
estimate of the distances is robust to such distortions. We demonstrate the utility of our method 
using a simulation study. 

1 Introduction 
 
An important view of biological organization is that it is fundamentally based on a 
bifurcating descent-with-modification process. Whether at the level of whole 
organisms or at that of protein families, it is thought that bio-diversity is generated 
through a tree graph where the vertices represent replication and the edges represent 
modification (for more precise descriptions see 1,2). Such graphs are called 
evolutionary trees or phylogenies, and their estimation is crucial to a wide range of 
basic and applied biological problems3. A large volume of literature exists about 
various tree estimation algorithms (see 4,5,6). Traditionally, phylogeny estimation 
involved using data from morphological measurements of the organisms such as 
presence and absence of specific traits (e.g., wings), counts (e.g., number of 
appendages), and states (e.g., eye color). However, with the availability of 
comparative molecular sequence data e.g., RDP7, phylogenies have been 
increasingly estimated using bio-molecular sequences that have advantages in terms 
of quantity of information and putative simpler models of evolution. 

When we estimate organismal phylogenies with a particular molecular 
sequence, we might tentatively assume that the inferred ancestor-descendent 
relationships of the molecule also represent the ancestor-descendent relationships of 
the organism. However, when multiple molecules are available for tree inference, it 

Pacific Symposium on Biocomputing 6:571-582 (2001) 



 

is not uncommon to observe differences in the estimated trees. This problem has 
been called the gene tree-species tree problem (e.g., 8,9,10) where gene tree refers to 
the inferred genealogical relationships of individual bio-molecules and the species 
tree refers to the genealogical relationships of the organism. The differences in the 
gene trees may be due to statistical errors, but it may also be due to actual biological 
phenomena that confound the genealogical relationships of different molecular 
components and those of the organisms. There are three broad classes of biological 
phenomena causing deviation of the gene trees from each other and the species tree: 
horizontal transfer, ancestral lineage sorting, and gene duplication and loss (see 10). 
Figure 1 depicts these phenomena. 

It is believed that the discordance between gene trees and species trees becomes 
exacerbated when the common ancestor to the current taxa is old. This has been 
seen as a major impediment to estimating deep divergences such as the tree of all 
life and has led to many controversies including proposals that such a tree does not 
exist11-15. Regardless of whether a unique tree representation exists, it is still 
reasonable to think that some tree representation is appropriate either as the 
representation of a presumed unique species phylogeny or as a representation of the 
“common mode” of genomic evolution. The estimation of such species phylogenies 
from multiple molecular sequences is expected to become increasingly important as 
the amount of genomic information increases. Several methods exist in the literature 
to estimate species trees from gene trees (e.g., 9,16,17,18). However, these methods are 
either difficult to apply when a large number of molecules are available or do not 
address all the conflicts depicted in Figure 1. Here, we suggest a new algorithm 
designed specifically to estimate species trees from a large collection of gene trees 
and we evaluate its performance using simulation studies. 

2 The median tree algorithm 
 
A phylogenetic tree is a tree graph T = {V, E}, where V is the vertex set and E is the 
edge set. Degree one vertices (leaves) are assumed to represent present day 
organisms/genes and vertices of higher degree represent unobserved ancestral 
organisms/genes. More commonly the degree one vertices are called terminal (or 
current) taxa and higher degree vertices are called ancestral taxa. We assume that 
the leaves of the tree are labeled from some label set S, corresponding to names of 
terminal taxa. In many cases a special degree two vertex is designated as the “root” 
of the tree and it is understood that the root is the most ancestral taxon and edges are 
directed away from the root. We associate with each edge, e, of the tree graph a 
positive number, w(e). Depending on the context, w(e) may represent time or some 
expectation under a suitable stochastic model of evolution. For example, it is 
common to model bio-molecular sequence evolution by a continuous time Markov 
model of state transitions along each edge. In this case, the edge weights represent  
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Figure 1. Three different ways in which gene trees may differ from species trees. 
The bold outlined “tubes” represent organismal species trees. The solid thin line 
represents a gene lineage that is concordant with the species tree. The bold 
dashed lines represent another gene whose lineage differs from the species trees 
by (a) a horizontal transfer of the gene, (b) ancestral lineage sorting, and (c) 
birth-death process of paralogous genes. 

Figure 2. Two kinds of horizontal transfer of gene lineages and the resulting 
tree topologies.  a. A transfer between adjacent lineages produces no change in 
the tree topology but a change in the distance relationships. b. A transfer across 
lineages produces a change in the tree topology and distance relationships. 
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the expected number of Poisson counting events. Given a tree T = {V, E}, if we 
delete an edge that is not adjacent to a leaf, the tree will be split into two connected 
components, T1 and T2. This also results in a bipartition of the leaf-label set, S, into 
S1 and S2. Such a bipartition is called a split1. If we delete each edge (non-adjacent 
to a leaf) in turn, exhaustively, we obtain a set of splits that represents the topology 
of the tree graph. The topology of a tree is the branching relationship among the 
labeled leaves of the tree implied by the tree graph. The main objective of most 
estimation algorithms is to obtain the best estimate of the correct tree topology. 

A path distance, Pij, between pairs of vertices vi and vj can be defined as the 
sum of the edge weights in the unique path between vi and vj. Given a matrix of all 
pairwise distances between terminal taxa, an edge-weighted tree graph can be found 
whose path distances correspond to the distance matrix if the pairwise distances 
satisfy the so-called four-point condition19,20: 

),max( jkiljlikklij dddddd ++≤+    (1) 

The four-point condition can be simply interpreted as saying that for any 
quartet of vertices, the pairwise distances behave like path distances on a tree. If a 
distance matrix satisfies (1) it is said to be an additive distance matrix. The relation 
between additive distance matrices and tree graphs forms the basis of phylogeny 
estimation by distance methods. Many distance based phylogeny estimation 
algorithms6 will perform well given accurate estimates of additive distances.  

Given a bio-molecular sequence, distance based phylogeny algorithms estimate 
pairwise distances between the terminal taxa. It is standard to assume a continuous 
time Markov model and attempt to estimate the expected number of Poisson 

counting events in the path between two terminal taxa. Denote this estimate by ijd̂ ; 

then if the bio-molecules are iid samples of the Markov process, )ˆ( ijij dEd ψ= , 
the expectation of the estimate under the Markov process ψ satisfies the four-point 
condition and the resulting distance matrix is an additive distance matrix. If we are 
given a collection of bio-molecular sequences, m1�mk, and they are samples of the 
same homogeneous stochastic process, it is natural to obtain a weighted average 

distance estimate ∑= k
ijkij dwd ˆˆ  where wk’s are weight coefficients based on the 

sample size of each individual estimate. This averaged estimate can be used to 
estimate a single tree representing the combined information from the k molecules 
and since we have an iid process we expect the weighted average to yield a lower 
variance estimate. However, it is unreasonable to assume that m1�mk are samples of 
a homogeneous process. We expect each molecule to have a unique Markov process 
associated with it, with different edge weights for each molecule. In general, the 
four-point condition is not additive and the sum of two additive distance matrices 
may not be additive. But, if each molecule is a sample from a stochastic process 
over the same tree topology (with different edge weights possible), the sum of the 
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expected distance matrices is an additive matrix. Therefore, it is again natural to 

obtain a weighted average estimate ∑= k
ijkij dwd ˆˆ  even when each molecule is a 

sample from a unique process. (In this case, an efficient estimator would require 
selecting weights that reflect the variance of individual processes.) 

However, when a horizontal transfer type of phenomenon occurs the topology 
of the tree may change. (The other tree topology changing events such as gene 
duplication and loss can also be represented as a horizontal transfer event, since 
each duplication/loss can be seen as generating an alternate tree. Therefore, we will 
only refer to horizontal transfer from here on.) Figure 2 shows two examples of 
change in tree topology or distance relationships following a single horizontal 
transfer event. Different horizontal transfer events will generate a tree with a 
different topology. Given a collection of molecules that have experienced horizontal 
events we will have a collection of trees all slightly different from each other. One 
possible view of this process is to assume that there is a single organismal 
phylogeny and molecular phylogenies differ from the organismal phylogeny by one 
or more horizontal transfer events. The goal of our algorithm is to estimate the 
single organismal phylogeny from a collection of molecular phylogenies. 

The key to our algorithm is to ask what happens to pairwise distance 
relationships under horizontal transfer. Suppose DA is the expected distance matrix 
representing the original tree in figure 2 and DB and DC are the new expected 
distance matrices for the resulting trees. DB will be different from DA in its pairwise 
elements and DC will be different as well, but in a different subset of the elements.  
Suppose now we examine distances between ith and jth taxa and ask what happens 
to this number when we have k different molecules. Let the expected distance 
matrix for the species tree be D0 and the expected distance matrix for the kth 
molecule be Dk. Dk will differ from D0 in some of the elements if horizontal transfer 
event occurred in the kth gene. Denoting the distance estimate between ith and jth 

taxa for the kth molecule by k
ijd̂ , we expect k

ijd̂  to have either central tendencies 
0

ijd  or 0k
ij ijd d≠  according to whether horizontal transfer distorted the relationship 

between ith and jth taxa. Therefore, the distance between ith and jth taxa is a 
mixture random variate 0 (1 ) H

ij ij ijd d dα α= + −  with the expectation 
0 (1 ) ( )ij ij H ijd d E dα α= + − , where EH is the expectation under the stochastic 

model of horizontal transfer and α is the mixture proportion. If α > 0.5, it is natural 

to use the median of k
ijd̂ as an estimate of 0

ijd since it is robust to the mixture. Thus 
our Median Tree Algorithm (MTA) is: 
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1. For each pair of taxa i and j, compute a distance estimate for each of the k 

molecules, k
ijd̂ . 

2. Within the distance matrix for each gene, normalize the pairwise distances. (We 
suggest a normalization procedure in the next section.) 

3. Compute a Median Distance Matrix by finding the median of ),( 21 k
ijijij ddd L  

for every ith and jth taxa pair. 
4. Estimate a tree with the median distance matrix and a distance based algorithm. 

3 Performance Tests 

3.1  Generation of model trees 

To explore the efficacy of the Median Tree Algorithm, we applied these methods to 
data derived from simulations. Each model species tree was accompanied by 25 
gene trees based on horizontal transfer of branches of the species tree. A wide range 
of transfer rates was tested along with distortion of edge weights. 

For each replicate, a species tree was created using a Yule process. In this 
process, a tree begins with a degree two vertex, the root, connected to two leaves. 
Each leaf bifurcates with a constant rate under a homogeneous pure birth process. 
For the generation of our species trees, we sampled from the Yule process 
conditioned on maximum time = 1, terminal taxa (leaves) = 20, and bifurcation rate 
= ln10, the rate at which 20 leaves are expected at time = 1. Gene trees were created 
by applying a constant rate, h, of horizontal transfer to a copy of the species tree. In 
the first stage, “donor” vertices were added to the tree. For each edge, a waiting 
time, th, was drawn. If th < l(e), the time length of the edge, then a donor vertex was 
added between the edge’s vertices. Edges were considered recursively for further 
addition of donor vertices. In the second stage, a recipient vertex was selected for 
each donor, processed in order of proximity to the root. Any vertex with an 
immediately ancestral edge that spanned the donor’s time from root was eligible to 
be a recipient. (This “random choice” model creates more severe estimation 
problems than a “genetic affinity” model where the choice of recipient lineages is 
weighted by genealogical distance.) The recipient, chosen equiprobably from the 
eligible vertices, was then detached from its ancestral vertex and connected to the 
donor with a branch length that would maintain its distance from the root. The 
previous ancestor was removed from the tree and its other two neighboring vertices 
were connected with a distance preserving branch length. By not considering 
evolutionary divergence in selection of donor-recipient pairs, we presumably made 
it more difficult to recover the model trees than if closely related lineages were 
more probable partners. 
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3.2  Generation of test data 

For each gene tree, simulated DNA sequences of length 1500 were generated by the 
program Seq-Gen21 using the HKY model22 and a transition/transversion ratio of 
2:1. Given these sequences, pairwise distances were estimated by the program 
V_MLDIST23 with the assumption of HKY evolution but an unknown 
transition/transversion ratio. In one set of experiments, gene trees were further 
differentiated by distortion of their edge weights simulating non-clock-like 
evolution because the rate of bio-molecular sequence evolution is known to vary by 
gene and by lineage. To model this variation, we deformed each edge independently 
with a coefficient drawn from the uniform distribution [0.5, 1.5]. 

3.3  Normalization 

Step 2 of the MTA, normalization, is important because evolutionary rates may vary 
among genes regardless of horizontal transfer. Before pairwise distance estimates 
between terminal taxa can be compared, they must be scaled so that rate differences 
between genes do not dominate the averaging process. For the MTA to be effective 
at recovering the species tree, distance variation among genes must reflect primarily 
the different patterns of horizontal transfer. 

The normalization procedure we used begins with an initial pass through the 
first three steps of the MTA. Let DM be the median distance matrix computed from 
unnormalized distances. Then for the kth distance matrix, Dk, we obtain a scaling 
factor sk as follows.  

sk = median{ M
ij

k
ij

d
d

| for all i, j}     (2) 

That is, we compute the ratio of each distance matrix element to the median 
distance matrix element. The median of these ratios over all elements is considered 
an appropriate scaling factor.  

3.4  The estimation procedures 

Five estimates of the species tree were made for each set of genes. Two were the 
MTA estimates, one with and one without normalization of the matrices. Estimation 
of the tree from each matrix (Step 4) was done using the neighbor-joining distance 
method24 as implemented in the program NEIGHBOR25. Two others were the same 
as above except that we used mean values rather than median values. The fifth 
estimate was produced in a different fashion. A neighbor-joining estimate of each of 
the original gene matrices was made and these trees were processed by the program 
CONSENSE25. This program measures the frequency of each split among a set of 
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trees. It then constructs an output tree by adding splits in order of decreasing 
frequency until the next most frequent (or tied) split contradicts an existing split. 

3.5  Results 

The accuracy of each estimate was measured as dT, the partition metric26. This 
measure is the sum of splits present in the true tree but not in the estimate and splits 
in the estimate but not in the true tree: false negatives and false positives 
respectively. Each simulated tree contained 17 splits, thus a maximum error value of 
dT = 34. Because the neighbor-joining method (as implemented) always produces a 
single bifurcating tree, the number of false positives and negatives is equal for every 
estimate produced by the first four procedures in section 3.4. The consensus tree can 
have fewer false positives than negatives, but the numbers appeared similar in our 
experiment (not shown). For simplicity, only dT results are reported here. 

Samples of 100 species trees were tested for each of nine horizontal transfer 
rates corresponding to expected numbers of horizontal transfers ranging from 0 to 
16 per gene over the tree. Lawrence and Ochman27 estimated that 17% of genes in 
E. coli originated from horizontal transfer in the last 100 million years, or 1.7x10-9 
events per gene per year. The total expected amount of time in a Yule tree is  

( )t

tt

e
teeNt λ

λλ

λ
λ
−

−−

−
−−−+

1
1)2(2 ,   (3) 

 
where t = 1, N = 20, and λt = ln10 in our simulations. Thus, the expected total time 
in the trees in our simulation is ~7.8 units and the horizontal transfer rate ranges 
from approximately 1/7.8 to 16/7.8 events per gene per unit time. Translating this to 
biological units, our simulation ranges from 76 million to 1.2 billion years of 
evolution at the horizontal transfer rate of E. coli. 

We calculated mean and standard error for each method and sample. To test the 
significance of differences between the accuracy of the five methods, we performed 
sign tests, which are more conservative than paired t-tests. Normalization had no 
effect on the accuracy of either the mean or the median estimates when tested across 
all transfer rates under either the undistorted or distorted branch length model (two-
tailed p = 0.26, 0.26, 0.15, and 0.42 respectively). In our experiments, all simulated 
genes evolved at the same rate, except for random variation imposed on edges 
individually in the distorted model. Therefore, normalization was not expected to 
improve estimation accuracy. This test confirms that the normalization procedure 
was not detrimental in the absence of rate variation. In an unreported experiment, 
we found that normalizing according to the greatest distance estimate in each gene 
matrix was detrimental and so was abandoned in favor of the procedure proposed 
here. Because we expect that normalization would be a necessary part of the Median 

Pacific Symposium on Biocomputing 6:571-582 (2001) 



 

Tree Algorithm when applied to natural data, all remaining tests below consider 
only the results for normalized distance estimates. 

Figure 3 shows the results for the (a) undistorted and (b) distorted branch length 
models defined in section 3.2. The mean tree algorithm was the least accurate under 
most model conditions. The Mean TA outperformed the Median TA only in the case 
of branch length distortion combined with no horizontal transfer, but did so 
significantly (two-tailed p = 0.0008). In this case, the only differences in the 
distance matrices of the gene trees were the symmetric deformations added 
stochastically under the model, which makes it unsurprising that the means were 
more accurate estimates than the medians. 

The relative success of the Median TA and the consensus method varied more 
dramatically. For the undistorted simulations, the two methods performed 
comparably well over the range of 0 to 2 expected horizontal transfers per gene. At 
higher rates, the MTA had clearly greater accuracy. For the distorted simulations, 
MTA was again superior at the higher rates of transfer. When less than four 
transfers were expected per gene, the consensus method outperformed MTA. The 
consensus method has an advantage in being blind to branch lengths (so long as 
they do not distort the gene tree topology estimates), which explains its relatively 
greater success in the distorted experiments. At higher rates this advantage is 
outweighed by its sensitivity to horizontal transfer; a single transfer can cause a 
gene tree to share no splits with the species tree. 

4 Discussion 
 
Assuming a rooted tree, to every ancestral vertex there is a subtree of all vertices 
and edges directed away from that vertex. We will call such a subtree a clade. The 
number of terminal taxa in a clade will be called the size of the clade. A horizontal 
transfer event involves a donor lineage (marked D in figure 2) and a recipient 
lineage (marked R in figure 2). The transfer event can be (effectively) thought as 
picking up the clade subtending from the recipient lineage (we call this the I-clade; 
marked by a dotted triangle in figure 2) and moving it to the donor lineage D. The 
total change in the topology and the distance elements depend on the size of the I-
clade (recipient lineage), the size of the terminal taxa outside of the I-clade (we call 
this the O-set; marked as O in figure 2), and the donor position, D. 

In terms of distance relationships, suppose the tree contains N terminal taxa and 
I-clade contains M terminal taxa. The distance relationship within the I-clade will 
not be affected. The distance relationship within the O-set will also be not affected. 
Only M(N – M) pairwise distances between the terminal taxa in the I-clade and 
terminal taxa in the O-set will be affected. More specifically, suppose the transfer 
event involved moving from lineage D to R (see figure 2), suppose also that Q was 
the size of the smallest clade containing both D and R (in figure 2, this is the entire  
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Figure 3. Simulation test results. Species phylogeny was estimated from 25 
gene trees three ways: (1) mean estimated distance matrix, (2) consensus, and 
(3) median distance matrix (the MTA method). The vertical axis is a measure 
of how different the estimated tree is from the true species tree (a larger value 
means more different). The category axis shows expected number of 
horizontal transfer events in each gene. Both the case of molecular-clock 
evolution (a) and non-clock evolution is shown (b). The lines above the bars 
show standard errors. 
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tree and Q = N), then for each taxon in the I-clade, only (N – M) – (N – Q) = Q – M 
distances are affected. Therefore, a single horizontal transfer event is expected to 
change M(Q – M) pairwise distances where M and Q depends on the exact event; at 
most, ½ of the distance matrix will change by a single horizontal transfer event. 

Consensus methods operate on rooted splits (subsets of the label set). If a 
horizontal transfer event occurs as in figure 2, the subsets representing the I-clade 
are not affected. The subsets representing all the descendent clades of the donor 
lineage D are also not affected. However, all clades “above” (towards the root) the 
points D and R are changed by the horizontal transfer event. As an extreme 
example, a single horizontal transfer event can change all the subsets of the 
resulting tree such that no part of the tree topology is preserved.  

The simulation study demonstrates that the MTA method is superior to other 
methods of estimating the species tree. However, all methods performed 
surprisingly well. In general, the number of distance elements that increase in size 
versus those that decrease in size will be unequal. Thus, taking arithmetic means of 
the distance values will not yield unbiased estimates of the species distance matrix. 
In particular, the bias will tend to increase with the size of the tree. Therefore, using 
the mean estimate will not be appropriate when horizontal transfer is involved. 
Similarly, the movement of the donor lineage affects the rooted split relationship of 
all clades above the donor and recipient lineages, possibly destroying all 
concordance. The simulation results shown here seem to suggest that when a 
sufficient number of genes are present, this kind of misleading change may not 
dominate the data. However, we can expect the consensus method to perform 
increasingly worse with increasing tree size because the average proportion of splits 
affected by a single transfer event will increase with the number of terminal taxa 
whereas the average proportion of distance elements affected will stay the same. 

To reiterate, biological events such as horizontal transfer can cause a difference 
in the gene trees of individual molecules versus that of the whole organisms. The 
differences cause biased distortions in the pairwise distance relationship of the 
genes. Such distortions can be seen as mixed central tendency of the distance 
estimates. Using medians instead of means can provide a robust estimate of the 
central tendency. Using simulations we demonstrate that such a median procedure is 
effective at estimating the species tree from a large number of gene trees even when 
they differ by multiple horizontal transfers. Our method is intuitive and 
computationally scales linearly with numbers of genes, which we believe will be 
increasingly important as genome-wide data become increasingly available. 
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