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Abstract. This paper describes a novel framework for the Open World face 
recognition problem, where one has to provide for the Reject option.  Based upon 
algorithmic randomness and transduction, a particular form of induction, we 
describe the TCM-kNN (Transduction Confidence Machine – kNearest Neighbor) 
algorithm for Open World face recognition.  The algorithm proposed performs much 
better than PCA and is comparable with Fisherfaces.  In addition to recognition and 
rejection, the algorithm can assign credibility (“likelihood”) and confidence (“lack 
of ambiguity”) measures with the identification decisions taken.   

1. Introduction  

The choices facing face recognition systems should include: ACCEPT, REJECT (“is not 
here”), and AMBIGUITY (“need more information”).  The inclusion of the REJECT 
option, which corresponds to an open world of (face recognition) hypotheses, adds 
complexity to the whole process and makes face recognition much harder compared to the 
more traditional closed world biometric systems available today.  In addition to seeking 
how similar or close some probe face image is to each subject in the face gallery set, one 
needs some measure of confidence when making any identification decision.   
 This paper describes a novel methodology for handling an open world of hypotheses, 
including the REJECT option, and provides the means to associate credibility and 
confidence measures with each of the decisions made regarding HumanID.  The proposed 
methodology, based upon randomness concepts and transductive learning, is formally 
validated on challenging (varying illumination) and large overlapping FERET data sets. 
 
2. Randomness and p-Values 
 
Confidence measures can be based upon universal tests for randomness, or their 
approximation. A Martin-Lof randomness deficiency (Li and Vitanyi, 1997) based on such 
tests is a universal version of the standard statistical notion of p-values.  Universal tests for 



randomness are not computable and hence one has to approximate the p-values using non-
universal tests.   
 We use the p-value construction in Proedrou et al. (2001) to define the quality of 
information.  The assumption used is that data items are independent and are produced by 
the same stochastic mechanism. Given a sequence of proximities (distances) between the 
given training (gallery) set and an unknown sample (test) probe, one quantifies to what 
extent the (classification) decision taken is reliable, i.e., non-random.  Towards that end 
one defines the strangeness   of the unknown sample probe i with putative label y in 
relation to the rest of the training set exemplars as: 
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The strangeness measure is the ratio of the sum of the k nearest distances D from the same 
class (y) to the sum of the k nearest distances from all other classes (–y).  The strangeness 
of an exemplar increases when the distance from the exemplars of the same class becomes 
larger and when the distance from the other classes becomes smaller.  A valid randomness 
test (Nouretdinov et al., 2001) defines then the p-value measure of a test exemplar with a 
possible classification assigned to it as 
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where f is some monotonic non-decreasing function with f(0) = 0, e.g.,  f(D) = D, m is the 
number of training examples, and Dnew is the strangeness measure of a new potential test 
probe exemplar cnew.  An alternative definition available for the p-value is 

)1/(}:{#)( �t micp newinew DD . Using the p-value one can now predict the class 

membership as the one that yields the largest p-value, which is defined as the credibility of 
the assignment made.  The associated confidence measure, which is one minus the 2nd 
largest p-value, indicates how close the first two assignments are.  The confidence value 
indicates how improbable the classifications other than the predicted classification are and 
the credibility value shows how suitable the training set is for the classification of that 
testing example. One can compare the top ranked assignments, rather than only the first 
two assignments, and define additional confidence criteria. Both the credibility and 
confidence measures allow the face recognition module to adapt to existing conditions and 
act accordingly.    

3. Transduction Confidence Machine (TCM)- kNN  

Another form of learning, beyond induction, is transduction. Given an unlabeled validation 
test, in addition to the training set, the task now is to estimate the class for each unlabeled 



pattern in order to construct the best classifier rule for both the training and validation sets.  

 
 
The constraints on the (geometric) layout of the learning space and the search for 

improved classification margins are addressed  in this paper using algorithmic randomness 
(Vovk et al., 1999), universal measures of confidence randomness (Vovk et al., 1999), and 
transductive confidence (learning) machines (TCM) (Proedrou et al., 2001).  The 
experimental data presented later on that validates our approach, is based on TCM-kNN 
which is an augmented TCM using locality-based evidence, e.g., the k-Nearest Neighbors 
(kNN) concept.   

The similarity distances dist (in script) used are shown next. Given two n-dimensional 

vectors nYX ��, , the distance measures used are defined as follows: 
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TCM-kNN Algorithm 
 
for  i = 1 to m 

Find and store y
iD  and y

iD
�

 

end for 
Calculate the alpha strangeness values for all the training exemplars 
Calculate the similarity dist vector as the distances of the new exemplar from all the 
training exemplars 
for j = 1 to c do 

for every training exemplar t classified as j do 

if j
tiD > dist(t) , i = 1}k, recalculate the alpha value of exemplar t 

end for 
for every training exemplar t classified as non-j do 

if j
tiD

�

> dist(t), i = 1}k, recalculate the alpha value of exemplar t 

end for 
Calculate alpha value for the new exemplar classified as j 
Calculate p-value for the new exemplar classified as j 

end for 
Predict the class with the largest p-value 
Output as confidence one minus the 2nd largest p-value 
Output as credibility the largest p-value 
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where 6 is the scatter matrix of the training data. For PCA, 6 is diagonal and the diagonal 
elements are the (eigenvalues) variances of the corresponding components. The 
Mahalanobis + L1 distance defined only for PCA is 
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4. Data Collection 

 
 

Figure 1.   Face Images 
 

Our data set is drawn from the FERET database, which has become a de facto standard for 
evaluating face recognition technologies (Phillips et al., 1998).  The data set consists of 
600 FERET frontal face images corresponding to 200 subjects, which were acquired under 
variable illumination and facial expressions.  Each subject has three images of size 
256x384 with 256 gray scale levels.  Face image normalization is carried out as follows: 
first, the centers of the eyes of an image are manually detected, then rotation and scaling 
transformations align the centers of the eyes to predefined locations, and finally, the face 
image is cropped to the size of 128x128 to extract the facial region.  The extracted facial 
region is further normalized to zero mean and unit variance.  Fig. 1 shows some exemplar 
images used in our experiments that are already cropped to the size of 128x128.  Each 



column in Fig. 1 corresponds to one subject. Note that for each subject, two images are 
randomly chosen for training, while the remaining image (unseen during training) is used 
for testing. 

The normalized face images are processed to yield 400 PCA coefficients, according to 
eqs. 7 – 9 from Liu and Wechsler (2002), and 200 Fisherfaces using FLD (Fisher Linear 
Discriminant), according to eqs. 10 – 12 from Liu and Wechsler (2002) on a reduced 200 
dimensional space PCA space.  

5. Open World Face Recognition Algorithms 

 

Open World TCM-kNN Algorithm 

Calculate the alpha values for all the training exemplars 
for i = 1 to c do 

for every training exemplar t classified as i do 
 for j = 1 to c and j != i do 
       Assume t is classified as j, which should be rejected 
       Recalculate the alpha value for all the training exemplars classified as non-j 
       Calculate alpha value for the exemplar t classified as j 
       Calculate p-value for the exemplar t classified as j 
 end for 

Calculate the Pmax, Pmean and Pstdev (standard deviation) for the p-value of 
exemplar t 

 Calculate the PSR value for exemplar t: PSR = (Pmax – Pmean)/Pstdev 
end for 

end for 
Calculate the mean, stdev (standard deviation) for all the PSR values 
Calculate the mean + 3*stdev as threshold for rejection 
Calculate the distances of the probe exemplar from all the training exemplars 
for i = 1 to c do 

Calculate alpha value for the probe exemplar classified as i 
Calculate p-value for the probe exemplar classified as i 

end for 
Calculate the largest p-value max for the probe exemplar 
Calculate the mean and stdev for the probe p-value without max 
Calculate the PSR value for the probe exemplar: PSR = (max – mean)/ stdev 
Reject the probe exemplar if its PSR is less than or equal to the threshold. 
Otherwise predict the class with the largest p-value 
 



 

6. Experimental Results 

We found that the best similarity distances for PCA and Fisherfaces are {Mahalanobis + 
(L1, L2 or cos)} and {cosine, Dice, Jaccard, (Mahalonobis + cos)}, respectively. Those 
distances are used in our experiments. The experiments reported were carried out on the 
data described in the previous section. Both the gallery and the probe sets consist of 100 
subjects, and the overlap portion between the two sets on the average 50 subjects.  The 
recognition rate is the percentage of the subjects whose probe is correctly recognized or 
rejected. 
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Figure 2. The Recognition Rate vs Threshold: PCA (Left) and Fisherfaces (Right) 

 
Open World (PCA and Fisherfaces) Face Recognition 
The data was randomly chosen, the same experiment was run 100 times, and Fig. 2 shows 
the mean recognition rates for different thresholds.  The distance measurements for PCA 
and Fisherfaces, which yield the best results, are Mahalanobis + L2 and cosine, 
respectively. Fig. 2 shows that the best recognition rate for PCA is 77% if the threshold 

Open World {PCA, Fisherfaces} Algorithm 

for  i = 1 to m 
Find the maximum intra-within-distance and minimum inter-between-distance  

end for 
Calculate the mean and standard deviation for all maximum intra-distances and minimum 
inter-distances: meanintra, meaninter, stdevintra and stdevinter 
Calculate meanintra + 3* stdevintra as the lower bound of the threshold 
Calculate meaninter - 3* stdevinter as the upper bound of the threshold 
Choose the threshold based on the lower and upper bound 
Calculate the distances of the probe exemplar from all the training exemplars 
Find the minimum distance distmin of the probe exemplar 
If distmin >= threshold, then reject the probe exemplar 
Else predict the class with the minimum distance distmin 



can be chosen correctly, while for Fisherfaces is 91% if the threshold is chosen as its upper 
bound. The standard deviation for the best recognition rate for PCA and Fisherfaces are 
3.7% and 2.4%, respectively. 
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Figure 3. Test p-value distribution of rejection, correct and false recognition using  

PCA with (Mahalanobis + L2) distance (Left) and Fisherfaces with cosine distance (Right) 
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Figure 4. The PSR value histogram: PCA (Left) and Fisherfaces (Right) 

 
TCM-kNN  
The data used are either the (400) PCA or (200) Fisherface components, and k = 1. The 
threshold is computed according to the algorithm described in Sect. 5 based on the training 
exemplars. The p-value distributions shown in Fig.3 indicate that the test PSR values are 
useful for rejection and recognition. Recognition is driven by large PSR values. The best 
recognition rate using PCA components is 87.87% using the Mahalanobis + L1 distance, 
and its standard deviation is 3.0%. The threshold is 6.57 computed from the PSR 
histogram shown in Fig. 4 (left). The best recognition rate using Fisherface components is 
90% using the cosine distance, and its standard deviation is 2.7%. The threshold is 9.20 
computed from the PSR histogram shown in Fig. 4 (right). 

TCM-kNN provides additional information regarding the credibility and confidence in 
the recognition decision taken.  The corresponding 2D distribution for correct and false 



recognition is shown in Fig. 5, where one can see that false recognition, for both the PCA 
and Fisherfaces components, shows up at low values. 

0.6 0.65 0.7 0.75 0.8 0.85
0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence

C
re

di
bi

lit
y

correct recognition
false recognition

 
0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Confidence

C
re

di
bi

lit
y

correct recognition
false recognition

 
Figure 5: Distribution of confidence and Credibility: PCA (left) and Fisherfaces (right). 

7. Conclusions 

We introduced in this paper a new face recognition algorithm suitable for open world face 
recognition.  The feasibility and usefulness of the algorithm has been shown on varying 
illumination and facial expression images drawn from FERET. Furthermore, both 
credibility and confidence measures are provided for both the recognition and rejection 
decisions.  We plan to use those measures for optimal training of the face recognition 
system, such that the composition and size of the training set are determined using active 
rather than random selection 
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