
A Language Based Formalism for Domain Driven Development
Wei Zhao

Computer and Information Sciences, University of Alabama at Birmingham
Birmingham, AL 35294-1170, USA

1-205-934-2213

zhaow@cis.uab.edu

ABSTRACT
The evolution of programming languages (e.g. machine
languages, assembly languages and high level languages) has
been the driving force for the evolution of software development
from the machine-centric to the application-centric. The 4th
generation languages (4GLs), languages defined directly by the
composition of domain features, serve as the language-based
formalism for the emerging Domain Driven Development
paradigm. The 4GLs are defined in Two-Level Grammar++ and
can be compiled into 3GLs using the 4GL compiler framework.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – domain
engineering.

D.3.1 [Programming Languages]: Formal Definitions and
Theory – semantics, syntax.

F.4.2 [Mathematical Logic and Formal Languages]: Grammars
and Other Rewriting Systems – Grammar types.

General Terms
Languages, Theory, Standardization, Reliability.

Keywords
4th Generation Languages, Feature Model, Generative Domain
Model, Two-Level Grammar, Domain Engineering, Application
Engineering, 4Compiler.

1. INTRODUCTION
Domain Driven Development (3D) covers many related research
efforts such as Generative Programming (GP) [2], Product-line
Architecture, Feature-Oriented Programming [1], Domain-
Specific Languages (DSLs) [3], Domain-Specific Modeling [5],
and Model-Driven Architecture (MDA) [4]. The essential goals of
these technologies are 1) moving the development abstraction up
toward the domain, 2) achieving higher automation in software
development, and 3) achieving a higher level of reuse. Although
each individual technology has its suitable and well-defined
theory or technique, what is the common and integrated language
concept that supports the essence of this new development
paradigm? How can we program directly with domain
abstractions?

2. THE 4GL PARADIGM
When the domain maturates, the features are the communication
and definition tool for understanding the common abstraction of
the domain. The anatomy of a feature is a modular encapsulation
of multi-dimensional views: an abstract view at the domain

business level, a constructive view at the architectural pattern
level and a concrete view at the implementation technologies
level. Concrete features are implemented as software components.
By observing that a language definition is a definition of the
composition of language elements (tokens), we are motivated to
use the language theory and techniques to define feature
compositions (domain abstraction). Domain abstraction is
analogous to a definition of a language; a particular feature
composition instance is analogous to a program written in that
language. We call these “domain abstraction languages” 4GLs.

1. The 4GLs have abstract and concrete forms. The abstract
representation is the definition of domain abstraction defined by
Two-Level Grammar++ (TLG++). A 4GL program’s abstract
form is encoded in XML. The concrete form of 4GLs can be one
of the following: a model edited in a modeling language such as
UML or GME [5], an online HTML form, a GUI wizard, a
spreadsheet or simple text. Normally the abstract form can be
generated from the concrete forms by the corresponding tool
support by eliminating tool specifics. The abstract form of 4GL
promotes reuse of domain abstractions across the tools. Historical
4GLs emphasized the concrete form and there was no uniform
definition of 4GLs. Languages such as query languages, report
generators, graphics languages, decision-support languages,
application generators, application languages and specification
languages were categorized as 4GLs [7]. The 4GLs were most
popularized as data-query languages. As 4GLs varied drastically
in form, there was no uniform means to describe the different
syntax and semantics. Our work is focusing on the abstract form
of 4GLs.
2. According to three-dimensional views of domain features, a
4GL program (a feature composition instance) has three-
dimensional views too: semantic, syntactic, and lexical
compositions referred to respectively as the 4GL semantics,
syntax, and lexicality. The composition at each dimension is
defined by that dimension’s feature model. Composition at the
lexical level mainly deals with the interoperation between the
feature lexemes (software components).

3. RELATED WORK
GP provides the notion of a Generative Domain Model (GDM)
that we employed as the result of domain engineering in
4Compiler, a 4GL compiler. However, GP dose not address how
to organize the generated 3GL product into a functioning
architectural organization while accommodating heterogeneous
implementation technologies at the same time, where we claim
our work will contribute. Batory has proposed feature oriented
programming by static stepwise refinement on the base programs
defined by refinement algebra [1], whereas, we are focusing on
the dynamic feature composition defined by grammars.
Composition Language (CL) [6] in Prediction Enabled

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

Component Technology described composition semantics in the
component model level such as latency, safety and availability.
Yet, CL did not address the composition semantics on the level of
business meanings. DSLs offer language notations tailored
towards the specific needs of a particular domain, but they are not
defined directly by the composition of domain features. MDA
focuses on the abstraction level of Meta (M0, M1, M2, M3) [4],
whereas the basic theory of our work is emphasizing the
abstraction level in engineering knowledge (business logic,
architecture and technologies).

4. 4GL DEFINITION IN TLG++
The 4GL semantics and syntax are defined respectively by each
dimension’s feature models. We developed a new language called
TLG++ as an object oriented extension to TLG [10] suitable for
specifying feature models. The term “two-level” comes from the
fact that a set of formal parameters may be defined using a
context-free grammar, with the possible generated strings used as
arguments in predicate functions defined using another context-
free grammar. The second level, the rule of the first level for
testing context sensitivity, has been extensively used in [10] to
define the static semantics along with the language syntax. It has
been proved and illustrated that TLG has Turing computation
power that can be used as a grammatical interpretive model for
dynamic semantics. The integration of syntax and semantics
definition in a single grammatical notation is very convenient for
specifying feature models. The composition syntax of the feature
model is the domain feature organizational structure that is the
functional perspective of the composition. The static semantics
are configuration constraints such as feature attributes,
relationship cardinalities, pre and post condition for the
configurations, interdependencies and temporal concerns. The
dynamic semantics of the composition models the stages of
changes of system properties after the steps of composition, which
has been called Quality-of-Service (QoS) composition [8].
Examples of QoS parameters are turn-around-time at the lexical
composition level and the reliability at the syntactic composition
level. The composition semantics is at the non-functional
perspective of composition. Since both levels of TLG are context-
free grammars, a TLG interpreter reads the feature model
definition (grammatical interpretive model) and generates the
4GL semantics and syntax interpreter automatically by using
parser generator facilities.

5. 4COMPILER—COMPILING THE 4GLS
A 4Compiler that reads a 4GL program (in a concrete form) and
produces a 3GL object code is essentially a product–line
assembler for that particular domain. 4Compiler has two phases.
1) The application development is a process of 4GL compilation.
A 4GL program in a concrete form needs to be converted into the
abstract form. It is first parsed according to semantic composition
(no business logic violation), and secondly parsed according to
syntactic composition (no architectural violation), and then
transformed into an architecture representation with any necessary
architectural instrumentation code generated automatically. Then
the UniFrame Resource Discovery System [9] searches for the
necessary feature implemented in the business domain search
space. If there are any incompatibilities in the component models
used in those feature implementations, the system will generate
bridge code based on the knowledge from the technology GDM

and parameters from the feature associated Unified Meta-
component Model (UMM) [9]. 2) For 4GL compilation
development, the domain level engineering phase simulates the
domain development of three-dimensional domains (business
domains, architecture domains and technology domains), which
results in business GDM, architecture GDM and technology
GDM, providing the 4GL semantic, syntactic and lexical
definition feature model respectively. Concrete feature
implementations are provided by designated programmers
facilitated with MDA in business domains. Domain level
development provides the meta-data and reusable assets for the
application engineering.

6. CONCLUSIONS
Our prototyping starts from lexical composition. We have
designed a framework so that the bridge code can be
automatically and dynamically generated for interoperation
between any pair of component models. The proposed Ph.D.
research should be validated through a complete example that
includes: a formal feature model definition in the Banking
business domain; formal feature model definition in architectural
pattern domain; and the ability to compile a sample 4GL program
written in GME using the proposed methods. This research is
supported by the U. S. Office of Naval Research under the award
number N00014-01-1-0746.

7. REFERENCES
[1] D. Batory, J. N. Sarvela, A. Rauschmayer, “Scaling Step-

Wise Refinement”, Proc. of 25th International Conference on
Software Engineering, pp.187-197, 2003.

[2] K. Czarnecki, U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.

[3] A. v. Deursen, P. Klint, J. Visser, “Domain-Specific
Languages: An Annotated Bibliography”, CWI, 2000,
http://homepages.cwi.nl/~arie/papers/dslbib/#foot85

[4] D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing. Wiley Publishing, Inc., 2003.

[5] GME User’s Manual. The Institute for Software Integrated
Systems, Vanderbilt University.
http://www.isis.vanderbilt.edu/Projects/gme/Doc.html

[6] J. Ivers, N. Sinha, K. Wallnau, “A Basis for Composition
Language CL”, Technical Note, CMU/SEI-2002-TN-026,
2002.

[7] James Martin, Fourth Generation Languages, Volume 1:
Principles. Pretice-Hall, Inc., 1985.

[8] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C.
Burt, “A Quality of Service-Based Framework for Creating
Distributed Heterogeneous Software Components,”
Concurrency and Computation: Practice and Experience
Vol. 14, No. 2, pp. 1009-1034, 2002.

[9] UniFrame Project, http://www.cs.iupui.edu/uniFrame/
[10] A. van Wijngaarden, “Revised Report on the Algorithmic

Language ALGOL 68.” Acta Informatica, Vol. 5, pp. 1-236,
1974

http://homepages.cwi.nl/~arie/papers/dslbib/
http://www.isis.vanderbilt.edu/Projects/gme/Doc.html
http://www.cs.iupui.edu/uniFrame/

	INTRODUCTION
	THE 4GL PARADIGM
	RELATED WORK
	4GL DEFINITION IN TLG++
	4COMPILER—COMPILING THE 4GLS
	CONCLUSIONS
	REFERENCES

