
This article has been accepted for inclusion in a future issue.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS 1

SwinDeW—A p2p-Based Decentralized
Workflow Management System

Jun Yan, Yun Yang, Member, IEEE, and Gitesh K. Raikundalia

Abstract—Workflow technology undoubtedly has been one of
the most important domains of interest over the past decades,
from both research and practice perspectives. However, problems
such as potential poor performance, lack of reliability, limited
scalability, insufficient user support, and unsatisfactory system
openness are largely ignored. This research reveals that these
problems are mainly caused by the mismatch between applica-
tion nature, i.e., distributed, and system design, i.e., centralized
management. Therefore, conventional approaches based on the
client–server architecture have not addressed them properly so
far. The authors abandon the dominating client–server archi-
tecture in supporting workflow because of its inherent limita-
tions. Instead, the peer-to-peer infrastructure is used to provide
genuinely decentralized workflow support, which removes the
centralized data repository and control engine from the system.
Consequently, both data and control are distributed so that work-
flow functions are fulfilled through the direct communication and
coordination among the relevant peers. With the support of this
approach, performance bottlenecks are likely to be eliminated
while increased resilience to failure, enhanced scalability, and
better user support are likely to be achieved. Moreover, this ap-
proach also provides a more open framework for service-oriented
workflow over the Internet. This paper presents the authors’
innovative decentralized workflow system design. The paper also
covers the corresponding mechanisms for system functions and the
Swinburne Decentralized Workflow prototype, which implements
and demonstrates this design and functions.

Index Terms—Coordination, decentralization, peer-to-peer
(p2p), workflow management.

I. INTRODUCTION

WORKFLOWS automate business procedures for passing
documents, information, or tasks from one participant

to another, according to a defined set of rules. During the past
two decades, the workflow undoubtedly has been one of the
most important domains of interest. A number of conferences,
workshops, and symposia have been organized for researchers
to discuss a wide range of topics in the workflow area and
numerous contributions have been published (e.g., [1], [12],
[13], [17]). At the same time, empirical workflow practice is

Manuscript received May 6, 2004; revised November 15, 2004 and March
20, 2005. This work was supported in part by the Swinburne Vice Chancellor’s
Strategic Research Initiative under Grant 2002–2004. This paper was recom-
mended by Associate Editor Rao.

J. Yan is with the School of Information Technology and Computer Science,
University of Wollongong, Wollongong, NSW 2522, Australia (e-mail: jyan@
uow.edu.au).

Y. Yang is with the Faculty of Information and Communication Technolo-
gies, Swinburne University of Technology, Hawthorn, Melbourne, Vic. 3122,
Australia (e-mail: yyang@swin.edu.au).

G. K. Raikundalia is with the School of Computer Science and Mathe-
matics, Victoria University, Melbourne, Vic. 8001, Australia (e-mail: gitesh.
raikundalia@vu.edu.au).

Digital Object Identifier 10.1109/TSMCA.2005.855789

also thriving. A vast variety of commercial workflow manage-
ment systems (WfMSs) are available, such as ActionWorkflow
(Action Technologies), FlowMark (IBM), Staffware (Staffware),
InConcert (TIBCO), FileNet Ensemble (FileNet), and so on.
It is observed that organizations are increasingly using work-
flow systems for supporting their business. This is because
the deployment of workflow may result in greater efficiency,
better process control, improved worker productivity, enhanced
flexibility, and process improvement.

Although workflow research and practice have reached a
certain degree of maturity, some limitations of the existing
approaches have been recognized. The state-of-the-art in work-
flow management has so far been determined by functional
aspects provided in workflow systems. Issues such as perfor-
mance, reliability, scalability, user support, and system open-
ness are hardly ever considered in the development of existing
workflow systems. Thus, conventional workflow systems have
exhibited common weaknesses such as poor performance, lack
of reliability, limited scalability, user restriction, and unsatisfac-
tory system openness [4], [14], [32]. The authors argue in this
paper that these weaknesses mainly result from the architectural
limitations of conventional workflow systems. To understand
this, it is necessary to identify the gap between workflow fea-
tures and the existing solutions. On one hand, given the nature
of the application environment and the technology involved,
workflow applications are inherently distributed, or even de-
centralized [3], [31]. On the other hand, almost all the current
workflow systems use the dominating client–server architec-
ture, which provides centralized coordination and control. The
popular adoption of client–server technology for workflow sys-
tems is understandable. As a proven technology, client–server
technology is able to satisfy functional aspects of workflow-like
process management and coordination. Moreover, client–server
technology also offers benefits such as thin clients, centralized
monitoring and auditing, simple synchronization mechanisms,
and ease of design and implementation for workflow systems.
These benefits have been naturally exploited to support work-
flows in traditional application domains like office and banking
environments since the advent of the workflow technology.
However, because of its inherent feature, i.e., centralized man-
agement, client–server technology is not the ideal support-
ing technology for distributed workflows in some application
domains, because it encounters some difficulties to satisfy non-
functional aspects of workflow-like performance and scalabil-
ity, as detailed in Section II. The mismatch between application
nature, i.e., distributed, and system design, i.e., centralized
management, may result in serious problems as pointed out
above. Current research based on client–server either addresses

1083-4427/$20.00 © 2005 IEEE

This article has been accepted for inclusion in a future issue.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

these problems partially, or inevitably increases the complexity
of the already sophisticated workflow systems.

This paper reports distinct research addressing the above
problems rudimentally from an architectural perspective. In
this paper, an innovative, decentralized workflow system called
Swinburne Decentralized Workflow (SwinDeW) is proposed,
which is based on the peer-to-peer (p2p) infrastructure [2].
Briefly, this new paradigm changes the workflow system design
fundamentally by using p2p rather than the client–server archi-
tecture, which differentiates it largely from the previous efforts
addressing these problems. This research first presents a dis-
tinctive workflow system design, which has no need of central-
ized servers and, hence, removes the servers—the main causes
of the above problems—from the system. Then the corre-
sponding mechanisms supporting both build-time and run-time
workflow functions are given. In addition, a prototype is also
contributed for demonstration and proof-of-concept purposes.

The rest of this paper is organized as follows. Section II
illustrates further the motivations of the research and analyzes
the system requirements. Section III presents the system design
that combines workflow technology with p2p. Section IV then
explains approaches to providing system functions in a decen-
tralized environment. After that, Sections V and VI present
a JXTA-based prototype implementation and a case study,
respectively. Section VII introduces major related work and
discusses the pros and cons of the presented approach. Finally,
Section VIII concludes this paper and outlines the authors’
future work.

II. MOTIVATIONS AND REQUIREMENTS ANALYSIS

Workflows are normally managed by a WfMS, which con-
sists of software components to create, direct, and monitor
the execution of workflows. A WfMS provides support in
two key areas: build-time and run-time functions. Build-time
functions deal with the modeling, representation, and storage of
processes. Run-time functions handle the execution of a process
instance, including the procedure of process instantiation, work
assignment, and task navigation. These functions always in-
volve a large number of physically dispersed participants. In
a conventional client–server-based workflow system, these dis-
persed participants interact with a centralized data repository
(DR) and a centralized workflow engine with assistance of
client applications, requesting data and commands, respec-
tively. Almost all the workflow functions are, thus, carried out
on the server side in a centralized manner. Unfortunately, such
an approach has encountered many problems as follows [3]–[5],
[12], [23], [26].

1) The client–server architecture provides centralized work-
flow coordination while the computing potential at the
client side is barely used. Workflow systems based on
such an architecture are heavyweight. In application
domains where many workflow instances need to be
executed in parallel, the centralized server (workflow
server) may be overloaded with heavy computation and
intense communication when the system load increases,
thereby becoming a potential bottleneck. Thus, system
performance can be degraded seriously in such domains.

2) Systems built on top of the client–server architecture are
normally vulnerable to server failures. The centralized
server is normally viewed as a single point of failure in
the system. The malfunction of the server may bring the
whole system down. Again, this deficiency is more evi-
dent in application domains where the workflow server is
required to manage many workflow instances. Although
the primary–secondary server approach, for example,
may improve reliability, it always requires sophisticated
implementation.

3) Limited scalability of the client–server architecture pre-
vents WfMSs based on it from coping with the ever-
changing workflow environment. It also raises difficulties
in system configuration, as any change to the system,
e.g., joining of new participants, requires modifying and
updating the centralized workflow server, which is very
inconvenient and inefficient. Thus, such WfMSs are es-
pecially inapplicable in application domains where work-
flow participants are required to join and leave frequently.

4) From a user support point of view, workflow partici-
pants are largely restricted, rather than well supported.
An essential and critical element of any workflow sys-
tem is empowering participants to maintain autonomy
and control. However, workflow participants in a client–
server-based workflow system are solely controlled by
centralized servers. A serious problem that occurs is that
a vast number of participants who work on the “thin
client side” may not be able to demonstrate their control,
decision-making, and problem-solving abilities.

5) The client–server architecture is not suitable for
service-oriented workflow [23], which involves service
integration and service composition for flexible and short-
running workflows. This is because the client–server
architecture is too closed to facilitate external (Web)
services available on the Internet. Thus, it is better to have
an open model that allows external services to be used.

Based on the above discussion, the authors argue that a
centralized workflow system is not ideal for supporting distrib-
uted workflows, especially in some application domains. The
distributed nature of workflows needs to be reflected better by
introducing a decentralized workflow framework. To design a
decentralized workflow system, the centralized server is ex-
pected to be ruled out while the services provided by the cen-
tralized database and workflow engine should be retained. To
achieve this, a decentralized workflow system should: 1) adopt
a loosely coupled structure, which does not imply the presence
of a centralized DR for data storage, or a centralized workflow
engine for coordination; 2) store data that are traditionally
stored in a centralized database in a decentralized way so that
they can be accessed by relevant sites in the system; 3) migrate
services that are traditionally performed by a workflow engine
to other machines in the system; 4) locate the service providers
in a way that the traffic (requests and responses) could be
guided to appropriate machines automatically; 5) enable a ser-
vice seeker to communicate with a service provider directly, and
vice versa; and 6) accommodate service-oriented applications,
which is the trend for application systems including WfMSs.

This article has been accepted for inclusion in a future issue.

YAN et al.: SwinDeW—p2p-BASED DECENTRALIZED WfMS 3

Fig. 1. Decentralized system architecture of SwinDeW.

There are fundamental differences between a client–server-
based workflow system and a decentralized workflow system in
terms of the system architecture and communication model. To
meet the above requirements, a workflow system needs to be
restructured and redesigned carefully. The corresponding ap-
proaches for supporting both build-time and run-time functions
need to be reexamined.

III. SYSTEM DESIGN

As analyzed in Section II, on one hand, the client–server ar-
chitecture has placed some limitations on reflecting workflow’s
distributed nature in some application domains. Thus, the de-
centralized workflow system deserves careful investigation. On
the other hand, there is a revolution underway that represents a
different computing model. This revolution is being sparked by
the technology known as p2p computing, which is an extension
and complement to the traditional client–server model and is
more suitable to facilitate contemporary service-oriented envi-
ronments. p2p can be simply defined as the sharing of computer
resources and services by direct exchange. Technically, p2p
computing eliminates the risk of single-source bottleneck and
failure, enables better scalability, and provides load balance in
large organizations. Besides these, much of the wide appeal
of p2p is due to social factors [2]. Since every peer in a p2p
system is autonomous, ordinary participants can always play
more active roles and enjoy the ability to bypass centralized
control. In addition, p2p computing technology provides a
collaborative open framework for service-oriented applications
such as Web services. It is observed that p2p is driving a major
shift in the area of genuinely distributed computing. Success
stories such as Gnutella (http://gnutella.wego.com/), Freenet
(http://freenet.sourceforge.com/), and ICQ (http://www.icq.
com/) have shown the practical applicability and public demand
for such systems.

Very recently, p2p-based workflow systems have been recog-
nized as one of the most strategic future directions for work-
flow research [19]. Combining concepts from workflow and
p2p, the authors have designed SwinDeW as a special p2p
system, which provides workflow management support in a
truly decentralized way. SwinDeW adopts a flat, flexible, and
loosely coupled structure with an intentional absence of both
a centralized DR for data storage and a centralized control
engine for coordination [26]. Fig. 1 illustrates SwinDeW at

a very high level. In brief, the system is defined as four
layers. The top layer is the application layer, which defines
application-related functions to fulfil workflows. Workflow
Participant Software (WfPS) is an application that provides
interfaces to interact with a workflow participant and other
WfPS, requesting services and responding to requests. Core
services of the workflow system are provided at the service
layer, which include the peer management service, the process
definition service, the process enactment service, and the
monitoring and administration service. The peer management
service configures and manages peers in the system, as dis-
cussed later in this section. The process definition service pro-
vides support for workflow build-time functions, as detailed in
Section IV-A The process enactment service provides services
for workflow run-time functions, as detailed in Sections IV-B
and IV-C. The data layer consists of distributed DRs that
store workflow-related information. Finally, the monitoring
and administration service provides supervisory capabilities
and status monitoring, which are beyond the scope of this
paper and will be addressed elsewhere. At the bottom, the
communication layer provides support like data transfer and
routing to facilitate the direct communication among work-
flow participants. Since this paper focuses on the problems
of workflow instead of p2p, the details of communication
protocols and routing mechanisms are beyond the scope of
this paper.

A WfPS and a set of DRs in Fig. 1 form the basic working
entity in SwinDeW, which is known as a peer. Each peer
resides on a physical machine, enabling direct communication
with other peers through the communication layer in Fig. 1,
in order to carry out the workflow. In most cases, a peer is a
self-managing entity that is associated with and operates on
behalf of a workflow participant. Normally, a peer is capable
of performing some functions independently. For example, a
peer could facilitate the associated participant to carry out an
individual task independently. At the same time, peers are able
to offer certain abilities to other peers and collaborate with one
another to provide the core services defined at the service layer
in Fig. 1. Again, this collaboration is achieved through direct
communication between peers. For instance, a peer could pass
documents, artefacts, and control information to another peer
directly in a way that is governed by rules, in order to provide
the process enactment service. In this regard, a peer is very
similar to a service.

This article has been accepted for inclusion in a future issue.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 2. Structure of a peer in SwinDeW.

From the functional perspective, the WfPS of a peer consists
of three software components—user component, task compo-
nent, and flow component. At the same time, the set of DRs
of a peer includes four DRs—peer repository, resource and
tool repository, task repository, and process repository. These
software components and DRs represent a number of workflow
features and facets in a precise and comprehensive way.

1) WfPS components
a) A user component of a peer is a “bridge” between

the associated workflow participant and the workflow
environment. On one hand, a user component provides
procedures and operations to the associated participant
by delivering essential information of the workflow.
On the other hand, a user component represents the
roles of the associated participant in the system in
terms of capabilities.

b) A task component of a peer is in charge of the execu-
tion of tasks conducted by the associated participant.
In detail, a task component determines the time when
a particular task starts and monitors task execution,
administrates resources for the tasks, invokes tools
when necessary, and terminates the thread after the
work is done.

c) A flow component of a peer helps to fit an individual
task into the workflow. The main purpose of a flow
component is to deal with data dependency and con-
trol dependency among tasks by handling incoming
and outgoing messages. In this way, the workflow
execution can be coordinated step-by-step as prede-
fined. A flow component manages a process repos-
itory that stores the process definition distributed to
this peer.

2) DRs
a) A peer repository stores an organizational model

that represents organizational entities and their re-
lationships. This repository represents a user’s view
of the completely defined organizational model. In
SwinDeW, a peer repository is managed by a user
component and realized in a directory.

b) A resource and tool repository stores part of the re-
source model, which represents nonhuman resources
such as machines, external hardware, tools, and so on.
This repository is managed by the task component,
as a task instance may require resources to support
process execution.

c) A task repository stores a set of active task instances,
which represent the work allocated to the associated
workflow participant in the context of process in-
stances. The execution of these task instances is co-
governed by the task component and flow component.

d) A process repository that stores a partial process def-
inition distributed to this peer is managed by the flow
component. The process definition stored in a peer’s
process repository is actually a definition of a set
of tasks, which provides the templates for the work
to be done. The mechanism for process definition
distribution is addressed in the next section.

Fig. 2 depicts the internal structure of a peer in SwinDeW
and the interactions among the WfPS components and DRs as
described above. Compared with the client–server architecture,
it is clear that a peer in SwinDeW plays the role as a client as
well as a server. A peer plays part of the role as a server in
two areas. First, a peer helps to manage part of data such as
organizational information and process definition. Second, the
three components interact with one another internally and ex-
ternally to provide run-time coordination support for execution
of workflow instances.

The other issue that needs to be addressed is how these
peers are organized so that a peer can locate other cooper-
ative peers when necessary. SwinDeW utilizes a capability-
based addressing mechanism by introducing a term called
virtual community to group peers logically. A capability in
SwinDeW is an object encapsulating rules with a role in
workflow processes, which include the responsibility of this
role, usage scenarios of this role, application-related constraints
of each scenario (input, allowable operations, output, etc.),
and so on. Capabilities are normally constructed by manual
management based on domain knowledge. Before various peers

This article has been accepted for inclusion in a future issue.

YAN et al.: SwinDeW—p2p-BASED DECENTRALIZED WfMS 5

are started up, their capabilities are normally configured by
management in accordance with peers’ role profiles. A capabil-
ity’s description is internal only to peers that have this capability
for purposes like training. However, for system operation, each
capability has a unique name that is referred to in process
representation and in peer coordination. Based on the concept
of capability, a virtual community, which is characterized by
a certain capability, denotes a cluster of peers associated with
participants who demonstrate this capability. Virtual commu-
nities are also created, sometimes manually, at the system
initialization stage when peers are started up. Later on, virtual
communities are maintained automatically in a dynamic envi-
ronment. New peers search for and join corresponding commu-
nities automatically when they join the system, as detailed in
Section IV-A. Given this logical gathering of peers, peers form
an overlay network layered on top of the existing p2p network
infrastructure.

Peers with the same capability are gathered, because the
associated participants normally have similar interests. Natu-
rally, peers in the same community know about each other. If
a participant has more than one capability, the associated peer
is involved in multiple virtual communities. In this case, these
multiple communities are interconnected through the shared
member. In addition, some external means such as organi-
zational management and organizational configuration can be
used to ensure that no community in the system is isolated
although this situation is normally rare. In summary, any two
peers in the same community are able to locate each other.
Two peers in two different communities can locate each other
if there is a peer involved in both communities. Even if there is
an absence of a particular peer in two communities, two peers
in two different communities can still find a path towards each
other via a set of third-party peers. Therefore, an automatic peer
discovery service can be designed, which is a key service of
the peer management service and is used to locate collaborative
peers whenever a peer needs to communicate with others.
Generally speaking, the peer discovery service is based on
capability-based addressing. In detail, each discovery request
carries a capability attribute and requests the location of at least
one available peer with this capability. First, a peer will try to
resolve a discovery request locally by querying its own peer
repository. If the request can be satisfied, that is, the requested
peer is a known peer stored in the local peer repository, it
is done. Otherwise, the request is routed to the peers in its
peer repository, known as neighbor peers, for resolution. In
turn, neighbor peers may further route the request to their
own neighbor peers if they are unable to resolve the request.
This procedure is repeated until the destination information is
obtained and returned to the requester. Using this service, a
peer in the system is always capable of locating other peers
with certain capabilities. Various types of messages can be
transferred directly between peers thereafter.

IV. SYSTEM FUNCTIONS

Regarding system functions in SwinDeW, both build-time
and run-time functions are supported in a decentralized manner.
Especially, aspects of process definition, process instantiation,

and instance execution are emphasized in this section. The
mechanisms to carry out these functions in a decentralized
manner are presented.

A. Process Definition

The process definition service in Fig. 1 regards workflow
representation and storage in SwinDeW. A workflow definition,
which consists of a network of tasks and their relationships, can
be represented using different definition languages and stored
in different data format. Workflow processes in SwinDeW
are defined by a definition peer, which is associated with an
authorized participant such as a process engineer. It is not
the purpose of the authors to invent yet another new process
modeling approach. However, the storage of a process needs to
be addressed due to its uniqueness. Since there is an intentional
absence of a centralized DR in SwinDeW, as mentioned in
Section III, process definition data should be stored in the
process repositories of various peers instead. It is obvious that
replicating the complete workflow definition to each peer is
resource consuming and error prone for consistency mainte-
nance. More importantly, an individual peer normally needs
to be concerned with only part of the process. With respect to
this philosophy, SwinDeW presents a “know what you should
know” policy [27], which allows a peer to obtain only essential
knowledge of a process. According to this policy, a workflow is
partitioned into individual tasks after it is modeled completely,
and definition of individual tasks is then distributed to appro-
priate peers for storage.

A task partition, which is a notation of a task extracted
from a workflow, consists of the information about an indi-
vidual task in the context of a process. Formally, a task par-
tition is represented by a six-tuple task notation T (Process-id;
Task-id;Cpre;Cpost; Capability; Specifics).

1) Process-id: Process identifier, which identifies a workflow
uniquely.

2) Task-id: Task identifier, which identifies a task uniquely
in the context of a workflow.

3) Cpre: Precondition (taskset1, logic); the relationships
between the task and its predecessors where
a) taskset1: (((taskid1, capability1, input-data1) |Cpre, |

null), ((taskid2, capability2, input-data2) |Cpre, |
null)). Taskset1 represents a set of preceding tasks
with corresponding input data.

b) logic: (straight, and, or). By combining either an in-
coming or an outgoing flow with logic, a variety of
types of logic operators are produced. The operators
produced are straight in, straight out, and out, or
out, and in, or in, which represent various routing
structures like sequence, branching, and convergence.

4) Cpost: Postcondition (taskset2, logic); the relationships
between the task and its successors where
a) taskset2: (((taskid1, capability1, output-data1)

|Cpost, | null), ((taskid2, capabiltity2, output-data2)
|Cpost, | null)). Taskset2 represents a set of successive
tasks with corresponding output data.

5) Capability: The participant capability that is necessary to
fulfill the task.

This article has been accepted for inclusion in a future issue.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

6) Specifics: The specifics about the task, which may include
other information about how to execute this task such as
resources and tools.

Regardless of the definition language and database actually
used, a workflow definition can always be converted into a set
of task partitions, each of which is represented by this notation.
After that, the individual tasks are distributed to appropriate
peers one by one, according to a capability matching. That is,
a task requiring a capability to support its execution will be
distributed to all the peers in a community characterized by
this capability. These peers need to know the detail of this task,
because they are associated with participants who are capable
of carrying out the instances of this task later. The procedure of
task distribution may consist of three steps. First, the definition
peer invokes the peer discovery service automatically to dis-
cover the location of a peer with the required capability. Second,
the definition peer transfers the full definition of the task to the
discovered peer through a point-to-point connection. Finally,
the discovered peer propagates the task definition within the
community so that all the peers with the required capability
insert a new record for this task definition into their process
repositories. Using this mechanism, a workflow definition is
finally stored in a decentralized fashion.

The above discussion is based on an assumption that the
workflow management system is static where the peers re-
main unchanged. However, a workflow management system
is always considered dynamic if it takes account of workflow
participants’ behavior. A workflow participant may join and
leave the system sometimes, or a workflow participant may be
trained or promoted to obtain extra capabilities. SwinDeW’s
open framework eases the support for participants’ dynamic
behavior and offers additional scalability. As discussed in
Section III, the information about participating peers is stored
in the distributed peer repositories. Apparently, the alteration
of the participating peers only occurs locally and influences
the small scope of the system. Adjusting peer repositories of
relevant peers locally can reflect the alteration of the partici-
pating peers. Therefore, this perspective of system scalability
of SwinDeW is enhanced. In particular, various actions are
taken to support a peer’s dynamism when the following three
situations occur:

1) workflow participant joins the system;
2) workflow participant leaves the system;
3) workflow participant’s capabilities are changed.

When a new workflow participant joins the system, the
associated peer actually joins the corresponding virtual com-
munities according to the user’s capabilities. A join request
can be taken by any existing peer, which will invoke the peer
discovery service to find existing peers in the corresponding
communities. The existing community members then update
their peer repositories and pass the related process definition
data to the new peer under the request. Thus, the new peer
gains all essential information about the potential work to be
done and is capable of taking part in the workflow system
immediately. An existing workflow participant may leave the
system either explicitly or implicitly. In the former case, the
associated peer informs the system of its departure by sending

a special message to all the peers in its peer repository. Cor-
respondingly, the relevant peers update their peer repositories
when receiving this message. In the latter case, the associated
peer leaves the system quietly, for example, a peer leaves the
system accidentally when an exception occurs. To keep the
system informed of this situation, another special message, say
peer availability status, is propagated periodically, indicating
that the peer issued this message is active. If a peer has not
been heard from for a period of time, it is considered an inactive
peer and will be removed from the system automatically. On
the last occasion, i.e., the capabilities of a peer are changed,
the peer may join and leave some specific communities ac-
cording to the capability alteration. At that time, this peer
may request some new data and delete some irrelevant data
accordingly.

B. Process Instantiation

The process enactment service in Fig. 1 provides support for
run-time functions of SwinDeW, which consists of two logical
steps, process instantiation and instance execution. These two
steps need to be carried out in sequence to create and execute
workflow instances, respectively. A workflow instance, which
consists of a network of task instances, represents one individ-
ual enactment of the workflow defined at build time. Similarly,
each task instance in a process instance represents a single
invocation of a task.

The procedure of process instantiation creates various task
instances and also assigns task instances to workflow partic-
ipants for execution. In a client–server-based workflow man-
agement system, various task instances required are created on
the server side and presented to the participants via a work list.
However, in a decentralized workflow environment, a process
instance cannot and should not be created at a single site.
The mechanism discussed in this paper allows various peers
to coordinate with one another in order to create relevant task
instances at different sites. In this way, task instances are
created one by one from the starting task to the termination
task [28]. The procedure of process instantiation can be sum-
marized as follows.

1) A starting task instance is created by a peer under man-
agement, sometimes manually, or as a response to a
coming event, for example, receiving an application in
an application processing workflow system. This peer is
known as the current instantiation peer.

2) The current instantiation peer looks for other peers to
instantiate the direct succeeding tasks automatically with
the mechanism addressed later in this section. The in-
stantiation of a task instance is considered complete only
after either all of its direct succeeding task instances
are created or it has no succeeding tasks at all. The
information about the succeeding tasks is stored in the
peer’s process repository.

3) If the succeeding tasks have their own succeeding tasks,
the selected peers act as the current instantiation peer and
repeat step 2), one by one.

4) If there is no current instantiation peer, process instantia-
tion is completed.

This article has been accepted for inclusion in a future issue.

YAN et al.: SwinDeW—p2p-BASED DECENTRALIZED WfMS 7

From the above description, it is clear that the procedure
of process instantiation in SwinDeW is the procedure of work
allocation as well. The work represented by a task instance is
assigned to the participant associated with the peer creating
this task instance. The distinction of this mechanism is to
allow various peers to create required task instances from the
starting task to the termination task. The outcome of the pro-
cess instantiation is a network of relevant peers on behalf
of relevant participants performing various tasks. Again, the
instance data are stored in a decentralized manner. After its
creation, a task instance is inserted into the corresponding task
repository, waiting for scheduling.

The key step in this process instantiation is to create task
instances in order. There are three types of structures to control
the order in which the tasks are executed, i.e., sequential,
branching, and convergent structures. Correspondingly, there
are different procedures for peers to instantiate tasks as follows.

The sequential structure denotes the procedure where tasks
are executed in order. In a sequential relationship, a task only
has one direct succeeding task. Assume that an instance of
task Ti with definition T (Pi; Ti; Cpre-i; ((Tj , Capabilityj ,
outputj), straight); Capabilityi; Specificsi) is created by peer
Ni. Ni then activates the peer discovery service to search for
a peer that has Capabilityj . After Nk is returned to Ni as the
result of the peer discovery service, Ni sends an instantiation
request to Nk. Subsequently, Nk broadcasts the request in the
corresponding virtual community to let other peers know about
this work. Capable peers, i.e., those peers that have the required
capability and are available for this task instance, negotiate
automatically to decide who will carry out this task instance
eventually, as discussed later in this section. Finally, Nj , the
peer selected to accept Tj , creates an instance of Tj , sends a
response to Ni, and restarts the instantiation process to find
successors of itself. All the communication in this procedure is
through direct message exchange between peers. Each message
is structured in XML format and can be interpreted properly by
the WfPS of the peer that receives it.

The branching structure denotes the procedure of splitting a
task thread into multiple task threads, which are executed in
parallel, or the procedure of making a decision about which
branches to take when encountering multiple choices. In this
case, task Ti(Pi; Ti; Cpre-i; Cpost-i; Capabilityi; Specificsi)
has more than one succeeding task. During the instantiation
stage, each succeeding task should be instantiated. If peer
Ni has created an instance of Ti, it instantiates each task in
the Cpost-i of Ti with the mechanism described above for
sequential structure.

The convergent structure denotes the procedure of converg-
ing some parallel task threads into a point and triggering the
execution of a single task thereafter, either synchronously or
asynchronously. In this case, task Ti(Pi; Ti; Cpre-i; Cpost-i;
Capabilityi; Specificsi) has more than one direct preceding
task. Each of Ti’s direct preceding tasks requests the instantia-
tion of Ti independently. To deal with this situation, the peers
in the virtual community postpone their negotiation to the time
when all the requests from the preceding peers are received.
Then all the requests are considered and balanced to reach an
agreement upon which peer accepts the requests to create an

instance of Ti. Again, the selected peer restarts the instantiation
procedure to continue the instantiation of the next task(s).

Note that work allocation in this approach is negotiation
based, especially when more than one available peer can accept
the task instance. It is up to the automatic negotiation among
relevant peers to determine the allocation of the task instance.
The main goals of this dynamic allocation are to balance
workload and optimize system performance. SwinDeW simply
uses workload as a measurement of system performance and
always assigns a task instance to a peer with the least load at
that time. It is believed that balancing the workload may achieve
better performance [28].

In general, the first peer receiving the task instantiation
request, which is discovered by the discovery service, is respon-
sible for the negotiation process. All the other capable peers
calculate their workload independently and advise the first peer
upon receipt of the instantiation request. Then the first peer
picks out the right peer based on the allocation policy, which
will be described next in this section, and asks the selected
peer to confirm this allocation. Since the first peer that has been
discovered may be different for different instantiation requests,
all the peers in the community are able to exhibit the same
functionality in managing the negotiation process.

To optimize the system locally, all the capable peers are
identified first. Then the workload of each available peer i in
a time period such as one day is calculated using the formula
wi =

∑
tk, where tk is the workload of task instance k that has

been assigned to peer i in this time period. The task instance is
eventually assigned to the peer with minimum w. The objective
of this algorithm is to bring the workload into proportion among
the available peers on the basis of the current condition. The
coexistence of idle peers with overwrought peers could be
avoided on a local scale.

However, it often happens that some key tasks require some
capabilities of high-level skills that only belong to a small
number of participants such as managers. These more capable
people usually can perform some lower-level skilled tasks as
well. If the selection policy is based on individual workload
balance only, these people may be busy with performing low-
level skilled tasks at a time. In this case, when a key task
arises, it could be the case that no peer associated with these
participants can accept it, because all of them are engaged.
Thus, the whole process instance is blocked and the global
performance is degraded.

To optimize system performance globally, the performance
bottleneck of the whole system should be identified and re-
lieved. Given a workflow system with n virtual communities,
the task instances are assigned to different communities ac-
cording to the capability attributes, and are taken by various
members involved in the communities. Thus, the community
with the heaviest workload determines the overall system per-
formance. To a particular community i with mi members, the
mean workload of this community in the current time period is
wi = (

∑mi

k=1 wk)/mi, where wk is the workload of member k
in the community. Therefore, the community with the heaviest
workload becomes the bottleneck of the system performance,
i.e., in a workflow system with n communities, the global
performance is determined by max(wi, i ∈ (1, n)).

This article has been accepted for inclusion in a future issue.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Based on the above analysis, the following algorithm is de-
signed, which considers the philosophy that for a peer involved
in more than one community, the assignment of a task adds
workload to all the communities in which the peer is involved:

for each available peer j

wj = max
(

wi × mi + w

mi

)

i ∈ {community c | j is involved in c}
assign the task instance to k with minimum wk

where mi is the number of peers in community i and wi is the
current mean workload of community i. Obviously, every time
when a new task instance needs to be created, this algorithm
seeks a peer to accept the instance, which pursues the lowest
max(wi, i ∈ (1, n)), i.e., the optimized performance of the
whole system.

From the system performance point of view, this instantia-
tion process may achieve better system performance as work
is assigned dynamically to balance the load. From the user
support point of view, the work allocation can take human
satisfaction into account. The vast number of ordinary par-
ticipants are allowed to negotiate automatically with the as-
sistance of peers, which, in turn, enables the participants to
play more active roles. The formulas used in this approach
can be easily extended. Participants’ working habits, styles, and
preferences can be regarded as factors influencing the decision
making of work allocation. Extra traffic due to decentralized
process instantiation and negotiation-based work allocation is
inevitable and worthwhile in order to achieve load balancing
and user satisfaction. However, compared with client–server-
based workflow systems, it is very unlikely that this extra traffic
will cause network overload. This claim is justifiable because of
the following reasons. First, messages like instantiation request
and confirmation are also needed in client–server-based work-
flow systems where the server advises the clients with the
work allocation messages and the clients confirm the receipt
of these messages. Second, traffic for negotiation is light,
because peers only exchange a small amount of information-
like workload. Therefore, issues related to possible network
overload can be ignored.

C. Instance Execution

As discussed in Section IV-B, once a process instance is
created, a peer network is also constructed for carrying out this
process instance. Such a process instance is executed under the
management of the workflow system. Various task instances are
scheduled to enact at different sites, step by step. In general,
the execution of a task in workflow depends on the satisfaction
of two conditions, which are: 1) information condition and
2) control condition. The information condition of a task de-
fines the start condition of this task from the data dependency
perspective. In most cases, a workflow task requires some input
data, which are normally the output data of its preceding tasks,
and generates some output data, which are transferred to its
succeeding tasks as their input data. A task can be executed

only after essential input data are available. Correspondingly,
the control condition of a task indicates the start condition of
a task from the control dependency perspective. In this case,
a task can be executed only after some relevant work has
been completed logically. Hence, to schedule the execution of
various task instances in a proper order without the assistance
of a centralized workflow engine, relevant peers performing
various task instances should collaborate with one another [28].

Again, this collaboration is realized through direct message
exchange between peers. There are two kinds of messages
flowing between peers, i.e., information messages and control
messages, which are structured in XML format. The former
messages transfer data related to the process instance to coor-
dinate application data dependency between tasks, according
to the rules defined in the workflow definition. An informa-
tion message normally transfers application data to match the
output parameter of a task instance with the input parameter
of another task instance. Upon receipt of an information mes-
sage, a peer evaluates the information condition of its task
instance. The latter messages, which are emphasized here,
deliver workflow control data to coordinate control dependency
between tasks, again, according to the rules in workflow def-
inition. A control message is a notification from one peer to
another, facilitating the recipient to perform functional opera-
tions. In short, SwinDeW supports the following four types of
control messages.

1) Completion of a task instance: a peer that has just com-
pleted a task instance notifies its successor peers that the
work has been completed successfully.

2) Cancellation of a task instance: a peer that is in charge
of a task instance notifies its successor peers that the task
instance has been cancelled.

3) Reallocation of a task instance: a peer notifies other
relevant peers that a task instance is reallocated to a
different peer.

4) Detection of exception: a peer notifies relevant peers of a
detected exception.

Upon receipt of a control message, a peer may respond ac-
cordingly to manage its own task instance. When a peer receives
a completion notification, it evaluates the control condition of
its task instance. Execution of a task instance can start when
both the information and the control conditions are satisfied.
When a peer receives a cancellation notification, it evaluates
the start condition of its task instance and determines whether
the instance needs to be cancelled. In addition, when a peer
receives a reallocation notification, which normally occurs in
exceptional situations, it updates its successor or predecessor
peers and is ready to interact with new peers. Finally, the
handling of exception detection messages is beyond the scope
of this paper.

In summary, process instance execution is coordinated by
direct communication among the peers performing relevant
task instances, which is lightweight and occurs at a relatively
low cost. A peer receives messages from its predecessor peers
directly, evaluates the information and control conditions of
the task instance independently, starts working when both the
conditions are satisfied, and notifies its successor peers directly

This article has been accepted for inclusion in a future issue.

YAN et al.: SwinDeW—p2p-BASED DECENTRALIZED WfMS 9

Fig. 3. Framework of SwinDeW prototype.

by delivering information messages and control messages after
the task instance is completed. The successor peers repeat
the same procedure until the completion of the whole process
instance.

V. PROTOTYPE IMPLEMENTATION

To demonstrate the key ideas discussed in this paper, a proto-
type based on Sun MicroSystem’s JXTA (http://www.jxta.org)
has been implemented. Project JXTA is an active and progres-
sive project dealing with current p2p problems and providing
an implementation in the JXTA protocol. The project does not
bind itself to one company or one programming language for
interoperability purposes. Since 2001, JXTA has been a popu-
lar open-source p2p framework. For these reasons, SwinDeW
easily places itself on top of the JXTA framework.

The current SwinDeW prototype is written in the Java pro-
gramming language utilizing J2SE version 1.4 API. As shown
in Fig. 3, the prototype takes advantage of the JXTA key
components like the advertisement service, the group service,
the peer service, the pipe service, and the discovery service.
The advertisement service is used to publish contents such as
peers, peer groups, and pipes in the JXTA virtual network.
The group service of JXTA is exploited for virtual community
management. When a new peer is started up, it looks up the
virtual communities labeled by the capabilities it represents
through the advertisement service. If such communities exist,
the new peer joins these communities. Otherwise, the new peer
creates one or more new virtual communities accordingly and
publishes through the advertisement service. The peer service is
central to managing the peers in the JXTA virtual network. Each
peer publishes a network interface through which direct point-
to-point connections can be established between two peers.
The pipe service deals with physical message transfer between
two peers in both point-to-point and propagation modes. The
discovery service of JXTA is used to search for advertisements
in the JXTA virtual network. All the communication relies on
the JXTA messaging protocol and the message that is traded
between peers uses XML format. Thus, the core services of
SwinDeW are realized through the invocation of the JXTA
core services. This invocation is encapsulated in a set of self-
developed JXTA network interfaces, which make the JXTA
implementation transparent to application development.

This prototype consists of a graphic process modeling tool.
For interoperability purposes, the workflow definition lan-
guage used in SwinDeW is the XML process definition lan-
guage (XPDL:http://www.wfmc.org/standards/docs/TC-1025_
10_xpdl_102502.pdf), which is a publicly accepted standard
released by WfMC. The software components within each peer
described in Fig. 2 are implemented. These components invoke
JXTA services to interact with the components of other peers
so that the SwinDeW services depicted in Fig. 1 are offered.

VI. CASE STUDY

In a typical university, the student registration service deals
with the registration concerns of students, which include regis-
tration in courses, change of timetable, withdrawal of courses,
etc. This service is normally well defined and can be viewed
as a flow of tasks that accomplish an objective. Thus, workflow
solutions are well suited in this scenario.

Two characteristics of the student registration service that
need to be addressed properly are illustrated in this case study.
First, the student registration service is fairly distributed. To
provide the requested services, various staff from different units
of the university may be involved. For example, course advisors
approve registration requests, technical staff manage student
computer accounts, treasurers handle payments, and enrolment
officers carry out paper work. These staff are distributed in
terms of physical location and administration. Second, the
student registration service may experience a heavy load from
time to time. Thousands of students, new or current, may lodge
their registration requests just before the deadline. Therefore,
the performance of the registration processing system clearly
is a major concern. The system should be capable of handling
a large amount of requests in a short period of time. With
respect to these two characteristics, SwinDeW is evidently an
applicable system for this type of scenarios, as decentralization
and performance are two of the many advantages of SwinDeW.
Fig. 4 illustrates a possible workflow definition for the student
registration process, which consists of a set of tasks in a cer-
tain order.

For the purpose of simplicity, assume that this process
involves seven workflow participants which are facilitated by
peers P1, P2, P3, P4, P5, P6, and P7, respectively. Of these
seven peers, P1 demonstrates the capability of the enrolment
officer only, P2 demonstrates the capabilities of both the
enrolment officer and the course advisor, P3 demonstrates the
capability of the course advisor only, P4 and P5 demonstrate
the capability of the technical staff, and P6 and P7 demonstrate
the capability of the treasurer. After an initial configuration,
these peers form and join corresponding virtual communities
according to the capabilities that their associated participants
represent, as shown in Fig. 5. At the same time, the system
configures the peer repositories of some peers to ensure all the
virtual communities are somewhat interconnected, represented
by the lines in bold in Fig. 5. During the operation of the
system, new staff members can come and go with the support
of the peer management service, as discussed in this paper.
With support of such virtual communities, the peer discovery
service can be fulfilled. For example, P3 can discover P2 and

This article has been accepted for inclusion in a future issue.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 4. Typical student registration process.

Fig. 5. Virtual communities of peers.

P4, as P2 and P4 are in P3’s peer repository. P3 is also able to
discover P1 and P5, via P2 and P4, respectively. Subsequently,
P3 can discover P6 via P4 and P5, and P7 via P4, P5, and P6.

During build time, this student registration process is
modeled and specified. Then the process definition is divided
into task partitions with the six-tuple task notation presented in
this paper. These task partitions are distributed to various peers
accordingly for storage. For example, task T2 in Fig. 4, which
is represented as T (P -ID; T2-ID; (T1-ID, enrolment officer,
completed RSR form), straight); ((T3-ID, enrolment officer,
approved RSR form), (T7-ID, enrolment officer, rejected RSR
form), or); course advisor; specifics) will be distributed to the
peers associated with the course advisors, i.e., P2 and P3, so
that these participants can carry out the future instances of this
task within the context of the process.

Once a new registration request is received, a new process
instance needs to be created to handle this request. The
procedure of process instantiation creates task instances one by
one, from task T1 for Preexamination to task T7 for File closing.
First, an instantiation request, which may be issued manually
by management or automatically by an external system, is
dispatched to the community of enrolment officers, asking
for the instantiation of the starting task. The peers associated
with the two enrolment officers, i.e., P1 and P2, may negotiate
with each other about who serves this request. The negotiation
can be based on workload balancing so that the peer with less
load, say, P1, creates an instance of T1 for Preexamination to
check the validity and correctness of the coming registration
request. P1 then sends a request to the community of course

advisors, asking for the instantiation of the task for Approval.
Again, P2 and P3 may negotiate with each other to determine
who accepts this request to create an instance of T2. After
that, the selected peer, say P3 starts looking for peers to
instantiate succeeding tasks of T2. This procedure repeats
until none of the created task instances has succeeding task(s).
Eventually, the output of the process instantiation, i.e., a peer
network connecting peers that create various task instances,
is generated to serve this registration request. Later on, these
peers will perform corresponding task instances in the right
order with system support for instance execution. In addition,
when another registration request comes, a second peer network
will be constructed to handle this case. Two peer networks
for two cases may be different as the result of dynamic work
allocation. For example, the task instance for Preexamination
in the second process instance may be created by peer P2.

In SwinDeW, there is an absence of any centralized
coordination for the enactment of process instances. The peers
engaged in the created process instance, i.e., the peers that
instantiate various tasks at the process instantiation stage act
independently to perform task instances. Moreover, the peers
performing various task instances in the created process in-
stance communicate with one another directly by transmitting
information and control messages in order to route work in
the proper sequence. In enacting the process instance created
above, first, P1 can start its work straight away, because the
start condition of the task instance of T1 is satisfied upon the
receipt of the registration request. After the completion of
the instance of T1, P1 notifies its successor peer, i.e., P3, with a
completion message and attaches a completed RSR form to an
information message. Upon the receipt of the message from P1,
P3 is able to evaluate the start condition of the instance of T2

independently. Obviously, this start condition is satisfied after
the receipt of both the information and control (completion)
message. P3 can start its work then. If the registration request
is approved in this instance, a completion notification is sent
to the peer performing the instance of T3 to continue the
execution along this branch. At the same time, a cancellation
notification is sent to the peer performing the instance of
T7 to skip the execution along this branch. Similarly, the

This article has been accepted for inclusion in a future issue.

YAN et al.: SwinDeW—p2p-BASED DECENTRALIZED WfMS 11

subsequent task instances can be executed under the control of
the decentralized instance execution support. As a result, the
whole process instance is executed properly as defined in the
SwinDeW decentralized environment.

Some benefits of SwinDeW can be reflected with this
case study. First, the computing and storage capacities of the
computers involved in this workflow system can be shared to
enhance the system performance. Direct interaction between
peers who perform adjacent tasks would reduce communication
delay and, thus, may achieve better performance. Second,
system robustness is likely to be enhanced, because unavail-
ability of a single peer would normally not bring the whole
system down. For example, when a peer associated with an
enrolment officer becomes unavailable, the work assigned
to this peer can be quickly reassigned to another enrolment
officer for execution. Thus, execution of process instances can
proceed. Third, the system is much more scalable as new staff
members can join the system easily to offer more processing
capacity. Fourth, use of SwinDeW may satisfy staff members
better as staff members are more autonomous and enjoy the
ability to bypass centralized control. Finally, SwinDeW offers
an open framework so that it is possible to incorporate some
external services into this student registration service. For
example, the task for Preexamination could be carried out by
some external education agents who provide services over
the Internet.

Note that statistical results are not collected in this case
study to support the claimed benefit in terms of performance
directly. The research prototype has not been experimented
within real-world student registration, which is the reason why
quantitative results are not yet available. In addition, empirical
performance analysis of WfMSS has not been addressed
satisfactorily so far across the board, even for client–server-
based systems. This makes quantitative comparison difficult,
if not impossible. Furthermore, like Grid computing, the
claimed advantage of SwinDeW in terms of performance would
normally become evident when it is used to support large-scale
and/or computation-intensive applications such as coordination
of a large number of workflow instances simultaneously.

VII. RELATED WORK AND DISCUSSION

Many research efforts have been placed to address problems
discussed in this paper, i.e., poor performance and reliability,
limited scalability, user restrictions, and unsatisfactory system
openness. The importance of associating “workflow manage-
ment” with “distribution” has been emphasized in a lot of
literature [10], [15], [22]. At the same time, some conceptual
approaches have been introduced. Most of the approaches
are still based upon the client–server architecture. To name a
few, the Exotica/FMQM project [3] focuses on distribution,
scalability, and fault tolerance by minimizing the need for
centralized control structures. ADEPT [6] focuses on enterprise
wide workflows and cross-enterprise workflows, and supports
both static and dynamic server assignments. Endeavors [16]
and WorldFlow [18] use hypertext transfer protocol (HTTP)
to provide a coordination mechanism for distributed process
execution and tool integration on the Internet. DartFlow [8]

uses transportable agents as the backbone to control the
execution of process instances. The METEOR workflow man-
agement system [21] provides CORBA+Java-based and Web-
based enactment service for fully distributed scheduling where
tasks are mapped onto task managers. XRL/flower [25] sup-
ports highly dynamic workflow by describing processes at the
instance level. The set of work items are sent to distributed par-
ticipants by the work distribution module and are coordinated
by a Web server and a Petri-net engine. Moreover, there also
exist few approaches based upon p2p computing technology.
For example, Fakas presents a conceptual p2p technology for
dynamic workflow management, which is based on concepts
such as a Web workflow peers directory (WWPD) and Web
workflow peer (WWP) [11]. Using this technology, peers are
proposed to register with the system and offer their services
and resources to other peers. PeCo [9] decentralizes workflow
management using collaborative technologies and concepts
while providing a pluggable framework for integrating business
process applications and human contributors. Matrix [20] de-
livers Grid workflow protocols and workflow language descrip-
tions necessary to build a p2p infrastructure for Grid WfMSs.
This middleware allows applications and services based on
standards such as Web services description language (WSDL)
and simple object access protocol (SOAP) to communicate with
data and other resources in Grid environments.

On one hand, the approaches based on the client–server
architecture are still limited by centralized management. Thus,
they either address the problems partially, or require com-
plicated languages or complex algorithms. In addition, the
remaining centralized services like centralized process instan-
tiation and work assignment make them relatively inflexible
in some application domains. On the other hand, research on
implementing workflow in a p2p environment is still at a very
initial stage. The few existing approaches are mostly conceptual
ideas without concrete system analysis and design. A number of
issues such as decentralized data storage are not addressed by
these approaches. However, the ideas of combining workflow
with p2p are valuable and are taken into consideration when
SwinDeW was designed.

Since 2001, the authors have carried out innovative
and concrete research on p2p-based, decentralized workflow
[26]–[29] with ideas formed much earlier. Problems caused
by centralized management have been analyzed comprehen-
sively and needs for p2p-based workflow have been revealed.
A system framework has been designed carefully based on
which relevant mechanisms for build-time and run-time func-
tions have been discussed broadly. The research reported in
this paper is based on these preliminary work with significant
extension and improvement. The ideas presented before are
naturally integrated in order to provide complete workflow
support. This research views the unsolved problems from a
different perspective, because it is believed that these problems
arise due to the mismatch between system requirements and
system realization. The aim of this research is to address these
issues rudimentally by incorporating workflow with the p2p
technology. The approach presented in this paper is expected
to provide better support for processes in some application do-
mains where performance, reliability, scalability, user support,

This article has been accepted for inclusion in a future issue.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

and system openness have not been addressed satisfactorily
with client–server-based approaches. In summary, the advan-
tages and effectiveness of SwinDeW in such domains are
as follows.

1) SwinDeW may enable better system performance,
because it completely distributes both data and control
to highly utilize the computing and storage capabilities
of the entire enterprise. The decentralized coordination
provided by SwinDeW is regarded as lightweight and
cost effective. In addition, the dynamic work assignment
based on load balancing, which is another distinguishing
feature of SwinDeW, may also contribute to achieving
better system performance.

2) Compared with client–server-based, or partly client–
server-based, approaches, SwinDeW may involve much
less risk where the whole system fails simply because
some individual bottlenecks are overwhelmed by heavy
computation.

3) System scalability may also be enhanced as peers re-
tain a loosely coupled topology. Virtual communities are
dynamic so that workflow participants can come and go.
Changes to the system do not require modifying and
updating the centralized workflow server. New peers can
easily join the system at any time and through any exist-
ing peer with no need to change the settings of a particular
site. The system may, thus, be capable of coping with the
dynamic system size.

4) SwinDeW may loosen restrictions to workflow partici-
pants. The novel philosophy of “know what you should
know” is proposed for peers to gain more knowledge
and control. With essential data, human beings are able
to participate in workflow systems more actively than
ever before. Ordinary users can enjoy the abilities of
being involved in system management when necessary.
Personal preference can also be expressed and incorpo-
rated. At the same time, direct communication among
the peers allows the participants to coordinate in a
more suitable way. Hence, this approach may offer more
user control, which is an important feature needed in
teamwork.

5) SwinDeW utilizes novel techniques involving p2p exe-
cution of processes. This open model may also be able
to support service-oriented workflow well, because it
naturally exploits the distributed nature of the Internet. In
particular, the composition and execution of Web services
can be facilitated properly by peers through techniques
such as publish and subscribe [7], [24].

However, moving from client–server to p2p also brings some
tradeoffs, which can be potential limitations. Some of the
tradeoffs of the proposed approach are summarized as follows,
although they are outweighed by the advantages that it offers.

1) As a tradeoff, management and monitoring of workflow
execution becomes more difficult in a p2p-based work-
flow system, as workflow execution is coordinated by dis-
tributed peers. In SwinDeW, special management peers
are implemented, which communicate with ordinary

peers directly to obtain the related information (instance
status, performance data, historical information, etc.).

2) The ability to handle exceptions and erroneous situations
may be impaired in SwinDeW. Unlike client–server-
based workflow systems where errors and exceptions
can be detected and handled by centralized servers,
SwinDeW requires more complicated mechanisms to
deal with aspects of flexibility such as general exception
handling and dynamic change handling, which are not
addressed in this paper and regarded as future work.

3) The approach presented in this paper assumes that ordi-
nary workflow participants have the abilities to perform
some basic management operations. The approach is
probably not appropriate when the management oper-
ations, which are very complex and require high-level
skills. Workflow participants may need to be further
trained in p2p concepts, role profiles, and workflow pro-
cesses as part of staff development.

4) Issues of authentication and security may become more
important in SwinDeW, because p2p-based applications
enable networked access of the resources. These issues
may need to be addressed for certain applications in
the future.

Moreover, this paper only focuses on completely specified
process support. Issues such as incompletely specified process
support and WfMS interoperability in intra- or interorganiza-
tional settings are beyond the scope of this paper and will be
discussed elsewhere [30].

VIII. CONCLUSION AND FUTURE WORK

In this paper, some unsolved problems in the workflow
area, i.e., poor performance, lack of reliability, limited scalabil-
ity, user restriction, and unsatisfactory system openness are
analyzed carefully. The architectural limits of the client–server
paradigm are believed to be the main causes of these problems.
To reflect workflow’s distributed nature better, it is essen-
tial to have a lightweight cost-effective decentralized work-
flow management system. SwinDeW, a decentralized workflow
management system introduced in this paper, applies the p2p
technology to the workflow scenario, which is viewed as a
future trend in workflow management. This approach provides
a decentralized workflow execution environment by remov-
ing centralized servers from the system. Correspondingly, ser-
vices usually provided centrally are offered in a decentralized
manner. To achieve this, both data and control are distrib-
uted. The workflow representation is partitioned and distributed
properly, and the process execution relies on the direct commu-
nication and coordination of individual peers. Referring back to
the problems, the performance bottleneck and single points of
failure are eliminated, which may result in better performance
and increased resilience to failure. At the same time, system
scalability is enhanced, because a p2p workflow system is able
to deal with dynamically changed systems better. Workflow
participants are also better supported as this system allows for
more user control ability. In addition, the open collaborative
framework of SwinDeW makes it more suitable for service-
oriented applications.

This article has been accepted for inclusion in a future issue.

YAN et al.: SwinDeW—p2p-BASED DECENTRALIZED WfMS 13

In the future, decentralized workflow will be explored fur-
ther. The system will be amended by developing extra fa-
cilities such as organizational management facilities. Aspects
of incompletely specified process support and workflow
interoperability will be reported separately. At the same time,
experiments will be conducted to support different kinds of
processes. Experimental data will be collected for analysis,
comparison, and system improvement purposes. Moreover, it
is a logical next step to integrate this research with the rapidly
growing research on service management and knowledge
sharing. More specifically, one of the authors’ ongoing activ-
ities is to extend SwinDeW to Web services support where a
workflow process will be defined in business process execution
language for Web services (BPEL4WS).

ACKNOWLEDGMENT

The work of J. Yan in this paper was carried out primarily
when he was a Ph.D. candidate at Swinburne University of
Technology. The authors are grateful for the constructive com-
ments of the anonymous reviewers and the prototyping work of
L. Setiawan and J. Derham.

REFERENCES

[1] W. M. P. van der Aalst and K. M. van Hee, Workflow Management:
Models, Methods, and Systems. Cambridge, MA: MIT Press, 2002.

[2] K. Aberer and M. Hauswirth, “Peer-to-peer information systems: Con-
cepts and models, state-of-the-art, and future systems,” in Proc. 8th
European Software Engineering Conf. (ESEC) and 9th ACM SIGSOFT
Symp. Foundations Software Engineering (FSE-9), Vienna, Austria,
Sep. 2001, pp. 326–327.

[3] G. Alonso, C. Mohan, R. Günthör, D. Agrawal, A. El Abbadi, and
M. Kamath, “Exotica/FMQM: A persistent message-based architecture
for distributed workflow management,” in Proc. IFIP Working Conf.
Information Systems Decentralised Organisations, Trondheim, Norway,
Aug. 1995, pp. 1–18.

[4] G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan. (1997). Functional-
ity and Limitations of Current Workflow Management Systems, Research
Report. San Jose, CA: IBM Almaden Res. Center [Online]. Available:
http://www.almaden.ibm.com/cs/exotica/wfmsys.pdf

[5] N. A. Assimakopoulos and A. E. Lydakis, “The use of systemic method-
ologies in workflow management,” in Proc. 47th Annu. Meeting Int.
Society Systems Sciences, Crete, Greece, Jul. 2003. [Online]. Available:
http://www.systemicbusiness.org/digests/sabi2003/2003_ISSS_47th_067_
Assimakopoulos_Lydakis.pdf

[6] T. Bauer and P. Dadam, “Efficient distributed control of enterprise-
wide and cross-enterprise workflows,” in Proc. Workshop Informatik:
Enterprise-wide and Cross-enterprise Workflow Management: Concepts,
Systems Applications, Paderborn, Germany, Oct. 1999, pp. 25–32.

[7] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H. Ngu, “Declarative
composition and peer-to-peer provisioning of dynamic web services,” in
Proc. 8th Int. Conf. Data Engineering (ICDE), San Jose, CA, Feb. 2002,
pp. 297–308.

[8] T. Cai, P. A. Gloor, and S. Nog. (1996). “DartFlow: A workflow
management system on the web using transportable agents,” Dartmouth
College, Hanover, Germany, Tech. Rep. PCS-TR96-283 [Online].
Available: ftp://ftp.cs.dartmouth.edu/TR/TR96-283.pdf

[9] M. D. Coon. (Aug. 2002). Peer-to-Peer Workflow Management White
Paper. [Online]. Available: http://www.proteus-technologies.com/cmm/
docs/P2P_Workflow_Whitepaper.doc

[10] J. Eder and E. Panagos, “Towards distributed workflow process manage-
ment,” in Proc. Workshop Cross-Organisational Workflow Management
and Coordination, San Francisco, CA, Feb. 1999. [Online]. Available:
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-17/
Panagos/wacc-camera.html

[11] G. J. Fakas and B. Karakostas, “A peer to peer architecture for
dynamic workflow management,” Inf. Softw. Technol. J., vol. 46, no. 6,
pp. 423–431, 2004. Elsevier.

[12] Workflow Handbook 2002, L. Fischer, Ed., Future Strategies, Lighthouse
Point, FL, 2002.

[13] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of
workflow management: From process modeling to infrastructure for au-
tomation,” J. Distrib. Parallel Database Syst., vol. 3, no. 2, pp. 119–153,
Apr. 1995.

[14] J. Grundy, M. Apperley, J. Hosking, and W. Mugridge, “A decen-
tralised architecture for software process modelling and enactment,”
IEEE Internet Comput., vol. 2, no. 5, pp. 53–62, Sep./Oct. 1998.

[15] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke, “A
comprehensive approach to flexibility in workflow management systems,”
in Proc. Int. Joint Conf. Work Activities Coordination and Collaboration
(WACC), San Francisco, CA, Feb. 1999, pp. 79–88.

[16] A. S. Hitomi, P. J. Kammer, G. A. Bolcer, and R. N. Taylor,
“Distributed workflow using HTTP: Example using software pre-
requisite,” formal demo in Proc. Int. Conf. Software Engineering,
Kyoto, Japan, Apr. 1998. [Online]. Available: http://www.ags.uci.edu/
%7Epkammer/papers/icse98.pdf

[17] S. Jablonski and C. Bussler, Workflow Management—Modeling Concepts,
Architecture and Implementation. London, U.K.: Int. Thomson Comput.
Press, Sep. 1996.

[18] M. Kamath, K. Ramamritham, N. Gehani, and D. Lieuwen, “World-
Flow: A system for building global transactional workflows,” in
Proc. 7th Int. Workshop High Performance Transaction Systems
(HTPS), Asilomar, CA, Sep. 1997. [Online]. Available: http://none.cs.
umass.edu/db/publications/hpts97.html

[19] J. B. Masters, “Peep-to-peer technologies and collaborative work
management: The implications of ‘Napster’ for document management,”
in Workflow Handbook 2002, L. Fischer, Ed. Lighthouse Point, FL:
Future Strategies, 2002, pp. 81–94.

[20] Matrix Project, La Jolla, CA: San Diego Supercomputer Centre
[Online]. Available: http://www.npaci.edu/DICE/SRB/matrix

[21] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh, “WebWork:
METEOR2’s web-based workflow management system,” J. Intell. Inf.
Syst., Special Issue on Workflow Management Systems, vol. 10, no. 2,
pp. 185–215, Mar./Apr. 1998.

[22] P. Muth, D. Wodtke, J. Weissenfels, A. Kotz Dittrich, and G. Weikum,
“From centralised workflow specification to distributed workflow
execution,” J. Intell. Inf. Syst., Special Issue on Workflow Management,
vol. 10, no. 2, pp. 159–184, Mar. 1998.

[23] G. Piccinelli, A. Finkelstein, and S. L. Williams, “Service-oriented
workflow: The DySCo framework,” in Proc. 29th Euromicro Conf.
(EUROMICRO), Belek-Antalya, Turkey, Sep. 2003, pp. 291–297.

[24] C. Schuler, H. Schuldt, and H. Schek, Supporting Reliable Transac-
tional Business Processes by Publish/Subscribe Techniques, ser. Lec-
ture Notes in Computer Science, vol. 2193. New York: Springer-Verlag,
2001, pp. 118–131.

[25] H. M. W. Verbeek, A. Hirnschall, and W. M. P. van der Aalst, XRL/
Flower: Supporting Inter-Organizational Workflows Using XML/Petri-
Net Technology, Web Services, E-Business and the Semantic Web,
ser. Lecture Notes in Computer Science, vol. 2512. New York:
Springer-Verlag, 2002, pp. 93–108.

[26] J. Yan, Y. Yang, and G. K. Raikundalia, “A decentralised architecture
for workflow support,” in Proc. 7th Int. Symp. Future Software Technology
(ISFST), Wuhan, China, Oct. 2002, CD ISBN: 4-916227-14-X.

[27] ——, “A data storage mechanism for peer-to-peer based decentralised
workflow systems,” in Proc. 15th Int. Conf. Software Engineering
and Knowledge Engineering (SEKE), San Francisco, CA, Jul. 2003,
pp. 354–358.

[28] ——, “Enacting business processes in a decentralised environment with
p2p-based workflow support,” in Advances in Web-Age Information
Management, ser. Lecture Notes in Computer Science, vol. 2762. New
York: Springer-Verlag, 2003, pp. 290–297.

[29] ——, “Decentralised coordination for software process enactment,” in
Software Process Technology, ser. Lecture Notes in Computer Science,
vol. 2786. New York: Springer-Verlag, 2003, pp. 164–172.

[30] J. Yan, “A framework and coordination technologies for peer-to-
peer based decentralised workflow systems,” Ph.D. dissertation, School
Inform. Technol., Swinburne Univ. Technol., Melbourne, Vic., Australia,
Aug. 2004.

[31] Y. Yang, “An architecture and the related mechanisms for web-based
global cooperative teamwork support,” Int. J. Comput. Inform., vol. 24,
no. 1, pp. 13–19, 2000.

[32] ——, “Tool interfacing mechanisms for programming-for-the-
large and programming-for-the-small,” in Proc. 9th Asia–Pacific Soft-
ware Engineering Conf. (APSEC), Gold Coast, Australia, Dec. 2002,
pp. 359–365.

This article has been accepted for inclusion in a future issue.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Jun Yan was born in JiangSu, China, in 1976. He
received the B.Eng. and M.Eng. degrees in computer
application technologies from Southeast University,
Nanjing, China, in 1998 and 2001, respectively, and
the Ph.D. degree in information technology from
Swinburne University of Technology, Melbourne,
Vic., Australia, in 2004.

He is currently a Lecturer in the School of Infor-
mation Technology and Computer Science, Univer-
sity of Wollongong, Wollongong, NSW, Australia.
Before that, he was a Postdoctoral Research Fellow

in the Faculty of Information and Communication Technologies at Swinburne
University of Technology, Melbourne, Vic., Australia. His research interests
include process management and workflow technology, Grid and Web services,
Internet computing, and e-commerce.

Yun Yang (M’98) was born in Shanghai, China.
He received the B.S. degree from Anhui University,
Hefei, China, in 1984, the M.Eng. degree from the
University of Science and Technology of China,
Hefei, China, in 1987, and the Ph.D. degree from
the University of Queensland, Brisbane, Australia, in
1992, all in computer science.

He is currently a Full Professor in the Faculty
of Information and Communication Technologies at
Swinburne University of Technology, Melbourne,
Vic., Australia. Prior to joining Swinburne as an

Associate Professor, he was a Lecturer and Senior Lecturer at Deakin Uni-
versity during 1996–1999. Before that, he was a (Senior) Research Scientist
at DSTC—Cooperative Research Centre for Distributed Systems Technology
during 1993–1996. He also worked at the Beijing University of Aeronautics and
Astronautics during 1987–1988. He has edited one book and published more
than 120 papers on journals and refereed conferences. His research interests in-
clude software technologies, p2p and Grid workflow systems, service-oriented
computing, Internet computing applications, computer-supported collaborative
work (CSCW), and e-business processes.

Gitesh K. Raikundalia received the B.Econ.
degree from the University of Sydney, Sydney,
Australia, in 1991, the M. Comp. degree from the
University of Newcastle, Newcastle, Australia, in
1994, and the Ph.D. degree in computer-supported
collaborative work (CSCW) from Bond University,
Gold Coast, Australia, in 1998.

He is currently a Senior Lecturer in the School of
Computer Science and Mathematics and a member
of the Internet Technologies and Applications Re-
search Laboratory, Victoria University, Melbourne,

Vic., Australia. He was a Lecturer at Swinburne University of Technology,
Melbourne, Vic., Australia, previously. Prior to this, he was an Associate
Lecturer and then a Lecturer at Southern Cross University, Coffs Harbour,
Australia. He is a Consulting Editor for the Australasian Journal of Information
Systems. His research interests include electronic meeting systems, real-time
collaboration and group awareness, workflow, and scenario-based design.

Dr. Raikundalia is a member of the IEEE Computer Society, the Association
for Computing Machinery, and the Australian Computer Society and has
served on various program committees, particularly those of the Australasian
Document Computing Symposium (for which he has been Symposium chair
twice) and the Asia–Pacific Web Conference.

