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ABSTRACT

In this paper, we analyze a year long wireless network users’
mobility trace data collected on ETH Zurich campus. Un-
like earlier work in [4,18], we profile the movement pattern
of wireless users and predict their locations. More specifi-
cally, we show that each network user regularly visits a list
of places such as a building (also referred to as “hubs”) with
some probability. The daily list of hubs, along with their
corresponding visit probabilities, are referred to as a mobil-
ity profile. We also show that over a period of time (e.g.,
a week), a user may repeatedly follow a mixture of mobil-
ity profiles with certain probabilities associated with each
of the profiles. Our analysis of the mobility trace data not
only validate the existence of our so-called sociological or-
bits [8], but also demonstrate the advantages of exploiting
it in performing hub-level location predictions. In particu-
lar, we show that such profile based location predictions are
more precise than common statistical approaches based on
observed hub visitation frequencies alone.

Categories and Subject Descriptors: C.2 COMPUTER-
COMMUNICATION NETWORKS: Miscellaneous

General Terms: Algorithms, Design, Human Factors, Ver-
ification

Keywords: WLAN mobility trace analysis, Sociological or-
bits, Mobility profiles, Location prediction, Mobile wireless
networks

1. INTRODUCTION

The mobility of users forming a mobile wireless network
causes changes in the network connectivity and may even
lead to intermittently connected networks. On one hand,
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nodal mobility may increase the overall network capacity
[10]. On the other hand, it is challenging to locate users and
route messages within the network. Many researchers have
tried to model practical mobility in various ways to achieve
different goals. Earlier work on mobility modeling [3] was
done mostly with Mobile Ad hoc NETworks (MANET) in
mind. While the authors in [15,19] performed physical lo-
cation prediction via continuous short-term and short-range
tracking of user movement, we had leveraged on our assump-
tions on “sociological orbits” (which however was not sup-
ported by valid evidence) to perform efficient routing within
MANETS [8]. In this work, we present empirical evidence to
support our prior orbital claims and illustrate its advantages
in hub-level location predictions.

Delay Tolerant Networks (DTN) has received a lot of in-
terest recently. For example, researchers [2,21] have also
suggested the concept of controlled mobility to aid in mobile
ad hoc routing. However, the main focus of these projects
were not on the mobility pattern of the individual users. In
a recent work [9] we have also shown how to use pair-wise
users’ contact probability (derived from the mobility pro-
files) in efficient routing within Intermittently Connected
Mobile Ad Hoc Networks (ICMAN).

Our study of user mobility traces is motivated by the need
to extract practical mobility information, which may poten-
tially benefit applications such as location approximation
and routing within all types of wireless networks such as
MANETSs, DTNs, etc. More specifically, it is noted that
wireless users belong to a larger social environment and as
such, their movement behavior is subject to several location
dependent sociological constraints (in addition to speed lim-
its and specific walkways, as described in [1]). In particular,
on any given day, each user may visit a list of places of some
social importance (which we referred to as “hubs” in [8]) in
some probabilistic manner, creating what we refer to in this
paper as a “mobility profile”.

Example applications of such profiles may be to moni-
tor air (or, water) quality in an infrastructure-less environ-
ment and its impact on the health of the people who live
or work there, or to detect and control the spread of a flu
virus [20]. In these applications, some people wearing tiny
sensors with limited transmission range can act as “carriers”
and as a part of their “social routine” may travel near to ac-
cess points for uploading (or downloading) the sensor data
(or control messages). Others will only be able to send data
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pattern, and data is forwarded via such people to “carri-
ers”. After a remote center processes the collected data, it



may require more intensive data collection at only selected
locations and/or by selected persons. Knowing the orbital
patterns of the persons helps to target the right subset of
people, thereby reducing unnecessary flooding of the data
request, and also saves the energy/bandwidth in collecting
uninterested data. Knowing the contact probability alone
may not be sufficient here.

In this work, we not only validate the existence of such
mobility profiles via mobility trace analysis, but also show
that in practice, a user is usually associated with a proba-
bilistic mixture of multiple profiles. The data analyzed in
this paper is collected on the ETH Zurich campus and is
similar in content (i.e. AP system logs) to that available
from the Dartmouth campus. However, compared to the
most related (and yet much different) work in [4], this pa-
per focusses only on the wuser-centric parameters like the
user mobility profiles and its applications, whereas [4] fo-
cusses more on AP-centric parameters. Our mobility profile
based hub-level location prediction is shown to be more pre-
cise than common statistical methods. Note that although
this work analyzes data from a campus-wide wireless access
network (instead of a MANET, as data from former is more
readily available), our mobility profiling and location pre-
diction techniques are applicable to other types of networks
as well, since the movement of users is ultimately influenced
by their social environment.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss our sociological orbit framework and its
parameters. In Section 3, we study the user-centric param-
eters and present a clustering algorithm using a Mizture of
Bernoulli’s distribution to analyze user mobility profiles. In
Section 4, we highlight the advantages of profiling users’
mobility by comparing profile based hub-level location pre-
dictions to predictions based on general statistical methods.
We conclude this work in Section 5.

2. SOCIOLOGICAL ORBIT FRAMEWORK

In this section, we briefly describe and enhance the so-
ciological orbit framework we proposed in [8]. In the real
world, it is observed that users routinely spend a consider-
able amount of time at a few specific place(s), referred to
as hub(s). For example, in a WLAN scenario a hub may be
just a building floor, or the entire building, depending on the
network scale. Although, it is hard (and may even violate
privacy) to keep track of an individual at all times, one can
still take advantage of the fact that most users’ movements
are within, and in between, a list of hubs.

Weekend Profile 1
~—— (Shopping Mall) |

School Profile
| (Mon, Wed, Fri) ) _
' | Level 2: Inter—profile Orbit (IPO)

! Level 1: Inter-hub Orbit (IHO)

Figure 1: A hierarchical view of sociological orbits

Let us consider a graduate student with classes only on
Monday, Wednesday and Friday, when he/she is found spend-
ing most of the time in either a laboratory, or a seminar
room, or the cafeteria (each of which shall form a “hub” in
this example) on a school campus, as shown in Figure 1.
The actual list of hubs visited by the student on the same
day is called a “hub list”. Even if such hub lists may vary
across days, that variation is only marginal (as shown later
in Section 3). In most cases, a number of hub lists over a
period of days may be clustered together and represented
by a single “weighted hub list”, where the weight associated
with each hub denotes the probability of the student visiting
that hub within that period. In this work, we shall refer to
such a weighted hub list to be a user’s “Mobility Profile”,
and the movement in between the hubs within a profile as an
“Inter-hub Orbit” (IHO). If one wishes to locate the student
on a school day, knowing this School Profile shall be help-
ful, where one can most probably find him/her in either the
laboratory, or the seminar room, or the cafeteria, without
having to look all over the campus.

In real life, it is observed (and later verified from the an-
alyzed data) that a user over long periods of time is usu-
ally associated with more than one mobility profile, mixed
with certain probabilities. This is shown in Figure 1 as the
Weekend Profile and the Home Profile to account for the
student’s remainder of the week. Such a movement in be-
tween multiple profiles at a higher level is referred to as the
“Inter-profile Orbit” (IPO). Over different periods of time,
this mixture of profiles may change, causing what we call an
“IPO Timeout”. The IPO and the THO together constitute
the hierarchical sociological orbit at two different levels. In
this paper, such orbital mobility information is shown to be
helpful in improving accuracy of hub-level location predic-
tions over statistical based methods.

Table 1: Orbital Parameters

Category Parameters
Hub-centric Hub Form
Hub Visits

Hub Stay Time
User-centric | Mobility Profiles
Hub List Size

To formalize the sociological orbit framework, we divide
the orbital parameters into two categories: Hub-centric, and
User-centric, as listed in Table 1. On the hub-centric side,
the Hub Form depends on the actual definition of a hub in
the network being modeled; Hub Visits denotes the number
of users visiting a hub in a given period; and the Hub Stay
Time is the amount of time a user spends at one stretch
within a hub. On the user-centric side, the Mobility Profile
Parameters include a list of hubs and their corresponding
weights, and the Hub List Size refers to the number of unique
hubs visited by a user on a day. Since the AP-centric study
in [4] is similar to our study of the hub-centric parameters
in [7], in this paper we focus only on the analysis of the
user-centric aspects related to sociological orbits.

In the following sections we analyze wireless network users’
mobility trace data collected on ETH Zurich campus from
1st April, 2004 till 31st March, 2005. There were a total
of 13,620 users, 43 buildings, and 391 Access Points (AP).
The data was obtained as system logs from the APs which



recorded the association, disassociation, missed polls, and
roaming events for users during the given period. First, to
study the observed distribution of the hub-centric param-
eters of the framework, we setup an Oracle database with
these traces and employed standard SQL queries'. Second,
to analyze the user-centric parameters we employ a cluster-
ing algorithm using a Mizture of Bernoulli’s. We also de-
velop efficient methods to model and analyze mobility pro-
files to validate the existence of sociological orbits. Finally,
we use the mobility profiles to do hub-level location predic-
tions more precisely than common hub visitation statistics
based methods.

3. USER-CENTRIC PARAMETERS

In this section, we shall analyze the user-centric parame-
ters by examining individual network user’s movement. First,
in order to span different degrees of network activity amongst
users, we divide all the users in different user groups based
on the number of days they are found to be “active” within
the network (i.e., associated with at least one AP in the
day). In Figure 2, we plot the fraction of total population
vs. the number of their active days. The x-axis shows a
range of values, i.e., 25 denotes up to 25 active days, 50 de-
notes anywhere between 26 and 50 active days, and so on.
80% of the total population is seen to be active for only 25
days or less in an year with the number of more active users
decreasing significantly. So we only consider the users active
for 150 days or less creating 6 groups: G1 (0 to 25) through
Gs (126 to 150).

Perentage Population (%)

25 50 75 100 125 150 175 200 225 250 275 300
Number of Active Days

Figure 2: Number of active days for users

Second, we wish to choose one user to represent each
group who is the “most active” within that group, giving us
more samples. In short, we wish to maximize both the num-
ber of active days and the hub list size within each group.
For a given group Gj, let Di .. and L .. be the maximum
number of active days and maximum average hub list size
respectively, across all users in G;. Let the pair D] and L?
denote the number of active days and the average hub list
size for a particular user ¢ in G;. Then, to represent group
G; we need to find a user who can minimize

Di . — D! Ly — L)
QR4 g e (1)
Dmax Lmax

where, a and 3 are weights associated with each term. The
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results of using (1) with & = 1 and 8 = 1 (we weigh both
the number of active days and the hub list size equally) is
summarized in Table 2. The basic intuition behind selecting
the “most active” user from each group is the availability
of more statistically significant mobility data for such an
individual. Note that a user with more sample data
is not necessarily more predictable, and hence this
choice is not biased. Alternately, one may also select the
sample users from each group to find users that are either
“least active” or, “active on average”. At the same time,
studying users from different groups help represent different
activation periods as seen in Figure 2.

Table 2: Sample users from all Groups
Group MAC D; L;
G 0004.2396.92ab | 24 | 2.29
Go 0001.e30d.d737 | 49 | 3.27
G 0004.2398.82c0 | 71 | 4.08
[en 0020.e089.9376 | 98 | 2.46
Gs 0004.2396.8ced | 119 | 2.13
Gs 0005.4e41.cfld | 126 | 2.63

3.1 Model for Analysis of Mobility Profiles

We now present a study on the mobility of these 6 sample
users. We first obtain their hub stay times in all the hubs
during their active period and filter out all values of 5 min-
utes or less as noises (i.e., very brief hub stay durations).
Then we obtain 2-D plots in Figure 3 showing only which
hub(s) is(are) visited by a user (for more than 5 minutes)
on a given day. We use h (1 < h < H) to denote the unique
hub id and i (1 <4 < n) to denote the day index, where H
and n are the total number of hubs and days respectively.
On each day i, we define a user’s hub list to be a binary

vector of hub associations y* = [ygi), - ,yg)] where each

element ygf) € {0,1} such that ygf) is equal to 1 if hub h
was visited on day ¢, and zero otherwise. Next, we define
an H dimensional space, where each dimension refers to a
hub. The hub list y¥ for a user in any given day i may then
be represented by a point in this space where each element
y,(f) in the vector represents a binary value along each di-
mension in the space. For a particular user, similar hub lists
on different days would generate several overlapping points
whereas, two hub lists that differed only in terms of one or
two hubs would generate points “close” to each other in this
space. We use a clustering algorithm that helps define this
concept of “closeness” by considering hub lists that say only
differ in a maximum of 1 or, 2 hubs to be “close” and to
belong to the same cluster. The mean of the cluster, which
is a weighted hub list, then represents a mobility profile, as
is described in more detail below.

3.2 Using a Mixture of Bernoulli's distribution

A suitable choice to model the binary hub visitation vec-
tors is a Mixture of Bernoulli’s distribution. In this mix-
ture model there shall be more than one mixture component
where, each component is considered an unique mobility pro-
file represented by the component mean. Thus, a profile is
nothing but a distribution over the hub visitation proba-
bilities (i.e., a weighted hub list). We refrained from using
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Figure 3: Daily hub visitation patterns of all sample users

the commonly used Mizture of Gaussian model because the
domain of the Gaussian variable, being (—o0, 00), is clearly
not suitable for binary valued vectors. Assuming that the
current mobility profile of a user is known, we model each
hub visitation by a user as an independent event. On the
other hand, if the current profile is not known, the general
probability of a user visiting a hub is dependent on the prob-
ability associated with each mobility profile. The latter fact
is crucial, since it allows for the knowledge of a user’s hub
visits to help infer the current mobility profile and therefore
the probabilities of visits to other hubs on the same and
future days, as shown later in Section 4.

More formally, we denote the complete trace of hub visits
across all n days with the symbol Y, which is the collection
Y = {y®,...,y™}. The total probability of ¥ is given
by the product of a mixture of independent Bernoulli distri-
butions as follows: p(Y) =[], p(y'?) , where, p(y”) =
Z?zl p() T, p(y;:)|pj,h) . Here, k is the number of mix-
ture components (or, mobility profiles); p(j) is the proba-
bility of following profile j; p;,» is the probability of visiting
hub h on a day when following profile j. This framework is
a generative Bayesian model in the sense that it defines a
probability to every possible outcome, or pattern, that can
be produced for Y.

This mixture model is trained using the Expectation- Max-
imization (EM) algorithm of Dempster, Laird and Rubin [6].
By employing consecutive Expectation (E)- and Maximiza-
tion (M)- steps, the probability of the entire data set Y is
guaranteed to monotonically increase (or, remain the same).
The E-step consists of computing the posterior probability
of membership of a datum (or, hub list) across the k mix-
ture components (or, mobility profiles). Intuitively, at this

E-step we look at each hub list and try to guess the mobility
profile being followed on that particular day. Formally, this
corresponds to computing the responsibilities of each compo-
nent in the mixture, denoted by TJ(-Z), such that Z?:l r;Z) =1,
and are found using Bayes’ theorem:

p()p(yV14)
p(y®)
,n and Vj=1,...,k.

E-step 7" =p(jly") = (2)

Vi=1,...

The M-step of the EM algorithm updates the parameters
of each of the k components of the mixture model, in light
of the responsibilities r;i) computed in the E-step. In other
words, at this M-step we look at the probabilistic associ-
ations of the hub lists with each profile computed in the
E-step, and update both the probabilities associated with
each profile (i.e., mixing proportions), and the probabilities
associated with each hub visitation within a profile. Thus,
formally the parameters of the mixture model are: the mix-
ing proportions, denoted by vector m = (71, ...,7%) where
7 = p(k) such that Z?Zl m; = 1; and for each mixture com-
ponent j, there is a vector of dimension H of probabilities
of each hub being used, denoted by p) = (pj1,...,pj ).
Thus each component in the mixture represents a mode of
a user’s interaction with a subset of the H hubs available
(i.e., each profile is nothing but a weighted hub list). The
updates to the parameters in the M-step are as follows:

1\~ G
M-step, 7 = Z 7“](- ) (3)
i=1

Vi=1,... k.



and
Sr iy

Z?ﬂr]('i)
Vj=1,....k and Vh=1,...,H .

M-step,p  pjn = (4)

In this study, for each user we choose the number of com-
ponents k (i.e, profiles) for each mixture model by visual
inspection of the data distribution and initialized the mix-
ing proportions and component means at random such that
each profile has moderate associativity with hub lists. An al-
ternate approach may include approximate Bayesian model
selection techniques, e.g. via the Bayesian Information Cri-
terion (BIC; [14]) or, other criteria. Figure 4 shows the
pattern of mobility profiles over all the days. Table 3 lists
both the probability that a user is in a given profile, and the
probability that a hub is visited when following a particular
profile. As an example, from Figure 4(a) we find that the
sample user from group G is following his/her mobility pro-
file 1 on day 14. From Table 3 we see that given profile 1 for
that user, the hub visitation probabilities indicate definite
visits to hubs 1,4,15 and 18 on day 14, which may then be
verified from his/her actual hub list distribution shown in
Figure 3(a).

3.3 Hub List Size Distribution

The results in Table 3 may seem to indicate that sev-
eral users tend to visit many hubs in any given day as their
mobility profiles include multiple hubs. Hence, to study
the distribution of the hub list sizes of our sample users we
generate daily hub lists for each of them over their individ-
ual activation period based on their mobility profiles. More
specifically, for each day we first choose one of their possi-
ble profiles at random following the mixing proportions, and
then generate visits to each hub individually following the
hub visitation probabilities in that chosen profile. We then
obtain the aggregated (i.e., across all sample users) Hub List
Size distribution and compare it with the actual distribution
observed in the trace data. As seen in Figure 5, both the
observed and the generated hub list sizes are distributed al-
most identically, and shorter (< 3) hub list sizes occur most
often.

Observed —+—
Generated ---x---

Number of Occurrences

e  w
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hub List Size

Figure 5: Observed vs. Generated Hub List Size

This work presenting a formal method of building mobility
profiles constitutes one of our major contributions.

4. LOCATION PREDICTIONS

In this section, we highlight another important contribu-
tion of our work by showing how the mobility profiles may
be useful in making hub-level location predictions with more
accuracy than general statistical methods based on hub vis-
itation frequency information alone. More specifically, we
first show an efficient way to apply the clustering algorithm
described in Section 3.2 and identify the right mixture of mo-
bility profiles for each user. We then focus on two types of
profile based predictions: Unconditional Prediction, where
given the hub visit information over a window of n days,
we wish to predict the hub visit patterns for the next win-
dow of n days; Conditional Prediction, where given that we
can identify the current mobility profile of a user (based on
available information about a hub a user either visited, or
plans to visit), we wish to find the probability of that user
visiting another hub in that same day.

4.1 A Mixture of Mobility Profiles

From Figure 4, it becomes lucid that the seemingly ran-
dom movements of a user as seen from Figure 3 can now be
systematically described via a mixture of mobility profiles
over a period of time. However, since this mixture will even-
tually change, we still need an efficient method to identify
the right mixture of profiles describing the user’s movement
pattern over a given period. One may use the mobility traces
of hub visits collected over 7 days (i.e., a week) to determine
the possible mobility profiles and their corresponding mix-
ing proportions using the Mizture of Bernoulli’s described
in Section 3.2. It is then possible to identify the appropriate
mixture to include all the profiles with a corresponding mix-
ing proportion greater than some specified threshold. One
may then choose to only consider this specific mixture for
the next 7 days (or even more), when the next mixture up-
date is performed (only if there is a substantial change in
movement pattern). Later in this section, we show that even
with such infrequent updates our mobility profiles are able
to predict daily hub-level locations with more accuracy than
common statistical methods.

4.2 Unconditional Prediction

In this part, we study the accuracy of the unconditional
profile based hub-level location prediction, and compare it
with that made from statistical observation alone. We again
consider only the sample users.

4.2.1 Statistical based prediction

In this method, we assume no knowledge of mobility pro-
files and hence no clustering by the mixture of Bernoulli’s
distribution is performed. One simply collects the mobility
traces of a sample user for a few days, and then based on the
hub visit frequencies determines the user’s hub visit proba-
bilities in future, which can then be used for hub visit pre-
dictions and may be compared with the observed hub lists to
compute the Statistical based Prediction Error (SPE) rate
as

Incorrect number of hub predictions

SPE = (5)

Total number of hubs
We consider 2 variations of this statistical approach. In
the first one (SPE-ALL), prediction for day n + 1 is done
based on the history of past n days, after which the hub visit
probabilities are recomputed based on the past n + 1 days
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Figure 4: Daily distribution of mobility profiles
Table 3: Mobility Profile Parameters
G Profiles j | Mix. Prop. 7; Hub ID h (Hub Visitation Probability p; )
1 0.08 1(1.0), 4(1.0), 15(1.0), 18(1.0)
2 0.31 1(1.0), 4(0.83), 8(0.27), 10(0.54), 11(0.27), 13(0.13), 18(0.13)
3 0.61 1(0.38), 4(0.81), 5(0.07), 15(0.34)
G2 Profiles j | Mix. Prop. m; Hub ID h (Hub Visitation Probability p; )
1 0.02 1(1.0), 9(1.0), 14(1.0)
2 0.14 1(0.14), 4(0.14), 5(0.49), 43(1.0)
3 0.31 1(1.0), 3(0.27), 5(0.8), 8(0.4), 9(0.53), 10(1.0), 13(0.6), 26(0.13), 27(0.2), 38(0.07), 43(0.07)
4 0.53 1(0.54), 3(0.08), 5(0.68), 8(0.04), 9(0.19), 13(0.08), 43(0.11)
G3 Profiles j | Mix. Prop. «; Hub ID h (Hub Visitation Probability p; )
1 0.06 1(1.0), 2(1.0), 5(0.75), 6(0.5), 7(0.75), 8(0.75), 10(0.5), 13(0.25), 16(1.0), 17(0.25), 29(0.25)
2 0.25 1(1.0), 3(0.22), 4(1.0), 5(1.0), 7(0.06), 8(0.66), 10(0.94), 11(0.06), 13(0.28), 15(0.89), 19(0.22), 26(0.11), 43(0.11)
3 0.32 1(0.09), 2(0.62), 4(0.05), 5(0.28), 7(0.75), 10(0.04), 15(0.05), 16(0.44), 17(0.04), 19(0.04), 25(0.18), 26(0.04), 29(0.09)
4 0.37 1(0.53), 3(0.12), 4(0.83), 5(0.18), 6(0.04), 8(0.04), 10(0.08), 14(0.19), 15(0.6), 43(0.11)
G4 Profiles j | Mix. Prop. «; Hub ID h (Hub Visitation Probability p; )
1 0.03 5(0.33), 8(1.0)
2 0.17 1(1.0)
3 0.80 1(1.0), 8(0.65), 10(0.9)
Gs Profiles j | Mix. Prop. m; Hub ID h (Hub Visitation Probability p; )
1 0.06 1(1.0), 3(1.0), 4(0.51), 5(0.14), 6(0.43), 8(0.29), 9(0.85), 10(0.58), 11(0.14), 13(0.58), 25(0.43)
2 0.20 1(0.14), 2(0.12), 3(0.22), 4(0.04), 7(0.54), 10(0.04), 15(0.26), 16(0.04), 30(0.04)
3 0.74 1(1.0), 3(0.36), 4(0.12), 5(0.01), 8(0.09), 9(0.06), 10(0.02), 15(0.23), 17(0.01), 21(0.01)
Gse Profiles j | Mix. Prop. «; Hub ID h (Hub Visitation Probability p; )
1 0.08 1(1.0), 3(1.0), 4(0.3), 5(0.4), 8(0.2), 9(1.0), 10(1.0), 11(0.9), 13(1.0), 18(0.1), 27(0.4)
2 0.21 1(0.03), 2(0.92), 12(0.19), 17(0.15)
3 0.26 1(0.87), 2(0.22), 4(0.7), 5(0.13), 8(0.31), 10(0.03), 11(1.0), 18(0.11)
4 0.45 1(0.56), 2(0.03), 3(0.045), 4(0.17), 5(0.35), 8(0.02), 10(0.05), 11(0.11), 18(0.36)




for predicting day n + 2 and so on. In the second version
(SPE-WT), the past history of a window of size n = 7 days
(e.g., days 1 till n) is considered to predict the hub list for
not only day n+ 1 but for the entire next window of n days
(e.g., days n + 1 till 2% n). After this the learning window
shifts over the days n + 1 till 2 x n to predict hub lists for
days 2*xn+1 till 3*n, and so on till the end of the activation
period for the sample user is reached.

4.2.2 Profile based prediction

This approach assumes knowledge of mobility profiles.
One initially collects a user’s mobility traces for a window
of size n = 7 days (e.g., days 1 till n), and then applies the
clustering algorithm described in Section 3.2 to find out a
mixture of mobility profiles and their associated probabili-
ties. Based on this profile information, one predicts the hub
list for the entire next window of n days (i.e., day n + 1 till
2xn, similar to SPE-WT7. This process is repeated by shift-
ing the learning window n days ahead. To be more precise,
for each day, one first randomly chooses one mobility profile
out of the mixture of profiles based on their mixing pro-
portions and then predicts the day’s hub list based on that
chosen profile. For each day within the window, one com-
pares the hub visit predictions with the observed hub visit
values to compute the daily Profile based Prediction Error
(PPE) rate similar to that shown for SPE in (5). Since an
empirical value of 7 is chosen for the window size, this error
rate is referred to as PPE-W7 from now on.

In our experiment, we empirically choose a window size
of n = 7 and compute the percentage values for SPE-ALL,
SPE-W7, and PPE-W7. To quantify the improvement in
location prediction achieved by our profile based method
over that by the statistical methods, we define

SPE — PPE
SPE

where PIR-ALL indicates improvement of PPE-W7 over
SPE-ALL, and PIR-W7 indicates the improvement of PPE-
W7 over SPE-W7 and present its distribution parameters in
Table 4. As seen, the mean values (considering the standard
errors) are all positive, indicating a much better overall per-
formance of our profile based hub-level location predictions
as compared to the statistical approaches with similar (when
compared to SPE-WT) or better (when compared to SPE-
ALL) cost of location updates. This is one of the most crit-
ical contributions of our concept of profiling mobility based
on sociological orbits.

Prediction Improvement Ratio(PIR) =

Table 4: The Distribution of PIR (%)

Group Mean + Standard Error

PIR-ALL PIR-WT7
G1 20.6 £ 2.3 24.3+3.2
Go 18.9+2.0 21.44+2.1
G3 129+ 2.0 14.5+1.9
G4 27.2+ 3.0 279+ 3.8
Gs 21.5+ 1.4 24.6 £ 1.6
Gs 21.24+1.5 226+ 1.6

4.3 Conditional Prediction

In this section, we show how the current mobility profile
information may improve the performance of certain hub-
level predictions. The authors in [4,5] have shown that a

common statistical approach (similar to the one described
in Section 4.2) is capable of keeping track of a user’s visits
to different locations (via the system logs on APs). Con-
sequently, it is possible to provide a probabilistic view of
finding the user in any location at any time based on the
past history of that user’s hub visits. Let us assume that
this mobility behavior for all our sample users repeats itself
the next year, such that their future visits in the next activa-
tion period may be validated by the data present. Taking the
user from group G2 as an example, we find that he/she vis-
ited hub 43 on 11 days in a 49 day activation period within
the year the data was collected, as seen in Figure 3(b). If
we were to consider that this mobility pattern over 49 days
is going to repeat itself the next year following our assump-
tion above, then the general probability of finding that user
in hub 43 on any day during his next activity period would
be % = 0.22. From within our profile based framework,
we not only are capable of providing similar general infor-
mation but, given the current mobility profile, also can be
much more specific. For instance, given the same example
and assumption as above, the general statistical probability
P(h) of finding the user in hub h on any given day may be
calculated equivalently through our approach as

P(h) = Zﬂj * Pjh (6)

Using (6) and the data in Table 3, the general probability of
finding the user from group G2 in say “target hub” H; = 43
on any given day of his next period of activity would be
given as: (0.02) * (0.00) 4+ (0.14) = (1.0) + (0.31) * (0.07) +
(0.53) * (0.11) = 0.22 (which is the same as that noted be-
fore). However, on a specific day D = 16 for example this
general probability may be improved with additional pro-
file based information as follows. On this day 16, as soon
as the user ventures into say “identifier hub” H; = 4 (see
Figure 3(b)), our method shall identify the current profile
(Prow) to be 2, as it is the only one with hub 4 in it. With
this additional knowledge, our approach would then be able
to re-compute the probability of finding the user in hub 43
on day 16 to be p2.43 = 1. From Figure 3(b), we see that
under our assumption of repeated period of activation, the
user would indeed visit hub 43 on day 16 of his next activa-
tion period (i.e. y%@ = 1), which makes our profile based
prediction more precise. Several similar cases for each user
type are listed in Table 5, where we find that the condi-
tional probability p; . (obtained based on mobility profiles)

is closer to the actual event ygz) than the general probabil-
ity P(H¢) (obtained from the common statistical approach).
In particular, as seen in the cases for the users from groups
G2,Gs, G4 and Gg our predictions would be completely ac-
curate, whereas those from the statistical method are far
from correct.

Essentially, the mobility profiles help us group the hubs
in separate (but, potentially overlapping) sets of hubs on
the basis of visits occurring to them within the same pe-
riod of time (i.e., following some mobility pattern), unlike
in the statistical method where all the hubs are treated in-
dependently and identically. Note that in practice it may
not always be possible to uniquely identify the current mo-
bility profile based on the hubs visited so far (i.e., identifier
hubs), as one hub could belong to 2 (out of say 4) profiles.
However, as shown earlier in Section 4.2, as long as the iden-



Table 5: Conditional Prediction Comparison

Group | H¢ | D | P(Ht) | Hi | Prow | pjH: yg)
Gy 11 | 13 | 0.08 8 2 0.27 1
Go 43 | 16 | 0.22 4 2 1 1
Gs 7 7 0.3 14 4 0 0
Gy 1 15| 0.97 5 1 0 0
Gs 7 |53 | 0.11 2 2 0.54 1
Gs 3 |63 0.1 9 1 1 1

tifier hub is able to suggest a proper subset (or, a mixture)
of the user’s mobility profiles for a given period, we are able
to predict hub visits more precisely than common statistical
methods based on hub visitation frequencies alone.

5. CONCLUSION

Knowing users’ mobility patterns is crucial to the efficient
design and operation of many wireless networks and appli-
cations that need to be scalable and QoS-capable. In this
paper, we have analyzed the year-long mobility trace data of
13,620 WLAN users collected on the campus of ETH Zurich
with 391 Access Points (APs). We not only validate the so-
called sociological orbits exhibited by mobile wireless users,
but also profile the user movements to help in location pre-
diction. Unlike previous work on analyzing similar mobility
trace data which focus on AP-centric parameters, our focus
has been on user centric-parameters such as the number of
hubs visited by a user in a day and mobility profiles of a
user.

This work is the first to propose an efficient method to de-
termine the main mobility profiles of a user using a mixture
of Bernoulli’s distribution as the clustering algorithm, and
then make either unconditional or conditional hub-level lo-
cation predictions. More specifically, our results are shown
to predict around 10% to 30% more accurately than general
statistical approaches that simply rely on hub visitation fre-
quencies. This illustrates the strength of our sociological
orbit aware approach, and in particular, the usefulness of
the mobility profiles of a user.

Note that although this work is based only on the mobil-
ity trace data from ETH Zurich, it is expected that the data
analysis, mobility profiling and location prediction techniques
we have developed, as well as the conclusions we have drawn
in this paper that validate the existence and usefulness of the
sociological orbits are in general applicable to other univer-
sity and corporate campuses, as well as other public/private
environments (there certainly isn’t a sufficient amount of
mobility trace data available except from a couple of places).
In addition, we expect that this work will inspire additional
innovative work on social influence aware and user-centric
designs and operations of not only wireless access networks,
but also mobile ad hoc and peer-to-peer networks, as well
as intermittently connected or, delay tolerant networks.
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