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1.  Introduction 

With the expanding reach and connectivity of information systems and increasing visibility of 

transactions across the supply chain, manufacturing firms are focusing on how to exploit the available 

information to streamline their operations and maximize profits.  Many recent papers (e.g., Gavirneni et 

al. 1999, Lee et al. 2000) have addressed the benefits of information sharing by downstream supply chain 

partners (e.g., conveying retail demand information to suppliers).  This paper addresses an opportunity for 

firms to exploit information from upstream suppliers to better match their demand with anticipated 

supply.  Companies such as Dell have access to information from suppliers and shippers on the status of 

pending orders for raw material and components, and can therefore accurately predict when they will 

receive each order.  Using this information, they can maximize profits by shaping demand through 

dynamic pricing.  For instance, if a computer manufacturer anticipates shortage of a particular disk drive 

or video card, it can adjust the relative prices of its computer models to “steer” consumers to alternate 

computer configurations that do not require the scarce parts.  Using a stylized economic model that 

combines concepts from revenue management and market segmentation, we address these benefits of 

upstream information sharing in the context of a firm selling vertically differentiated products.  The 

revenue management literature (e.g., Bitran and Caldentey 2003, Talluri and Van Ryzin 2004) studies 

dynamic pricing, assuming that a fixed capacity is available at the beginning of the planning horizon 

(whereas we permit periodic replenishments).  Marketing researchers (e.g., Moorthy and Png 1992, Desai 

2001) address product line design issues for vertically differentiated products.  We focus on a multi-

period pricing problem, with deterministic demand and known replenishment quantities in each period; 

the pricing decisions must account for the tradeoff between exhausting the inventory in each period 

versus carrying forward inventory for future sale, and also the impact of each product’s price on other 

products’ demand.  Our analysis reveals some interesting properties of optimal dynamic pricing strategies 

when component availability is limited; we also develop an efficient solution algorithm based on these 

properties.  This work serves as the foundation for more advanced models incorporating features such as 

component commonality and time varying customer arrival rates. 
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2.  Demand Shaping Model 

Consider a monopolist manufacturer who produces and sells two vertically differentiated products, a high 

quality product h and a low quality product l.  The manufacturer relies on suppliers to provide various 

materials and components needed for the products.  Let Ch and Cl denote the sets of components needed 

for the high and low quality products, respectively.  Without loss of generality, we assume that each unit 

of a product requires one unit of each component in its component set.  For this paper, we will assume 

that the two products do not share any common components.  For each component h lj C C∈ ∪ , the 

manufacturer knows, through the upstream information sharing mechanisms, exactly how many units of 

the component will arrive in each of the following m periods.  Let Ajt denote the number of units of 

component j that the manufacturer will receive at the start of period t, for t = 1, 2, …, m; without loss of 

generality, we can assume that the initial inventory of each component is zero (if not, we can add the 

actual initial inventory to the quantity received in the first period).  Since each unit of finished product 

requires one unit of each component, we can determine the number of “kits” (or full sets of components 

to produce finished products) that become available in each period.  Specifically, for all t = 1, 2, …, m, 

and for product k = h or l, let { }'' 1
min

k

t
kt j C jtt

B A∈ =
= ∑  denote the cumulative availability of kits for 

product k until time t.  Then, , 1kt kt k tR B B −= −  is the additional number of component kits that become 

available for product k in period t; we will refer to this value as product k’s kit replenishment in period t.     

To model demand, we assume that λ potential customers arrive in each period.  All customers value the 

high quality product more than the low quality product; however, they differ in the incremental price they 

are willing to pay for this quality differential.  Let qh and ql, with qh > ql > 0, denote the quality levels of 

the high and low quality products, respectively.  Each customer has an associated nonnegative quality 

sensitivity parameter θ that determines her valuation of quality.  In particular, if p denotes the price of a 

product with quality level q, then the customer’s utility or surplus from purchasing the product is θq − p.   

The customers arriving in each period differ in their quality sensitivity θ.  Suppose θ follows a Uniform 

distribution from 0 to 1, i.e., in any period, the proportion of arriving customers with quality sensitivity 

greater than or equal to θ is (1−θ).  Observe that customers with lower quality sensitivity assign a lower 

value to the quality differential (qh – ql) between the two products compared to those with higher quality 

sensitivity.  So, the price differential and the customer’s quality sensitivity together determine whether 

she will purchase product l or h (or no product at all).     

Given the anticipated kit replenishments and the characteristics of demand, we seek the dynamic pricing 

strategy that maximizes the manufacturer’s total profits during the m-period planning horizon.  For 
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t = 1, 2, …, m, let pht and plt denote, respectively, the prices of the high and low quality products.  Then, 

for any period t, a consumer with quality sensitivity θ maximizes her utility by adopting the following 

purchasing strategy:  

  Buy the high quality product  if and 0h ht l lt h htq p q p q pθ θ θ− > − − > , 
  Buy the low quality product  if and 0l lt h ht l ltq p q p q pθ θ θ− > − − > , and 
  Do not buy either product otherwise. 

Since h lq q> , customers who purchase product h must all have higher quality sensitivity than those who 

purchase product l; in turn, these latter customers have higher quality sensitivity than those who do not 

purchase the product.  Let ( ) ( )ht ht lt h lp p q qθ = − −  denote the threshold value of quality sensitivity at 

which a customer is indifferent between purchasing the high or low quality product; similarly, let 

lt lt lp qθ = be the threshold value at which a customer is indifferent between purchasing the low quality 

product and not purchasing any product.  (We can show that the manufacturer will price product h high 

enough relative to product l to satisfy ht lt h lp p q q≥ , and so 0 1lt htθ θ≤ ≤ ≤ .)  Then, all customers with 

[ ,1]htθ θ∈  purchase the high quality product, those with  [ , )lt htθ θ θ∈  purchase the low quality product, 

while the rest do not purchase any product.  Therefore, in period t, the demand for high and low quality 

products is (1 )htθ λ−  and ( )ht ltθ θ λ− , respectively.  So, if the manufacturer has only limited high quality 

kits available in inventory or wishes to preserve these kits for later sale, it can regulate the demand for 

high quality product by raising the price pht, thereby increasing θht . 

To formulate the multi-period demand shaping (pricing) problem as an optimization model, we define the 

following inventory and sales variables.  For k = h or l, and t = 1, 2, …, m, let Skt be the quantity of 

product k sold in period t, and let Ikt be the number of kits for product k carried forward at the end of 

period t.  Using these variables, together with variables for the prices and quality sensitivity thresholds, 

the demand shaping problem has the following nonlinear programming formulation [DSP]:  

 [DSP]   ( )
1

Maximize 
m

ht ht lt lt
t

p S p S
=

+∑        (1) 

subject to:  
Inventory balance:  , 1ht h t ht htS I R I−= + −   for t = 1,…, m,     (2) 
    , 1lt l t lt ltS I R I−= + −    for t = 1,…, m,     (3) 

Incentive compatibility: ltlhththht pqpq −≥− θθ    for t = 1,…, m,     (4) 
    hthltltllt pqpq −≥− θθ    for t = 1,…, m,     (5) 

Individual rationality: 0≥− hthht pqθ    for t = 1,…, m,     (6) 
    0≥− ltllt pqθ    for t = 1,…, m,     (7) 

Sales:   )1( hthtS θλ −=    for t = 1,…, m,     (8) 
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    )( lthtltS θθλ −=   for t = 1,…, m,       (9) 

Nonnegativity:  , 0lt htθ θ ≥    for t = 1,…, m, and   (10) 
                   0 0 0l hI I= = , , , , 0lt ht lt htI I S S ≥  for t = 1,…, m.                    (11) 

The objective function (1) maximizes the total profits for high and low quality products over all periods.  

Constraints (2) and (3) are the inventory balance identities.  The incentive compatibility constraints (4) 

and (5) ensure that consumers purchasing the high quality product are not better off by switching to the 

low quality product, and vice versa.  The individual rationality constraints (6) and (7) specify that all 

consumers who purchase either product get nonnegative utility.  Constraints (8) and (9) define the sales 

variables, and constraints (10) and (11) impose nonnegativity.  Note that constraints (8) and (9), together 

with nonnegativity of sales, imply that 1lt htθ θ≤ ≤ , while nonnegativity of the θ variables ensure that the 

total sales in each period never exceed the number of arriving customers λ.   

3.  DSP Properties and Solution Method  

We now identify some properties of optimal DSP solutions, and later describe a polynomial solution 

procedure based on these properties.  We omit the formal proofs for the results discussed in this section.   

First, formulation [DSP] has an optimal solution in which constraints (4) and (7) are binding, i.e.,  

   lt lt lp qθ=  and ( )ht lt ht h lp p q qθ= + −  for all t = 1, 2,…, m.     (12) 

Otherwise, we can raise the product prices in period t without decreasing total profits.  Furthermore, these 

prices automatically satisfy constraints (5) and (6).  Therefore, we can replace constraints (4) to (7) with 

equalities (12), converting all constraints (except the nonnegativity requirements) of the DSP model to 

equality constraints (henceforth, we will assume this equality form for formulation [DSP]).  So, we can 

express the model in terms of any one set of variables—the θ variables, inventory variables, sales 

variables, or price variables—by substituting for the other variables in the objective function and 

nonnegativity constraints.       

We can also show that an optimal DSP solution sets 1
2ltθ ≥  for all periods t.  So, the total sales (and 

demand) for both the high and low quality products in any period never exceeds λ/2.  Therefore, if we 

define the cumulative future availability of kits for product k = h or l as ''

m
kt ktt t

W R
=

=∑ , we can assume 

without loss of generality that ( 1) / 2ht ltW W m tλ+ ≤ − +  for all t = 1, 2, …, m.   

Let us now consider a “relaxation” of the problem in which all the replenishments occur in the first 

period, i.e., the manufacturer receives all Wh1 kits for the high quality product and Wl1 kits for the low 
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quality product at the start of the first period.  Then, the manufacturer maximizes profits by maintaining a 

constant price for each product throughout the planning horizon so as to sell high and low quality 

products at constant rates of 1hW m  and 1lW m  units per period, respectively.  The total profit for this 

strategy is an upper bound on the optimal value of model [DSP].  The manufacturer must deviate from 

this constant pricing strategy if the actual replenishments are not adequate to sustain the desired constant 

sales rates; in this case, profit maximization requires deviating as little as possible from the target rates.  

These observations suggest a close connection between pricing decisions in any period and whether or not 

the manufacturer runs out of inventory during that period.   

Given any feasible solution to model [DSP], we say that a period t is an exhaust period for the high (low) 

quality product if the solution does not transfer or carry forward any inventory of the high (low) quality 

product to the next period, i.e., if Iht = 0 (Ilt = 0).  We refer to periods that are not exhaust periods as 

transfer periods.  The following result characterizes the optimal solution in terms of exhaust periods, and 

identifies some interesting and useful properties of the optimal pricing strategy.    

Theorem 1 (optimality conditions): Any feasible DSP solution is optimal if and only if: 

(a)  the prices for both the high and low quality products are non-increasing with time; and, 

(b)  between consecutive exhaust periods of the high (low) quality product, the price for the product is 

constant.  

Now, suppose we know the optimal sets of transfer periods * {1,2,..., }hT m⊆  and * {1,2,..., }lT m⊆  for the 

high and low quality products.  We next discuss how to determine the optimal solution to [DSP].   

Theorem 2 (simultaneous equations): Given the set of optimal transfer periods *
hT  and *

lT , we can find 

the optimal solution (i.e., inventory values Ikt) to [DSP] by solving the following simultaneous equations: 

2Iht − Ih,t−1 − Ih,t+1 + ql/qh(2Ilt − Il,t−1− Il,t+1) = Rht − Rh,t+1+ ql/qh(Rlt − Rl,t+1)  for all *
ht T∈ , and (13) 

2Iht − Ih,t−1 − Ih,t+1 + (2Ilt − Il,t−1− Il,t+1) = Rht − Rh,t+1+ (Rlt − Rl,t+1)   for all *
lt T∈ , and (14) 

Iht = 0  for *
ht T∉ , and Ilt = 0 for *

lt T∉ .         (15) 

Equations (13) and (14) are equivalent to setting , 1ht h tp p +=  for all 
*

ht T∈ , and , 1lt l tp p +=  for all 
*

lt T∈ , 

corresponding to the optimality requirement that price must be constant between consecutive exhaust 

periods.  Equation (15) ensures that inventory transfer is zero during the specified exhaust periods.  Given 

the inventory transfer solution to this system of equations, we can compute the desired sales in each 

period (from equations (2) and (3)), the corresponding θ values (using equations (8) and (9)), and the 

optimal prices (using equation (12)).   
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These properties of optimal DSP solutions motivate our efficient solution algorithm.  Starting with an 

empty set of transfer periods, the method iteratively identifies additional periods that must be transfer 

periods in the optimal solution by solving the simultaneous equations (13) to (15) for the current set of 

transfer periods.  A formal statement of the algorithm follows: 

Demand shaping algorithm 

Step 1:  Initialize hT =∅  and lT =∅  

Step 2:  Solve equations (13) to (15) with respect to the current sets of transfer periods Th and Tl, and use 

the inventory solution values Ikt to compute the corresponding prices pkt (using equations (2), (3), 

(8), (9), and (10)) for k = h and l, and t = 1, 2, …, m. 

Step 3:   If the prices for both products are non-increasing with t, Stop.  The current set of transfer periods 

is optimal.  Otherwise, suppose , 1kt k tp p +<  for k = h or l and some t = 1, 2, …, m–1.  Update 

{ }k kT T t← ∪ , and repeat Step 2. 

The procedure requires O(m) iterations, with the profit increasing at each iteration. We can develop 

additional properties to efficiently identify periods that must necessarily be exhaust periods.    

In summary, this paper has addressed opportunities to maximize profits by shaping demand through price 

adjustments when the manufacturer has advance information about the deliveries of components.  The 

principles and results we have discussed in this paper also extend readily to situations where the customer 

arrival rate varies by time period, and the two products use certain common components whose 

availability is also limited.   
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