FLEET INTRODUCTION PROJECT FOR THE UNITED STATES NAVY'S NEXT GENERATION BATHYTHERMOGRAPH RECORDER SYSTEM

by

Larry Reynolds Moss

Project and Report submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Systems Engineering

APPROVED:
Professor L. K. Harmon, Chairman

D. K. Howard

25 April 1997 Blacksburg, VA Dr. K. P. Ellis

FLEET INTRODUCTION PROJECT FOR THE UNITED STATES NAVY'S NEXT GENERATION BATHYTHERMOGRAPH RECORDER SYSTEM

by

Larry Reynolds Moss

Professor L. K. Harmon Department of Systems Engineering

(ABSTRACT)

The following report presents the preliminary design and prototype development phase of a technology insertion program implemented by this author to extend the service life and to improve the performance of the United States Navy's Bathythermograph Data Recorder System onboard Submarines (AN/BQH-7) and Surface Ships (AN/BQH-7A). The performance upgrade will increase the Fleet User's ability to measure sonar performance and will provide more accurate salinity measurements used for submarine ballasting and control. This project is unique not necessarily because Commercial-off-the-Shelf (COTS) and Non-Developmental Item (NDI) componentry is being used but because the focus is on developing a systems engineering process model for (1) the implementation of COTS and NDI technologies in an open systems architecture environment, (2) a maintenance, sparing, and life cycle support model for COTS and NDI programs, and (3) a periodic technology insertion plan for keeping pace with COTS and NDI technology advances and configuration changes. It is intended that this report be used in the future as a good example of the successful implementation of Acquisition Reform and DoD 5000.2B initiatives.

Keywords:

Service Life Extension Program (SLEP)

Commercial-off-the Shelf (COTS)

Technology Insertion

Acquisition Reform

Fleet Support Initiative (FSI)
Non-developmental Items (NDI)
Re-engineering / Electronic Re-packaging
Open Systems Architecture (OSA)

PREFACE

This project was proposed as a Fleet Support Initiative by this author in March 1995 through the Program Executive Office for Undersea Warfare, PEO(USW), Program Office for the Submarine Regional Warfare System, PMS415. PMS415 is a U. S. Navy System Acquisition & Procurement Program Office and is located in Crystal City, Arlington, VA and is part of Commander, Naval Sea Systems Command (COMNAVSEASYSCOM).

Special thanks to those in PMS415 who made this effort possible for without their guidance and support, this effort would not have been possible. May the great systems architect bless you all with high cohesion, low coupling, and hierarchical coparceny.

TABLE OF CONTENTS

Lis	et of Figures and Tables		
	List of Figures vi		
	List of Tables vii	İ	
Lis	et of Acronyms		
	List of Abbreviations/Acronyms vii	i	
Ch	apter 1		
1.0	Introduction		
1.1	System Overview)	
	1.1.1 Operational Requirements)	
	1.1.2 Mission Description	j	
	1.1.3 Functional Description	j	
1.2	Problem Identification		
1.3	Description of Proposed Change to Resolve Problem	,	
	1.3.1 AN/BQH-7/7A EC-3 System Description	,	
	1.3.2 AN/BQH-7/7A EC-3 System Goals and Objectives	;	
Ch	apter 2		
	Engineering Process and Project Design Methodology)	
2.1	Systems Engineering Process		
2.2	Systems Engineering Life-Cycle Process		
2.3	Partitioning of Effort into Manageable Phases		
2.4	Systems Engineering Process Elements		
2.5	•		
	Processes and Initiatives Implemented		
	2.6.1 Acquisition Reform)	
	2.6.1.1 Integrated Process and Product Development (IPPD)		
	Integrated Product Team (IPT))	
	2.6.1.2 Commercial Standards Implementation)	
	2.6.1.3 Coalition Partnership between Government and Industry		
	2.6.1.4 Systems Acquisition Paradigm Shift		
	2.6.2 AN/BQH-7/7A EC-3 Open Systems Architecture (OSA) Approach 23	,	
Ch	apter 3		
	Requirements Analysis	j	
	Operational Requirements Analysis		

3.2	Maintenance and Supportability Requirements	26
	3.2.1 Organizational Level (O-Level) Maintenance	26
	3.2.2 Depot Level Support	
	3.2.3 Depot Level Maintenance	27
	3.2.4 Technical Design Agent (TDA) and	
	In-Service Engineering Agent (ISEA)	27
	3.2.5 Ship Yard	28
3.3	Human Factors Considerations	28
3.4	Functional Requirements Analysis	28
	3.4.1 Quality Function Deployment (QFD) and Analytic	
	Hierarchy Process (AHP) Analysis	28
	3.4.2 AN/BQH-7/7A EC-3 Requirements Synthesis	30
	3.4.3 AN/BQH-7/7A EC-3 Requirements Allocation to	
	Current Requirements	31
	3.4.4 AN/BQH-7/7A EC-3 Functional Flow Requirement	31
	3.4.5 Interface Requirements Analysis	33
3.5	Preliminary Reliability Analysis	34
3.6	Component Tradeoff Analysis	36
	3.6.1 Component Tradeoffs	36
	3.6.2 Component Selection	37
	3.6.2.1 Hardware	38
	3.6.2.2 Software	40
	3.6.2.3 EC-3 Prototype Bill of Material (BOM)	
3.7	Pre-Production Unit (PPU) Prototype	43
3.8	Updated Reliability Analysis and Verification	46
3.9	Validation Test Requirements Analysis	48
	3.9.1 Laboratory Test	48
	3.9.2 At-Sea Test	48
Ch	apter 4	
	Life Cycle Support and Cost Analysis	49
4.1	COTS versus Build-to-Print (MILSPEC) Systems	50
4.2	Example of Operation and Support Cost Savings (AN/SQQ-89 Program)	55
4.3	AN/BQH-7/7A EC-3 Life-Cycle Cost (LCC)	58
Ch	apter 5	
5.0	Summary	60
	Conclusions	
No	tes and References	62

Appendices

Appendix A - Commander Submarine Force U.S. Atlantic Fleet Endorsement A	-1
Appendix B - Commander Submarine Force U.S. Pacific Fleet Sonar Newsletter B-	-1
Appendix C - Engineering Services Authorization Letter	-1
Appendix D - Proposed Program Schedule	-1
Appendix E - AN/BQH-7/7A EC-3 Requirements Allocation Matrix E-	-1
Appendix F - AN/BQH-7/7A EC-3 Hardware Functional Allocation Matrix F-	-1
Appendix G - Tradeoff Analysis Tables	-1
Appendix H - Mk-12 Marketing Specification Sheet	-1

List of Figures

Figure 1 - AN/BQH-7/7A EC-3 Program Timeline and Milestones	7
Figure 2 - Systems Engineering Life-Cycle Process	11
Figure 3 - EC-3 Recorder Design-to-Fielding Phasing Plan	13
Figure 4 - Work Process/Task Flow Chart for Phase II	
Figure 5 - Allocation of Systems Engineering SubTasks	15
Figure 6 - Systems Engineering Process Elements	16
Figure 7 - Illustration of Benefits of Using Open Systems	
Architecture and Intended Ease of Technology Insertions	24
Figure 8 - Quality Function Deployment (QFD) Process	29
Figure 9 - Analytic Hierarchy Process	30
Figure 10 - AN/BQH-7/7A EC-3 Functional Flow Diagram	32
Figure 11 - AN/BQH-7/7A EC-3 System/Subsystem Interface Diagram	34
Figure 12 - AN/BQH-7/7A EC-3 Keyboard Design	38
Figure 13 - Sippican Mk-12 Data Acquisition Card	39
Figure 14 - AN/BQH-7/7A EC-3 Pre-Production Unit (PPU)	
Prototype Block Diagram	44
Figure 15 - Picture of the AN/BQH-7/7A (Current Recorder)	45
Figure 16 - Computer Generated Picture Composite of the AN/BQH-7/7A	
EC-3 (Future Recorder)	45
Figure 17 - Final AN/BQH-7/7A EC-3 Reliability Model	47
Figure 18 - Commercial versus MILSPEC Procurement Comparison	50
Figure 19 - Cartoon Depicting the Rapid Pace of Technology Changes	51
Figure 20 - Hard Drive Evolution - Typical PC Hard Drive Capacity by Year	52
Figure 21 - Nominal Life Cycle Support Comparison between Build-to-Print	
and COTS Based Systems	53
Figure 22 - System Technology Assessment Process	54
Figure 23 - Board Availability and Support Curve Example	56
Figure 24 - Product Life Cycles Identified from Market Survey	57
Figure 25 - Collective Technical Refresh in Year 2001 Cost vs. Time	58

List of Tables

Table 1 - U. S. Navy Operational Requirements Documents for Oceanic Environmental Measurement Systems	. 3
Table 2 - Expendable Probe Types Used by Each Recorder	. 4
Table 3 - Launched Expendable Probe Types and Attributes	. 8
Table 4 - Correlation of Parts Obsolescence Impact to Number of Engineering Change Notices (ECNs) Over Time	. 17
Table 5 - Vendor Supportability Survey for Current AN/BQH-7/7A Recorder Components	18
Table 6 - AN/BQH-7/7A EC-3 External Shipboard Interface Requirements	. 33
Table 7 - Actual versus Predicted Reliability Comparison (AN/BQH-7/7A versus AN/BQH-7/7A EC-3)	. 35
Table 8 - AN/BQH-7/7A EC-3 Display Options	37
Table 9 - Selected AN/BQH-7/7A EC-3 Pre-Production Unit (PPU) Prototype Bill of Material (BOM)	42
Table 10 - AN/SQQ-89 Total Product Replacement Cost	55

List of Abbreviations/Acronyms

AHP - Analytic Hierarchy Process

ANSI - American National Standard Institute

APL - Allowance Parts List

A-RCI - Acoustics, Rapid COTS Insertion

ASL - Arctic Submarine Laboratory

ASQC - American Society Quality Control

ASW - Anti-Submarine Warfare

BOA - Basic Order Agreement

BOM - Bill of Material

BSME - Bachelors of Science in Mechanical Engineering

CASREP - Casualty Report

CCA - Circuit Card Assembly

CCB - Configuration Change Board

C³I - Command, Control, Communications, Intelligence

CO - Commanding Officer

COMSUBDEVRON - Commander, Submarine Development Squadron

COMSUBLANT - Commander, Submarine Force U. S. Atlantic Fleet

COMSUBPAC - Commander, Submarine Force U. S. Pacific Fleet

COMSURFLANT - Commander, Surface Force U. S. Atlantic Fleet

COMSURFPAC - Commander, Surface Force U. S. Pacific Fleet

COSAL - Consolidated Ship's Allowance List

COTS - Commercial off the Shelf

CPU - Central Processor Unit

DET - Detachment

DEVRON 12 - Development Squadron 12

DoD - Department of Defense

DRAM - Dynamic Random Access Memory

EC - Engineering Change

ECN - Engineering Change Notice

ECP - Engineering Change Proposal

EDM - Engineering Development Model

EIA - Engineering Institute of America

E-Mail - Electronic Mail

ENGR - Engineering

ETC - et cetera

FAT - Factory Acceptance Test

FAU - Florida Atlantic University

FDDI - Fiber Distributed Data Interface

FSI - Fleet Support Initiative

List of Abbreviations/Acronyms - Continued

GByte - Giga-Byte

GFP - Government Furnished Property

GPS - Global Positioning Satellite

HRS - Hours

INCO - Installation and Checkout

INCOSE - International Council on Systems Engineering

IPPD - Integrated Process and Product Development

IPT - Integrated Process Team

IS - Industrial Standard

ISEA - In-Service Engineering Agent

ISA - Industry Standard Architecture

ISO - International Standards Organization

LCC - Life Cycle Cost

LCD - Liquid Crystal Display

LCDR - Lieutenant Commander

LSA - Logistics Support Analysis

MA - Mechanical Assemblies

MAMs - Maintenance Assist Modules

MByte - Mega-Byte

MEA - Masters of Engineering in Acoustics

MHz - Mega-Hertz

MILSPEC - Military Specification

Mk - Mark

MPP - Multi-Purpose Processor

MSSE - Masters of Science in Systems Engineering

MTBF - Mean Time Between Failure

MTBM - Mean Time Between Maintenance

MTTR - Mean Time to Repair

NAVICP - Navy Inventory Control Point

NAVSEASYSCOM - Naval Sea Systems Command (also referred to as NAVSEA)

NAVSEACOMBATSYSENGSTA - Naval Sea Combat Systems Engineering Station

NAVUNSEAWARCEN - Naval Undersea Warfare Center (also referred to a NUWC)

NDI - Non-Developmental Item

NSSN - New Ship Submersible, Nuclear (also referred to as "New Attack Submarine")

NSPCC - Navy Ship Parts Control Center

NTDS - Naval Tactical Data Systems

NWP - Navy Weapon Publication

OBRP - On Board Repair Part

OSA - Open Systems Architecture

List of Abbreviations/Acronyms - Continued

PAL - Preliminary Allowance List

PARM - Program Acquisition Review Manager

PDD - Program Design Document

PECP - Preliminary Engineering Change Proposal

PEO(USW) - Program Executive Office for Undersea Warfare

PIDS - Prime Item Development Specification

PMS415 - Program Manager, Sea (for NAVSEA)

PMW - Program Manger, Space and Naval Warfare (also see SPAWAR)

PPU - Pre-Production Unit

PSD - Product Specification Description

PTD - Provisioning Technical Documentation

QFD - Quality Functional Deployment

RAM - Random Access Memory

RDT&E - Research, Development, Test & Evaluation

ROM - Read Only Memory

SCSI - Small Computer Systems Interface

SER - Serial

SEWG - Systems Engineering Working Group

SFMPL - Submarine Fleet Mission Program Library

SHAPM - Ship's Acquisition Program Manager

SLEP - Service Life Extension Program

SPAWAR - Space and Naval Warfare

SPCC - Ship's Parts Control Center

SSN - Ship Submersible, Nuclear

SSXBT - Sub-Surface Expendable Bathythermograph

SSXCTD - Sub-Surface Conductivity Temperature Depth

SUBLANT - Commander Submarine Force U.S. Atlantic Fleet

SUBPAC - Commander Submarine Force U.S. Pacific Fleet

SURFLANT - Commander Surface Force U.S. Atlantic Fleet

SURFPAC - Commander Surface Force U.S. Pacific Fleet

SURTASS - Surface Towed Array Sonar Suite

SVGA - Super Video Graphics Array

S.W. - Software

TDA - Technical Design Agent

TI - Technical Instruction

TM - Technical Manual

TMCR - Technical Manual Contract Requirement

TMD - Training Material Documents

UISSXBT - Under Ice Sub-Surface Expendable Bathythermograph Temperature

List of Abbreviations/Acronyms - Continued

UISSXSV - Under Ice Sub-Surface Expendable Sound Velocimeter

UISSXCTD - Under Ice Sub-Surface Expendable Conductivity Temperature Depth

U. S. - United States

USS - United States Submarine

USW - Undersea Warfare

VGA - Video Graphics Array

V&V - Verification and Validation

WWA - Wide Aperture Array

XBT - Expendable Bathythermograph

XSV - Expendable Sound Velocity

XCTD - Expendable Conductivity Temperature Depth