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Abstract

Congestion control in the Available Bit Rate (ABR) class of Asynchronous Transfer Mode (ATM)
networks poses interesting challenges due to the presence of multiple-delays, magnitude and rate
constraints on the inputs, amplitude limitation on the state, and additive disturbances. In this paper,
we consider a fixed-structure controller for an ATM/ABR network, and solve a robust tracking control
problem in which the target is a threshold on the queue level.

Keywords: Congestion control, data networks, magnitude and rate amplitude bounds, multiple
delays, tracking problem, ATM, ABR, QoS.

1 Introduction

The transmission of multimedia traffic on the broadband integrated service digital networks (B-ISDN)
has created the need for new transport technologies such as Asynchronous Transfer Mode (ATM). Briefly,
because of the variability of the multimedia traffic, ATM networks seek to guarantee an end-to-end qual-
ity of service (QoS) by dividing the varying types of traffic (voice, data, etc.) into short, fixed-size cells
(53 bytes each) whose transmission delay may be predicted and controlled. ATM is thus a Virtual Circuit
(VC) technology which combines advantages of circuit-switching (all intermediate switches are alerted
of the transmission requirements, and a connecting circuit is established) and packet-switching (many
circuits can share the network resources). In order for the various VC’s to share network resources,
flow and congestion control algorithms need to be designed and implemented. The congestion control
problem is solved by regulating the input traffic rate. In addition, because of its inherent flexibility,
ATM traffic may be served under one of the following service classes:

1. The constant bit rate (CBR) class, which accommodates traffic that must be received at a guaran-
teed bit rate, such as telephone conversations, video conferencing, and television.

2. The variable bit rate (VBR) which accommodates bursty traffic such as industrial control, multi-
media e-mail, and interactive compressed video.

3. The available bit rate (ABR) which is a best-effort class for applications such as file transfer or
e-mail. Thus, no service guarantees (transfer delay) are required, but the source of data packets controls
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its data rate, using a feedback signal provided by switches downstream which measure the congestion of
the network. Due to the presence of this feedback, many classical and advanced control theory concepts
have been suggested to deal with the congestion control problem in the ATM/ABR case [3, 8].

4. The unspecified bit rate (UBR) which uses any leftover capacity to accomodate applications such
as e-mail.
Note that for the CBR and VBR service categories, a traffic contract is negotiated at the initial stage
of the VC setup, and maintained for the duration of the connection. This contract will guarantee the
following QoS parameters: 1) Minimum cell rate (MCR), 2) Peak cell rate (PCR), 3) cell delay variation
(CDV), 4) maximum cell transfer delay (maxCTD), and 5) cell loss ratio (CLR). This then forces CBR
and VBR sources to keep their rate constant regardless of the congestion status of the network. The ABR
sources on the other hand, are only required to guarantee an MCR and an PCR, and thus can adjust
their rates to accomodate the level available after all CBR and VBR traffic has been accommodated. In
order to avoid congestion, the ATM Forum adopted a rate-based ABR control algorithm as opposed to
a credit approach whereby the number of incoming cells as opposed to their rate is controlled [9]. This
paper will then concentrate on the ABR service category since ABR sources are the ones to adjust their
rates using explicit network feedback. In the original ATM forum specification, an ATM/ABR source
is required to send one cell called a resource management (RM) cell for every 32 data cells. Switches
along the path from the source to the destination then write into the RM cell their required data rate to
avoid congestion. The destination switch then has information about the minimum rate required by all
switches along the VC which is then relayed back to the ATM/ABR source as a feedback signal which
serves to adjust its own data rate.

The earliest control algorithms for ABR consisted of setting a binary digit in the RM cell by any
switch along the VC when its queue level exceeds a certain treshhold [3]. This was then shown to cause
oscillations in the closed-loop system. Other controllers were then suggested by various authors [5, 15],
to address this problem. Most of these controllers are either complex or did not guarantee the closed-loop
stability (in a sense defined later).

In addition, one of the limiting factors of these earlier proposed controllers was that the ABR band-
width needed to be known in the implementation of the control algorithm. This however poses a problem
in multimedia applications where the ABR bandwidth is bursty and is effectively the remaining available
bandwidth after the CBR and VBR traffic have been accommodated. In [8] this particular issue was
dealt with using a Smith predictor which then considered the available ABR bandwidth as an unknown
disturbance. While this controller had many desirable properties, it only guaranteed stability in an
appropriately defined sense but had no optimality guarantees. In addition, the delays encountered along
with the number of ABR sources were assumed known, although the earlier tech report [9] did not require
the delays to be exactly known. In [4], robust controllers were designed when both the number of ABR
sources and the delays were uncertain.

In the current paper, we present a framework which allows us to deal with the ATM/ABR problem
with uncertain delays, and number of sources. Moreover, we shall account for the limitations on the
rate of traffic and on the speed of change in such rates. Our formulation will allow us to deal with other
performance objectives while maintaining a simple controller structure.

Notation. <+ is the set of non-negative real numbers. A(i) denotes the ith row of matrix A. A(i, j)
denotes the element of the ith row and the jth column of matrix A. Im denotes the m−order identity
matrix. 1m denotes in <m the vector

[
1 . . . 1

]′
. Cτ = C([−τ, 0], <n) denotes the Banach space of con-

tinuous vector functions mapping the interval [−τ, 0] into <n with the topology of uniform convergence.
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‖ · ‖ refers to either the Euclidean vector norm or the induced matrix 2-norm. ‖ φ ‖c= sup
−τ≤t≤0

‖ φ(t) ‖
stands for the norm of a function φ ∈ Cτ . When the delay is finite then “sup” can be replaced by “max”.
Cv

τ is the set defined by Cv
τ = {φ ∈ Cτ ; || φ ||c< v, v > 0}. Finally, PE(x) indicates the entire part of

the real number x.

2 The network model and the control problem

2.1 The network model

There are two philosophically distinct approaches to modeling an ATM network. The first assumes a
continuous-time flow of the data and thus results in a delay-differential model of the system [8], while the
other one assumes a discrete-time flow and results in a difference equation model [4, 5]. In either model
however, the eventual controller needs to be implemented in discrete-time. In this paper, we choose
the delay-differential model and assume for the time being that the controller is also continuous-time
with the understanding that a discrete-time controller may be obtained as discussed for example in [9].
As discussed earlier, the considered ABR class is designed as a best-effort class for applications such as
file transfer or e-mail. Thus, no service guarantees are required (beyond meeting the MCR and PCR
limits), but the source of data packets controls its data rate, using a feedback signal provided by switches
downstream which measure the congestion of the network. Due to the presence of this feedback, many
classical and advanced control theory concepts have been suggested to deal with the congestion control
problem in the ATM/ABR case [3], [8]. In what follows we present the dynamic model of an ATM queue
following [8] and [4]. The data cells enter the network from a source node Si, and are then stored and
forwarded along intermediate links to various intermediate nodes. At each node, the process is repeated
until a data cell reaches its destination node Dj . Each node stores its data cells to be transmitted in a
queue along each one of its outgoing links. The network is thus modeled as a graph consisting of a set
of N = {1, · · · , n̄} nodes or switches, connected via a set of L = {1, · · · , l} links. Each node i ∈ N has a
set I(i) ⊂ L of input links and a set O(i) ⊂ L of output links. Let ti (sec) be the transmission time of a
cell through a link i and the transmission capacity or bandwidth of the corresponding link be ci = 1/ti
(cells/s). Let tdi(sec) be the propagation time delay of link i. Let tprj (sec) be the transmission time of
a node j denoting the time it takes a cell from the time it arrives at node j to the time it goes into one
of outgoing links queues. In the following, tprj is assumed to be small enough so that any congestion is
only due to the transmission capacity and not by any processing delays.

At any particular time, let C be the set of active source/destination pairs (S, D) ∈ N ×N . Let nc

be the cardinality of C, and associate with each pair (S,D) a VC and a path p(S, D) specified by the
sequence of links that the VC traverse in going from S to its corresponding D.

In order to provide feedback signals to itself, each source node generates a forward RM cell for every
32 data cells. The destination node or intermediate nodes (switches) then returns this RM cell (which
then becomes a backward RM cell) to the source. These RM cells contain a field called the explicit rate
(ER) feedback field, a congestion indicator (CI) bit, and a no increase (NI) bit. The RM cells then travel
the same path as the data cells and flow through a particular switch (node) which then can take one or
more of the following actions:

1. Insert feedback control information in the ER field of an RM cell.
2. Provide binary feedback information by marking the CI bit or the NI bit.
3. Set the explicit forward congestion indicator (EFCI) bit in the data cell header, so that the

destination can mark the CI bit in the corresponding RM cell.
4. Generate and send its own backward RM cell to the source.
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Now, each ABR source has an actual cell rate (ACR) along with its MCR and PCR. The ACR must
lie between the lower MCR limit and the upper PCR limit and is adjusted according to the feedback
provided though the backwards RM cells. The ER field of a forward RM cell is set by the source at its
current ACR, and the source waits until it receives the backward RM cell in order to act according to
one of the following scenarios:

1. The CI and NI bits are not set, denoting a no congestion situation. The source node then can
increase its ACR by RIF*PCR where RIF is the rate increase factor subject to the new ACR being no
greater than the explicit rate specified in the ER field by any of the switches downstream, and of course
still less than PCR.

2. The CI bit is set, denoting a congestion situation. The source node will then decrease its ACR by
RDF*PCR where RDF is the rate decrease factor subject to the new ACR being no greater than the
explicit rate specified in the ER field by any of the switches downstream, and of course still greater than
MCR.

3. If the NI bit is set, the source sets its new ACR to be the mimimum of the old ACR and the explicit
rate specified in the ER field by any of the switches downstream.
This control approach however leads to oscillatory behavior [4]. In what follows, a deterministic fluid
model of the cell flow is assumed, so that the source transmission rate is denoted by the continuous
variable u(t) = ACR (cells/sec). Then, each ABR source declares its peak cell rate cs = 1/ts = PCR

and is assumed to always have a cell to send (i.e. be persistent).
The model we consider is that described in [8] and used in [2]. We then assume that each output

link of a given node maintains a First-In-First-Out (FIFO) queue shared by all VCs flowing through the
link. Hence we suppose that the flow of packets is conserved and therefore the queue level model for
each buffer in the ATM network is given as the following continuous-time differential equation:

ẋ(t) = −d(t) +
n∑

i=1

u(t− Ti) (1)

with the initial condition:

u(t0 + ψ) = φ(ψ), ∀ψ ∈ [−τ, 0], (t0, φ) ∈ <+ × Cv
τ , τ = max

i=1,...,n
Ti (2)

where x(t) is the queue level associated with the considered link; n is the number of virtual circuits
sharing the queue level associated with the considered link which can be controlled by feedback from
the current switch. In other words, there may be many other sources feeding into the current switches
but they may be bottlenecked at some other switch (thus cannot increase their own rate due to feedback
from the current switch) or are already transmitting at their current PCR (and thus cannot increase
their ACR); u is the rate accomodated by the considered link. We assume that all the n virtual circuits
which share the link have the same input rate u; Ti is the propagation delay from the ith controlled
source to the queue; d(t) = µ(t) − ru(t) is the disturbance consisting of the rate of packets leaving the
queue µ(t), minus ru(t), the rate of all the packets arriving from all uncontrollable sources.

Furthermore we assume that the following assumptions hold with respect to system (1).

Assumption 2.1 The input u(t) (ACR = u) is limited in amplitude as follows:

u(t) ∈ Ω0 = {u, 0 ≤ u(t) ≤ u0, ∀t ≥ 0} (3)

with u0 > 0. Note that in this case, we have chosen MCR = 0 and PCR = u0 and that the input
constraints are supposed to be satisfied by the initial function φ(ψ), ∀ψ ∈ [−τ, 0]. This assumption
basically states that the inflow rate is bounded above and that each source is persistent.
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Figure 1: The controlled system.

Assumption 2.2 The rate of u(t), that is, its time-derivative u̇(t) is limited in amplitude as follows:

u(t) ∈ Ω1 = {u,−u1 ≤ u̇(t) ≤ u1} (4)

with u1 > 0. This basically guarantees that no source can change its cell rate instantaneously.

2.2 The control problem

The control objective of this network is to achieve a certain stability property and assure full link
utilization as described for example in [8] while simultaneously taking into account the actuator state
limitations and external disturbances. Thus, and similarly to [8], let us introduce the fixed-structure
controller:

u(t) =
k

n

[
r0 − x(t)−

n∑

i=1

∫ t

t−Ti

u(τ)dτ

]
(5)

where r0 > 0 represents the queue capacity and k is a positive scalar. The author in [8] has shown
that with the appropriate choice of k, this controller will achieve the desired objectives given the exact
knowledge of Ti (otherwise known as the round trip delay RTD) and of the number of sources n. ¿From
(1) the controller (5) may be equivalently defined as

u̇(t) =
k

n
(d(t)− nu(t)) (6)

With this type of controller, the closed-loop system reads:




ẋ(t) = −d(t) +
n∑

i=1

u(t− Ti)

u̇(t) = k
n(d(t)− nu(t))

(7)

Hence, by defining the new vectors of states z as follows:

z(t) =
[

x(t)
u(t)

]
∈ <2 (8)
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the initial closed-loop system (7) reads:

ż(t) = Az(t) + Ad

n∑

i=1

z(t− Ti) + Bd(t) (9)

with

A =
[

0 0
0 −k

]
∈ <2×2 , B =

[ −1
k
n

]
∈ <2×1 , Ad =

[
0 1
0 0

]
∈ <2×2 (10)

This closed-loop system is defined with the initial condition

z(t0 + ψ) =
[

0
φ(ψ)

]
, ∀ψ ∈ [−τ, 0], (t0, φ) ∈ <+ × Cv

τ , τ = max
i=1,...,n

Ti (11)

Furthermore, due to the form of the closed-loop system (9), we can show that the constraints (3) and
(4) can be described in the assumption below.

Assumption 2.3 With respect to the closed-loop system (9), the following constraints must be satisfied:

z(t) ∈ Z0 = {z ∈ <2; 0 ≤ [
0 1

]
z(t) ≤ u0, ∀t} (12)

z(t) ∈ Z1 = {z ∈ <2;−u1 ≤
[

0 1
]
ż(t) ≤ u1, ∀t} (13)

The control problem addressed in the paper can then be re-formulated as follows:

Problem 2.1 Find a gain k, a set of initial condition S0 ⊆ <2 and a set of admissible disturbances
W0 ⊂ < such that the closed-loop system (9)-(10) exhibits the following properties:
1. Stability. ∀φ(ψ) ∈ S0, ∀ψ ∈ [−τ, 0], and ∀d ∈ W0 one has:

[
1 0

]
z(t) = x(t) ≤ r0, ∀t ≥ 0 (14)

Since r0 corresponds to the queue capacity, this condition allows us to guarantee that no cells are lost,
but is not a usual stability requirement. It does however guarantee no oscillation, nor overshoot.
2. Full link utilization. ∀φ(ψ) ∈ S0, ∀ψ ∈ [−τ, 0], and ∀d ∈ W0 one has:

[
1 0

]
z(t) = x(t) ≥ 0, ∀t ≥ 0 (15)

3. Actuator constraints. The position and rate constraints of the actuators are linearly satisfied.

Remark 2.1 The satisfaction of condition 2) in problem 2.1 may be relaxed to x(t) ≥ 0, ∀t ≥ Ttr ≥ 0
[8], [2], where Ttr mainly accounts for the transient time of the dynamics. By imposing a linear behavior
on the actuator, we avoid the saturation regimes of limited variables.

In the disturbance free case (that is, d(t) = 0 , ∀t ≥ 0), the resulting nonlinear closed-loop system
considering the limitations (12) and (13) possesses a basin of attraction of the equilibrium point ze = 0
[10], [12]. Then there exists a subset of this basin of attraction in which the behavior of the closed-loop
system remains linear. When d(t) 6= 0, it is not possible to strictly define one equilibrium point for the
closed-loop system (9) with the time-varying disturbance d(t). At a given time such that d(t) = de, a
corresponding equilibrium point ze such that że = 0 could be computed, implying that associated with
any constant disturbance de ∈ W0 , there exists a set of equilibrium points Ze. Thus, the closed-loop
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system due to constraints (12) and (13) exhibits local behaviors around these equilibrium points whose
study may be very difficult, if not impossible. Recall that we are interested by a linear behavior of the
closed-loop system. Thus, an interesting way to overcome these difficulties is to determine a suitable
set of admissible initial conditions, S0 from which the stability of system (9) with respect to the desired
equilibrium points is guaranteed.

Thus the set of equilibrium points under consideration can be defined as follows:

Ze =
{

ze ∈ <2; ze =
[

xe

ue

]
, że = 0,∀de = constant ∈ W0

}
(16)

Hence, for any admissible constant disturbance de, de ∈ W0, the objective is that the trajectories of

system (9) converge towards the equilibrium point ze =
[

xe

ue

]
. Hence, for d(t) = de, ∀t ≥ 0, ze is an

equilibrium point for system (9) provided that some conditions are verified (see, for example, [14] in the
delay free case (Ti = 0, i = 1, ..., n)).

3 Mathematical Preliminaries

3.1 Properties of the model

Since we are interested in the linear behavior of the closed-loop system, that is in avoiding the saturation
of z and ż, we state the following lemma [13].

Lemma 3.1 The closed-loop system model (9) subject to constraints (12) and (13) is only valid in the
region of linearity Z0 ∩ Z1. In other words, the closed-loop system model (9) subject to constraints (12)
and (13) is only valid, that is, remains linear if and only if the set of initial conditions S0 is such that

∀φ(ψ) ∈ S0, ∀ψ ∈ [−τ, 0], z(t) ∈ Z0 ∩ Z1, ∀t

When there is a value of φ(ψ) from which z(t) does not remain in Z0∩Z1, ∀t, the closed-loop system
resulting from (1), (3), (4), and (5) has to be described by using saturation functions. In this case,
the occurrence of saturation on the variables u and u̇ has to be investigated and new ways of modeling
the resulting closed-loop must be investigated. Such a study will not be considered here, but will be
investigated in later research. Note that a solution to such a control problem via statistical learning
control was proposed in the case of discrete-time systems with saturation [1].

3.2 Characterization of the equilibrium set

Lemma 3.2 Suppose that there exists an equilibrium point ze = z(te) for system (9). Then this equilib-
rium point satisfies:

n∑

i

u(te − Ti) = de (17)

u(te) =
de

n
(18)

xe = r0 − de

(
1
k

+
1
n

n∑

i=1

Ti

)
(19)

7



Proof. Relations (17) and (18) are derived by searching ze = z(te) satisfying in (9) że = 0. Relation
(19) is derived from (5) by considering that u = de

n on the interval [te − Ti, te]. 2

Remark 3.1 Condition (18) is consistent with those in [8] and means that the ABR bandwidth de is
equally shared by the n VC’s. Relation (17) is equivalent to




u(te − T1)
...

u(te − Tn)


 =

de

n
1n + ζe

where ζe is any vector of <n such as 1′nζe = 0. Hence, a particular solution consists in choosing ζe = 0
leading to u(te − Ti) = de

n , ∀i = 1, ..., n. Condition (19) is consistent with the value exhibited in [8].

4 Main results

A natural way for maintaining the system trajectories in a certain set consists of imposing the positive
invariance of such a set with respect for the considered system. Hence, part of our results is based on
the use of the extended Farkas lemma applied to delay systems: see [7], [11] and references therein.

Let us formulate the following proposition in order to capture the solution to Problem 2.1. As a first
step, we consider that the value of all delays Ti, i = 1, ..., n, are exactly known.

Proposition 4.1 If the positive values of r0, u0, u1, k, n, Ti and d0 satisfy:

0 ≤ d0

n
≤ u0 (20)

ku0 +
k

n
d0 ≤ u1 (21)

r0 − n

k
u0 − u0

n∑

i=1

Ti ≥ 0 (22)

then Problem 2.1 is solved for the given values of k and any disturbances satisfying

d(t) ∈ D0 = {d; 0 ≤ d ≤ d0, d0 > 0} (23)

Proof. To solve Problem 2.1, we have to satisfy the three requirements of Problem 2.1, namely, stability,
full link utilization, and actuators constraints.
• We must first verify that x(t) ≤ r0, ∀t ≥ 0. ¿From the controller described in (5), one can write the
following:

r0 − x(t) =
n

k
u(t) +

n∑

i=1

∫ t

t−Ti

u(τ)dτ

¿From Assumption 2.1 one gets:

0 ≤
n∑

i=1

∫ t

t−Ti

u(τ)dτ ≤ u0

n∑

i=1

Ti (24)
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Therefore, it can be deduced from (3) and (24) that r0−x(t) = n
k u(t)+

n∑

i=1

∫ t

t−Ti

u(τ)dτ ≥ 0. Furthermore,

since from Lemma 3.2, the trajectories of system (9) may attain its equilibrium point z(te) = ze as
defined in (17), (18) and (19) we have to verify that r0 − xe ≥ 0. Thus, from (19) it follows that

0 ≤ r0 − xe = de

(
1
k + 1

n

n∑

i=1

Ti

)
≤ d0

(
1
k + 1

n

n∑

i=1

Ti

)
. Thus, the first requirement of Problem 2.1 is

satisfied for any ui(t) and d(t) satisfying (3) and (23).
• The second point to verify is the fact that x(t) must be non-negative. Thus, one has to prove that

x(t) = r0 − n

k
u(t)−

n∑

i=1

∫ t

t−Ti

u(τ)dτ ≥ 0

¿From (3) it follows: x(t) ≥ r0 − n
k u0 − u0

n∑

i=1

Ti. Hence, if condition (22) is satisfied one gets x(t) ≥ 0.

This property must also be verified at the equilibrium. Thus, from Lemma 3.2, if relation (25) is satisfied
we have xe ≥ 0 for any u(t) and d(t) satisfying (3) and (23).
• The last point consists in verifying the constraints along the trajectories of the linear closed-loop
system (9). Recall that, from Lemma 3.1, system (9) subject to constraints (12) and (13) is only valid
in Z0 ∩ Z1. Thus, we have to prove that

1. the equilibrium point belongs to this region Z0 ∩ Z1 (see Assumption 2.3).

2. for any u and d such that
0 ≤ u ≤ u0 and 0 ≤ d ≤ d0

it follows
0 ≤ u ≤ u0 and − u1 ≤ u̇ ≤ u1

or equivalently

0 ≤ u ≤ u0 and − u1 ≤ k

n
[d(t)− nu(t)] ≤ u1

The satisfaction of relations (20) and (22) one gets:

r0 − d0

n

(
n

k
+

n∑

i=1

Ti

)
≥ 0 (25)

With respect to the point 1, we have shown above that 0 ≤ xe ≤ r0 from the satisfaction of (25).
Furthermore, from (20) one can verify that u(te) and u(te − Ti) satisfy (3).

With respect to the point 2, by using the extended Farkas lemma [7], [11], it follows that if relation
(21) is satisfied then there exists a non-negative matrix N such that:




1 0
−k k

n

−1 0
k − k

n


 = N




1 0
0 1

−1 0
0 −1


 and N




u0

d0

0
0


 ≤




u0

u1

0
u1


 (26)

with

N =




1 0 0 0
k k

n 2k 0
0 0 1 0
k k

n 0 2k
n


 (27)

2
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Remark 4.1 Relation (21) gives an implicit relation between the bounds u0 and u1. Indeed, necessarily,
we have to satisfy n

k u1 − nu0 ≥ 0.

In a second stage, we suppose that the delays Ti are uncertain and moreover the value of the number
of Virtual Circuits (say n) is unknown. In order to solve our control problem in the case where we have
also to provide an estimation of n, we suppose that all the delays Ti satisfy:

0 ≤ Ti ≤ Tmax, ∀i = 1, ..., n (28)

Let us now present a solution to our control problem when the values n and Tmax are not perfectly
known.

Proposition 4.2 Given r0 > 0, u0 > 0, u1 > 0 and d0 > 0. If there exist positive values X, Y and Z

satisfying:
0 ≤ d0X ≤ u0 (29)

r0 − d0X − d0Z ≥ 0 (30)

u0 + d0X ≤ u1Y (31)

r0X − u0Y − u0Z ≥ 0 (32)

r0

u0(Y + Z)
≥ 1 + max

{
d0

u0
;

d0

r0 − d0Z
;

d0

u1Y − u0

}
(33)

then Problem 2.1 is solved for the values

k =
1
Y

and n = PE

(
1
X

)

and any disturbances d(t) ∈ D0 (described in (23)) and for all delays verifying (28) with Tmax = Z.

Proof. Consider relations of Proposition 4.1 with unknown n, k and Tmax. In order to have lin-
ear conditions in the decision variables we choose X = 1

n , Y = 1
k and Z = Tmax. Hence, rela-

tions (20) and (21) directly translate into (29) and (31). Relations (30) and (32) comes from re-
lations (25) and (22) by considering (28). Finally, when all conditions are coherent, one obtains:
u0(Y +Z)

r0
≤ X ≤ min

{
u0
d0

; r0−d0Z
d0

; u1Y−u0
d0

}
, or equivalently, r0

u0(Y +Z) ≥ 1
X ≥ max

{
d0
u0

; d0
r0−d0Z ; d0

u1Y−u0

}
.

Thus, in order to pick the entire value of 1
X to obtain n, there must exist an entire value in the interval[

max
{

d0
u0

; d0
r0−d0Z ; d0

u1Y−u0

}
, r0

u0(Y +Z)

]
. Thus, to ensure this, we have to satisfy condition (33). 2

4.1 Numerical Examples

Hereafter we provide two numerical examples; one making use of the conditions provided by Proposi-
tion 4.1, the other one making use of the conditions provided by Proposition 4.2.

Example 1. Let r0 = 13 , u0 = 1 , u1 = 2 , n = 5 , Ti = 2 for i = 1, . . . 5. We applied the
conditions (20)–(22) of Proposition 4.1, trying to find the largest value of d0 such that there exist a
feasible value of k. It is easy to show that these conditions can be turned into a Generalized Eigenvalue
Problem which can be solved with the aid of the LMI Toolbox [16]. We found that Problem 2.1 is satis-
fied with k = 1.66 for a maximum value of d0 = 1. In Figure 2 we show the simulation results obtained
with this controller using the scheme of Figure 1: all the requirements (stability, full link utilization and
actuator constraints) are met.

10



0 100 200 300 400 500
10

11

12

13

14

15

Q
ue

ue
 le

ve
l

0 100 200 300 400 500
0

0.5

1

1.5

D
is

tu
rb

an
ce

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

R
at

e
Time [s]

0 100 200 300 400 500
−0.2

−0.1

0

0.1

0.2

0.3

0.4

R
at

e 
de

riv
at

iv
e

Time [s]

Figure 2: Simulation results: case 1

Example 2. Let r0 = 100 , u0 = 1 , u1 = 2 , d0 = 10. We applied the conditions (29)–(33) of
Proposition 4.2, trying to find feasible values for n, k and Tmax. Again with the aid of the LMI Toolbox,
we found that Problem 2.1 is solved for the values n = 13, k = 0.31, for all the delays verifying (28)
with Tmax = 3.86. In Figure 3 we show the simulation results obtained with this controller using the
scheme of Figure 1. The controller estimates the maximum time-delay Tmax = 3.86 and the number
of the virtual circuits n = 13, whereas only 10 virtual circuits were considered and the corresponding
time-delays were all chosen less than Tmax. Also in this case all the requirements (stability, full link
utilization and actuator constraints) are met.
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Figure 3: Simulation results: case 2

5 Conclusions

In this paper we have provided a new approach to deal with the ATM/ABR control problem keeping
in mind requirements of simplicity of the controller structure and allowing for various performance
objectives ot be met. Our approach basically leads to polynomial design inequalities to be satisfied.
Such inequalities have been studied by the authors and their collaborators in various papers [17]. The
statistical learning control approach discussed by the authors in [1, 2] for example, promises to be effective
in this setting. While our controller structure is currently derived in continuous time, it is possible to

11



translate such designs into discrete-time as was done for example in [9]. In addition, and while our
controller structure is basically the Smith predictor structure of [8], other controller structures are being
investigated.
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[4] O.C. Imer, S. Compans, T. Başar, and R. Srikant. ABR Control in ATM Networks, IEEE Control Systems
Magazine, vol. 21, No.1, pp. 38–56, 2001.

[5] L. Benmohamed and Y. T. Wang. A Control-Theoretic ABR Explicit Rate Algorithm for ATM Switches
with Per-VC Queuing. In Proceedings Infocom98, pages 183–191, San Francisco, CA, 1998.

[6] O.C. Imer, S. Compans, T. Başar, and R. Srikant, Available Bit rate Congestion Control in ABR congestion,
IEEE Control Systems Magazine, vol. 21, No. 1, pp. 38–56, February 2001.

[7] J-C. Hennet and S. Tarbouriech, Stability and stabilization of delay differential systems, Automatica, vol.33,
no.3, pp.347-354, 1997.

[8] S. Mascolo, Smith’s Principle for Congestion Control in High-Speed Data Networks, IEEE Trans. on Auto-
matic Control, vol.45, no.2, pp.358-364, 2000.

[9] D. Cavendish, S. Mascolo, and M. Gerla, SP-EPRCA: an ATM rate Based Congestion Control Scheme Based
on a Smith Predictor, 1996 UCLA CS Tech Report 960001, available at: ftp://ftp.cs.ucla.edu/tech-report/

[10] A. Saberi, Z. Lin, A.R. Teel, Control of linear systems with saturating actuators, IEEE Trans. Autom. Control,
vol.41, no.3, pp.368-378, 1996.

[11] G. Seifert, Positively invariant closed-loop systems of delay differential equations, J. Differential Equations,
vol.22, pp.292-304, 1976.

[12] S. Tarbouriech and G. Garcia (Editors), Control of uncertain systems with bounded inputs, Lecture Notes in
Control and Information Sciences vol.227, Springer-Verlag, 1997.

[13] S. Tarbouriech and J.M. Gomes da Silva Jr. Synthesis of controllers for continuous-time delay systems with
saturating controls, IEEE Trans. on Automatic Control, vol.45, no.1, pp.105-110, 2000.

[14] S. Tarbouriech, C. Pittet, C. Burgat, Output-tracking problem with input saturations via nonlinear integrating
actions, Int. J. of Robust and Nonlinear Control, vol.10, pp.489-512, 2000.

[15] F. Blanchini, R. Lo Cigno, and R. Tempo. Control of ATM Networks: Fragility and Robustness Issues. In
Proceedings American Control Conference, pages 2847–2851, Philadelphia, PA, 1998.

[16] Gahinet P., A. Nemirovski, A. J. Laub and M. Chilali, LMI Control Toolbox, The Mathworks Inc, Natick,
MA, 1995.

[17] V. Koltchinskii, C.T. Abdallah, M. Ariola, P. Dorato, and D. Panchenko, “Improved Sample Complexity
Estimates for Statistical Learning Control of Uncertain Systems”, IEEE Transactions on Automatic Control,
Vol. 45, No. 12, pp. 2383–2388, December 2000.

12


