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Abstract

The Internet’s excellent scalability and robustness result in part from the end-to-end nature of Internet conges-

tion control. End-to-end congestion control algorithms alone, however, are unable to prevent the congestion collapse

and unfairness created by applications that are unresponsive to network congestion. To address these maladies, we

propose and investigate a novel congestion avoidance mechanism calledNetwork Border Patrol(NBP). NBP entails

the exchange of feedback between routers at the borders of a network in order to detect and restrict unresponsive

traffic flows before they enter the network, thereby preventing congestion within the network. Moreover, NBP is

complemented with the proposed enhanced core-stateless fair queueing (ECSFQ) mechanism, which provides fair

bandwidth allocations to competing flows. Both NBP and ECSFQ are compliant with the Internet philosophy of

pushing complexity toward the edges of the network whenever possible. Simulation results show that NBP effec-

tively eliminates congestion collapse and that, when combined with ECSFQ, approximately max-min fair bandwidth

allocations can be achieved for competing flows.
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1 Introduction

The fundamental philosophy behind the Internet is expressed by the scalability argument: no protocol, mechanism or

service should be introduced into the Internet if it does not scale well. A key corollary to the scalability argument is

the end-to-end argument: to maintain scalability, algorithmic complexity should be pushed to the edges of the network

whenever possible.

Perhaps the best example of the Internet philosophy is TCP congestion control, which is implemented primarily

through algorithms operating at end systems. Unfortunately, TCP congestion control also illustrates some of the

shortcomings of the end-to-end argument. As a result of its strict adherence to end-to-end congestion control, the

current Internet suffers from two maladies: congestion collapse from undelivered packets, and unfair allocations of

bandwidth between competing traffic flows.

The first malady—congestion collapse from undelivered packets—arises when bandwidth is continually consumed

by packets that are dropped before reaching their ultimate destinations [1]. John Nagle assigned the term “congestion

collapse” in 1984 to describe a network that remains in a stable congested state [2]. At that time, the primary cause

of congestion collapse was inefficient use of retransmission timers by TCP sources, which led to the unnecessary

retransmission of delayed packets. This problem was corrected with more recent implementations of TCP [3]. Re-

cently, however, a potentially more serious cause of congestion collapse has become increasingly common. Network

applications are now frequently written to use transport protocols, such as UDP, which are oblivious to congestion and

make no attempt to reduce packet transmission rates when packets are discarded by the network [4]. In fact, during

periods of congestion some applications actuallyincreasetheir transmission rates by introducing redundancy in the

transmitted data in order to become less sensitive to packet losses [5]. The Internet presently has no effective way to

regulate such applications.

The second malady—unfair bandwidth allocation to competing network flows—arises in the Internet for a variety of

reasons, one of which is the existence of applications that do not respond properly to congestion. Adaptive applications

(e.g., TCP-based applications) that respond to congestion by rapidly reducing their transmission rates are likely to

receive unfairly small bandwidth allocations when competing with unresponsive applications. The Internet protocols

themselves can also introduce unfairness. The TCP algorithm, for instance, inherently causes each TCP flow to receive

a bandwidth that is inversely proportional to its round trip time [6]. Hence, TCP connections with short round trip

times may receive unfairly large allocations of network bandwidth when compared to connections with longer round

trip times.

The impact of emerging streaming media traffic on traditional data traffic is of growing concern in the Internet
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community. Streaming media traffic is unresponsive to the congestion in a network, and it can aggravate congestion

collapse and unfair bandwidth allocation. Recently, various researchers have documented and studied the problems of

unfairness and congestion collapse due to unresponsive traffic, such as streaming media traffic [7, 8, 9, 10, 11, 12]. This

concern regarding the negative impact that streaming media traffic may bring has also been expressed in the industry

and in the IETF, and in August 1999, the New York Times reported concern of ISPs with multimedia transmissions

driving the network to a gridlock [13].

To address the maladies of congestion collapse and unfairness, we introduce and investigate a novel Internet traffic

control protocol calledNetwork Border Patrol. The basic principle of Network Border Patrol (NBP) is to compare, at

the borders of a network, the rates at which packets from each application flow are entering and leaving the network.

If a flow’s packets are entering the network faster than they are leaving it, then the network is likely buffering or, worse

yet, discarding the flow’s packets. In other words, the network is receiving more packets than is capable of handling.

NBP prevents this scenario by “patrolling” the network’s borders, ensuring that each flow’s packets do not enter the

network at a rate greater than they are able to leave the network. This patrolling prevents congestion collapse from

undelivered packets, because unresponsive flow’s otherwise undeliverable packets never enter the network in the first

place.

In order to achieve fair bandwidth allocations among competing flows, Network Border Patrol may be used in

conjunction with an appropriate fair queueing mechanism. Weighted fair queuing (WFQ) [14, 15] is an example of

one such mechanism. Unfortunately, WFQ imposes significant complexity on interior network routers by requiring

them to maintain per-flow state and perform per-flow scheduling of packets. In this paper we propose anEnhanced

Core-Stateless Fair Queuing (ECSFQ) mechanism, in order to achieve some of the advantages of WFQ without most

of its complexity, and we use the ECSFQ mechanism to improve NBP’s fairness.

Although NBP is capable of preventing congestion collapse and improving the fairness of bandwidth allocations,

these improvements do not come for free. NBP solves these problems at the expense of some additional network

complexity, since routers at the border of the network are expected to monitor and control the rates of individual flows

in NBP. NBP also introduces added communication overhead, since in order for an edge router to know the rate at

which its packets are leaving the network, it must exchange feedback with other edge routers. Unlike some existing

approaches trying to solve congestion collapse, however, NBP’s added complexity is isolated to edge routers; routers

within the core of the network do not participate in the prevention of congestion collapse. Moreover, end systems

operate in total ignorance of the fact that NBP is implemented in the network, so no changes to transport protocols are

necessary at end systems.

The remainder of this paper is organized as follows. In Section 2 we describe why existing mechanisms are not
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effective in preventing congestion collapse or providing fair bandwidth allocations in the presence of unresponsive

flows. In section 3 we describe the architectural components of Network Border Patrol in further detail and present

the feedback and rate control algorithms used by NBP edge routers to prevent congestion collapse. In Section 4 we

explain the enhanced core-stateless fair queueing mechanism and illustrate the advantages of providing lower queueing

delays to flows transmitting at lower rates. In section 5, we present simulations results, showing the ability of NBP to

avoid congestion collapse and provide fair bandwidth allocations to competing flows. In section 6, we discuss several

implementation issues that must be addressed in order to make deployment of NBP feasible in the Internet. Finally, in

section 7 we provide some concluding remarks.

2 Related Work

The maladies of congestion collapse from undelivered packets and of unfair bandwidth allocations have not gone un-

recognized. Some have argued that there are social incentives for multimedia applications to be friendly to the network,

since an application would not want to be held responsible for throughput degradation in the Internet. Nevertheless,

malicious denial-of-service attacks using unresponsive UDP flows are becoming disturbingly frequent in the Internet,

and they are an example that the Internet cannot rely solely on social incentives to control congestion or to operate

fairly.

Some have argued that congestion collapse and unfairness can be mitigated through the use of improved packet

scheduling [16] or queue management [17] mechanisms in network routers. For instance, per-flow packet scheduling

mechanisms such as Weighted Fair Queueing (WFQ) [14, 15] attempt to offer fair allocations of bandwidth to flows

contending for the same link. So do Core-Stateless Fair Queueing (CSFQ) [18], Rainbow Fair Queueing [19] and

CHOKe [20], which are cost-effective approximations of WFQ that do not require core routers to maintain per-flow

state. Active queue management mechanisms like Fair Random Early Detection (FRED) [21] also attempt to limit

unresponsive flows by specifically discarding packets from flows that are using more than their fair share of a link’s

bandwidth. All of these mechanisms reduce the likelihood of unfairness and congestion collapse in the Internet, but

they do not eliminate them, and many of them are much more complex and expensive to implement than simple FIFO

queueing.

For illustration, consider the example shown in Figure 1. In this example, two unresponsive flows (flow A and

flow B) compete for bandwidth in a network containing two bottleneck links (R1-R2 and R2-S4) arbitrated by a fair

queueing mechanism at routers R1 and R2. At the first bottleneck link (R1-R2), fair queueing at router R1 ensures that

each flow receives half of the link’s available bandwidth (750 kbps). On the second bottleneck link (R2-S4), much of
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Figure 1: Example of a network which experiences congestion collapse

the traffic from flow B is discarded due to the link’s limited capacity (128 kbps). Hence, flow A achieves a throughput

of 750 kbps, and flow B achieves a throughput of 128 kbps. Clearly, congestion collapse has occurred, because flow

B’s packets, which are ultimately discarded on the second bottleneck link (R2-S4), limit the throughput of flow A

across the first bottleneck link (R1-R2). Furthermore, while both flows receive equal bandwidth allocations on the

first bottleneck link, their allocations are notglobally max-min fair. An allocation of bandwidth is said to be globally

max-min fair if, at every link, all active flows not bottlenecked at another link are allocated a maximum, equal share

of the link’s remaining bandwidth [22]. A globally max-min fair allocation of bandwidth for the example shown in

Figure 1 would have been 1.372 Mbps for flow A and 128 kbps for flow B.

The example discussed in the previous paragraph, which is a variant of an example presented by Floyd and Fall [1],

illustrates the inability of local scheduling mechanisms, such as WFQ, to eliminate congestion collapse and achieve

global max-min fairness and suggests the need for the assistance of additional network mechanisms.

Jain et al. have proposed several rate control algorithms [23] that are able to prevent congestion collapse and

provide global max-min fairness to competing flows. These algorithms (e.g., ERICA, ERICA+) are designed for the

ATM Available Bit Rate (ABR) service and require all network switches to compute fair allocations of bandwidth

among competing connections. However, these algorithms are not easily tailorable to the current Internet, because

they violate the Internet design philosophy of keeping router implementations simple and pushing complexity to the

edges of the network.

Rangarajan and Acharya proposed a network border-based approach, which aims to prevent congestion collapse

through early regulation of unresponsive flows (ERUF) [11]. Border routers rate control the input traffic, while core

routers generate ICMP source quench messages when packet drops occur in order to advise sources and border routers

to reduce their sending rates. While this approach may prevent congestion collapse, it does so only after packets

have been dropped and the network is congested. This approach also lacks mechanisms to provide fair bandwidth

allocations to competing network flows.

Floyd and Fall have approached the problem of congestion collapse by proposing low-complexity router mecha-

nisms that promote the use of adaptive or “TCP-friendly” end-to-end congestion control [1]. Their suggested approach
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Figure 2: The core-stateless Internet architecture assumed by NBP

requires selected gateway routers to monitor high-bandwidth flows in order to determine whether they are responsive

to congestion. Flows determined to be unresponsive to congestion are penalized by a higher packet discarding rate at

the gateway router. A limitation of this approach is that the procedures currently available to identify unresponsive

flows are not always successful [18].

3 Network Border Patrol

Network Border Patrol is a network layer congestion avoidance protocol that is aligned with the “core-stateless”

approach. The core-stateless approach, which has recently received a great deal of research attention [24, 18], allows

routers on the borders (or edges) of a network to perform flow classification and maintain per-flow state but does not

allow routers at the core of the network to do so. Figure 2 illustrates this architecture. As in other work on core-

stateless approaches, we draw a further distinction between two types of edge routers. Depending on which flow it

is operating on, an edge router may be viewed as aningressor anegressrouter. An edge router operating on a flow

passing into a network is called an ingress router, whereas an edge router operating on a flow passing out of a network

is called an egress router. Note that a flow may pass through more than one egress (or ingress) router if the end-to-end

path crosses multiple networks.

NBP prevents congestion collapse through a combination of per-flow rate monitoring at egress routers and per-flow

rate control at ingress routers. Rate monitoring allows an egress router to determine how rapidly each flow’s packets

are leaving the network, whereas rate control allows an ingress router to police the rate at which each flow’s packets

enter the network. Linking these two functions together are the feedback packets exchanged between ingress and

egress routers; ingress routers send egress routersforward feedback packets to inform them about the flows that are
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Figure 3: An input port of an NBP egress router

being rate controlled, and egress routers send ingress routersbackwardfeedback packets to inform them about the

rates at which each flow’s packets are leaving the network. By matching the ingress rate and egress rate of each flow,

NBP prevents congestion collapse within the network1.

This section describes three important aspects of the NBP mechanism: (1) the architectural components, namely the

modified edge routers, which must be present in the network, (2) the feedback control algorithm, which determines

how and when information is exchanged between edge routers, and (3) the rate control algorithm, which uses the

information carried in feedback packets to regulate flow transmission rates and thereby prevent congestion collapse in

the network.

3.1 Architectural Components

The only components of the network that require modification by NBP are edge routers; the input ports of egress

routers must be modified to perform per-flow monitoring of bit rates, and the output ports of ingress routers must be

modified to perform per-flow rate control. In addition, both the ingress and the egress routers must be modified to

exchange and handle NBP feedback packets.

The input ports of egress routers are enhanced in NBP. Figure 3 illustrates the architecture of an egress router’s

input port. Data packets sent by ingress routers arrive at the input port of the egress router and are first classified

by flow. Flow classification is performed depending on the protocol used and size of the network. In the case of

IPv6, flows may be classified by examining the packet header’s flow label, whereas in the case of IPv4, it is done by

examining the packet’s source and destination addresses and port numbers. In small networks, flows may be classified
1One added side effect of NBP is that it can help prevent denial-of-service (DoS) attacks. Although NBP is not specifically designed to

prevent DoS attacks, if the DoS attack relies on unresponsive UDP traffic to create congestion in the target network, NBP can be effective in

preventing the attacks.
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Figure 4: An output port of an NBP ingress router

according to the source and destination addresses (i.e., micro-flows). In large networks, flows should be classified

in a more scalable fashion by examining the packet’s source and destinationnetwork addresses, and by aggregating

packets arriving on an ingress router and destined to the same egress router into the same flow (i.e., a macro-flow).

After classifying packets into flows, each flow’s bit rate is then rate monitored using a rate estimation algorithm such

as the Time Sliding Window (TSW) [25]. These rates are collected by a feedback controller, which returns them in

backward feedback packets to an ingress router whenever a forward feedback packet arrives from that ingress router.

The output ports of ingress routers are also enhanced in NBP. Each output port contains a flow classifier, per-flow

traffic shapers (e.g., leaky buckets), a feedback controller, and a rate controller. See Figure 4. The flow classifier

classifies packets into flows, and the traffic shapers limit the rates at which packets from individual flows enter the

network. The feedback controller receives backward feedback packets returning from egress routers and passes their

contents to the rate controller. It also generates forward feedback packets that are transmitted to the network’s egress

routers. To prevent congestion collapse, the rate controller adjusts traffic shaper parameters according to a TCP-like

rate control algorithm, and the rate control algorithm used in NBP is described later in this section.

3.2 The Feedback Control Algorithm

The feedback control algorithm in NBP determines how and when feedback packets are exchanged between edge

routers. Feedback packets take the form of ICMP packets and are necessary in NBP for three reasons. First, forward

feedback packets allow egress routers to discover which ingress routers are acting as sources for each of the flows they

are monitoring. Second, backward feedback packets allow egress routers to communicate per-flow bit rates to ingress

routers. Third, forward and backward feedback packets allow ingress routers to detect incipient network congestion

by monitoring edge-to-edge round trip times.
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The contents of feedback packets are shown in Figure 5. Contained within the forward feedback packet generated

at an ingress router are a time stamp and a list of flow specifications for flows originating at the ingress router. The

time stamp field is used to calculate the round trip time between two edge routers, and the list of flow specifications

indicates to an egress router the identities of active flows originating at the ingress router. A flow specification is a

value uniquely identifying a flow, assigned by the ingress router flow classifier. An ingress router adds a flow to its list

of active flows whenever a packet from a new flow arrives; it removes a flow when the flow becomes inactive. In the

event that the network’s maximum transmission unit size is not sufficient to hold an entire list of flow specifications,

multiple forward feedback packets are used.

When an egress router receives a forward feedback packet, it immediately generates a backward feedback packet

and returns it to the ingress router. Contained within the backward feedback packet are the forward feedback packet’s

original time stamp, a hop count, and a list of observed bit rates, calledegress rates, collected by the egress router

for each flow listed in the forward feedback packet. The hop count, which is used by the ingress router’s rate control

algorithm, indicates how many routers are in the path between the ingress and the egress router. The egress router

determines the hop count by examining the time to live (TTL) field of arriving forward feedback packets. When the

backward feedback packet arrives at the ingress router, its contents are passed to the ingress router’s rate controller,

which uses them to adjust the parameters of each flow’s traffic shaper.

In order to determine how often to generate forward feedback packets, an ingress router keeps a byte transmission

counter for each flow it monitors. Whenever a flow’s byte transmission counter exceeds a threshold, denotedNBP’s
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on arrival  of Backward Feedback packet p from egress router e
    currentRTT  = currentTime - p.timestamp;
    if  (currentRTT < e.baseRTT)
          e.baseRTT = currentRTT;
    deltaRTT = currentRTT - e.baseRTT;
    RTTsElapsed = (currentTime - e.lastFeedbackTime) / currentRTT;
    e.lastFeedbackTime  = currentTime;
    for each flow f listed in p
          rateQuantum = min (MSS / currentRTT,  f.egressRate / QF);
          if   (f.phase == SLOW_START)
              if   (deltaRTT × f.ingressRate < MSS × e.hopcount)
                   f.ingressRate = f.ingressRate × 2 ^ RTTsElapsed;
              else
                  f.phase = CONGESTION_AVOIDANCE;
          if   (f.phase == CONGESTION_AVOIDANCE)
              if   (deltaRTT × f.ingressRate < MSS × e.hopcount)
                    f.ingressRate = f.ingressRate + rateQuantum × RTTsElapsed;
              else
                    f.ingressRate = f.egressRate - rateQuantum;

Figure 6: Pseudocode for ingress router rate control algorithm

transmission counter threshold (Tx), the ingress router generates and transmits a forward feedback packet to the flow’s

egress router, and resets the the byte transmission counters of all flows included in the feedback packet. Using a byte

transmission counter for each flow ensures that forward feedback packets are generated more frequently when flows

transmit at higher rates, thereby allowing ingress routers to respond more quickly to impending congestion collapse.

To maintain a frequent flow of feedback between edge routers even when data transmission rates are low, ingress

routers also generate forward feedback packets whenever a time-out interval, denoted�f , is exceeded.

A rough estimate of the amount of overhead that NBP feedback packets create is provided in the Appendix of this

paper.

3.3 The Rate Control Algorithm

The NBP rate control algorithm regulates the rate at which each flow is allowed to enter the network. Its primary goal

is to converge on a set of per-flow transmission rates (hereinafter calledingress rates) that prevents congestion collapse

due to undelivered packets. It also attempts to lead the network to a state of maximum link utilization and low router

buffer occupancies, and it does this in a manner that is similar to TCP.

In the NBP rate control algorithm, shown in Figure 6, a flow may be in one of two phases,slow startor congestion

avoidance, similar to the phases of TCP congestion control. The desirable stability characteristics of slow start and

congestion control algorithms have been proven in TCP congestion control, and NBP expects to benefit from their
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well-known stability features. In NBP, new flows entering the network start with the slow start phase and proceed to

the congestion avoidance phase only after the flow has experienced incipient congestion.

The rate control algorithm is invoked whenever a backward feedback packet arrives at an ingress router. Recall that

backward feedback packets contain a timestamp and a list of flows arriving at the egress router from the ingress router

as well as the monitored egress rates for each flow. Upon the arrival of a backward feedback packet, the algorithm

calculates the current round trip time (currentRTTin Figure 6) between the edge routers and updates the base round

trip time (e.baseRTT), if necessary. The base round trip time (e.baseRTT) reflects the best observed round trip time

between the two edge routers. The algorithm then calculatesdeltaRTT, which is the difference between the current

round trip time (currentRTT) and the base round trip time (e.baseRTT). A deltaRTTvalue greater than zero indicates

that packets are requiring a longer time to traverse the network than they once did, and this can only be due to the

buffering of packets within the network.

NBP’s rate control algorithm decides that a flow is experiencing incipient congestion whenever it estimates that the

network has buffered theequivalentof more than one of the flow’s packets at each router hop. To do this, the algorithm

first computes the product of the flow’s ingress rate (f.ingressRate) anddeltaRTT(i.e., f.ingressRate� deltaRTT). This

value provides an estimate of the amount of the flow’s data that is buffered somewhere in the network. If this amount

(i.e., f.ingressRate� deltaRTT) is greater than the number of router hops between the ingress and the egress routers

(e.hopcount) multiplied by the size of the largest possible packet (MSS) (i.e., MSS� e.hopcount), then the flow is

considered to be experiencing incipient congestion. The rationale for determining incipient congestion in this manner

is to maintain both high link utilization and low queueing delay. Ensuring there is always at least one packet buffered

for transmission on a network link is the simplest way to achieve full utilization of the link, and deciding that congestion

exists when more than one packet is buffered at the link keeps queueing delays low.

Therefore, NBP’s rate control algorithm allows the “equivalent” ofe.hopCountpackets to be buffered in flowf’s

path before it reacts to congestion by monitoring deltaRTT2. A similar approach is used in the DECbit congestion

avoidance mechanism [26]. Furthermore, the approach used by NBP’s rate control algorithm to detect congestion, by

estimating whether the network has buffered theequivalentof more than one of the flow’s packets at each router hop,

has the advantage of , when congestion occurs, flows with higher ingress rates detect congestion first. This is because

the conditionf.ingressRate� deltaRTT ¡ MSS� e.hopcountfails first for flows f with a large ingress rate, detecting
2Notice thatdeltaRTTincreases if packets from any flow are buffered somewhere on the path of flowf. When routing changes occur,

deltaRTTmay also change. In the current Internet routing changes occur in a time scale much larger than the reaction time of congestion control

algorithms, and NBP requirese.baseRTTto be refreshed if routing changes within the network occur.
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that the path is congested due to ingress flowf.

When the rate control algorithm determines that a flow is not experiencing congestion, it increases the flow’s ingress

rate. If the flow is in the slow start phase, its ingress rate is doubled for each round trip time that has elapsed since

the last backward feedback packet arrived (f.ingress�2RTTsElapsed). The estimated number of round trip times since

the last feedback packet arrived is denoted asRTTsElapsed. Doubling the ingress rate during slow start allows a

new flow to rapidly capture available bandwidth when the network is underutilized. If, on the other hand, the flow

is in the congestion avoidance phase, then its ingress rate is conservatively incremented by onerateQuantumvalue

for each round trip that has elapsed since the last backward feedback packet arrived (f.ingressRate + rateQuantum

� RTTsElapsed). This is done to avoid the creation of congestion. The rate quantum is computed as the maximum

segment size divided by the current round trip time between the edge routers. This results in rate growth behavior that

is similar to TCP in its congestion avoidance phase. Furthermore, the rate quantum is not allowed to exceed the flow’s

current egress rate divided by a constant quantum factor (QF). This guarantees that rate increments are not excessively

large when the round trip time is small3.

When the rate control algorithm determines that a flow is experiencing incipient congestion, it reduces the flow’s

ingress rate. If a flow is in the slow start phase, it enters the congestion avoidance phase. If a flow is already in the

congestion avoidance phase, its ingress rate is reduced to the flow’s egress rate decremented by a constant value. In

other words, an observation of incipient congestion forces the ingress router to send the flow’s packets into the network

at a rate slightly lower than the rate at which they are leaving the network.

NBP’s rate control algorithm is designed to have minimum impact on TCP flows. The rate at which NBP regulates

each flow (f.ingressRate) is primarily a function of the round trip time between the flow’s ingress and egress routers

(currentRTT). In NBP, the initial ingress rate for a new flow is set to beMSS/e.baseRTT, following TCP’s initial rate

of one segment per round trip time. NBP’scurrentRTTis always smaller than TCP’s end-to-end round trip time (as

the distance between ingress and egress routers, i.e., the currentRTT in NBP, is shorter than end to end distance, i.e.,

TCP’s RTT). As a result,f.ingressRateis normally larger than TCP’s transmission rate when the network is not con-

gested, since TCP transmission window increases at a rate slower than NBP’sf.ingressRateincreases. Therefore, NBP

normally does not regulate TCP flows. However, when congestion occurs, NBP reacts first by reducingf.ingressRate

and, therefore, reducing the rate at which TCP packets are allowed to enter the network. TCP eventually detects the
3The rate quantum should be small enough to allow the ingress rate to converge. The rate quantum is the minimum between

(MSS/currentRTT) and the (f.egressRate/QF). Through simulations, we recommend that values forQF are between 5 and 50. IfQF is too

large, the rate quantum becomes too small and the convergence time of the ingress rate may take too long. IfQF is too small, the rate quantum

may become too large depending on the RTT, and may lead the system to an unstable state.
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congestion (either by loosing packets or due to longer round trip times) and then promptly reduces its transmission rate.

From this time point on,f.ingressRatebecomes greater than TCP’s transmission rate, and therefore, NBP’s congestion

control do not regulate TCP sources until congestion happens again.

4 Adding Fairness to Network Border Patrol

Network Border Patrol’s feedback control algorithm detects incipient congestion by monitoring the edge-to-edge round

trip times. The rate control algorithm regulates the rate at which flows enter the network. The combination of both

algorithms ensures that excessive flow traffic is not allowed to enter the network if incipient congestion is detected,

thereby preventing congestion collapse. Although Network Border Patrol prevents congestion collapse, it does not

guarantee that all flows are treated fairly when they compete for bottleneck links. To address this concern, we consider

the interoperation of Network Border Patrol and various fair queueing mechanisms. We also introduce theEnhanced

Core-Stateless Fair Queueing mechanism, in order to introduce fairness to NBP in a core-stateless fashion.

Fair bandwidth allocations can be achieved by using per-flow packet scheduling mechanisms such as fair queu-

ing [14, 15]. As discussed in the related work section, fair queuing fairly allocates bandwidth to packet flows compet-

ing for a single link. However, in order to provide this benefit, it requires each link to maintain separate queues and

state for each flow. This complexity overhead impedes the scalability of fair queuing, making it impractical for wide

area networks in which a significantly large number of flows may be active at any one time.

Recognizing the scalability difficulties of fair queuing, several researchers have proposed more scalable “core-

stateless” approximations of fair queuing, such as Core-Stateless Fair Queuing [18], Rainbow Fair Queuing [19] and

CHOke [20]. The basic idea behind these mechanisms is that edge routers label packets entering the network with the

state of the packets’ flows, and core routers use the state recorded in the packets to decide whether to drop them or

schedule them for transmission. These core stateless mechanisms are more scalable than fair queueing, because they

limit per-flow operations and state maintenance to routers on the edges of a network.

Although existing core-stateless fair queuing mechanisms work well with most congestion control algorithms that

rely on packet losses to indicate congestion [3, 2, 27], they do not work as well with congestion avoidance algorithms

that prevent congestion before packet loss occurs. Examples of such congestion avoidance algorithms include TCP Ve-

gas [28, 29], TCP with Explicit Congestion Notification [30] and Network Border Patrol. Two simulation experiments

shown in Figures 7(a) and 7(b) illustrate this phenomenon. In both experiments, two TCP flows and a 1 Mbps constant

bit rate UDP flow share a single 1.5 Mbps bottleneck link, as shown in Figure 1. We use CSFQ as a representative

example of the core-stateless fairness mechanisms. In the first experiment, the TCP sources use the TCP Reno imple-
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(a) CSFQ achieves approximately fair bandwidth allocations when TCP Reno sources are used.
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(b) CSFQ fails to achieve fair bandwidth allocations when TCP Vegas sources are used.

Figure 7: CSFQ does not achieve fair bandwidth allocations when used with some congestion avoidance mechanisms

mentation, which relies on observations of packet loss to indicate congestion. As Figure 7(a) shows, the core-stateless

mechanism provides approximately fair allocations to all three flows when used with algorithms that rely on packet

losses to indicate congestion. In the second experiment, the TCP Reno sources are replaced by TCP Vegas sources,

which rely on round trip time measurements to predict incipient congestion and keep buffer occupancies small. Here,

as Figure 7(b) shows, the core-stateless mechanism fails to provide fair allocations of bandwidth to the TCP flows.

CSFQ fails when congestion avoidance algorithms that prevent packet loss are used, because it does not accurately

approximate the delay characteristics of fair queuing. In fair queuing, flows transmitting at rates less than or equal to

their fair share are guaranteed timely delivery of their packets since they do not share the same buffer as packets from

other flows. In the core-stateless approximations of fair queuing, this is not the case, since they aggregate packets from
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Figure 8: Enhanced CSFQ restores fairness when used with TCP Vegas

all flows into a single buffer and rely on packet discarding to balance the service of each flow. Hence, the existing

core-stateless mechanisms are incompatible with congestion avoidance mechanisms that maintain small router buffers

or rely on round trip time measurements to indicate incipient congestion.

In order to overcome the disadvantages of existing core-stateless fair queueing mechanisms, we propose a slightly

modified version of CSFQ, hereinafter referred to as Enhanced CSFQ (ECSFQ). ECSFQ not only achieves the scal-

ability of CSFQ, but at the same time it achieves fair bandwidth allocations when used with preventive congestion

avoidance mechanisms like TCP Vegas and Network Border Patrol. The basic idea of ECSFQ is to introduce, in a

core-stateless manner, an additional high priority buffer at each core router. The high priority buffer is used to hold

packets from flows transmitting at rates less than their fair share, while the original buffer holds the remaining packets.

Packets in the high priority buffer are served first and therefore experience short delays. Once a flow’s rate meets or

exceeds its fair share, the flow’s packets enter the low priority buffer and its packets experience the same delays as

packets from other existing flows transmitting at or above their fair share. Apart from the addition of a high priority

buffer, ECSFQ behaves identically to the original CSFQ algorithm. By providing low queueing delays for flows trans-

mitting at rates lower than their fair share, ECSFQ allows flows that rely on the detection of incipient congestion to

increase their transmission rates until a fair share is achieved.

The results of Figure 8 were obtained by repeating the previous experiment shown in Figure 7(b) with ECSFQ and

TCP Vegas. Due to the presence of high priority buffers, TCP Vegas packets experience lower queueing delays than

the UDP packets, and all three flows achieve approximately fair shares of the bottleneck link bandwidth.

One potential drawback of ECSFQ is that it can introduce discrepancies in packet sequence. We submit, however,

that packet reordering will be rare, since it occurs only when a flow’s packets are queued in the high priority buffer after
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previously being queued in the low priority buffer. Such an event can occur in two cases: (1) when a flow originally

transmits at or above its fair share allocation but later decreases its transmission rate below the fair share, or (2) when

bandwidth becomes available and the flow’s fair share suddenly increases. Packet reordering in the first case is possible

but unlikely, because by reducing its rate, the flow is reducing the load on the bottleneck, thereby allowing the packets

in the low priority buffer to be processed faster, resulting in a low probability of packets from this flow being found in

the low priority buffer. Packet reordering in the second case is also possible but again unlikely, since the low priority

buffer empties rapidly when new bandwidth becomes available4.

5 Simulation Experiments

We now present the results of several simulation experiments, each of which is designed to test a different aspect of

Network Border Patrol’s performance. The first set of experiments examines the ability of NBP to prevent congestion

collapse; the second set of experiments examines the ability of ECSFQ to provide fair bandwidth allocations to com-

peting network flows; and the third set of experiments assesses the scalability constraints of NBP. All simulations were

run for 100 seconds using the UC Berkeley/LBNL/VINT ns-2 simulator [31]. The ns-2 code implementing NBP and

the scripts to run these simulations are available at the UCI Network Research Group web site [32]. Default simulation

parameters are listed in Table 1. They are set to values commonly used in the Internet and are used in all simulation

experiments unless otherwise specified.

5.1 Preventing Congestion Collapse

A. Single congested link

The first set of simulation experiments explores NBP’s ability to prevent congestion collapse from undelivered packets.

Consider the scenario depicted in Figure 9. One flow is a TCP flow generated by an application that always has data to

send, and the other flow is a constant bit rate UDP flow generated by an application that is unresponsive to congestion.

Both flows compete for access to a shared 1.5 Mbps bottleneck link (R1-R2), and only the UDP flow traverses a second

bottleneck link (R2-E2), which has a limited capacity of 128 kbps.

Figure 10 shows the throughput achieved by the two flows as the UDP source’s transmission rate is increased from

32 kbps to 2 Mbps. The combined throughput delivered by the network (i.e., the sum of both flow’s throughputs) is also
4We have conducted extensive simulations and from our experience, we conclude that packet reordering is theoretically possible, but it

practically does not occur and we did not see any impact in performance due to packet reordering. We have simulated the same set of simulations

in ns-2 provided by the authors of CSFQ in their original paper [18], using their ns-2 code made available by the authors in their web site, and

we have not found any scenario in which ECSFQ provides worse fairness performance than CSFQ.
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Simulation parameter Value

Packet size 1000 bytes
Router queue size 100 packets
Maximum segment size (MSS) 1500 bytes
TCP implementation Reno [27]
TCP window size 100 kbytes
NBP Quantum factor (QF) 10
NBPTx 40000 bytes
NBP�f 100 msec
TSW window size 10 msec
End-system-to-edge propagation delay100�sec
End-system-to-edge link bandwidth 10 Mbps

Table 1: Default simulation parameters
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S = End System

Figure 9: A network with a single shared link

shown. Three different cases are examined under this scenario. The first is the benchmark case used for comparison:

NBP is not used between edge routers, and all routers schedule the delivery of packets on a FIFO basis. As Figure 10(a)

shows, the network experiences severe congestion collapse as the UDP flow’s transmission rate increases, since the

UDP flow fails to respond adaptively to the discarding of its packets on the second bottleneck link. When the UDP

load increases to 1.5 Mbps, the TCP flow’s throughput drops nearly to zero.

In the second case we show that fair queueing mechanisms alone cannot prevent congestion collapse. As shown

in Figure 10(b), better throughput is achieved for the TCP flow when compared to the FIFO-only case. As indicated

by the combined throughput of both flows, however, congestion collapse still occurs as the UDP load increases.

Although ECSFQ allocates about 750 kbps to each flow at the first bottleneck link, only 128 kbps of this bandwidth is

successfully exploited by the UDP flow, which is even more seriously bottlenecked by a second link. The remaining

622 kbps is wasted on undelivered packets. Similar results are observed when ECSFQ is replaced by ordinary fair
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(a) Severe congestion collapse using FIFO only
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(b) Moderate congestion collapse using ECSFQ only
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(c) No congestion collapse using NBP with FIFO

Figure 10: Congestion collapse observed as unresponsive traffic load increases. The solid line shows the combined

throughput delivered by the network.

queueing. In the third case, as Figure 10(c) shows, NBP effectively eliminates congestion collapse: the TCP flow

achieves a nearly optimal throughput of 1.37 Mbps, and the combined throughput remains very close to 1.5 Mbps.

B. Traversing multiple congested links

In this experiment, we examine whether NBP effectively prevents congestion collapse when a TCP flow traverses

several bottleneck links that also support traffic from unresponsive UDP flows. The network configuration used for
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Figure 12: TCP throughput in a network with multiple congested router hops

this simulation experiment is shown in Figure 11. In this configuration, a TCP flow shares several 1.5 Mbps bottleneck

links with unresponsive UDP flows. Each of these bottleneck links is further bottlenecked by another link with a

capacity of 128 kbps. All links have propagation delays of 10 msec, and each UDP source transmits packets at a

constant rate of 1 Mbps.

Figure 12 shows the throughput of the TCP flow as the number of congested router hops increases from 1 to 10.

In the ideal scenario, the transmission rate of each UDP source is regulated by an ingress router to 128 kbps, and the

throughput for the TCP flow becomes 1.37 Mbps. When only FIFO scheduling is used, UDP sources consume 1 Mbps

of the bottleneck links’ bandwidth, even though UDP sources are bottlenecked downstream at the 128 kbps links,

and therefore, the TCP flow is limited to a throughput of approximately 0.5 Mbps regardless of the number of hops,

whereas NBP allows the network to avoid congestion collapse, allocating nearly 1.37 Mbps to the TCP flow when the

number of hops is small. As the number of hops increases, the throughput of the TCP flow diminishes slightly due to

increased feedback delays between the the ingress and egress routers supporting the TCP flow.
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5.2 Achieving Fairness

Network Border Patrol, on its own, does not achieve fair bandwidth allocations to competing network flows. When

combined with ECSFQ, however, we hypothesize that it does. To test this hypothesis, we perform two fairness ex-

periments. In the first fairness experiment, we consider the scenario depicted in Figure 9, with the second bottleneck

link (R2-E2) replaced by a higher capacity 10 Mbps link. This leaves the network with only a single bottleneck link

(R1-R2). The TCP flow is generated by an application that always has data to send, and the UDP flow is generated by

an unresponsive source which transmits packets at a constant bit rate.

Since there is only one bottleneck link in this scenario, the max-min fair allocation of bandwidth between the flows

is 750 kbps (as long as the UDP source exceeds a transmission rate of 750 kbps). However, as Figure 13(a) shows,

fairness is clearly not achieved when only FIFO scheduling is used in routers. (NBP is not used in this simulation

scenario.) As the unresponsive UDP traffic load increases, the TCP flow experiences congestion and reduces its

transmission rate, thereby granting an unfairly large amount of bandwidth to the unresponsive UDP flow. Thus,

although there is no congestion collapse from undelivered packets, as indicated by the constant combined network

throughput, there is clearly unfairness between the TCP and UDP flows.

When NBP is deployed with FIFO scheduling, Figure 13(b) shows that the unfair allocation of bandwidth is only

slightly reduced, since NBP has no explicit mechanism to provide fairness. Figure 13(c) shows the throughput of each

flow when ECSFQ is used (without NBP). Notice that ECSFQ is able to approximate fair bandwidth allocations.

In the second fairness experiment, we study whether NBP combined with ECSFQ provides max-min fairness in

a complex network. We consider the network model shown in Figure 14. This model is adapted from the second

General Fairness Configuration (GFC-2), which is specifically designed to test the max-min fairness of traffic control

algorithms [33]. It consists of 22 unresponsive UDP flows, each generated by a source transmitting at a constant bit

rate of 100 Mbps.

Flows belong to flow groups, which are labeled from A to H, and the network is designed in such a way that, if

max-min fairness is achieved, members of each flow group receive the same max-min bandwidth allocations. Links

connecting core routers serve as bottlenecks for at least one of the 22 flows, and all links have propagation delays of

5 msec and bandwidths of 150 Mbps unless otherwise shown in the figure.

The second column of Table 2 lists the ideal (mathematically calculated) global max-min fair share allocations for

each flow group shown in Figure 14. These values represent the ideal bandwidth allocations for any traffic control

mechanism that attempts to provide global max-min fairness. The remaining columns list the throughputs observed

after 4.5 seconds of simulation for several scenarios. (The average results for each flow group are shown.) In the
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(a) Severe unfairness using FIFO only
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(b) Moderate unfairness using NBP with FIFO
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(c) Approximate fairness using ECSFQ

Figure 13: Unfairness as the unresponsive traffic load increases

first simulation scenario, NBP is not used, and all routers implement a standard (complex) core-stateful fair queuing

algorithm, namely weighed fair queueing (WFQ).

As indicated by the throughput values in the second column (i.e., ideal case) and third column (i.e., fair queueing

only case), weighed fair queuing by itself is unable to achieve global max-min fairness for all flow groups. This is

due to the fact that fair queuing cannot by itself prevent congestion collapse. In the second simulation scenario, NBP

is introduced at edge routers and FIFO scheduling is assumed at all routers. Results for this simulation scenario are

listed in the third column of Table 2 and show that NBP with FIFO also fails to achieve global max-min fairness in the
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Figure 14: The GFC-2 network

Simulation results
Ideal global Throughput Throughput Throughput Throughput

Flow max-min using using NBP using NBP using NBP
Group fair share FQ only with FIFO with WFQ with ECSFQ

(Mbps) (Mbps) Normalized (Mbps) Normalized (Mbps) Normalized (Mbps) Normalized

A 10 8.32 0.83 10.96 1.09 10.00 1.00 10.40 1.04
B 5 5.04 1.01 1.84 0.36 5.04 1.01 4.48 0.90
C 35 27.12 0.77 31.28 0.89 34.23 0.98 31.52 0.90
D 35 16.64 0.47 33.84 0.96 34.95 0.99 32.88 0.94
E 35 16.64 0.47 37.76 1.08 34.87 0.99 33.36 0.95
F 10 8.32 0.83 7.60 0.76 10.08 1.00 8.08 0.80
G 5 4.96 0.99 1.04 0.20 4.96 0.99 5.28 1.05
H 52.5 36.15 0.69 46.87 0.90 50.47 0.97 47.76 0.91

Table 2: Per-flow throughput in the GFC-2 network

GFC-2 network. This is largely because NBP, by itself, has no mechanism to explicitly enforce fairness.

In the third and fourth simulation scenarios, NBP is combined with the standard fair queuing, namely weighed

fair queueing (WFQ), and ECSFQ, respectively. Simulation results show that in both cases bandwidth allocations

are approximately max-min fair for all flow groups. NBP with standard fair queuing achieves slightly better fairness

than NBP with ECSFQ, since ECSFQ is only an approximation of fair queuing and its performance depends on the

accuracy of its estimation of a flow’s input rate and fair share. Remember that NBP with ECSFQ achieves approximate

global max-min fairness and ECSFQ is much less complex than WFQ, due to it is stateless design. Figures 15(a) and

15(b) depict how rapidly the throughput of each flow converges to its max-min fair bandwidth allocation for the NBP
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(a) Using NBP with WFQ
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(b) Using NBP with ECSFQ

Figure 15: Per-flow throughput in the GFC-2 network

with fair queuing and the NBP with ECSFQ cases, respectively. Even in a complex network like the one simulated

here, all flows converge to an approximately max-min fair bandwidth allocation within one second.

5.3 Scalability

Scalability is perhaps the most important performance measure of any traffic control mechanism. As we have just

seen, NBP is a core-stateless traffic control mechanism that effectively prevents congestion collapse and provides ap-

proximate max-min fairness when combined with an appropriate fair queuing mechanism. However, NBP’s scalability

is highly dependent upon per-flow management performed by edge routers. In a large scale network, the overheads of

maintaining per-flow state, communicating per-flow feedback, and performing per-flow rate control and rate monitor-

ing may become inordinately expensive. The load of feedback packets generated by an NBP ingress router depends on
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Figure 16: Simulation model for evaluating scalability

the number of egress routers it communicates with and the load of the ingress traffic. The processing required at border

routers and the amount of state that border routers need to maintain depend on the number of active flows. Hence, the

scalability of NBP is dependent on the number of border routers, the number of active flows and the traffic load.

A. Multiple flows and multiple border routers

In the set of experiments shown in this subsection, we assess NBP’s scalability using the network shown in Figure 16.

The number of border routers and the number of active flows per border router is varied in our simualtions. The

network model consists of four core routers,4 � B border routers, and4 � B � F flows, whereB is the number of

border routers per core router andF is the number of flows per border router. Propagation delays are 5 msec between

core routers, 1 msec between border and core routers, and 100�sec between end systems and core routers. Flows

are established in both directions so that data packets travel in both directions on all links connecting core routers.

TCP flows traverse all core routers while UDP flows traverse only the interior core routers. The capacities of links

between core and egress routers traversed by UDP flows are set to 5 Mbps, while all remaining link capacities are set

to 10 Mbps. Thus, UDP flows are bottlenecked at 5 Mbps. TCP flows traverse multiple congested links, and compete

for bandwidth with UDP flows and also among themselves. UDP flows are unresponsive to congestion and transmit at

a constant rate of 5 Mbps.

In the first experiment we consider a moderately large network with 8 border routers and vary the number of flows

from 8 to 48. The amount of feedback generated by NBP is shown in Figure 17. This figure shows that the amount of

feedback is mostly independent of the number of flows, and thus, NBP is scalable in this scenario. This is due to the

fact that, in NBP, feedback packets are generated according to the number of packets admitted into the network, not

according to the number of flows admitted into the network. Regardless of the number of flows, since in nearly all test
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Figure 17: Feedback traffic overhead as the number of flows increases.
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Figure 18: Number of dropped packets as the number of flows increases.

simulation scenarios the capacity of the network is fully utilized, the number of packets admitted into the network is

practically constant and the amount of feedback information generated by NBP does not increase with the number of

flows. Furthermore, simulation results show that the fraction of the bandwidth of the links in the core of the network

consumed by feedback packets is reasonably small and varies from 1.04% to 1.59% in this experiment.

NBP prevents congestion collapse by eliminating or severely reducing the number of packet losses within the core of

the network. Figure 18 shows the total number of data packets lost in the network with and without NBP. As expected,
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Figure 19: Combined throughput of TCP flows as the number of flows increase.

the total number of packet losses increases linearly with the number of flows according to the load of unresponsive

traffic. However, without NBP, a significant portion of these losses occur at core routers, whereas with NBP, nearly

all packet losses occur at the ingress border of the network. Since packet losses in the core of the network often lead

to congestion collapse due to undelivered packets, NBP (i.e., dropping packets at the entry point to the network) is

clearly advantageous. Moreover, NBP is able to limit packet losses to the borders of the network even as the number

of active flows increases. Therefore,

Figure 18 shows that NBP effectively prevents congestion collapse in a scalable manner when the number of flows

increases.

In the simulation configuration shown in Figure 16, TCP flows traversing the entire network compete for bandwidth

with the unresponsive UDP flows. The optimal throughput of TCP flows is 5 Mbps in the forward path and 5 Mbps in

the reverse path. The optimal combined throughput of TCP flows is, thus, 10 Mbps in this network. Figure 19 shows

that without NBP, the combined throughput of TCP flows drops to nearly zero as the UDP unresponsive traffic load

increases. Figure 19 also illustrates that, with NBP, TCP’s throughput remains close to optimal even as the number of

flows increases. This is because, as seen in Figure 18, NBP is able to prevent congestion collapse, and therefore, the

performance of TCP is greatly improved.

In the second experiment, we vary the size of the network by varying the number of border routers from 8 to 48. We

attach only one end system to each border router so that links between ingress and core routers are never congested;

only links connecting core routers and links connecting core to egress routers may become congested. Figures 20(a)

and (b) show the number of data packets lost in the network with and without NBP. As in the first experiment, the total

number of packet losses increases linearly with the number border routers according to the load of unresponsive traffic.

Without NBP, all packet losses occur in the core of the network, whereas with NBP, nearly no losses are observed in

the core.
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(a) Using FIFO only
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(b) Using NBP with FIFO

Figure 20: Number of dropped packets as the number of border routers increase.
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Figure 21: Amount of feedback overhead as the number of border routers increases.

For the network used in Figure 16, the amount of feedback information generated by NBP is shown in Figure 21.

This Figure shows that the feedback packet overhead that NBP creates remains independent of the number of border

routers. Simulation result also shows that the fraction of the bandwidth of links L2 and L3 consumed by feedback

packets is reasonably small and varies from 0.92% to 1.41% in this experiment. The fact that the feedback overhead

that NBP generates is relatively small and remains independent of the number of border routers (i.e., the size of the

network) suggest that NBP scales well.
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Note that even in large scale networks, nearly no packet is lost at the core of the network. This demonstrates NBP

effectively prevents congestion collapse by dropping packets before they enter the network.

B. Ingress routers communicating with multiple egress routers

Ingress routers may exchange feedback packets with a large number of egress routers, if flows originating at an ingress

router are destined to various egress routers in the network. In this experiment, the network model of Figure 22 is used

to evalute NBPs scalability with respect to the number of destination egress routers. Propagation delays are 10 msec

between core routers, 1 msec between border and core routers, and 100�sec between end systems and border routers.

The capacities of links between core routers are set to 20 Mbps, between core routers and egress routers connected

to UDP sinks are set to 5 Mbps, while all remaining link capacities are set to 10 Mbps. TCP flows and unresponsive

UDP flows traverse the entire network and compete for bandwidth among themselves. Flows are configured such that,

ingress routers on the left of the network exchange feedback packets with all egress routers on the right. Conversely,

ingress routers on the right of the network need to exchange feedback packets with all egress routers on the left. In

this simulation scenario, the optimal TCP throughput is 10 Mbps and the maximum UDP throughput is 5 Mbps.

In this simulation experiment, the load of UDP traffic is varied from 2 Mbps to 20 Mbps and Table 3 shows the

simulation results using NBP. As shown in the third column (UDP throughput), as the UDP traffic load increases,

NBP successfully limits the UDP throughput to 5 Mbps. TCP throughput is shown in the second column and remains

close to optimal for all UDP loads. The fourth column shows that the number of feedback packets increases up to the

point where the network becomes fully utilized. As the load of UDP traffic increases beyond 6 Mbps, the number of

feedback packets remain approximately constant. The remaining columns show how many packets are dropped and

where they are dropped. As the last column shows no data packet is dropped in the core.

As the UDP traffic load increases, more data packets are dropped by ingress routers, in order to prevent congestion

collapse within the network.

The simulation results show that the NBP, even when ingress routers exchange feedback information with multi-

ple egress routers, the number of feedback packets is bounded and NBP remains effective in preventing congestion

collapse, and thus, in this scenario, NBP scales very well.
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Figure 22: Simulation model for evaluating ingress routers communicating with multiple egress routers

UDP TCP UDP Number of Number of dropped packets
load throughput throughput feedback Data Feedback Total TCP ACK In the

(Mbps) (Mbps) (Mbps) packets packets packets packets packets Core
2 9.99 2.00 1642 0 25 25 0 0
4 9.98 3.99 2071 0 171 171 0 0
6 9.98 4.92 2234 0 1230 1230 0 0
8 9.98 4.98 2260 0 3660 3660 0 0
10 9.98 4.99 2303 0 6163 6163 0 0
12 9.97 4.99 2332 0 8780 8780 0 0
16 9.97 4.99 2327 0 13756 13756 0 0
20 9.94 4.99 2315 0 18615 18615 0 0

Table 3: Performance results for ingress routers communicating with multiple egress routers

6 Implementation Issues

A number of important implementation issues must be addressed before NBP can be feasibly deployed in the Internet.

Some of such issues are discussed below:

1. Scalable flow classification.To reduce the overhead of maintaining state for individual flows at edge routers, it

may be useful in some cases to aggregate flows through coarser forms of flow classification. Instead of classify-

ing a flow using the packet’s addresses and port numbers, the network’s edge routers may aggregate many flows

together by, for instance, classifying them using only the packet’s address fields. Alternatively, flows may be

even more coarsely classified using only the packet’s destination network address. Coarse-grained flow aggre-

gation has the effect of significantly reducing the number of flows seen by NBP edge routers, thereby reducing

the required amount of state and processing required at edge routers. A potential drawback of flow aggrega-

tion, however, is that adaptive flows aggregated with unresponsive flows may be indiscriminately punished by

an ingress router. The trade-offs between coarse and fine grained flow classification must be assessed by each
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network operator.

2. Scalable inter-domain deployment.An approach to further improving the scalability of NBP, inspired by a

suggestion in [18], is to develop trust relationships between domains that deploy NBP. The inter-domain router

connecting two or more mutually trusting domains may become a simple NBP core router without the need to

perform per-flow tasks or maintain per-flow state. If a trust relationship cannot be established, border routers

between the two domains may exchange congestion information so that congestion collapse can be prevented

not only within a domain, but throughout multiple domains.

3. Incremental deployment.It is crucial that NBP be implemented in all edge routers of an NBP-capable network.

If one ingress router fails to police arriving traffic or if one egress router fails to monitor departing traffic, NBP

will not operate correctly, and congestion collapse will be possible. Nevertheless, it is not necessary forall

networks in the Internet to deploy NBP in order for it to be effective. Any network that deploys NBP will enjoy

the benefits of eliminated congestion collapse within the network. Hence, it is possible to incrementally deploy

NBP into the Internet on a network-by-network basis.

4. Multicast. Multicast routing makes it possible for copies of a flow’s packets to leave the network through more

than one egress router. When this occurs, an NBP ingress router must examine backward feedback packets re-

turning from each of the multicast flow’s egress routers. To determine whether the multicast flow is experiencing

congestion, the ingress router should execute its rate control algorithm using backward feedback packets from

the most congested ingress-to-egress path (i.e., the one with the lowest flow egress rate). This has the effect of

limiting the ingress rate of a multicast flow according to the most congested link in the flow’s multicast tree.

5. Multi-path routing. Multi-path routing makes it possible for packets from a single flow to leave the network

through different egress routers. In order to support this possibility, an NBP ingress router may need to examine

backward feedback packets from more than one egress router in order to determine the combined egress rate for

a single flow. For a flow passing through more than one egress router, its combined egress rate is equal to the

sum of the flow’s egress rates reported in backward feedback packets from each egress router.

6. Integrated or differentiated services.NBP treats all flows identically, but integrated and differentiated services

networks allow flows to receive different qualities of service. In such networks, NBP should be used to regulate

best effort flows only. Flows using network services other than best effort are likely to be policed by other more

service-appropriate traffic control mechanisms.
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7 Conclusion

In this paper, we have presented a novel congestion avoidance mechanism for the Internet called Network Border Patrol

and an Enhanced Core-Stateless Fair Queuing mechanism. Unlike existing Internet congestion control approaches,

which rely solely on end-to-end control, NBP is able to prevent congestion collapse from undelivered packets. ECSFQ

complements NBP by providing fair bandwidth allocations in a core-stateless fashion. NBP ensures at the border of the

network that each flow’s packets do not enter the network faster than they are able to leave it, while ECSFQ ensures, at

the core of the network that flows transmitting at a rate lower than their fair share experience no congestion, i.e., low

network queueing delay. This allows the transmission rate of all flows to converge to the network fair share.

NBP requires no modifications to core routers nor to end systems. Only edge routers are enhanced so that they

can perform the requisite per-flow monitoring, per-flow rate control and feedback exchange operations, while ECSFQ

requires a simple core-stateless modification to core routers.

Simulation results show that NBP successfully prevents congestion collapse from undelivered packets. They also

show that, while NBP is unable to eliminate unfairness on its own, it is able to achieve approximate global max-min

fairness for competing network flows when combined with ECSFQ, they approximate global max-min fairness in a

completely core-stateless fashion.
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Appendix: NBP’s Feedback Overhead

Feedback packets assist NBP to prevent congestion collapse by carrying congestion control information between

ingress and egress routers. However, feedback packets themselves increase the traffic load and may contribute to

congestion within the network. In the following, we present rough estimate of the amount of overhead that NBP

feedback packets create.

In order to estimate the load of feedback packets within the network, we estimate how often feedback packets are

generated. The frequency that an ingress routeri generates a feedback packet destined to egress routere is:

�ie =
fie:ingressRate

Tx
(1)

whereTx is NBP’s byte transmission counter threshold, i.e., the number of bytes of flowfie between feedback packets;

andfie:ingressRate is the allowed input rate for flows between ingress routeri and egress routere.

Feedback packets may be generated between any pair of ingress and egress routers, and in the worst case, ingress

routers exchange feedback packets with all egress routers in the network. In this worst case, the total rate at which

feedback packets are generated in a network is:

� =

IX

i=0

EX

e=0

�ie (2)

or

� =
1

Tx

IX

i=0

EX

e=0

fie:ingressRate (3)

whereI andE are the total number of ingress and egress routers in the network, respectively.
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Consider the bottleneck link bandwidth between all ingress routers and all egress routers to beB. Since NBP’s rate

control algorithm is capable of preventing congestion in the network, the sum of all ingress rates is smaller than or

equal toB. Thus, the following inequality holds.

IX

i=0

EX

e=0

fie:ingressRate < B (4)

Applying the above equation to eq.(3), the maximum rate at which feedback packets are generated in a network is

given by:

� =
B

Tx
(5)

Assuming that the average length of feedback packets isL, the total load created by the feedback packets in the

network is:

� = L� � (6)

Feedback packets in NBP take the form of ICMP packets, and in the case where only one flow information is main-

tained between a pair of ingress-egress routers, forward feedback packets are 28 bytes long, and backward feedback

packets are 36 bytes long5. Therefore, for a network with a bottleneck bandwidthB of 10 Mbps, feedback packets

of length 28 bytes, and NBPTx parameter set to 10,000 bytes, the total load of feedback packets in the network is�

equals to 28 kbps.

5In the general case, feedback packets may have variable length, depending on the number of flows between a pair of ingress and egress

routers. The most scalable scenario is when all packets flowing between a given pair of ingress and egress routers are classified into the same

flow, and thus, a feedback packet contains information on only one flow.
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