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Abstract

Achieving flexibility and efficiency in blackboard-based AI applications are often con-
flicting goals. Flexibility, the ability to easily change the blackboard representation
and retrieval machinery, can be achieved by using a general purpose blackboard-
database implementation, at the cost of efficient performance for a particular ap-
plication. Conversely, a customized blackboard-database implementation, while
efficient, leads to strong interdependencies between the application code (knowl-
edge sources) and the blackboard-database implementation. Both flexibility and
efficiency can be achieved by maintaining a sufficient level of data abstraction be-
tween the application code and the blackboard implementation. The abstraction
techniques we present are a crucial aspect of the generic blackboard-development
system GBB. Applied in concert, these techniques simultaneously provide flexibil-
ity, efficiency, and sufficient generality to make GBB an appropriate blackboard-
development tool for a wide range of applications.

1 Introduction

Blackboard architectures, first introduced in the Hearsay-II speech understanding
system from 1971 to 1976 [1], have become popular for knowledge-based applica-
tions. The interest in the generic blackboard control architecture of BB1 [2] is but
one example of the increasing popularity of blackboard architectures. The blackboard
paradigm, while relatively simple to describe, is deceptively difficult to implement ef-
fectively for a particular application. As noted by Nii [3], the blackboard model with
its knowledge sources (KSs), global blackboard database, and control components
does not specify a methodology for designing and implementing a blackboard system
for a particular application.
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Historically, most blackboard-based systems have been built from scratch, imple-
menting the blackboard model according to the criteria that appeared most appro-
priate for the particular application. Some implementations were built for execution
efficiency, with considerable effort placed on providing fast insertion and retrieval of
objects on the blackboard. The KSs and control components in these implementations
were so tied to the underlying blackboard database that making modifications to the
blackboard structure or insertion/retrieval strategies was difficult. Other implemen-
tations were designed with flexibility in mind. These applications were built on top
of a general-purpose blackboard-database retrieval facility (for example, a relational
database system [4]). While these implementations could be restructured relatively
easily, their inefficiency in accessing objects on the blackboard made them slow. Fi-
nally, a few implementations were simply built in a hurry, with little effort toward
achieving either flexibility or efficiency.

In this paper, we concentrate on the two conflicting issues of flexibility and
efficiency of blackboard systems. We show that by appropriately hiding information
between three phases of blackboard system development—blackboard database
specification, application coding (KSs and control components), and blackboard-
database implementation—it is possible to achieve both flexibility and efficiency. This
principle of blackboard-data abstraction is an integral design principle of the generic
blackboard-development system GBB [5]. Abstraction also makes GBB sufficiently
general for use in a wide range of applications. Although we describe the benefits of
blackboard abstraction in the context of GBB, these abstractions are appropriate for
any blackboard-development environment.

In the next section, we detail why flexibility and efficiency are important aspects
of all blackboard applications. Section 3 characterizes how blackboard implemen-
tations have been built in the past. Section 4 describes the abstractions used to
hide information between the three phases of blackboard application design and
implementation.

2 On Flexibility and Efficiency

Flexibility in a blackboard system is the ability to change the blackboard-database im-
plementation, the insertion/retrieval strategies, and the representation of blackboard
objects without modifying KS or control code and vice versa. Flexibility is important
for two reasons. First, the application writer’s understanding of the insertion/retrieval
characteristics and the representation of blackboard objects may be uncertain and
therefore subject to change as the application is developed. Second, even after a
prototype of the application has been completed, the number and placement of black-
board objects as the application is used may differ from the prototype. This again
requires changes to the blackboard representation in order to achieve the desired
level of performance. Therefore, it is important that the blackboard implementation
provides enough flexibility to allow these changes without significant changes to the
KSs, the control code, or to the blackboard-database implementation machinery. With
sufficient flexibility it is possible to actually “tune” the blackboard representation to
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the specific characteristics of the application.
Efficiency in the insertion and retrieval of blackboard objects is an equally impor-

tant design goal. Typically, improving the execution efficiency of blackboard systems
is achieved through improvements to the quality and capability of the control com-
ponents. Reducing the number of “inappropriate” KSs that are executed (by making
more informed scheduling decisions) can significantly reduce the time required to
arrive at a solution. Making appropriate control decisions should never be neglected
in the development of an application. In this paper, however, we assume that a high-
quality control component and high-quality KSs will be written by the application
implementer. We will focus on the remaining source of execution inefficiency—the
cost of inserting and retrieving objects from the blackboard.

2.1 The Need For Blackboard Database Efficiency

Why are we placing such an emphasis on the efficiency of the blackboard database?
In addition to inserting new hypotheses on the blackboard, KSs perform associative
retrieval to locate relevant hypotheses that have been placed on the blackboard by
other KSs. This need for KSs to locate appropriate information on the blackboard is
often overlooked in casual discussions of blackboard-based systems. A KS is typically
invoked by one or more triggering stimulus objects. The KS then looks on the
blackboard to find other objects that are “appropriately related” to the stimulus
object. Each KS thus spends its time:

1. retrieving objects from the blackboard based on their “location” on the black-
board

2. performing computations using existing objects (to determine new blackboard
objects to create)

3. creating and placing these new objects onto the blackboard.

The ratio of items 1 and 3 over item 2 defines the amount of time the KS
spends interacting with the blackboard versus the amount of time the KS spends
performing computations. The larger this interaction/computation ratio is, the more
that blackboard efficiency issues will dominate performance. The ratio of item 1 over
item 3 defines the read/write ratio of blackboard interactions for the KS. This ratio
can be used to aid the selection blackboard implementation and retrieval strategies.

Note that associative retrieval is central to the blackboard paradigm. Associative
retrieval is used to provide anonymous communication among KSs by allowing KSs to
look for relevant information on the blackboard rather than receiving the information
via direct invocation by other KSs. Yet the blackboard provides more than this
anonymous communication channel among KSs. Objects on the blackboard often
have significant latency between the time they are placed on the blackboard and the
time they are retrieved and used by another KS. If it were not for this latency, the
blackboard could be “compiled away” into direct calls among KSs by a configuration-
time compiler. This latency in blackboard objects indicates that the blackboard also
serves as a global memory for the KSs. Objects are held on the blackboard to be
used when and if they are needed by the KSs. Without the blackboard, each KS
module would have to maintain its own copy of objects received from other modules.
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Whether the memory is globally shared (on the blackboard) or private, an efficient
means of scanning the remembered objects is required.

The amount of time a KS spends creating and scanning for objects versus perform-
ing other computations (the interaction/computation ratio) varies greatly between
different applications and even between different KSs in a single application. Of
course, the greater this ratio the more significant the efficiency of the blackboard
implementation becomes. Experience with the Hearsay-II speech understanding sys-
tem [1] and the Distributed Vehicle Monitoring Testbed (DVMT) [6] demonstrates
that blackboard performance has a significant effect on system performance in these
applications.

If the underlying hardware provided true associative retrieval, where a KS could
retrieve (in unit time) all desired objects from the blackboard based on any of their
attributes, these efficiency issues would become irrelevant and the implementer
would only need to write the application KSs and control code. However, the present
hardware situation requires that the associative retrieval of blackboard objects be
simulated in software by appropriate retrieval strategies on the blackboard database.

2.2 Basic Blackboard Operations

Before we continue, it is useful to describe in more detail the blackboard operations
that are typically required to support an application.

Insertion: When a blackboard object is created, it must be placed onto the black-
board. Placement onto the blackboard involves creating one or more locators,
pointers that are used to retrieve the object. In the simplest situation where
blackboard objects are merely pushed onto a list, the single locator is the list
pointer. With retrieval strategies supporting efficient retrieval of objects based
on complex criteria, multiple locators are used. These locators are determined
based on attribute values of the object.

Merging: When placing an object onto the blackboard, it can be important to deter-
mine if an “identical” object already exists on the blackboard. The semantics of
identity depend on the application, but an example is two hypotheses created
by different KSs that differ only in their belief attribute. Often it is desirable
that hypotheses on the blackboard be unique; that is, no identical hypotheses be
created on the blackboard. Instead, the two hypotheses should be merged into
a single blackboard object that reflects the two by merging their belief attributes
into a single attribute value in the existing hypothesis.

Merging can be handled in two ways. One approach is to have all KSs avoid
creating identical hypotheses by checking for an existing hypothesis before cre-
ating a new one. If an existing hypothesis is found, its attributes are updated by
the KS. The second approach builds an application-specific merging capability
into the basic blackboard-object-insertion machinery.

Retrieval: Retrieval involves searching the blackboard for objects that satisfy a set of
constraints specified in a retrieval pattern. Retrieval can be broken down into
two steps. The first step determines a set of locators (based on the retrieval
pattern) that contain pointers to potentially desirable objects. The second step
eliminates those candidates from the first step that do not satisfy the constraints
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of the retrieval pattern. Since this elimination process can be computationally
expensive, an efficient retrieval strategy is one where the first step substantially
reduces the number of candidates. In order to implement an efficient, yet flex-
ible, retrieval strategy the constraints must be expressed declaratively so that
they may be examined by the blackboard implementation machinery to deter-
mine the appropriate set of locators to use in the retrieval.

Deletion: Deleting an object from the blackboard requires removing it from the loca-
tors which point to it. Since other blackboard objects may contain links point-
ing to the deleted object, these links must also be found and eliminated. For ex-
ample, if links are maintained as bidirectional pointers (as is the case in GBB),
deleting these links is simply a matter of traversing all links from the deleted
object and then eliminating the inverse links.

Repositioning: If the attributes that determine the object’s locators (such attributes
are termed indexing attributes) are modified, the locators may also need to
be changed (deleting some and adding others) to maintain consistency in the
blackboard database. In many applications, all indexing attributes are static—
only the values of the other attributes (such as belief) are allowed to change.
Domains involving objects that move over time, however, are examples of sit-
uations where the positioning of objects may need to be modified during the
course of problem solving.

3 Past Practice

In this section, we characterize approaches that have been used to implement
associative retrieval in blackboard systems.

3.1 The Unstructured Blackboard

A simplistic approach to building a blackboard application is to represent each
blackboard level as an unstructured list of the objects residing on that level. KSs
add a new object to the blackboard by simply pushing it onto the appropriate list.
Retrieval is performed by having the KS scan the list for objects of interest.

This approach only appears to be simple, as there is no work to implementing the
blackboard implementation machinery (global variables serve quite nicely). Actually,
all the effort has been shifted into the KSs. Each KS must worry about the entire
retrieval process, and since each object on the blackboard level must be tested for
appropriateness, the KS must perform this test as efficiently as possible. Each KS
may also need to worry about merging blackboard objects; avoiding the creation of
a blackboard object that is semantically equivalent to an existing object. If merging
is not performed, KSs must consider the possibility that semantically equivalent
objects may be retrieved from the blackboard. Insertion, deletion, and repositioning
of blackboard objects must also be directly handled by the KSs as well.

3.2 The General-Purpose Kernel

In this approach, a general-purpose blackboard database facility is provided to the
KS and control-component implementers. The facility supports blackboard-object
retrieval based on the attributes of the objects. In its most general form, all attributes
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of the objects may be used as retrieval keys (for example, blackboard objects may
be stored in a relational database). The application implementers retrieve objects
by writing queries in the retrieval language. This approach provides a very flexible
development environment, but the unused generality of the blackboard-database
implementation poses severe time/space performance penalties.

3.3 The Customized Kernel

As noted above, the use of a general-purpose retrieval strategy for all blackboard
applications is a source of inefficiency. Retrieval of blackboard objects in a particular
application may be made significantly faster using a specialized retrieval mechanism.
Furthermore, retrieval of different classes of blackboard objects within a single
application may be best achieved using different retrieval strategies. One solution is
to custom-code the appropriate retrieval strategy for each situation. In this approach,
an insertion/retrieval kernel is written that is tailored to the situations that arise in
a particular application. When a KS needs to locate blackboard objects, it invokes
kernel functions to perform an initial retrieval from the blackboard and then uses
procedural “filters” to identify which returned objects are actually of interest. This
approach is significantly more efficient than the general-purpose approach when the
kernel functions significantly prune the number of blackboard objects that need to be
filtered by the KS. However, it poses a number of disadvantages.

• A new customized kernel must be written to suit the different insertion/retrieval
characteristics of each application.

• If the kernel is found to be inappropriate to the application, due to incorrect
intuition during the initial design or to changing application characteristics, it
must be rewritten.

• The KS code is directly coupled to the particular kernel. The code must be writ-
ten with the knowledge of which attributes are matched by the kernel code and
which attributes must be filtered by the KS. Changing the kernel attributes re-
quires rewriting the KSs.

• The kernel code is tied to the blackboard representation. Changes to the black-
board representation require modifications to the kernel code.

• The KS and kernel code is tied to the structure of blackboard objects. Changes
to the representation of attributes require code modifications.

In short, although the custom-coded kernel approach can provide efficient in-
sertion and retrieval of blackboard objects, that efficiency comes at the cost of
inflexibility to changes in the KS and control code and to changes in the blackboard
and object representation.

4 Blackboard-Database Abstraction in GBB

By appropriately combining a number of blackboard-data abstraction techniques, it
is possible to “have your cake and eat it too” with respect to flexibility and effi-
ciency. The generic blackboard development system GBB [7] provides the application
implementer and blackboard-database administrator with distinct, abstract views of
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the blackboard. Developing an application using GBB involves three separate, but
interrelated phases.

Blackboard & blackboard-object specification: This phase involves describing the
blackboard structure (the blackboard hierarchy), the structure of each black-
board level, the attributes associated with each class of blackboard objects
(called units in GBB), and the mapping of units onto blackboard levels (called
spaces in GBB).

Application coding: This phase involves writing KSs and control code in terms of the
blackboard and blackboard-object specifications. Application code deals with the
creation, deletion, retrieval, and updating of units. Retrieval is specified by pat-
terns based on the structure of the relevant blackboard space(s).

Blackboard-database implementation specification: This phase involves specifying
the blackboard-database implementation and retrieval strategies. The locator
data structures appropriate for the particular characteristics of the application
are specified in this phase. These specifications are also made in terms of the
blackboard structure and unit specifications.

By maintaining an abstracted view of the blackboard, the details of decisions
made in each of the three phases can be hidden until they are combined in GBB’s
code-generation facility.

4.1 Abstracting the Blackboard

In GBB, each blackboard space is a highly structured n-dimensional volume. Space
dimensionality provides a metric for positioning units onto the blackboard in terms
that are natural to the application domain. Units are viewed as occupying some
n-dimensional extent within the space’s dimensionality.

For example, in a speech understanding system, one of the dimensions of a
blackboard space could be utterance time. In the domain of vehicle tracking, a
space might contain the dimensions sighting time, x-position, and y-position. In GBB,
such dimensions are termed ordered. Ordered dimensions use numeric ranges which
support the concept of one unit being “nearby” another unit along that dimension. In
the speech understanding domain, this allows a KS to extend a phrase by retrieving
words that begin “close in time” to the phrase’s end time.

GBB also supports enumerated dimensions. An enumerated dimension consists of
a fixed set of labeled categories. For example, in the vehicle tracking domain a space
might also have the enumerated dimension “classification” corresponding to a set of
vehicle types.

Space dimensionality is a key means of abstracting the blackboard database. It
provides information hiding by allowing the application code to create and retrieve
units according to the dimensions of spaces, without regard to the underlying im-
plementation of the blackboard structure. Dimensional references, however, contain
enough information when combined with information about the structure of the
blackboard to allow efficient retrieval code to be generated.

Here is an example of the space definitions from the DVMT application that
specifies the time, x-position, y-position, dimensions discussed above (as well as a
sensory-event classification dimension):
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(define-spaces (pt pl vt vl gt gl st sl)
:units (hyp)
:dimensions
((time :ordered *bb-time-range*)
(x :ordered *bb-x-range*)
(y :ordered *bb-y-range*)
(event-class :ordered *bb-event-class-range*))).

4.2 Abstracting Unit Insertion

When a unit is created in GBB, it is inserted on the blackboard based on the
unit’s attributes. There are two decisions to be made when inserting a unit on the
blackboard. The first is what space or spaces to store the unit on and the second
is the location of the unit within the n-dimensional volume of each space. The
definition of each unit includes the information required to make these two decisions
based on the values of the unit’s attributes. This insulates the KS code from the
details of the blackboard structure. For example, the KS code does not need to know
which attributes and dimensions are actually used to create locators for the unit.
Thus changes in the blackboard structure do not necessitate changing KS code.

Here is an example of the hypothesis unit class definition from the DVMT applica-
tion:

(define-unit (hyp (:name-function generate-hyp-name)
(:include basic-hyp-unit))

:slots
((belief 0 :type belief)
(event-class 0 :type event-class)
(level nil :type symbol)
(node 0 :type node-index)
(time-location-list () :type time-location-list))
:links
((supported-hyps (hyp supporting-hyps)

:update-events (supported-hyp-event))
(supporting-hyps (hyp supported-hyps)
:update-events (supporting-hyp-event)))

:dimensional-indexes
((time time-location-list)
(x time-location-list)
(y time-location-list)
(event-class event-class))
:path-indexes
((node node :type :label)
(level level :type :label))
:paths
((t (’node-blackboards node ’hyp level)))).

The dimensional indexes define how attributes semantically specify the position-
ing of hypothesis units onto the dimensionality of a space. (The details of which
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attributes are actually used in locator construction are specified in the unit-space
mapping discussed in Section 4.5.) These specifications include the information re-
quired for destructuring when highly structured attribute values are used for unit
positioning. Path indexes specify the space(s) on which created units are to reside. A
unit is simply created by supplying its attributes:

(make-hyp :node *current-node-number*
:level bb-level
:time-location-list time-location-list
:event-class event-class
:belief computed-belief).

4.3 Abstracting Unit Retrieval

GBB’s basic unit retrieval function, find-units, permits a complex retrieval to be
specified in its pattern language. This declarative pattern language provides an
abstraction over the blackboard database. A find-units pattern consists of an n-
dimensional retrieval specification for particular classes of units on a blackboard
space. This means that the KS code need only specify the desired classes of units, the
spaces on which to look, and the values for the dimensions.

We will present an example of unit retrieval shortly.

4.4 Abstracting the Blackboard Path

Specifying a blackboard space in KS and control code is another area where data
abstraction is important. In GBB, the blackboard is a hierarchical structure composed
of atomic blackboard pieces called spaces. In addition to being composed of spaces,
a blackboard can also be composed of other blackboards (themselves eventually
composed of spaces). This hierarchy is a tree where the leaves are spaces and the
interior and root nodes are blackboards. Units are always stored on spaces; GBB’s
blackboards simply allow the implementer to organize the set of spaces in the system.
At a conceptual level, the space upon which to store the unit is specified by the
sequence of nodes traversed from a root blackboard node through all intermediate
blackboard nodes to the leaf space node. This sequence, which unambiguously
specifies a space, is called the blackboard/space path. For example, if the blackboard
bb1 had components bb2 and bb3, and bb2 and bb3 each had components space1
and space2, the two paths (bb1 bb2 space1) and (bb1 bb3 space1) specify different
instances of the space space1. In addition, blackboards and spaces can be replicated,
which creates multiple copies of blackboard subtrees. These copies of the blackboard
structure are disambiguated by qualifying the replicated blackboard or space with a
index. For example, if bb1 were replicated twice, then (bb1 0 bb2 space1) and (bb1
1 bb2 space1) would specify two of the four instances of space1 created.

In the original design of GBB, the blackboard path was directly specified in
find-units. Even here, the lack of abstraction caused difficulty in modifying the
blackboard structure without modifying the application code. For example, consider
the DVMT application where the basic data blackboard consists of eight spaces (the
abstraction levels SL, GL, VL, PL, ST, GT, VT, and PT). Using a very simple control
shell for initial prototyping of the KSs, the blackboard structure might consist of a
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single blackboard containing the eight levels and another blackboard containing the
scheduling queues. Later on, however, a more complicated control shell might be
desired which contains a separate goal blackboard on which goal processing activities
are performed. The goal blackboard mirrors the structure of the data blackboard,
and contains eight corresponding spaces. Specifying complete blackboard/space paths
makes such a transition cumbersome, because each call to find-units must be
changed to reflect the new blackboard-space paths.

To eliminate this problem, GBB now provides an abstract path specification
mechanism which allows blackboard/space paths to be specified relative to other
paths, to another space instance, or to the spaces on which a unit instance resides.
For example, the path to a stimulus hypothesis’s space is coded as:

(make-paths :unit-instances stimulus-hyp).

The path to the ST level of a hyp in the DVMT application can be coded as:

(change-paths
(make-paths :unit-instances stimulus-hyp)
’(:change-relative :up st))

where :up indicates to move up one level in the blackboard/space hierarchy and
st indicates to move back down to the ST space.

The path to a corresponding goal space given a hypothesis unit in the DVMT
application would be coded as:

(change-paths
(make-paths :unit-instances stimulus-hyp)
’(:change-subpath hyp goal)).

The following call to find-units illustrates the use of abstraction in unit retrieval:

(find-units ’hyp
;; We look on the same space as the ‘stimulus-hyp’ ::
(make-paths :unit-instances stimulus-hyp)
‘(:and
;; Check for adjacent (in time) hypotheses within
;; the maximum velocity range of vehicle movement ::
(:pattern-object
(:index-type time-location-list
:index-object ,(hyp$time-location-list stimulus-hyp)
:displace ((time 1))
:delta ((x ,*max-velocity*)

(y ,*max-velocity*)))
:element-match :within)

;; Check event class for frequency within
;; *max-frequency-shift* of stimulus-hyp ::
(:pattern-object
(:index-type event-class
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:index-object ,(hyp$event-class stimulus-hyp)
:delta ((event-class ,*max-frequency-shift*))
:element-match :within))))

4.5 Specifying the Implementation Machinery

Specifying how locators are to be constructed from unit-attribute values is made by
defining a mapping for each unit class onto each blackboard space. The mapping is
specified in terms of the dimensionality of the space. For example, here is a simple
implementation of the levels in the DVMT application where only the time dimension
is used for locator construction (the other dimensions are checked during the filtering
step of the retrieval process):

(define-unit-mapping (hyp) (pt pl vt vl gt gl st sl)
:indexes (time)
:index-structure
((time :subranges (:start :end (:width 1))))).

To add in other dimensions into the locator structure, only the mapping declara-
tion need be changed. Here is the same definition implementing a locator strategy for
time and x-y-position:

(define-unit-mapping (hyp) (pt pl vt vl gt gl st sl)
:indexes (time (x y))
:index-structure
((time :subranges (:start :end (:width 1)))
(x :subranges (:start :end (:width 10)))
(y :subranges (:start :end (:width 15))))).

The parentheses in the :indexes value in the above example indicates that the
locators for the time dimension are to be implemented as a single vector and the
locators for the x and y dimensions are to be grouped into a two-dimensional array.
Without the extra level of parentheses, three vectors of locator structures would be
implemented.

4.6 Abstracting the Control Interface

In GBB, the control interface is separated from the blackboard database implementa-
tion by viewing changes to the blackboard as a series of blackboard events. Control
components are then defined to be triggered on particular events. For example, a
simple blackboard monitor for activating KSs in response to the creation of new
hypothesis units could be defined as:

(define-unit (basic-hyp
;; This structure exists only for
;; inclusion in user HYP structure.
(:constructor nil)
(:creation-events
hyp-creation-event-handler))
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:slots ((level belief response-frame))
:links ((stimulated-ksis (basic-ksi stimulus-hyps))

(creating-ksis (basic-ksi created-hyps)))
:path-indexes ((level level :type :label))
:paths ((t (’blackboard level))))

(defun hyp-creation-event-handler (stimulus-hyp)
;;; This function looks on the KSS space to determine
;;; which KSs might be interested in the hyp creation
;;; event and runs their preconditions. Preconditions
;;; that return a positive rating cause their KSs to be
;;; instantiated and placed on the scheduling queue."
(let* ((level (basic-hyp$level stimulus-hyp))

(interested-kss
(find-units ’ks (make-paths :paths ’(kss))
‘(:pattern-object
(:index-type
(:dimension level :type :label)
:index-object ,level)))))

(dolist (ks interested-kss)
(multiple-value-bind (rating response-frame)

(funcall (basic-ks$precondition-function ks)
stimulus-hyp)

(check-type rating number)
(when (plusp rating)
(let ((ksi (make-ksi :KS ks

:stimulus-hyps stimulus-hyp
:response-frame response-frame
:rating rating)))

(insert-on-queue *scheduling-queue*
ksi rating)))))))

An important capability for constructing generic control shells is the definition of
basic units (such as basic-hyp) that can be included in the definition of application
units. GBB’s unit inclusion mechanism (see the definition of the HYP unit in Sec-
tion 4.2) allows event handling to be appropriately inherited to the including unit’s
definition. The application implementer does not need to know the details of the
event handling machinery in specifying blackboard units, and different control shells
can be substituted without changing the unit definitions.

5 Summary

Blackboard-database abstraction is an appropriate implementation goal for all the
reasons typically associated with data abstraction. In this paper, we have described
how information hiding abstractions can be combined to permit a blackboard im-
plementation system to simultaneously provide flexibility, efficiency, and generality.
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These abstractions are as follows.

1. Viewing blackboard levels (spaces) as structured n-dimensional volumes, black-
board objects (units) as occupying some extent within a space’s n dimensions,
and retrieval patterns as constrained volumes within a space’s dimensions.

2. Extracting the information determining a unit’s dimensional extent and the
space(s) on which the unit is to be placed (the blackboard path) directly from
the values of the unit’s attributes and from the general (class) definition of the
unit.

3. Specifying the constraints of a retrieval pattern relative to the attribute values of
another (stimulus) unit.

4. Specifying the blackboard path for unit retrieval relative to the path of another
(stimulus) unit or relative to a particular space instance.

5. Separating control machinery from the blackboard-database implementation via
the use of blackboard events to trigger control activities.

6. Separating the three phases of blackboard system development (blackboard and
unit definition, application and control coding, and blackboard implementation
specification), but combining the product of each phase in a code-generation fa-
cility to produce an efficient, customized implementation.

These abstractions are implemented in the current release of GBB, and our initial
experience using these information hiding abstractions indicate that they work well at
providing flexibility, efficiency, and generality in the development of blackboard-based
AI applications.
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