
Pattern Transformation for
Two-Dimensional Separation of Concerns

Xiaoqing Wu, Barrett R. Bryant and Jeff Gray

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL 35294-1170, USA

{wuxi, bryant, gray}@cis.uab.edu

Marjan Mernik
Faculty of Electrical Engineering and Computer Science

University of Maribor
2000 Maribor, Slovenia

marjan.mernik@uni-mb.si

ABSTRACT
Design patterns are utilized in software development to decouple
individual concerns, so that a change in a design decision is
isolated to one location of the code base. However, multi-
dimensional concerns exist in software development and therefore
no single design pattern offers a panacea toward addressing
problems of change evolution. By analyzing the matrix of
concerns during the software development process and utilizing
transferable aspect-orientation and object-orientation, a pattern
transformation based two-dimensional separation of concerns is
described, which integrates the benefits derived from the
Inheritance pattern and several GoF patterns. An example
implementation is shown using Java and AspectJ.

1. INTRODUCTION
One general intention of design patterns is to decouple individual
concerns, so that a change in a design decision is isolated to one
location of the code base. Each design pattern is designed to
facilitate one kind of change, i.e. changes in one dimension.
However, software evolution can happen in multiple dimensions
[1] and each dimension has its own best-fit modularization
requirements. Therefore, none of the design patterns is a panacea
to fulfill the multi-dimensional evolution needed during software
development.

Aspect-Oriented Programming (AOP) [2] provides special
language constructs that modularize concerns which crosscut
conventional program structures (e.g., class hierarchies of object-
oriented programs). This offers a second dimension for software
modularization besides object-orientation. Except for the
Inheritance pattern, most object-oriented design patterns (e.g.,
Visitor, Mediator, Abstract Factory) are generally defined as
collaborations between several objects, which emerge as
crosscutting concerns. Applicability of AOP toward modularizing
object-oriented design patterns has been heavily researched [3, 4].

This paper explores two-dimensional separation of concerns in
software development and demonstrates the interchangeability
between the object-oriented Inheritance pattern [5] and the aspect-
oriented implementation of several Gang-of-Four (GoF) patterns
[6] based on the technique of pluggable aspects. The pattern
transformation approach combines object-oriented design pattern
principles with aspect orientation and leads to a two-dimensional
approach toward software evolution, which highlights the benefits
derived from the Inheritance pattern and GoF patterns, while
reducing their limitations.

The next section explores the usage and limitations of the object-
oriented Inheritance pattern and aspect-oriented Visitor pattern.
Section 3 explores the idea of two-dimensional separation of
concerns using a concern matrix. The pattern transformation
approach based on pluggable aspects is detailed in Section 4. A
system development example is used in these sections to
demonstrate the contribution of this approach. Section 5
generalizes the idea by studying the interchangeability between the
Inheritance pattern and other functional patterns. The current
status and future work of the approach are discussed in Section 6.
Section 7 cites related work, followed by a conclusion in Section 8.

2. DESIGN PATTERN IMPLEMENTATION
In this section, the usage and limitations of the Inheritance and
Visitor patterns are explored in building a simple payroll system
of a company. Initially, there are three kinds of employees in the
system: regulars are paid by weekly wages; executives have a
bonus in addition to regular wages; and contractors are paid by
hours of work. The system is desired to have basic functionalities
to calculate the amount of an employee’s wages and export all
related employee information. The system is desired to be
extended and modified easily.

2.1 Inheritance Pattern Implementation
A straightforward way to build the system in an object-oriented
fashion is to create a super class named Employee with abstract or
concrete operations such as name (get the name of a employee),
and wage (calculate the salary). Afterwards, a subclass for each
kind of employee can be defined, which inherits from Employee
and implements all of its defined virtual methods (as illustrated in
Figure 1). This approach is named as the Inheritance pattern in [5],
which is a variation of the Interpreter pattern in [2]. An advantage
of this approach is that during software evolution, any new kind of
employee can be added to the system by creating a new type of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Modeling and Analysis of Concerns in Software (MACS 2005)
16 May 2005, St. Louis, MO, USA
Copyright 2005 ACM 1-59593-119-8/05/05…$5.00.

the Employee class, without extensive changes to the existing class
hierarchy. This type of generalization is a key characteristic of the
benefit of using object-oriented design principles. However, an

Figure 1. Inheritance pattern implementation

inherent problem in this approach is that each functional operation
(defined as a method within each class) crosscuts the various other
class boundaries, thereby leading to a system that is hard to
comprehend and maintain in terms of system functionality
(especially in the presence of deep or broad inheritance
hierarchies). Moreover, adding a new operation common to all
subclasses requires an invasive change throughout the existing
class hierarchy. For example, there could be a need to add a new
kind of financial activity. It would be better if each new function
could be added separately, and the classes were independent of the
operations that apply to them.

2.2 Visitor Pattern Implementation
The Visitor pattern is used to resolve the problem that occurs with
the Inheritance pattern. In the Visitor pattern, all the methods
pertaining to one functional operation of the element classes are
encapsulated into a single visitor class, which can be freely added
or deleted from the system. Conventionally, the implementation of
the Visitor pattern uses object-oriented principles, as illustrated in
Figure 2. The desired operations of the system are produced by
invoking iteratively the accept methods within every element class
(Employee types) throughout the class hierarchy.

Figure 2. Object-oriented Visitor pattern implementation

Because object-orientation describes a system by a collection of
objects rather than a collection of operations, it is clear that object-
orientation is not a natural specification of programs based on the
Visitor pattern. The complicated implementation of this design
pattern introduces a lot of extra code in the element classes and
makes the code hard to understand and maintain [4]. Alternatively,
observations have indicated that the introduced visitor class has
basic AOP characteristics: without them the structure and behavior
characteristics are scattered throughout the code base. Aspect-
orientation when applied to the Visitor pattern can isolate
crosscutting behavior in a more explicit way. For example, using

AspectJ [7], each visitor is implemented by an aspect instead of a
class and the inter-type declarations in AspectJ allow declaring
methods and fields of multiple classes inside one aspect. Therefore,
visit operations can be plugged into existing element classes
directly and the accept methods originally defined in them are no
longer needed (as will be shown later in Listing 2).

However, an important observation for the Visitor pattern is that,
since each operation crosscuts each visitor class/aspect, adding a
new visitable type to the existing class/aspect hierarchy will cause
an invasive change to all of the visitors resulting in a maintenance
nightmare. Therefore, no matter if it is an aspect-oriented or a pure
object-oriented implementation, the Visitor pattern is applicable
only under conditions when the class structure is static and does
not change frequently. However, in the case of building the
payroll system, it is very likely that new employee types could be
added, such as volunteers who have no stipend at all or sales
people whose wage is determined by some percentage (e.g. 70%
~200%) of the base wage (depending on his/her quota completion).

3. CLASS-FUNCTION CONCERN MATRIX
It is clear that both Inheritance and Visitor patterns have benefits
and limitations in the implementation of the payroll system. The
Inheritance pattern assists in flexibly adding new types of
employees, but is unsuitable for adding new functionality to the
system; the Visitor pattern is useful for adding operations, but
inappropriate for adding new employee types. The ideal solution is
to combine the synergistic usefulness of the Visitor pattern with
the Inheritance pattern while addressing their limitations.

Figure 3. The 2D class-function concern matrix

Reflected by the payroll example, the abstraction of all the
necessary constructs in the system can be considered as a two-
dimensional (2D) class-function concern matrix [1], shown in
Figure 3. Each column represents an employee type, and each row
represents the same functionality on all kinds of employees. Each
employee has several operations and each operation crosscuts
every other employee type. From an orientation point of view,
each column represents a class and each row represents an aspect.
If all of the artifacts are modularized vertically, an instance of the
Inheritance pattern emerges, which could be realized using object-
orientation. Correspondingly, if the matrix artifacts are
modularized horizontally, an instance of the Visitor pattern
emerges, which can be implemented using aspect-orientation.

4. PATTERN TRANSFORMATION
The 2D class-function concern matrix of the payroll system
expresses the essence of the development problem, which reflects
that an ideal solution should provide two-dimensional separation

Figure 4. Pattern transformation overview

of concerns [1] and a facility to make the two dimensions
transferable. As a result, the pattern transformation based software
construction approach is developed in which the Inheritance
pattern is implemented using pure Java and the Visitor pattern is
implemented using Java and AspectJ. These two patterns are
transferable in the development process and only one pattern
exists at a time.

Contractor Sales

...

Print

Tax 2

 3

1

Figure 5. Two-dimensional extension for the payroll system

Because the implementations of the two patterns have the same set
of operations and both use Java code in method implementation,
the transformation between two patterns is achieved by relocation
of all the methods, i.e. from AspectJ aspects to Java classes (aspect
weaving) or from Java classes to AspectJ aspects (aspect
unweaving). The whole software development paradigm is
outlined by the following steps (illustrated in Figure 4) and the
aspect weaving and unweaving implementation is described in
Section 6.

1. Initially use the Inheritance pattern to implement the system
as in Figure 1.

2. Once new functional behaviors need to be added or old
functions need to be changed in the system, transform the
Inheritance pattern to the Visitor pattern by unweaving the
operation methods of each class into individual aspect
specifications (the transformation result is shown in the
upper part of Figure 4), and then change the operations in a
visitor aspect or add new visitor aspects.

3. Once new element classes need to be added, transform the
Visitor pattern to the Inheritance pattern by weaving the
operations in each aspect into the corresponding class. After
weaving, since no more aspects are needed, all the aspect

specifications become empty (the transformation result is
shown in the lower part of Figure 4), and add the new
element classes using the Inheritance pattern.

a) class Regular extends Employee{
b) public Regular(String name, String ssn, double wage){
c) super(name, ssn);
d) this.wage = wage;
e) }
f) public double wage(){
g) return wage;
h) }
i) public void print(){
j) System.out.print ("Regular: ");
k) super.print();
l) }
m) }

Listing 1. Java class for Regular

The whole approach is illustrated by using the payroll system
example. Initially, the class-function matrix for this particular
system is composed of 4 classes (including super class Employee)
and 3 functions (i.e., name, wage and print) that can be applied to
those classes. The system is created by an Inheritance pattern as
shown in Part 1 of Figure 5. A Java implementation for the
Regular class is shown in Listing 1. Suppose a new operation
needs to be added to the system for calculating each employee’s
tax payment. For illustration purposes, we assume that tax paid by
executives, regulars and contractors are 30%, 25%, 20%,
respectively, of their total salary. To update this change, the
implementation will be changed to the Visitor pattern to
modularize the matrix horizontally such that a new visitor aspect
Tax (Part 2 of Figure 5) can be easily added to implement the new
financial operation. Because the new aspect is cleanly separated

1 aspect Tax {
2 public abstract void Employee.tax();
3 public double Executive.tax(){
4 return wage() * 30%;
5 }
6 public double Regular.tax(){
7 return wage() * 25%;
8 }
9 public double Contractor.tax(){
10 return wage() * 20%;
11 }
12 }

Listing 2. AspectJ specification for Tax

from the generated node classes, there is no single manual change
required inside each class. An AspectJ implementation for the Tax
aspect is shown in Listing 2 (the wage returned by the method
wage() is pre-taxed).

Suppose that the system needs to take in new kinds of employees,
such as a sales person whose wage is determined by the base wage
× (his/her quota completion percentage + 40%). If the sales person
completes his/her full quota, he/she will be paid by 140% of the
base wage. In order to modularize the class-function concern
matrix in a vertical way to facilitate adding a new element class,
each operation of a specific aspect is weaved into the class it
belongs to and implements an instance of the Inheritance pattern.
For example, after the weaving process, the new Regular class is
shown in Listing 3, where the code in bold represents the new
method weaved from the aspect Tax. To update the change, new
class Sales is generated and functional operations are added
manually to the class without changing the existing class structure.
As in part 3 of Figure 5, the new class is written in the same
format as the existing ones in order to enable the possible weaving
and unweaving process in the later phases.

1. class Regular extends Employee{
2. public Regular(String name, String ssn, double wage){
3. super(name, ssn);
4. this.wage = wage;
5. }
6. public double wage(){
7. return wage;
8. }
9. public void print(){
10. System.out.print ("Regular: ");
11. super.print();
12. }
13. public double tax(){
14. return wage() * 25%;
15. }
16. }

Listing 3. The class Regular after weaving

5. INHERITANCE PATTERN VS. OTHER
PATTERNS
The Visitor pattern is designed to facilitate the changes that the
traditional Inheritance pattern is not able to address. Other
examples of GoF patterns that exhibit this same property include
the Abstract Factory pattern, the Observer pattern, and the
Mediator pattern. The common property for these patterns is that
they are all used in the case that there are multiple behaviors that
crosscut multiple subject classes. The purpose of these patterns is
to extract the same kind of functional behavior from the different
classes and encapsulate the behavior as an isolated class (visitor,
abstract factory, observer, and mediator). However, due to the
same reason as seen in the Visitor pattern, the Abstract Factory,
Observer, and Mediator patterns all have drawbacks in adding new
kinds of subject classes. For example, the Abstract Factory pattern
facilitates adding new kinds of factories, but has difficulty in
supporting new products; i.e., once the new products are added,
invasive change will crosscut all the affected factory classes.
Likewise, the Observer pattern facilitates adding observers, but is
unsuitable for adding subjects; Mediator facilitates adding
mediators, but hampers adding colleagues when multiple
mediators exist. Alternatively, using the Inheritance pattern, which

encapsulates all the related operations of a subject class inside the
class, can solve the drawbacks of these patterns.

The 2D class-function concern matrix shown in Figure 3 can also
be used in analyzing the relationship between the Inheritance
pattern and the Abstract Factory, Observer, or Mediator patterns.
Each column of the matrix represents a different subject class, and
each row represents a factory, an observer or a mediator. The
transformation ability between all these patterns is illustrated in
Figure 6.

Inheritance
Pattern

Visitor
Pattern

Abstract Factory
Pattern

Mediator
Pattern

Observer
Pattern

Aspect
Weaving

Aspect
Weaving

Aspect
Weaving

Aspect
Weaving

Aspect
Unweaving

Aspect
Unweaving

Aspect
Unweaving

Aspect
Unweaving

Figure 6. Transformation relationship between Inheritance
pattern and other patterns

6. CURRENT STATUS AND FUTURE
WORK
AspectJ is used for the aspect specification in this pattern
transformation approach. The Java-based syntax of AspectJ
enables each operation method to be pluggable between Java
classes and AspectJ aspects. However, aspect weaving in AspectJ
occurs at the byte code level without the availability of the
transformed Java source code. Moreover, there is no way in
AspectJ to unweave the operations from Java classes (e.g. Lines
13-15 of Listing 3) to their corresponding aspects (e.g. Lines 7-9
of Listing 2). To overcome these constraints, a program
transformation system was used additionally (i.e., the Design
Maintenance System (DMS) [8]) to perform source-to-source
aspect weaving and unweaving when pattern transformation is
needed. The implementation is detailed in [9] and is not repeated
here due to space limitation.

The aspect unweaving is currently based on matching the exact
operation names (i.e., the operations from different classes), but
sharing the same function name will be weaved together as an
aspect. More complex software development based on this
approach raises several practical problems. For example, one visit
operation of a single element class may not be well captured by
one visitor function, and sometimes new attributes besides
functions need to be introduced in an aspect. After weaving into
classes, these additional functions and attributes can not be
unweaved easily as aspects because their name could be different,
even though they belong to the same concern and should be put
into the same aspect. One possible solution is to add the
corresponding aspect name as a prefix to all the operations and
attribute names during the aspect weaving process. Therefore, the
constructs that belong to the same functional behavior can be
easily identified at the time of unweaving.

The aspect specification supported in the current approach is only
for inter-type declarations. More general join point models (such

as before() and after()) and their related weaving and unweaving
issues should be addressed in the future work, which will greatly
generalize the usage of the approach.

In addition to the sample payroll system introduced in this paper,
the Inheritance pattern and Visitor pattern transformation
technique has already been used successfully in the field of
compiler design [9]. Similar analysis has been done on pattern
transformation of Inheritance-Abstract Factory, Inheritance-
Mediator and Inheritance-Observer. More transformable design
patterns are under investigation.

7. RELATED WORK
The closest related work was described in [10], which also
concerns about AOP’s problem in the case that one aspect
crosscuts classes. The provided solution is based on two
alternative views of the same program written in the Decal
language, allowing developers to edit the program either as
decomposed classes or as decomposed modules that crosscut
classes. In our approach, the problem is solved by design pattern
transformation without abandoning AOP and well-developed
programming languages such as Java and AspectJ.

Several papers have mentioned the use of AOP as an approach in
design pattern implementation. Hannemann and Kiczales use Java
and AspectJ to implement all 23 design patterns in [3] and
illustrate implementation details using the Observer pattern as an
example. Hachani and Bardou [4] further emphasize
implementation of the Visitor pattern using AspectJ. The benefits
of using aspect-oriented techniques are described in both of these
works. However, a major drawback of the Visitor pattern still
remains in the resulting implementation of [4].

The drawbacks of the Inheritance and Visitor patterns are
discussed in [5] and the author has claimed that TreeCC can be a
better alternative to both of these patterns. However, the essence
of TreeCC is still aspect-oriented visitors with strongly typed
properties. It can not solve the major problem associated with the
Visitor pattern when new nodes are added to an existing node
structure.

Tarr et al. first introduced the concept of Multi-Dimensional
Separation of Concerns (MDSOC) [1], which is implemented
using hyperspaces that allow developers to identify explicit
concerns and dimensions, and align units according to concerns. A
tool supporting hyperspaces in Java, called Hyper/J [11], was
developed, where a system can be composed in many ways from
the hypermodules. Each hypermodule specifies a set of hyperslices
and each hyperslice addresses a particular concern.

Our contribution differs from the above approaches in that we not
only use design patterns and aspect-oriented techniques to
implement the two dimensional separation of concerns in software
evolution and isolate the crosscutting concerns, but also make
patterns and concerns interchangeable to adapt to the various
development needs. We simplify the complexity of MDSOC by
only focusing on the two orthogonal dimensions and use a
straightforward aspect weaving and unweaving approach to
modularize different dimensions of concerns.

8. CONCLUSION
There are always multi-dimensional concerns in software
development. No single design principle or pattern offers a

panacea toward addressing problems of change evolution.
Transformation techniques applied to design patterns offer an
alternative to alleviating this problem. This paper analyzed the
essence of the two-dimensional concern matrix and presented a
pattern transformation approach for software evolution in two
dimensions using object-orientation and aspect-orientation. The
implementation of a simple payroll system and its possible
extension was shown using Java and AspectJ. Due to space
restrictions, several implementation details are omitted in this
paper. Interested readers may refer to the source code at the
project web site (http://www.cis.uab.edu/softcom/cde) for more
implementation details.

9. REFERENCES
[1] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N Degrees of

Separation: Multi-Dimensional Separation of Concerns. In
Proc. Int. Conf. Software Engineering (ICSE), 1999, pp. 107-
119.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin. Aspect-Oriented Programming. In
Proc. 11th European Conf. Object-Oriented Programming
(ECOOP), Springer-Verlag, LNCS 1241, 1997, pp. 220-242.

[3] J. Hannemann and G. Kiczales. Design Pattern
Implementation in Java and AspectJ. In Proc. Object-
Oriented Programming, Systems, and Applications
(OOPSLA), 2002, pp. 161–173.

[4] O. Hachani and D. Bardou. Using Aspect-Oriented
Programming for Design Patterns Implementation. In Proc.
Workshop Reuse in Object-Oriented Information Systems
Design, 2002.

[5] R. Weatherley. TreeCC: An Aspect-Oriented Approach to
Writing Compilers.
http://www.southern-storm.com.au/treecc.html.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. In Proc. 15th
European Conf. on Object-Oriented Programming (ECOOP),
Springer-Verlag, LNCS 2072, 2001, pp. 327–355.

[8] I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program
Transformation for Practical Scalable Software Evolution. In
Proc. Int. Conf. Software Engineering (ICSE), 2004, pp. 625-
634.

[9] X. Wu, S. Roychoudhury, B. Bryant, J. Gray, and M. Mernik.
A Two-Dimensional Separation of Concerns for Compiler
Construction. In Proc. ACM Symposium on Applied
Computing (SAC), 2005, pp.1365-1369.

[10] D. Janzen and K. D. Volder. Programming With Crosscutting
Effective Views. In Proc. 18th European Conf. on Object-
Oriented Programming (ECOOP), 2004, pp. 195–218.

[11] HyperJ website:
 http://www.alphaworks.ibm.com/tech/hyperj

