
31. SIMPLE LINEAR REGRESSION
VI: LEVERAGE AND INFLUENCE

These topics are not covered in the text, but they are important.

Leverage

If the data set contains outliers, these can affect the least-
squares fit.

To study the impact on the fitted line of moving a single data
point, see the website at:

http://www.stat.sc.edu/~west/javahtml/Regression.html

If a given data point (say, the ith one) is moved up or down, the
corresponding fitted value      will move proportionally to the
change in yi. The proportionality constant is called leverage, and
denoted in Minitab by hi. We get a value of the leverage hi for
each data point.

The leverage of a given of the data point measures the impact
that yi has on     .

The further xi is from    , the larger hi , and therefore the more
sensitive    is to changes in yi.

So points with very large and very small x values have more
leverage than points with intermediate x values.
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If for some reason a point with high leverage also happens to
be far from the least squares line which would be fitted to the
remaining data points (i.e., if the point is an outlier), then we
may need to take some action, e.g., delete the point,
reconsider whether the model is reasonable, see if there was a
recording error, etc.

It can be shown that the hi are all between 0 and 1.

In practice hi is considered large if it exceeds 4/n.

An observation is influential if the estimates change
substantially when the point is omitted.

• Leverage depends only on the x's, not on the y's.

• A point with high leverage may or may not be influential.

• A point with low leverage may or may not be influential.

• Looking at residuals may not reveal influential points, since
an outlier, particularly if it occurs at a point of high leverage,
will tend to drag the fitted line along with it and therefore it
may have a small residual. This phenomenon is called
masking.

Influence Diagnostics



A more direct measure of the influence of the ith data point is
given by Cook's D statistic, which measures the sum of squared
deviations between the observed     values and the hypothetical
values we would get if we deleted the ith data point.

Observations with Di > 1 should be examined carefully.

Eg: For the baseball example, we first examine the Minitab
"Fitted Line Plot".

This gives a scatterplot, together with the fitted line, and (an
option for) 95% confidence and prediction intervals. Note that
the confidence intervals are wider at the ends.
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Next, we compute the leverage and Cook's D statistics.

In Minitab, use Stat → Regression → Regression → Storage.
Click boxes for Hi (leverage) and Cook’s Distance.

The point for Minnesota (Case 9) has a leverage of 0.1945,
which does not exceed 4/n = 0.29, and therefore would not
be considered extremely high.

It has a Cook's D of 0.65, which does not exceed 1, and so
would not be considered an outlier by this criterion.

But the unusualness of Minnesota is partially masked by
Cleveland, Milwaukee and Toronto. If we leave out all four
teams, the results change drastically. In general, Cook's D
can be "fooled" by multiple outliers.

Team Batting Winning HI1 COOK1

Baltimore 0.266 0.574 0.087380 0.033503

Boston 0.269 0.661 0.115737 0.259203

California 0.256 0.508 0.095257 0.010122

Chicago 0.246 0.410 0.260676 0.042267

Cleveland 0.271 0.500 0.142520 0.027700

Detroit 0.259 0.467 0.076352 0.005014

Kansas City 0.250 0.508 0.175603 0.073092

Milwaukee 0.271 0.525 0.142520 0.003083

Minnesota 0.274 0.403 0.194509 0.651305

New York 0.268 0.587 0.104709 0.049751

Oakland 0.252 0.422 0.142520 0.033177

Seattle 0.246 0.391 0.260676 0.114114

Texas 0.263 0.548 0.073201 0.015146

Toronto 0.270 0.500 0.128341 0.019360

American League Baseball, 1986



Regression Analysis

The regression equation is
Winning = - 0.524 + 3.92 Batting

Predictor        Coef       StDev          T        P
Constant      -0.5245      0.5154      -1.02    0.329
Batting         3.919       1.969       1.99    0.070

S = 0.07017     R-Sq = 24.8%     R-Sq(adj) = 18.5%

Analysis of Variance

Source            DF          SS          MS         F        P
Regression         1    0.019496    0.019496      3.96    0.070
Residual Error    12    0.059089    0.004924
Total             13    0.078585

Predicted Values

     Fit  StDev Fit         95.0% CI             95.0% PI
  0.4944     0.0190   (  0.4530,  0.5358)  (  0.3360,  0.6528)

Regression Analysis
BASEBALL DATA, WITHOUT MINNESOTA, CLEVELAND, MILWAUKEE,TORONTO

The regression equation is
Winning = - 1.79 + 8.93 Batting

Predictor        Coef       StDev          T        P
Constant      -1.7913      0.3792      -4.72    0.001
Batting         8.928       1.472       6.07    0.000

S = 0.03895     R-Sq = 82.1%     R-Sq(adj) = 79.9%

Analysis of Variance

Source            DF          SS          MS         F        P
Regression         1    0.055835    0.055835     36.80    0.000
Residual Error     8    0.012139    0.001517
Total              9    0.067974
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