
A Tour around the
NTS implementation

Karel Skoupý



Reasons for Making a New System

• new functionality was needed

• interoperability with other systems and formats was needed

Why not just extend TEX?

• TEX code is difficult to understand
design is clean but abstraction is missing

• TEX code is difficult to extend
many global variables, dependencies, overused data structures



Objectives of the Reimplementation

• system which behaves exactly like TEX

• code which is easy to understand

• code which is easy to modify/extend

• components that can be reused in other systems

How to achieve that?

• modular structure

• clear module interfaces

• explicit inter-module dependencies

• as less dependencies as possible

• high level of abstraction



The Expectations

• NTS will be simple, everybody can understand it

• everybody will be able to take it and modify it

• all problems will be magically solved

And the reality?

• NTS performs the same processing as TEX does, not simpler

• the code is sometimes even more complex because quick hacks are not allowed

• there is 13 packages, 532 source files, 641 named classes, and 82 interfaces

• aproximately twice as much lines of code as in TeX



Look Closer

• there is only about 50 key concepts

• clear interfaces are defined

• implementation details are hidden inside classes

• there is strict dependency hierarchy of packages

• source files are very short in most cases

Distribution of source file sizes



Anatomy of

NT S



definitions

page breaking
par breaking

packaging
node lists

grouping

hyphenation
aligning

execution
expansion

input
DVI

log

math converting
math lists

The Anatomy



NT S

Line Input and Tokenization

Class nts.io.LineInput

• reads an input line by line
readLine

• returns InputLines which consist of CharCodes

Class nts.command.InputLineTokenizer

• provides stream of Tokens from line of CharCodes
nextToken

• is parametrized by TokenMaker which knows the catcodes



NT S

Interface nts.tex.FileOpener

• defines abstract methods for opening files
openForReading, openForWriting



NT S

Expanding Tokens, evaluating conditionals

Class nts.command.Token

• has always some associated Command

meaning

• its meaning is checked whether it is expandable
expandable, doExpansion

Class nts.command.Expandable

• common ancestor for most of expandable Commands

• usually pushes some Tokenizer to TokenizerStack

Macro.Expansion



NT S

Class nts.command.CommandBase

• maintains a TokenizerStack

getTokStack

• provides methods for getting and pushing Tokens
nextRawToken, nextExpToken, pushToken, pushList

Class nts.command.CondPrim

• maintains internal stack of branches
which have to be accepted or skipped

• provides common features for specialized conditionals
IfBoolPrim, IfCasePrim



NT S

Executing Commands

Class nts.command.Command

• defines abstract interface to every Command

every Command knows ho to execute
exec

• certain Commands can provide values in certain context
hasDimenValue, getGlueValue

Interface nts.command.Primitive

• provides a name so it can be easily registered
under that name as a command in Primitives



NT S

Class nts.command.CommandBase

• defines a lot of useful methods for scanning
nextRawToken, scanNum, scanDimen, scanGlue

• for logging and error reporting
normLog, error, backToken

• contains only static methods and is inherited by many classes
Command, Group, Action



NT S

Assignments, definitions

Class nts.base.LevelEqTable

• stores mapping between keys and values
get, put, gput

• maintains pushing and poping of levels
pushLevel, popLevel

• saves values for external clients



NT S

Class nts.command.AssignPrim

• abstract ancestor of most assignable commands

• stores its value or values in EqTable

assign, getNumValue

Class nts.command.DefPrim

• creates Macros and associates them in EqTable

as a meaning of CtrlSeqTokens or ActiveCharToken



NT S

Building Node lists

Class nts.builder.Builder

• maintains static stack of Builders
push, pop, top

• appends new Nodes to its internal list
addKern, addSkip, addPenalty, addRule, addBox,
addNode, addNodes

• returns the resulting NodeList

getList



NT S

Class nts.typo.BuilderCommand

• performs Action specific to current Builder (mode)
exec

• the association of Actions to Commands and Builders
is defined in nts.tex.Primitives

Class nts.typo.TypoCommand

• maintains the current FontMetric
getCurrFontMetric, setCurrFontMetric

• contains general methods common to other typographic commands
appendChar, appendNormalSpace, packHbox, packVbox

• uses WordBuilder provided by FontMetric for building ligatures and kerns

getWordBuilder, add, close



NT S

Packaging Node lists

Class nts.node.SizesIterator

• provides sequence of abstract items
hasNextElement, takeNextElement

• gives the relevant sizes of the current item
currWidth, currHeight, currDepth

• there are implementation for both directions
HorizIterator, VertIterator



NT S

Class nts.node.SizesEvaluator

• accumulates sizes of items
add, addShrink, addStretch

• provides the resulting sizes and GlueSetting

getWidth, getHeight, getBody, getDepth
getSetting, getBadness

Class nts.typo.TypoCommand

• handles the usual cases via its inner classes
HBoxPacker, VBoxPacker
packHbox, packVbox



NT S

Grouping

Class nts.command.Group

• stack of Groups is maintained by CommandBase

pushLevel, popLevel

• declares methods which are called when pushed and poped
open, start, stop, close

• checks which Commands can finish group
defineClosing, expectedToken

• typographic groups push a Builder on beginning
and pop and use it on finishing



NT S

Breaking paragraphs

Class nts.node.Breaker

• generic breaker which breaks given NodeList

breakToLines

• returns sequence of broken lines
hasMoreLines, getNextLine



NT S

Class nts.typo.Paragraph

• collects the current horizontal list and invokes Breaker
lineBreak

• provides context to Breaker

ParBreaker

• processes the resulting lines



NT S

Hyphenation

Class nts.typo.HyphenNodeEnum

• filters ordinary Node stream and contributes
the DiscretionaryNodes

• is used by Paragraph if needed

Class nts.hyph.WordTree

• maintains a set of patterns

• provides information about possible breaks in a word



NT S

Breaking pages

Class nts.node.VertSplit

• generic breaker which breaks given NodeList

tryBreak, findBreak

Class nts.node.PageSplit

• extends VertSplit and cares about Insertions

• checks if the page is already full
build



NT S

Class nts.typo.Page

• provides context to PageSplit

• maintains the current vertical list

• performs output of the finished page
performOutput



NT S

Building Noad lists

Class nts.math.MathBuilder

• appends new Noads to its internal list
addKern, addSkip, addPenalty, addRule, addBox,
addNoad, addNoads, addNode, addNodes

• returns the resulting NoadList

getList

Class nts.math.MathPrim

• contains general methods common to other math primitives
setMathChar, handleMathCode
scanField, scanDelimiter



NT S

Converting Noad lists into Node lists

Interface nts.noad.Noad

• subclasses know how to convert themselves
when a Converter is provided
convert, convertWithScripts

• some subclasses contain Fields
which know how to convert themselves as well

Interface nts.noad.Converter

• defines conversion context to Noads and Fields
getStyle, getDimPar, fetchCharNode



NT S

Class nts.noad.Conversion

• performs two-pass conversion of NoadLists
convert

• provides context in form of Converter to Noads passed

Class nts.math.FormulaGroup

• invokes the conversion of finished math list

• supplies concrete style to conversion process



NT S

Converting Node lists into DVI

Interface nts.node.TypeSetter

• defines abstract typesetting methods
set, setRule, moveRight, startPage

• every Node knows how to typeset itself by TypeSetter

typeSet

Class nts.dvi.DviTypeSetter

• is concrete TypeSetter for DVI format

• uses DviFormatWriter for low-level operations



NT S

Aligning

Class nts.align.Alignment

• scans and applies the alignment Ppeamble
scanPreamble, startColumnBody

• maintains internal stack of Alignments

• guards the rows and columns
finishColumn

• transforms the cacumulated lists into tables
transform



NT S

Class nts.align.AlignPrim

• invokes alignment mode

• there are subclasses for both directions
HAlignPrim, VAlignPrim



NT S

Log output

Interface nts.io.Loggable

• declares ability to write itself on Log output
addOn

• majority of classes in NTS implements it

Interface \nts.io.Log

• defines methods to write basic types and Loggable

add

• provides simple control over log output
startLine, endLine



NT S

Class nts.io.LineOutput

• low level features for writing characters and lines
add, startLine, endLine



Digging Tips

• generate tags; look up classes and methods which are used

• generate Java documentation; browse the class tree

• look for classes which are roots of subtrees

• look for names resembling familiar TEX concepts

• find out which source files are long



Future Plans

• finishing and conservation of NTS

• starting another project with different style and priorities

• making the new system faster and more usable

• adding some new functionality

• working on harder problems; researching



Anatomy of a Real Snail



NTS in its Full Speed




