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Abstract. By means of a certain kind of ‘atomic’ representation a new Segal
algebra Sy (G) of continuous functions on an arbitrary locally compact abelian group
G is defined. From various characterizations of S, (G), . g. as smallest element within
the family of all strongly character invariant Segal algebras, functorial properties of
the symbol S, are derived, which are similar to those of the space & (G) of Schwartz-—
Bruhat functions, e. g. invariance under the Fourier transform, or compatibility with
restrictions to closed subgroups. The corresponding properties of its Banach dual
S5 (G) as well as some of their applications are to be given in a subsequent paper.

Introduction

Segal algebras, as introduced by REITER ([30]), constitute a family
of dense ideals of L' (G), for a locally compact group G. They have
found much interest in the last decade, being very closely related to
L'(G) in many instances, and showing a completely different
behaviour in other respects. The Segal algebra S, (G) to be defined
below is a good example for this ambiguity.

Let us begin by recalling some terminology concerning Segal
algebras as well as harmonic analysis in general. Notations that are
not explained explicitly are taken from REITER’s book ([30]).
Throughout this paper G denotes a locally compact abelian group
with Haar measure dx; the group operation is written as multiplica-
tion. Although some of the results below are true for arbitrary locally
compact groups this seems to be the appropriate degree of generality
for most of the applications to be given here, and the use of characters
and the Fourier transform yields easier proofs in many situations.

For ye G the translation operator L, is defined by

Lf(x):=f0""%), x&G,
and for te G the multiplication operator M, is given by

M f(x):={x, ) f(x), xeG.
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270 H.G. FEICHTINGER

For any function fon G the functions fand f* are given by

Fe):=f(—x), ffx):=/(-x), xeG.

X (G) denotes the (topological) vector space of all continuous
functions on G with compact support (supp). It is endowed with its
natural inductive limit topology. Its topological dual is R (G), the
space of all Radon measures. The space Lio(G) of all locally
integrable functions on G is considered as a (closed) subspace of
R(G), i.e. two measurable functions which coincide locally almost
everywhere (1. a. e.) are identified as usual. The topology on Lis (&) is
thus generated by the family of seminorms (sg), sx (f):= “f(\:)la’t

where K ranges over the family of all compact subsets of G (G,
I ), 1 < p < o0, denotes the usual Lebesgue spaces on G. For any
subspace B of Ll‘oc (G) and X = G, By denotes the subspace of all fe B
satisfying supp f < K.

A Banach space (B,]| ||z which is continuously embedded in
L. (G) is called (strongly) translation invariant if L,B < BforallyeG
(and | L,flls=|fls for all fe B, yeG), and (strongly) character
invariant if M, B < B for all teG (and | M, f]|5= |f]s for all fe B).
A strongly translation invariant Banach space (B, || {5) is called a
homogeneous Banach space on G if lim,._., | Ly S— A 5= 0 for all fe B.
If furthermore B is a dense subspace of L'(G) it is called a Segal
algebra (cf. [30]).

The Fourier transform %; defines an injective mapping from
L' (@) into C°(G). Occaswnally it is convenient to write 7 instead
of Fof A(G):=Fs(L'(B) *, endowed with the norm inherited
from L' (G) (. e. || 4| 4@ = /Il for h = /) is a Banach algebra with
respect to pointwise multiplication, called the Fourier algebra, as
well as a homogeneous Banach space on G.

A Banach space (B, || ||5) is called a (left) Banach module over a
Banach algebra (A, ||4) if it is a module in the algebraic sense,
satisfying in addition ||ab| 3 < ||a|l4 || bl|sforallae 4, be B (cf. [32)).
Any homogeneous Banach space B is a (left) Banach module
over Ll (G) with respect to convolution. Furthermore, one has
lim,.q l|e.*f— fllg=0 for any fe B, if (e,),es is any bounded ap-
proximate unit for L'(G), i.e. if (e,) is a bounded net in L'(G)
satisfying lim, o, [le.*g — g, =0 for all ge L' (G).

* Here G is identified with (G*)* as usual.
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Let B' and B* be two homogeneous Banach spaces on G, and
T a bounded linear operator from B' into B%. Then T is called
a multiplier from B' into B* if it satisfies TL, = L, T for all yeG.
This holds if any only if T is an L—moa’ule homomorphmm (i.e
TeH, (B, BY:T(gxf) =g+ T(f) for all ge L'(G), fe BY) (cf [24]
and [11]).

For any closed subgroup H of G the restriction mapping fi— fJH
(defined for any continuous function fon G) is denoted by Ry. The
canonical mapping Ty: & (G) — A (G/H) is given by the formula

Tuf(x) = [f(x&ds, X=ny(x),
H

where ny: G — G/H denotes the canonical projection (cf. [30], 111, 4).
It extends to a contractive algebra homomorphism from L' (G) onto
L' (G/H).

Given two functions /! and f? on G' and G? respectively, f' ® />
denotes the function on G'x G* given by

L@/ x) =) (), xe@, i=1,2.
Given two homogeneous Banach spaces B' and B* on G' and G*
respectively, B'® B denotes their projective tensor product,

ie. the space {f|f=2If, ®f;, LI/, |2 If; 2 < o0}; this s

a homogeneous Banach space on G'xG* with the norm
IAlg:=inf (X 1/ et 12 e ).

The characteristic function of a subset K < G is denoted by Ck.
For convenience we shall often write only X' instead of I ,.
Numerical constants are denoted by C, C|,..., the same symbol
possibly representing different values at its various occurrences.

Some ‘historical’ remarks are in order here. At the origin of this
paper were two independant problems (about winter 1977). The first,
posed by REITER in connection with the generalized Weil—Cartier
theorem (cf. [31]), concerned the existence of a Segal algebra defined
for arbitrary locally compact abelian groups and having certain
functorial properties (known to hold for the Schwartz—Bruhat space
& (G)). The second one, posed by the author himself, concerned the
existence of smallest elements in certain families of Segal algebras (cf.
[10] and [14]). As the reader will see below, the solution to both
problems turnes out to be the same space Sy (G); thiscoincidence even
considerably simplifies many arguments in proving further properties
of S (G).

20+
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Partial results concerning Sy (G) and its dual S;(G) have been
given previously in two preliminary reports ([12]) and in several
lectures by the author, first in Vienna in February 1979. A summary
of results was given in [13]. This explains why two papers concerning
the Segal algebra S, (G), by LOSERT ([26]) and POGUNTKE ([29]), could
be published before this paper.

Since it turned out in the meantime that Sy (G) as well as S5 (G)
may be considered as (important) special cases of the so-called spaces
of Wiener’s type as treated by the author in [15] and [16], we restrict
our attention here as far as possible to those aspects and properties
which are special to Sy (G).

The functorial properties (cf. Theorem 7 below) of the symbol Sy,
in particular its invariance under the Fourier transform, imply
corresponding properties of its Banach dual Sy (G). The characteriza-
tion of S§(G) as a space of quasimeasures on G suggests the term
‘translation bounded quasimeasures’ for its elements. Basic proper-.
ties of S3(G) and certain applications to harmonic analysis, in
particular to the theory of Fourier transforms of unbounded
measures and to the theory of multipliers (cf. e. g. [1],[20],[34], or [19],
[24], [36]), are to be given in a subsequent paper.

The Smallest Strongly Character Invariant Segal Algebra

In this paper a new Segal algebra S, (G) of continuous functions is
introduced. It is defined for arbitrary locally compact abelian groups
G. The elements of this Segal algebra are characterized by the
existence of certain “atomic” representations (cf. [5], where the
usefulness of a similar concept in connection with the theory of real
Hardy spaces is explained). It will be shown that the symbol S, has
several interesting functorial properties. Most of these properties are
derived from a characterization of S, (G) as the smallest strongly
character invariant Segal algebra on G with respect to inclusion.

Definition 1. Let G be a locally compact abelian group, and let
Q = G be a (fixed) open subset of G with compact closure. Then S, (G)
is defined as the set of those (continuous) fe L' (G) which have a
representation (as L'-convergent sum) of the form

f= Z Ly, /i o)

=1
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where y,,eG,f,,eAQ (G),n=1,and ) | /4]l 4@ < co. Any representa-
tion of f of the form (1) satisfying this condition will be called an
admissible representation of fe S; (G).

14

It will be seen below that S, (G) is in fact independent of Q. The
following characterization of S, (G) will be the basis for most of the
results concerning this space.

Theorem 1. Endowed with the norm

A lsy:= 1nf {3 1 il /= 2. Ly fu admissible} 2

So (G) is a strongly character invariant Segal algebra on G. It is the
smallest such Segal algebra, i.e. it is continuously embedded in any
other strongly character invariant Segal algebra. Sy(G) is invariant
under automorphisms of G.

Proof. Step I First we show that (S3(G), | Ils) is a strongly
translation invariant Banach space, continuously embedded in
(LY@, || ). For any admissible representation (1) of f we have

A< 2Ly, = Z AL < Elealis 1falla)»

thus I/ < lleplli- 1flls, for any feSy(G). It is thus clear that
(Sy (G), || Is,) is a normed space, continuously embedded in L' (G) and
in 4(G); Sp(G) is even continuously embedded in W (G), cf. [10].
Furthermore, one clearly has || L, flls, = || fls, for f€ S, (G) and ye G.
Also (Sy, || |ls) 1s complete, since for any sequence (fi)ex; in Sy (G)
with Y || fells:=C < co the continuous function fi=3 2, f in
- L'(G) belongs to S, (G) and satisfies || /] < C.

Step IL Let us now verify that Sy (G) is a strongly character
invariant Segal algebra. To show that lim || L,/ — flls,= 0 (v — ¢) for
any fe Sy (G), it is enough to verify this for those f€ Sy (G) which have
an admissible representation as a finite sum (these functions being
dense in Sy (G)!), hence only for fe Ao (G), 1. e. for the “atoms”. Since
Q is an open set, there exists for every fe 4, (G) some neighbour-
hood U of the identity such that for all yeU supp (L, /) € 0,
Le. L,fedy(G) hence ||L,f—flls<ILyf—flae, and thus
| Lyf—= flls, = 0 (y —e) for any fe 4o (G). Thus Sp (G) is a homoge-
neous Banach space, in particular a nontrivial ideal in L' (G).

That (Sy (@), || ||s,) is strongly character invariant follows from its
definition, since ‘ i

M,L.f= L. (x,tyM.f), xeG, teC, 3)
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and
ety M fllaey = Ifla for all fe 4(G). )

By Wiener’s theorem (cf. [30], VI, 1) Sy (G) is a dense subspace of
L'(G), as its L'-closure is a closed ideal with empty cospectrum.

Step IIL Letnow any strongly character invariant Segal algebra
S (G) be given. We have to show that S (G) is continuously embedded
in S(G). Define an auxiliary space on G by

$,(G):= {h,he L' (G),he S(G)},

with the norm | &||s,:= |||, + || 4||s. Now we show: S, (G) is a Segal
algebra. The strong character invariance of S(G) implies

ILhlls = | Lnl) 4+ I M Als= 1AL+ [Alls= Al for all teG.

In order to show lim || L,z — Alls, =0 (t — &) for he S, (G) it will be
sufficient to verify || M, f— flls— 0 for fe S(G), t — é. Since S(G) is
strongly character invariant it is sufficient to show this for fe S(G)
with fext" (G) (these functions are dense in any Segal algebra, see
[30], Chap. 6, § 2.2.iii). For such fit follows from the obvious relation
| M. f— fll, =0 for fe L' (G), t — &, and the fact that the norms of
S(G) and L' (G) are equivalent on {f,fe S(G), suppf< K} for any
compact subset X < G (cf. [30], Chap. 6, §2.2.iv). Evidently, S, (&) is
strongly character invariant and thus dense in L' (G) (see Step II).

Applying once more [30], Chap.6, §2.2.iii we obtain
X (G)NAG) = S, € S§(G), and with X 2 Q, the norms of A (G)
and S, (G) are equivalent on Ay (G). In particular, there is a
C > 0 such that

IMs < I/ls < ClAMNac for all fe 4y (G). ©)

Thus for any feS,(G) having an admissible representation
S=3 L, f,, the series also converges in S (G), and

IAls S XMLy fills= L Ifills S CEWfllaor < 0.

Hence S; (G) € S(G), and ||flls < C| /s, for all fe Sy (G).

That the mapping o*:fi=a* (f), given by o* (f) (x):=f(xx)
defines an automorphism of Sy (G) for any « € Aut G follows from the
fact that o* (Sp (G)) is a strongly character invariant Segal algebra,
hence Sy (G) < o* (S (@) by the minimality of Sy (G). For reasons of
symmetry equality must hold. This completes the proof of the
Theorem.
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We mention that it would have been possible to derive the main
part of the above theorem from Corollary 4 of [14], by showing that
the strongly character invariant Segal algebras are exactly those
which are (essential) Banach modules over 4 (G) with respect to
pointwise multiplication. However, we have preferred to give an
(altogether) slightly shorter direct proof, in order to make the paper
more self contained.

Remarks : 1. Tt follows immediately from the theorem that Sy (G)
does not depend on the particular choice of Q, i.e. two different
relatively compact subsets @), @ of G with nonvoid interior define
the same space and equivalent norms. A direct proof using bounded
uniform partitions of unity for 4 (G) (cf. below) would give the same
result. In particular, the norms of S, (¢) and 4 (G) are equivalent on
Ay (G) for any compact subset X of G.

2. It follows from the first remark that
H (OGN AG) = {fIfet (G),feL (G)}=:D(G)

is contained in Sy (G) as a dense subspace. If D (G) = | Jx 4 (G), the
union being taken over all compact subsets K < G, is endowed with its
natural inductive limit topology, then the embedding of D (G) into
Sy (@) is continuous (cf. [6], where it is shown that this space actually
coincides with the space D (G) introduced in [19], cf. [24], 5.1).

3. It is clear that D (G) = Sy (G) (= 4 (@) iff G is compact, in
particular Sy (T) = A4 (T). It will be seen below that in many respects
S (G) behaves much more like 4 (T) than A (G) does in general. On
the other hand one has S3(G)< L'n A(G) (again as a dense
subspace), the sum (1) being absolutely convergent in L' (G) as well as
in 4 (G). If G is discrete both spaces coincide with L' (G). It can be
shown, however, that the above inclusion is proper if G is non-
compact and non-discrete. For the sake of shortness the proofis left
to the interested reader. A much stronger strict inclusion has been
shown by LOSERT ([26], cf. Remark 16 below).

4. Itcan be shown (cf. [12], [, Theorem 7) that there does not exist
a minimal character invariant Segal algebra in general.

For the sake of completeness we mention two other characteriza-
tions of Sp(G) that have been derived in a more general context
elsewhere, We need one definition (see [14]).
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Definition 2. A family (p)ie; S A(G) is called a bounded uniform
partition of unity in A (G) if there exists a compact set W < G, and a
(discrete) subset ¥ = (y);e; S G such that

A) Zis/”‘/’i(x) =1

B) supie/llyilla < oo;

C) suppy, < y; W for all ie [,

D) sup,eq # {{[x KNy, W # 0} < co foranycompactsetK < G.

For G=R" there are particularly simple bounded uniform
partitions of unity consisting of translates by elements of a lattice
(e.g. Z™) of a single trapezoid-function in A4 (G) (cf. [37], p. 91, for
m = 1). Using structure theory the same can be done for arbitrary
locally abelian groups (cf. [12], II, proof of Theorem 1.1, [29] or [34]).

Theorem 2. For any fe A (G) the following is true.
A) For any given (p;)ie; as in Definition 2 one has

1€ (@) =15 = Yier I/ villae < . ©)
Furthermore, ||' |5, defines an equivalent norm on Sy (G).

B) Let hed (G)n A(G), h # 0, be given. Then fe Sy (G) if and
only if Fy: E(2):= (L, llac belongs to L'(G). Furthermore,
S Bl defines another equivalent norm on Sy (G).

C) Let fyeSo(G), fo # 0 be given (e. g. foe Ag(G)). Then

So(@ = {If= 21 My, o, 1.€G, f,e L' (@), n = |, Z”ﬁz"l<°((?7];
IAls: = inf QAN =2 ) ®)

defines an equivalent norm on Sy (G) as well.

Proof. For a proof of A cf. [15], Theorem 2, but a special case is
contained in the proof of Theorem 1.1 of [12], II (cf. also [26],
Proposition 1). Assertion B is essentially a special case of the main
result of [14], or of [29], and is equivalent to Proposition 2 of [24]. In
order to prove C one shows first that the space defined there is a
strongly character invariant Segal algebra with the norm | |§,. Since
M, (fxg) = M,f* M,g, te G, this can be done by standard arguments.
Since the series used in (7) are obviously absolutely convergent in
Sp (G), it follows from the minimality of Sy (G) that the two spaces
coincide. The equivalence of both norms then follows.

and
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Remarks: 5. Using the methods given in [15] it is even possible to
show that fi— || ||, defines an equivalent norm on S, (G) for any
heSy(G), h # 0. In particular, one can say that fe 4 (G) belongs to
So (G) if any only if one has

” (L_rf)f”A(G) d)’ < 0.

This, of course, resembles the definition of the space 4' (R) of good
vectors given by EYMARD ([9]). The connections between A'(R) and
Sp (R) will be pointed out elsewhere (cf. [17]). More general spaces of a
similar type have been considered by LepTmv ([25)).

6. It is clear from above that S, (G) coincides with W (4 (G), L"),
the space of Wiener's type with local component 4 (G) and global
component L'(G), as introduced in [15].

7. Whereas the elements of Sy (G) are originally defined by the
existence of certain representations as sums, part A of Theorem 2
shows that feS;(G) may be characterized by conditions on a
particular decomposition of f, namely /=) ;e fy; (observe that the
series is norm convergent in Sp (G)!).

For the proof of the functorial properties of the symbol Sy the
characterization of .Sy (G) as a *“convolution tensor product” of other
Segal algebras (which are of Wiener’s type as well) will be useful. For
this purpose two definitions will be given.

Definition 3. Let V be an open, relatively compact subset of G. For
1 <p< oo we set

WP (G):={f1f=), Ly, fn;7n€G, fue L, (G), n= 1, Y fil <0}, (9)

1w =10E QNS (10)
the infimum again being taken over all admissible representations (as
in (9)).

Proposition 3. (W?(G), || |we) is a strongly translation invariant
Banach space on G. The closure of A" (G) in WP (G) (i.e. WP (G) for
1< p< oo, and Wiener's algebra W(G) for p=co) is a Segal
algebra on G.

Proof. For 1 € p < co the result follows from Theorem 5 of [14].
The case p = o0, i.e. Wiener's algebra W (G) requires only slight
modifications (cf. [10]).
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Remark 8. In [14] and [10] W7 (G), 1 € p < o0, and W (G) were
characterized by a minimality property. Using methods of [15] it can
be shown that W7 (G) coincides with W (L', L), or with W7 as defined
in [22] for G = R and certain more general groups. In [2] this space is
denoted by /' (Z?). Let us mention that a simple sufficient condition
for fe L' (R) to belong to W (R) is that f be a continuous function of
bounded variation.

Next we introduce the concept of a convolutlon tensor product”.
We limit ourselves to a moderate degree of generality, sufficient for
our purposes.

Definition 4. Let S be a Segal algebra; let (B, ||5) be a Banach
space, continuously embedded in Ll (G), which is a L'-Banach
module with respect to convolution (e.g. a homogeneous Banach
space on G). The convolution tensor product S & B of these two
spaces is given by

S® B:={fIf= 1 fixgn ) ES, (@) = B, L, llsllgnllu<00(}1-1)

We say that a Segal algebra admits tensor product factorization (or
feeble factorization) if S= S S.

Lemma 4. Let S and B be as in the definition. Then S & B is a
homogeneous Banach space with respect to the norm

Ifl@:=mf {1 fillslgalls-- -}, (12)

the infimum being taken over all admissible representations of f.
Furthermore, S &) Bis a(strongly) character invariant Banach space, if
both S and B have this property.

Proof. The sums describing the elements of S &) B being absolute-
ly convergent in B it is clear that (S ® B, || || @) is 2 normed space
continuously embedded into B. The completeness of .S &) B follows
from the fact that absolutely convergent series in S () Bare obviously
convergent. Using the identity

Lyf=3 Lyfy*8n Y€G, feS® B (13)

and the fact that translation is continuous in S it can be shown that
S® B is a homogeneous Banach space. Finally, the character
invariance follows from the formula '

M f=YMfxMg, teG, feS® B. (14)
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Remark 9. Using essentially the arguments given in ([33], Theorem
3.3) it can be shown that the convolution tensor product is isomorphic
to the L'-module tensor product S &) ;1 Bof Sand Bas introduced by
RIEFFEL ([32]). It is continuously embedded in B. It will be useful to
keep this fact in mind, but we shall not make use of the theory of
module tensor products in this paper.

Theorem 5. Let S,,S, be two Segal algebras on G satisfying
S (@) = Sic WHG), i=1,2. Then

S ® 5= 5 (15)

and the corresponding norms are equivalent. In particular, S, (G) has
tensor product factorization.

Proof. In view of the assumptions it will be sufficient to prove the
first and the last inclusion of the following chain:

SHESE®SHSS ®S,cW® WS, (16)

(the corresponding norm inequalities then follow from the closed
graph theorem). Since by Lemma 4 Sy GO Sy is a strongly character
invariant Segal algebra the first inclusion follows from the minimality
of Sy (Theorem 1). The last inclusion follows essentially from the fact
that one has f*ge 4, (G) and

I/*gla < 1Az 1gll: for fige Ly (G), if V2 < Q,

and by means of a suitable rearrangement of an absolutely convergent
double series.

Remarks : 10, It follows from the main result of [18} (Theorem 2.2)
that Sy (G) does not have weak factorization, i e. that there exist
elements fe .S, (G) which do not have a representation as

f= Zsmlgll*hrn gn’hnESO(G), l<n < k.

Even for G = R Sy (R) seems to be the only proper Segal algebra §
having tensor product factorization, at least under the restriction

FoSS Upen 6.

That this is true for G = T (Sp(T) = A (T)!) has been proved by
C.C. GraAHAM (private communication) (cf. also [8], Theorem 3.1).

11. It is easily shown that one has
Hu (S, LY = H,i (S, S)
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for any Segal algebra S having tensor product factorization. In
articular,
’ Hu (51,59 € Hu (S0, 50)

for any pair (S;, S,) of strongly character invariant Segal algebras.
One can even show that Hp (W, W) < H, (S,S,) is a proper
inclusion for G = R™ (cf. [12], II); there an explicit description of
H ;i (Sy, Sp) is given and it is shown that S; (G) is a natural example ofa
Segal algebra whose multiplier algebra contains M (G) as a proper
subspace (cf. [2], and [36]).

As a consequence of Theorem 5 we obtain the following element-
ary characterization of Sy (G):

Corollary 6. Let V be a relatively compact subset of G with nonvoid
interior. Then, given p, 2 < p € 0, one has

So(G) = {/1/=2 L,,(f,* &) J0:8:€ Cv (G, 2 I/illp N gull< 00} ,(17)

and

1A= inf (0 1Al Nl -} (18)
defines an equivalent norm on Sy (G).

Proof. The result follows from Theorem 5 and a verification that
the right hand space coincides with W? G W?, or from Theorem I and
a direct verification that this space is a strongly character invariant
Segal algebra contained in S, (G).

Remarks: 12. Corollary 6 shows that it is possible to restrict the set
of““atoms” necessary for a representation of an arbitrary fe Sy (G) (cf.
Definition 1) to those of a particularly simple form, i. e. to functions

frg, with f,ge Cp(G).

13. For any isomorphism «: G, — G| the bipositive algebra iso-
morphism o*: L' (G)) —» L' (G,) given by

o () (¥) = f(2x) (a* (/) 2 0/ > 0)

maps (C,o(G)), || ll«) isometrically onto (Cp(Gy), || {l). Corollary 6
therefore implies that «* maps Sy (G,) onto Sy (G,). (This also gives
another proof of the invariance of Sy (G) under automorphisms.) Let
us mention that the converse is also true, i. e. any bipositive algebra
isomorphism is given in that way.

We are now ready to prove the main result of this paper which
concerns the functorial properties of Sy (G):
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Theorem7. Let G, G, G, be locally compact Abelian groups, and let
H be a closed subgroup of G. Then the following holds :

A) F5150 (@) = S (G);

B) T[S (G)] = S, (G/H);

) R[S0 (G)] = S (H);

D) So(G) ® Sp(G2) = Sy (Gy x Gy).

In A, B and C the image spaces are endowed with the image (= quotient)
norm inherited from S, (G).

Proof. A) It follows from the arguments given at the beginning of
step Il in the proof of Theorem 1 that %;[S, (G)], endowed with the
image norm, is a strongly character invariant homogeneous Banach
space on G. Since S, (G) is a Segal algebra contained in 4 (G) one has
AG) A (G = F [So (G)] c L'(G). Consequently, &[S, (G)] is
also a dense subspace of L' (G), hence a strongly character invariant
Segal algebra on G. By Theorem 1 S, (G) is continuously embedded in
F5[S0(G)]. However, the same argument gives %y '[Sy ()] =2
2 S, (G), hence equality.

B) Consider the space T[S, (G)] = S, (G)/Js, (G, H) which is a
Segal algebra on G/H with the quotient norm (cf. [30], VI, 2.7). Since
for any ye(G/H)" y:= pomny defines a continuous character on G

atisfyi
SRS Ty (M,f) = M; Tyf, (19)
¥y )

it is evident that T[S, (G)] is a strongly character invariant Segal
algebra on G/H. By Theorem 1 this implies Ty Sy (G) 2 S (G/H). In
order to show the reverse inclusion note first that for K < G compact
there is a constant C > 0 such that

I T fll o < Clfll for all feCk(G), (20)
in fact, one may take C = || Ty (cx) || . Furthermore one has
supp (Tuf) € K = =y (K) for fe LE (G). 1)

Now, by Corollary 6, there is a C, >0 such that fe S, (G) has a
representation (13) with ||f]| < Cilflls,- Since Ty is an algebra
homomorphism of L' (G) onto T (G/H), this implies

T”f= Z Lj',, (Tﬂf;y * Tﬂgn)v with yn =g (.Vn) . (22)

The above arguments show that (22) is an admissible representation
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of Ty fas an element of Sy (G/H) in the sense of (17). Thus Ty: Sy (G)
— So(G/H) is surjective; the continuity follows from

DN Tafillo 1 Tugallo < CL N fil 2 lgullo < CCHIls,- (23)
C) results from B and A by the duality relation

Ry Fof = Fgu(Tuf). (24)

It can also be proved directly from the definition, by means of
restriction properties of the Fourier algebra 4 (G).

D) Again, the inclusion Sy (G, x Gs) < S5 (G)) &) Sy (Ga) follows
from the minimality of Sy (G, % G»), as it is routine to verify that
S0 (G) ® Sy (Go) is a strongly character invariant Segal algebra
(using the identity (G;x G2)" = G;x G,). On the other hand, for
atoms fie Ap,(G)), i = 1,2, one has obviously

Ly|.fl ® Lyz.fl = L(yl,yz)(fl ®fi)).f1 ®f?EAQ|XQ2 (Gl X GZ) (25)

This yields Sy (G)) & So(G2) S S, (G x Gy), by a rearrangement of a
double series.

Remarks: 14. Another proof of part B above has been derived
by means of Theorem 5 from the relation Ty [W (G)] = W (G/H) by
BURGER ; the essential argument for a proof of the surjectivity is
obtained by a modification of those given in [30], IIL.4.2 for 2 (G).

15. Loserr ([26]) has shown that S; (G) is the only Segal algebra
invariant under automorphisms which is defined for arbitrary
locally compact abelian groups and satisfies all properties stated in
Theorem 7. The Segal algebra L' n 4 (G) which is the first candidate
satisfying property A does not satisfy B or C, since Ty (L' 1 4 (G)) =
= L'(G/H) if H is noncompact (this has been proved by KROGSTAD
[23]). There is however another Segal algebra (also invariant under
automorphisms of &) which satisfies properties A, B and C,
namely B, (G):= {f|fe W (G), fe W(5)}, as has been shown by
BURGER ([4]). It should be mentioned here that any space satisfying
A—C (e.g. S(@) or By(G)) represents a natural domain for
Poisson’s formula ([30], V, 5.1).

16. The other main result of [26] shows that S;(G) is a proper
subspace of B, (G) if G is nondiscrete and noncompact. This also
implies that it is impossible to describe S; (G) by conditions involving
the “‘size” of fand falone, in contrast to OSBORNE’s results concerning
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& (G) ([27]). More precisely, it is impossible to find homogeneous
Banach spaces B, and B, on G and G respectively which are Banach
modules over C° with respect to pointwise multiplication (e. g.
such that ge B, fe L. (G), |f(x)| < |g (x)| L. a.e. implies fe B and
1Az < llglls) so that S, (G) coincides with {f|fe B,,fe B,}. In fact,
such a representation would contradict the above result, since the
minimality of Wiener’s algebra ([10]) implies W (G) = B, and
W (G) < Bs.

17. A combination of assertions A and D yields: Given two
locally compact abelian groups &, and G,, the partial Fourier
transform (i. e. the Fourier transform being only taken with respect to
the second variable) maps S, (G, x G,) onto S, (G, x Ga).

The properties of the symbol S, proved in Theorem 7 are
essentially the same as those of &, where & (G) denotes the space of
Schwartz—Bruhat functions (cf. [3]). For a comparison of these two
spaces we need the following lemma.

Lemma 8. (i) Let H be an open subgroup of G. Then fe L' (H)
belongs to Sy (H) if and only if its trivial extension belongs to Sy (G).

(i) Let K be a compact subgroup of G, and let f= fony be a K-
periodic function on G. Then f belongs to Sy(G) if and only if
fe Sy (GIK).

Proof. (i) Let fe Sy (H) be given, having a representation (17). By
replacing the f, and g, by their trivial extensions one obtains an
admissible representation of the trivial extension of fas element of
Sy (G) (convolution now being taken in G). The converse follows
immediately from Theorem 7.

(i) Since one has Tyf=f one direction follows from Theo-
rem 7, B. On the other hand, by Weil's formula ([30], II1.4.5), any ad-
missible representation of faccording to Corollary 6

fmZLyngrl*h'n:g.n:/iuecf’(G/H’)a nzl, (26)
gives an admissible representation of f, by setting
fz f‘O g == Z Lyn (gn O7rg) * (’i'x O”K) > (27)

if y, satisfies ng (v,) = y,. Here we use the fact that

g,,On[cE-%,E'(V)(G), N&n* ugllw = l1€all
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and that =z ' (V) is a compact subset of G. This completes the proof.
Another proof may be given using V.4.4.iii of [30].

We are now in the position to show that S (G) contains the space
S (G) of Schwartz—Bruhat functions for arbitrary locally compact
abelian groups. For G =R™ this is Schwartz’ space of rapidly
decreasing functions. For the definition in the more general situation
see the paper of BRUHAT [3]. A full discussion of the basic properties
of & (G), in particular of the functorial properties for &, formulated
for Sy in Theorem 7.A-C is given by REITER ([31], §§ VI and VII). We
refer the reader to this paper for the definition and further details.

Theorem 9. S, (G) contains & (G) as a dense subspace.

Proof. For G = R" this is Satz 3 of[29]. For arbitrary G we proceed
as follows: For any fe & (G) there exists an admissible pair (H, K) of
subgroups of G, i.e. an open subgroup H of G and a compact
subgroup K of H, such that H/K is an elementary locally compact
abelian group, and such that fis K-periodic and vanishes outside H. In
view of Lemma 8 and the corresponding assertions for & (cf. [31], VI,
8) it is sufficient to prove the inclusion & (G) € Sp(G) for an
elementary group E. Such a group can be represented as'a quotient of
two closed subgroups H,, Hy of R",i.e. £ ~ H\/H, (cf. [31], VI, 1, x).
The inclusion & (R™) < S, (R™), together with the functorial proper-
ties of the symbols & and S, ([31], VI, 16 and VII, 1; resp. Theorem
7.B and C) imply

L(E) =S (H\[H3) = Ty, 1, Rey ¥ R™) S Ty, 11, Rey So (R™) = Sy (B) .

Remarks: 18. It is clear that the inclusion in Theorem 9 is in
general a proper one, since & (G) is not a Banach space if G is not
finite. Furthermore no decay at infinity is required for the elements of
Sy (@), G noncompact. More precisely, it is easy to construct for any
given ge C'(R™ some feSp(R™) such that f(x,) > |g(x,)| for a
suitable sequence x, — co. An explicit example for fe Sy (R) \ & (R) is
provided by the density of the Cauchy distribution c,. In fact, the two-
sided monotony of ¢, implies ¢,,€ W (R), hence ¢, = c,n*c,n &
c W(R)* W(R) < S (R) for all « > 0.

19. An argument using Theorem 5 instead of Theorem 2 in order
to prove & (R™) < Sy (R™) is the following one. Since any fe.% (R™) is
a continuous function satisfying | /(x)| < C (1 + |x[)™"" it is evident
that. & (R™) € W (R™). Using now Theorem 5 and the fact that % (R™)
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has weak factorization, i. e. that any fe & (R™) has a representation as
a finite sum of convolution products of elements of & (R™) (cf.[7] for a
general result, and [28] for an elementary proof) one obtains

& (R™ < span (& (RM* &L (R™) € W(R™) ® W(R™ = S (R™).

We now give several applications of Theorems 5 and 7.A.

Theorem 10. There is a C > 0 such that any fe S, (G) can be written
as a linear combination of four positive definite (positive) functions in
Sy (G); more precisely

F=33 0 fis 1fills < Cllfls and >0 (> 0).  (28)

Proof. By Theorem 5 S, (G) has tensor product factorization and
the norm of Sy & .Sy is an equivalent norm on S, (G). On the other
hand it follows directly from the definition that S, (G) is (isometric-
ally) invariant under the involution * for L'(G):g* (x):=g (- X)
(f Q= Q7"). Thus there exists C >0 such that any feSy(G)
has a representation

f=2gne iy, with 3 llgalls, 1alls, < C 1A s,- (29)

Without loss of generahty We may suppose lgulls,= Ilfxlls- The polar
decomposition gives

grht =4 Yo 1@+ h)x (g + Fh)*. (30)
This implies the desired identity, if we set

fo=3 02 @t Fh)* (gu+ h)* £=0,1,2,3.  (31)
In view of the inequality

illsy < 425 (gallso + 12all5)* < X Ngnllse N onllse < Cll(f?Jst;

it is clear that (31) is absolutely convergent in S, (G). This also implies
Fsfe =0, smce it arises as a convergent sum (in Sy (3)) of the positive
functions |, + i* £,|* (by 7.A). By applying the above procedure to
F finstead of fand the inverse Fourier transform, the decomposition
into positive functions is obtained.

Remarks: 20. As in the case of 4(G) the decomposition into
“positive” parts proved above cannot be the usual one which is
applied to continuous functions (cf. [21], §15).

21 Monatshefte fir Mathematik, Bd. 92/4
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21. It follows from the above representation (28) and (31) that
any positive definite function in S;(G) can be obtained as a sum
2 anfo* ¥ with £,€85(G), Ifuls, <1 for n> 1, and real coef-
ficients a,, satisfying }' |a,| < oo (f= f; — f3). Itis not clear whether it
is sufficient to take positive coefficients in this case.
As another consequence of Theorem 5 we derive still another
characterization of S, (G).

Theorem 11. Let S(G) be any strongly character invariant Segal
algebraon G, and let ge Sy (G), g # 0, be given. Then fe L' (G) belongs
to Sy (@) if and only if

s/ t==(f;IIM:g*flIsdt <, (33)

and | || defines an equivalent norm on Sy (G).

Proof: (i) That || || defines an equivalent norm on S, (G) follows
from Theorem 2.B (cf. remark 5), by means of the identity

I Mg * =L flag for g=hheS(G). (34)

(i) In view of the minimality of Sy (G) (as strongly character
invariant Segal algebra on G) the general results follows if an equality
ofthe form g || /] < C3 || flls,./€ So (G), can be verified : By Theorem 5
there exists C; > 0 such that any fe S, (G) has a representation

f Zf;z*gn: Wlth Z "f;x “So ”gn “So Cl "f“So (35)
Without loss of generality we may suppose
SUpP,» 1 gnlls, < Cr,and Y [ fulls < 11|, (36)

Combining (35) and (26) one derives from i):
Illng*fllsOdl‘ IZII M:g*ﬁ*gnllsodt

Z,["M!g*ﬁz"l”gn”&)dt C?.ZL'"fn” Cs | Al s

and the proof is complete.

Remark : 22. 1t follows from Theorem 2.2 of [11] that one has
| M,g*f|l, =0 fort — co,forany fe L' (G). S (G) is thus described as
a subspace of those fe L'(G) for which this function satisfies an
integrability condition.
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We conclude this paper by showing that the minimality of S, (G)
also implies invariance with respect to pointwise multiplication by
characters of the second degree (cf. {31], Chap.Il, also for the
definition).

Lemma 12. Let (S, | |s) be a strongly character invariant Segal
algebra on G, and let y be a character of the second degree on G. Then

Syi={yf1/eS}
is a strongly character invariant Segal algebra on G with the norm

S Us,p:= 1A1s-

Proof. The map fr 1y f defines an isometry from S onto S,, and
(Sy> 1l lls,,) is a Banach space which is continuously and densely
embedded in L'(G). By the functional equation for y there exists a
continuous homomorphism g:= G — G such that one has

Ly @) =p @) p (= ») (0 (=) Lfx) for x,yeG. (37)

Using (37) we derive the strong translation invariance of S, from the
strong character invariance of S

HLy ) llsp = 1w (= D 1My p Lpflls = I ls = lwSls.,-

The continuity of the mapping y— L, (y /) from G into S, follows
from the estimate below, which is based on (37) as well.

1Ly ) = p S/l S Hlp (= V) My (Lyf = Nlls+
Flp (= My -pn/=Nls+ 1w (=2 = DSls
=L/~ Ms+ 1 My~ pn/—fls+
+ 1y (=¥ = 11 If]ls-
Corollary 13. Let  be a character of the second degree on G. Then
A, f—pf defines an isomorphism of So(G) onto itself.

Proof. The above Lemma and the minimality of .Sy (G) imply
Sy (G) = v Sy (G). Since p~' is also a character of the second degree,
the converse inclusion holds as well.

It follows now that the operators Rg (a), ae G; S; (), ae G, Ug (1)
W; (o) and Ag (v) (cf. [31], p. 27) define isomorphisms of .S, (G) onto
itself. Therefore one could use Sy (G) instead of & (G) as analytic tool
for the proof of the generalized Weil—Cartier theorem (cf. [31],
Chap. V1 and VII).

21*
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