
Redundant modeling for the QuasiGroup
Completion Problem

Iván Dotú, Alvaro del Val, and Manuel Cebrián

Departamento de Ingenieŕıa Informática
Universidad Autónoma de Madrid

ivan.dotu@ii.uam.es, delval@ii.uam.es, meathook@terra.es

Abstract. The Quasigroup Completion Problem (QCP) is a very chal-
lenging benchmark among combinatorial problems, and the focus of
much recent interest in the area of constraint programming. [5] reports
that QCPs of order 40 could not be solved by pure constraint pro-
gramming approaches, but could sometimes be solved by hybrid ap-
proaches combining constraint programming with mixed integer pro-
gramming techniques from operations research. In this paper, we show
that the pure constraint satisfaction approach can solve many problems
of order 45 in the transition phase, which corresponds to the peak of
difficulty. Our solution combines a number of known ideas –the use of
redundant modeling [3] with primal and dual models of the problem con-
nected by channeling constraints [13]– with some novel aspects, as well
as a new and very effective value ordering heuristic.

1 Introduction

The Quasigroup Completion Problem (QCP) is a very challenging benchmark
among combinatorial problems, which has been the focus of much recent inter-
est in the area of constraint programming. It has a broad range of practical
applications [5]; it has been put forward as a benchmark which can bridge the
gap between purely random instances and highly structured problems [6]; and
its structure as a multiple permutation problem [13] is common to many other
important problems in constraint satisfaction. Thus, solutions that prove effec-
tive on QCPs have a good chance of being useful in other problems with similar
structure.

In this paper, we present several techniques that together allow us to solve
significantly larger QCPs than previously reported in the literature. Specifically,
[5] reports that QCPs of order 40 could not be solved by pure constraint pro-
gramming approaches, but could sometimes be solved by hybrid approaches
combining constraint programming with mixed integer programming techniques
from operations research. We show that the pure constraint satisfaction approach
can solve many problems of order 45 in the transition phase, which corresponds
to the peak of difficulty. Our solution builds upon some known ideas, such as
the use of redundant modeling [3] with primal and dual models of the problem
connected by channeling constraints [13], with some new twists. For example,



we will consider models consisting of only channeling constraints, without any
primal or dual constraints, and we demonstrate empirically for the first time the
usefulness of channeling constraints linking several pairs of models of a problem,
an idea that was considered, but only theoretically, in [15] and [14]. In addi-
tion, we present a new value ordering heuristic which proves extremely effective,
and that could prove useful for many other problems with multiple models. The
idea underlying this heuristic, which originates in the work of [15, 11] for single
permutation problems, is that selecting a value for (say) a primal variable is
in practice in the presence of channeling constraints also a choice of the dual
variables corresponding to that value; therefore we can use variable selection
heuristics on the dual variables to choose the value to assign to the previously
chosen primal variable. Finally, we show how redundant constraints can be used
to “compile arc consistency into forward checking”, that is, to ensure that the
latter has as much pruning power as the former but at a much lesser cost in
constraint checks.

It is interesting to note that our approach involves only binary constraints,
which seems to go against common wisdom about their limitations —when con-
trasted with the use of non-binary constraints such as alldiff [8]— in solving
quasigroup completion problems [9]. It is certainly an interesting issue, which
we plan to address in the future, whether the use of alldiff could yield even better
results than our approach when coupled with other ideas in this paper.1

The idea of redundant modeling was first introduced by [3]. The benefits of
adding redundant constraints to some given model to improve pruning power
were well-known in the literature, but [3] went a step further by considering the
redundant combination of full models of a problem, where the models may in-
volve different sets of variables. This combination is achieved by specifying how
the various models relate to each other through channeling constraints, which
provide a mapping among assignments for the different models. The combined
model contains the original but redundant models as submodels. The channel-
ing constraints allow the sub-models to cooperate during constraint-solving by
propagating constraints among the problems, providing an extra level of pruning
and propagation which results in a significant improvement in performance.

Another important modeling idea that we use is that of permutation prob-
lems (see e.g. [11, 13]). A constraint satisfaction problem (CSP) is a permutation
problem if it has the same number of variables as values, all variables have the
same domain and each value can be assigned to a unique variable. Thus, any
solution can be seen as assigning a permutation of the values to the variables.
In the same manner, a multiple permutation problem has some (possibly over-
lapping) sets of variables, each of which is a permutation problem. QCP is a
paradigmatic example of a multiple permutation problem.

The structure of this paper is as follows. We introduce in Section 2 the quasi-
group completion problem (QCP) and present a number of alternative models

1 Besides the obvious computational limitations in running large experimental suites
of hard QCP problems, we were limited in this aspect by the unavailability of open
source alldiff code.



that can be used to represent it; we then consider in Section 3 various ways of
combining these models. Section 4 presents some experimental data to compare
the relative merits of the various models, which will lead us to choose one par-
ticular model as the best one among those tested. Sections 5 and 6 are the core
of the paper, where we apply the new value ordering heuristic to QCPs and then
further tune our solution by adding some redundant constraints that allow us to
replace the relatively expensive arc consistency with forward checking. Section
7 concludes the paper with some ideas for further research.

2 Models of quasigroups

A quasigroup is an ordered pair (Q, ·), where Q is a set and · is a binary oper-
ation on Q such that the equations a · x = b and y · a = b are uniquely solvable
for every pair of elements a, b in Q [5]. The order n of the quasigroup is the
cardinality of the set Q. A quasigroup can be seen as an n × n multiplication
table which defines a Latin Square, i.e. a matrix which must be filled with “col-
ors” (the elements of the set Q) so that the colors of each row are all distinct,
and similarly for columns. Early work on quasigroups focused on quasigroup
existence problems, namely the question whether there exist quasigroups with
certain properties, solving several significant open mathematical problems [10].
We focus instead on the quasigroup completion problem (QCP), which is the
(NP-complete [4]) problem of coloring a partially filled Latin square. QCP share
with many real world problems a significant degree of structure, while at the same
time allowing the systematic generation of difficult problems by randomly filling
the quasigroup with preassigned colors. It is thus ideally suited as a testbed for
constraint satisfaction algorithms [6]. Experimental studies of the problem have
confirmed its interest for research, by for example helping to discover important
patterns in problem difficulty such as heavy-tailed behavior [7].

Among the kind of structure that has been identified in many constraint
satisfaction problems, and which is shared by QCPs, is that of permutation
problems. These are constraint satisfaction (sub)problems with the same number
of variables as values, where a solution is a permutation of the values [13]. Each
row and column of a Latin Square defines a permutation problem, thus the QCP
is a multiple permutation problem with 2n intersecting permutation constraints
(n row permutation constraints and n column permutation constraints).

QCPs appear in a number of real world applications such as conflict-free
wavelength routing in wide band optical networks, statistical design, and error
correcting codes [5].

2.1 Models

Let P be a problem. To model P as a CSP we need to fix a set of variables X,
a function F that maps each variable xi ∈ X to a domain of possible values,
and a set of constraints C defined over the variables in X, so that the set of
solutions in the traditional CSP sense corresponds in some exact mathematical



sense to the solutions of P , if any. The triple (X, F,C) is then a model of P .
There is usually more than one model for any given problem, but whichever we
choose, we need to ensure that it fully characterizes the problem. Cheng et al.
[3] define two models M1 = (X1, F1, C1) and M2 = (X2, F2, C2) of a problem P
to be redundant when the following conditions hold:

1. M1and M2 are models of P respectively, i.e. each of them fully characterizes
the set of solutions to P .

2. X1 ∩X2 = ∅.

Redundancy is a double-edged sword: it can help propagation by allowing
more values to be pruned at any given point in the search, but it can also hinder
it by forcing it to process a larger set of constraints. Fortunately, more fine
grained distinctions are possible, as we might choose to combine only parts of
various models. We could not speak of combining models if we don’t use their
respective sets of variables, but it will often be advantageous (as we will see) to
drop some of the constraints from one or more models that become redundant
when making the combination. If we do this, however, we must be careful to
ensure the correctness and completeness of the combined model.

Several models can be defined for QCPs, as described next. While all models
have the same logical status, it is common to distinguish between primal and dual
models. The distinction is only a matter of perspective, specially in permutation
problems, where variables and values are completely interchangeable.

2.2 Primal Model

The primal model for QCP, as usually defined, takes variables to represent the
cells of the Latin Square for a QuasiGroup, and the domains of possible values
consist of the colors to be assigned. Thus, the primal variables are the set X =
{xij | 1 ≤ i ≤ n, 1 ≤ j ≤ n} where xij is the the cell in the i − th row and
j − th column, and n is the order of the quasigroup, i.e. the number of rows
and columns. All variables share a common initial domain, namely D = {k |
1 ≤ k ≤ n}, where each k represents a color. The primal constraints in turn
can be divided into row constraints and column constraints. If we choose a
binary representation, there are n2 row constraints of the form xij 6= xil where
xij , xil ∈ X and j 6= l, which means that two cells in the same row must not
have the same color; and n2 column constraints of the form xij 6= xlj where
xij , xlj ∈ X and i 6= l, which means that two cells in the same column must not
have the same color. Equivalently, we could use just 2n alldiff constraints [8],
one for each row and column. Semantically this makes no difference.

The primal model (or pr model for short) provides a complete characteriza-
tion of the problem.

2.3 Row Dual Model

There are different ways to formulate dual models for a multiple permutation
problem. Here we consider dual models for each of the permutation subproblems



(as opposed to a single dual model of the primal problem), and group them
by row and column, to obtain two complete models of QCPs. In the row dual
model, the problem is reformulated as the question of which position (column)
in a given row has a given color. The row dual variables are the set R = {rik |
1 ≤ i ≤ n, 1 ≤ k ≤ n} where rik is the kth color in the ith row. The domain of
each variable is again the set D = {j | 1 ≤ j ≤ n}, but now the values represent
columns, i.e. the positions in row i where color k can be placed. The row dual
constraints are similar to the primal constraints. There are n2 constraints of the
form rik 6= ril, where rik, ril ∈ R and l 6= k, which means that two colors in the
same row must not be assigned to the same column; and n2 constraints of the
form rik 6= rjk where rik, rjk ∈ R and i 6= j, which means that the same color in
different rows must not be assigned to the same column. Alternatively, we could
have alldiff(ri1, . . . , rin) for every row i, and alldiff(r1k, . . . , rnk) for every color
k.

A simple symmetry argument shows that this model also fully characterizes
the problem.

2.4 Column Dual Model

The second dual model is composed of the set of dual models for each column
permutation constraint, representing the colors in each column. The column dual
variables are the set C = {cjk | 1 ≤ j ≤ n, 0 ≤ k ≤ n} where cjk is the kth
color in the jth column. All variables have domain D = {i | 1 ≤ k ≤ n}, where
i represents the rows where color k can be placed in the jth column. Similar to
the row dual model, we have column dual constraints of the form cjk 6= cjl where
cjk, cjl ∈ C and k 6= l, which means that two colors in the same column must
not be assigned to the same row; and of the form cjk 6= clk where cjk, clk ∈ C
and j 6= l, which means that the same color in different columns must not be
assigned to the same row.

This model also fully characterizes the problem. We refer to the combination
of both dual models as the dl model.

3 Combining the Models

A channeling constraint for two models M1 = (X1, F1, C1) and M2 = (X2, F2, C2)
is a constraint relating variables of X1 and X2 [3]. We will consider the following
kinds of channeling constraint:

– Row Channeling Constraints: Constraints for the n row permutation con-
straints, linking the primal model with the row dual model:

xij = k ⇔ rik = j.

– Column Channeling Constraints: Corresponding to the n column permuta-
tion constraints, they link the primal and the dual column models:

xij = k ⇔ cjk = i.



– Triangular Channeling Constraints: These constraints link both dual models,
closing a “triangle” among the three models:

cjk = i ⇔ rik = j.

Given two or more redundant, complete models, we can obtain a combined
model by simply implementing all the models and linking them by channel-
ing constraints. Thus the full combined model or pr-dl-ch2-model resulting
from the above models is the model consisting of primal and dual variables and
constraints, linked together by row and column channeling constraints.2 More
generally, as long as a combined model includes a complete model of the prob-
lem as a submodel, we are free to add any set of variables or constraints from
other models, with the only requirement that in order to add a constraint all
its variables must belong to the combined model. Thus, for example, given the
primal variables and constraints, we may choose to add any number of dual and
channeling constraints as long as the corresponding variables are also added. For
example, we may decide to use only the row dual variables together with the
row dual constraints and/or row channeling constraints. Nothing is lost by not
including parts of the dual models, since all the necessary information is present
in the primal model.

In fact we can take this as far as removing all primal and dual constraints!
Walsh [13] shows that arc consistency on the channeling constraints for a permu-
tation problem dominates in pruning power over arc consistency over the binary
not-equal constraints. Intuitively, this means that nothing is gained by adding
the not-equal constraints once we have the channeling constraints. Note that
this doesn’t prove the superiority of a model with only channeling constraints
over, say, the primal model, as the former also has many more variables and
constraints; this issue is empirically examined later. It is important however to
show that the model consisting of primal and dual variables, with only row and
column channeling constraints, but without the primal or dual constraints (i.e.
alldiff or not-equal) is also a complete model of the problem. We refer to this
model as the bichanneling model or ch2:

Proposition 1. The bichanneling model is equivalent to the primal model, hence
it provides a full characterization of QCPs.

Proof. If the two models had the same set of variables and associated domains,
we could define equivalence just as having the same set of solutions. Since that’s
not the case here, we need to provide instead a one-to-one mapping between
solutions of either model.

Let us say that a primal assignment, or P-assignment for short, is an assign-
ment of values to all the primal variables, and a PD-assignment an assignment
to all primal and dual variables.

The proposition can then be phrased more exactly in terms of the following
two claims.
2 We don’t consider adding the triangular constraints until later.



Claim 1: Any P-assignment A which satisfies the (primal) alldiff constraints
can be extended to a PD-assignment B which satisfies the channeling constraints.
To extend A to B, we just pick each label xij = k from A and set rik = j and
cjk = i in B. To see that B is well-defined, note that every rik gets assigned,
since A must use all available colors in order to fill row i in accordance with
the primal constraints; and that any given rik is assigned at most once, since
otherwise we would have xij = xih for distinct columns j and h, in contradiction
with the fact that A satisfies the primal constraints. Similarly for any cjk. Hence
B is well-defined, and it satisfies the channeling constraints by construction.

Claim 2: Any PD-assignment B satisfying the row and column channeling
constraints, is such that its primal subset A satisfies the primal constraints.
Suppose not. Then B assigns the same value k to two primal variables xij and
xih for j 6= h (or the completely symmetric case where it is row indexes that
vary). But since B satisfies the row channeling constraints, B should satisfy
rik = j and rik = h, which is impossible. ut

Yet another combined model we will consider later is the trichanneling model,
or ch3 for short, which adds the triangular channeling constraints to ch2, but still
keeps away from the primal and dual constraints. Given the above proposition,
ch3 is also a complete model, and redundantly so.

4 Comparing models

Our initial results on the various models were in fact quite favorable to the
bichanneling model. In order to present them, we need to say a few words about
the experiments in this paper. First, in order to make our results comparable
with others appearing in the literature, all instances were generated using the
lsencode generator of QCPs, kindly provided to us by Carla Gomes. This gen-
erator begins by randomly coloring an empty quasigroup using a local search
algorithm, and then randomly decoloring some cells. Hence all problems in our
suites have a solution. All instances are of the “balanced” kind, which are known
to be the hardest [5]; and most instances correspond to problems with 60% cells
preassigned, which is close to the transition phase and corresponds to a peak
in problem hardness. Second, all experiments are run with a slightly optimized
variant of van Beek’s GAC library, which comes as part of the CSP planning
system CPLAN [12], and which implements generalized arc consistency (though
in our case we only need its binary version, i.e. MAC [1]). As discussed below,
neither CBJ nor nogood learning seem to help in QCP, contrary to the expe-
rience in many other domains, hence they are disabled in our tests. Also, all
experiments use the min-domain variable selection heuristic, which we found to
be uniformly the best among the ones we tried (see also [3, 11] and the discussion
in Section 5).

In our initial tests, we found that the bichanneling model ch2 could solve
many problems that were out of reach for the other models, including many
order 35 and some order 40 quasigroups with 60% preassigned cells. Table 1



shows mean time for solved instances and median time for the whole sample,
both in seconds, and percent of solved instances within the given timeout (also
in seconds) for sets of 50 instances of orders 30, 35 and 40, and 20, 42, 60 and
80% preassignment. (These results are also plotted in Figure 1 later.)

% preassign → 20% 42% 80%

order % solved mean median mean median mean median

30 100% 0.94 0.93 0.43 0.25 0.03 0.02
35 100% 1.99 1.99 0.71 0.53 0.05 0.05
40 100% 4.98 4.98 2.51 1.09 0.08 0.08

60% preassigned
order % solved timeout mean (solved) median (all)

30 18% 100 48.74 100

35 22% 3600 903.07 3600

40 10% 3600 1751.90 3600

Table 1. Experimental results for the bichanneling model, MAC, no value ordering.

Our data confirm the existence of a peak of difficulty around 60% preassign-
ment [5], whereas problems were trivially solvable with all other percentages we
tried. Even though the results were promising, specially when compared with
other models, they were also disappointing, in that the number of problems that
we could solve in the transition phase was rather limited for various dimensions.
(Note that in these cases, median time is the same as timeout because less than
50% of instances were solved.) Nevertheless, we decided to pursue further the
bichanneling model based on the somewhat anecdotal evidence of its clear supe-
riority over other models. As the following sections show, we succeeded in this
goal.

For the sake of a more systematic comparison, we present here a simple
comparison of the various models. Due to limited available time, we chose the 29
easiest problems (as measured with the approaches developed later) for order 30
quasigroups with 60% preassignment. These are still relatively difficult problems
in the phase transition: the ch2-model took a total of 6624 seconds on the 19
problems (66%) in the sample that were solved with all tested models in less
than 1800 seconds, yielding an average of 348.6 seconds per solved problem,
and a mean (over the whole sample) of 574.16s. Table 2 shows the result of a
comparison between various models on this sample. The table provides the ratios
in the accumulated data in time and constraint checks over the solved problems,
relative to the performance of ch2. Note that all models tried exactly the same
number of assignments in all problems, empirically confirming the fact that arc
consistency has identical pruning power in all four models.

We conjecture that these ratios will increase with problem difficulty. But
there is little point on belaboring these data, as much better solutions are avail-
able, as discussed in the following sections.



pr pr-dl pr-dl-ch2 ch2

time checks time checks time checks time checks

1.45 1.30 1.93 1.69 1.90 1.69 1 1

Table 2. Comparison of various models using MAC and no value ordering.

5 Variable and Value Ordering

It is well know that the order in which we make our choices as to which variable
to instantiate, and with which value, can have a major impact in the efficiency
of search. As already pointed out, all the results reported in this paper use the
min-domain variable ordering heuristic (often denoted dom), which at each search
node chooses a variable with the smallest domain to instantiate. The reason for
this is simply that we obtained better results with it than with other alternatives
we tried. These included more fine-grained heuristics such as dom+degree and
dom/degree, yielding further confirmation to previous results by [3] and [11]
on simple permutation problems. These other heuristics would often make no
difference with respect to dom,3 but when they did it was most often to the worse.
(We did not perform a systematic comparison, though.) We also considered a
number of variants of the above which took into account the (primal or dual)
model to which variables belong, e.g. selecting only among primal variables, or
only among primal variables unless some dual variable had a singleton domain,
etc. These variants would often significantly underperform the previous ones, so
we didn’t pursue them further.

[15] introduced a min-domain value ordering heuristic for use when dual
variables are available during the search. The idea is to choose the value such that
the corresponding dual variable has the smallest current domain. To generalize
this idea to multiple permutation problems, we need a way to take into account
the two dual models. The one that worked best is what we might call the min-
domain-sum value selection heuristic (or more briefly vdom+, the ’v’ standing
for value). Once a primal or dual variable is selected, we need to choose a value
for it. Since any such value corresponds to one specific variable from each of
the two other models, we select the value whose corresponding two variables
have a minimal “combined” domain. Specifically, say we have chosen xij . Then
we choose a color k from its currently active domain for which the sum of the
current domain sizes of rik and cjk is minimal among the currently available
colors for xij . Similarly, if the chosen variable is a dual one, say rik, we choose
a column j for this variable as a function of the current domain sizes of the
corresponding variables xij and cjk.

3 This is not much of a surprise, since the degree of a variable (number of constraints
in which it is initially involved) cannot discriminate much among variables in a
QCP; though this could also depend on details of implementation such as whether
constraints are generated for variables that are explicitly or implicitly assigned by
the initial coloring.



The results when the first combined model was used with the min-domain-
sum value ordering heuristic were quite surprising, as it outperformed previous
tests in three orders of magnitude in some cases. For example, for the instance
bqwh-35-405-5.pls (balanced instance of order 35 and 60% preassigned cells) it
took 2905 secs without value ordering and only 0.40 secs with it. For a more gen-
eral picture, Figure 1 plots the data of Table 1, obtained with lexicographic value
ordering, against the results over the same sample with dom+ value ordering.

0

500

1000

1500

2000

2500

3000

20 30 40 50 60 70 80

tim
e(

s)

% Preassignment

order30-vo 0
order30-vo 1
order35-vo 0
order35-vo 1
order40-vo 0
order40-vo 1

Fig. 1. Mean solution time on QCPs of order 30, 35 and 40 with (vo1) and without
(vo0) value ordering.

Encouraged by this performance, we generated a set of 100 balanced instances
of orders 30, 35, 40 and 45, with 60% preassignment. Table 3 shows median and
mean time in seconds (the latter taken only over solved instances), percent of
solved instances and timeouts, in solving these instances with the new variable
ordering heuristic.

order mean median % solved timeout

30 148.84 174.11 68% 1000

35 533.43 163.48 84% 3600

40 732.94 1010.82 68% 5000

45 1170.81 2971.40 56% 6000

Table 3. The min-domain value ordering heuristics at the phase transition, using
MAC.



These results are significantly better than those previously found in the lit-
erature, as we can solve over 50% of balanced QCPs of order 45 at the phase
transition. Recall that, as pointed out in the introduction, [5], reports that pure
constraint programming approaches, even when using specialized forms of arc
consistency for non-binary alldiff constraints and a commercial solver, could not
solve any problem of order 40 in the phase transition.

We considered other ways of combining domain sizes such as minimizing the
product of the corresponding domain sizes (min-domain-product or vdom*), and
their corresponding maximizing versions, without success. Perhaps there is no
deep reason why vdom+ was so clearly superior to vdom*. Maximizing versions
were clear underperformers, and there is a reasonable explanation for it. For
concreteness, consider choosing a value with the maximal combined domain of
the corresponding variables, e.g. a value k for a primal variable xij such that
domain-size(rik)+ domain-size(cjk) is maximal (over the colors available for xij

at the current stage of search). While large domain sizes are usually indication of
less tightness, and thus could be conjectured to capture the idea, often cited in
connection with value ordering, of selecting a value which is “more likely to lead
to a solution”, in this case they have exactly the opposite effect. When xij = k
is the maximal labeling according to this criteria, the domains of rik and cjk are
immediately pruned into singletons. Hence a maximizing choice produces maxi-
mal pruning, which is the opposite of what is desired. And conversely, heuristics
such as vdom+ choose values that produce the least pruning.

6 Compiling AC to FC with redundant constraints

Our next and last step in improving our solution derived from an examination of
the pruning behavior of the bichanneling model with arc consistency. Suppose xij

is assigned k at some point during the search. The GAC implementation of CPlan
begins by checking arc consistency for constraints with a single uninstantiated
variable, i.e. doing forward checking, which forces the domains of rik and cjk to
become the singletons {j} and {i} respectively, and also prunes, for each h 6= k,
j from rih, and i from cjh. Arc consistency will further discover (if not already
known at this stage of the search):

– xih 6= k for any column h 6= j, since otherwise rik = h 6= j;
– hence also chk 6= i for any column h 6= j, since otherwise xih = k;
– similarly, xhj 6= k for any row h 6= i, since otherwise rik = h 6= j;
– hence also rhk 6= j for any row h 6= i, since otherwise xhj = k;

It is not difficult to show that GAC cannot prune any more values as a result
of an assignment to a primal variable, unless one of the listed prunings reduces a
domain to a singleton. All these are useful prunings, but GAC does much more
work than needed to obtain them. Each one of the pruned values – one for each
xih, xhj , chk, rhk, potentially 4(n− 1) pruned values and variables from a single
assignment – requires GAC to check all the constraints in which the correspond-
ing variables are involved, namely 2(n−1) or (n−1) constraints for, respectively,



the primal and dual pruned variables (further, in the CPlan implementation all
affected variables have all their values tested, even if at most one will be pruned).
This is wasted effort, as no additional pruning is achieved. One can however ob-
serve that most of the pruning power can be derived simply by assigning the
variables whose domain became singletons (either directly through channeling
constraints or indirectly when pruning a single value results in a singleton) and
doing forward checking on them. To see that the remaining values pruned by
GAC (namely the second and fourth items above) are also pruned by FC with
the trichanneling model, observe that chk 6= i since otherwise rik = h 6= j using
the corresponding triangular channeling constraint, and similarly rhk 6= j since
otherwise cjk = h 6= i.

We remark that the same effect can be achieved in different ways, e.g. the
bichanneling model supplemented with the dual not-equal constraints also allows
forward checking to derive the same consequences.

Table 4 compares the bichanneling model ch2, using only row and column
channeling constraints with GAC, versus the trichanneling model ch3 with the
three kinds of channeling constraints using only FC, in both cases with the min-
domain-sum value ordering. Each sample consists again of 100 balanced instances
with 60% preassignment;the accumulated values are over the problems solved by
both approaches within the given timeout. The median times are on the other
hand over the whole sample. Accumulated times are in seconds while the other
accumulated values are in millions of checks and tried assignments respectively.

ch3-fc ch2-ac ratios

order acc. time median solved acc. time median solved acc. time median

30 6445.44 153.04 78% 9557.83 174.11 68% 1.48 1.14

35 29691.18 152.16 86% 45341.22 163.48 85% 1.53 1.07

40 33015.14 637.18 73% 48682.04 1010.82 68% 1.47 1.59

45 38569.95 1650.52 59% 61469.78 2971.40 56% 1.59 1.80

checks visits

order ch3-fc ch2-ac ratio ch3-fc ch2-ac ratio

30 29886 80206 2.68 431 658 0.15

35 114572 279003 2.44 1617 218 0.13

40 205247 445790 2.17 2769 331 0.12

45 108276 321632 2.97 1489 236 0.16

Table 4. The ch3 and ch2 models compared, with value ordering.

These tables show that there is a significant improvement in time with the
ch3 model using only FC, and this can be traced to the large savings in number
of checks. On the other hand, ch3 with FC tries almost one order of magnitude
more assignments, which arise from the fact that it must instantiate the variables
associated to a given assignment made in the search tree in order to extract



the same consequences as AC with ch2; these added tried assignments do not
however translate into any more checks or more true backtracking.

The results in this table are not however as straightforward to obtain as the
formal result on the equivalent pruning power may suggest. Indeed, our first
attempt at implementing ch3 resulted in a slight but noticeable slowdown! On
further examination, we realized that this was due to the implementation of the
min-domain variable ordering heuristic, which could select many other variables
with a singleton domain before the variables associated with the last assign-
ment; as a result, obtaining the same conclusions as AC could be significantly
delayed. We solved the problem by keeping a stack of uninstantiated variables
with singleton domain, and modifying the min-domain heuristic to pop the most
recent variable from that stack whenever it was not empty. This ensures that
FC considers those variables that have just become singletons immediately. The
solution has nevertheless an ad-hoc flavor, and suggests that for domains such
as QCPs, where propagation often forces a value for variables as opposed to
merely pruning part of their domain, a more SAT-like propagation may be more
indicated; in other words, it is not always sufficient to rely on the min-domain
heuristic to propagate in a timely fashion forced values.

Finally, the following figures display a more detailed picture of how ch2 and
ch3 compare, showing the time taken to solve all 100 problems in each set, sorted
by difficulty, for order 40 and 45 quasigroups at the phase transition. As it can
be seen, the ch3 model is almost always superior, but there are some anomalies
that are worth investigating further.

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750
5000
5250

ch3fc vs ch2ac

Timefc

Timeac

Problems 
(100 problems of order 40, 60% preassigned, sorted by timefc)

tim
e 

(s
ec

on
ds

)



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

ch3fc vs ch2ac

Timefc

Timeac

Problems
 (100 problems of order 45, 60% preassigned, sorted by timefc)

tim
e 

(s
ec

on
ds

)

7 Conclusions and future work

In summary, we have shown in this paper that a pure CSP approach can handle
quasi-group completion problems significantly larger than was thought possible,
using appropriate models, value ordering heuristics, and algorithms, even in the
absence of global alldiff constraints. Our solution is arguably much simpler than
the hybrid CSP/OR approach developed in [5] yet it seems to clearly outperform
it, saving distances for different machines, implementations and execution envi-
ronments. It would be interesting to see whether the combination of the ideas
of this paper with either alldiff constraints or OR techniques could yield further
improvements in our ability to solve larger QCPs. For example, we mentioned
that the same effect achieved by introducing triangular channeling constraints
would be achieved by reintroducing instead the dual not-equal constraints, which
in turn could be replaced by dual alldiff constraints.

We have introduced two novel aspects within redundant modeling in multiple
permutation problems:

– A novel value ordering heuristic which takes into account the primal and
both dual models, and which generalizes for multiple permutation problems
ideas introduced in ([15, 11] for simple permutation problems. The speedup
produced by this heuristic is quite remarkable, up to three orders of magni-
tude in some cases.

– The use of channeling constraints linking more than a single pair of models
to provide forward checking with the same pruning power as arc consistency



at a much smaller cost in constraint checks, and thus in performance, pro-
vided that ordering effects are taken into account in the min-domain variable
selection heuristic.

Many issues remain to be explored. While we did try a number of alternatives
to the presented value ordering heuristics without success, others may be more
successful. There are some anomalies in the behavior of the ch3-fc approach vs
ch2-ac which could be symptoms of more subtle effects than the ordering effects
reported above, and which need to be explored. There is finally the issue of
why CBJ and nogood learning did not help in this problem, which may in part
suggest that in a sense randomness dominates over structure in QCPs, but which
should at any rate be an incentive to develop more effective implementations of
these techniques so that at least they do not hurt when they do not help.

References

1. C.Bessiere and J.C.Regin. Mac and combined heuristics: two reason to forsake FC
(and CBJ?) on hard problems. In 2nd Int. Conf. on Principles and Practice of
Constraint Programming pp. 61–75, 1996.

2. J.Bitner and E.M.Reingold Backtrack programming techniques. In Communica-
tions of the ACM 18: 651–655.

3. B.M.W. Cheng, J.H.M. Lee, and J.C.K Wu. Speeding up constraint propagation
by redundant modeling. In 2nd Int. Conf. on Principles and Practice of Constraint
Programming, pp. 91–103, 1996.

4. C. Colbourn. The complexity of completing partial latin squares. In Discrete
applied Mathematics.

5. C. Gomes and D. B. Shmoys. The promise of LP to Boost CSP Techniques for
Combinatorial Problems. In CP-AI-OR’02, pp. 291–305, 2002.

6. C. Gomes and D. B. Shmoys. Completing Quasigroups or Latin Squares: A Struc-
tured Graph Coloring Problem In Proc. Computational Symposium on Graph
Coloring and Extensions, 2002.

7. C. Gomes, B. Selman, and H. Kautz. Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. In Journal of Automated Reasoning, 24:67-100,
2000.

8. J-C. Regin. A filtering algorithm for constraints of difference in CSPs. In Proc.
AAAI’94, pp. 362–367, 1994.

9. K. Sergiou and T. Walsh. The difference all-difference makes. In Proc. IJCAI’99.
10. J. Slaney, M. Fujita and M. Stickel. Automated reasoning and exhaustive search:

Quasigroup Existence Problems. In Computers and Mathematics with Applications,
29:115–132, 1995.

11. Barbara M. Smith. Modeling a Permutation Problem. In Proceedings of ECAI’2000
Workshop on Modeling and Solving Problems with Constraints, 2000.

12. P. van Beek and X. Chen. CPlan: A Constraint Programming Approach to Plan-
ning. In AAAI’99, pp. 585–590, 1999.

13. T. Walsh. Permutation Problems and Channeling Constraints. In LPAR-2001.
14. Barbara M. Smith. Dual Models in Constraint Programming. School Computing

Research Report 2001.02, University of Leeds, January 2001.
15. B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K Wu. Increasing Constraint

Propagation by Redundant Modeling: an Experience Report. In Constraints, pp.
167–192, Kluwer Academic Publishers,1999.


