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Abstract

Travelling-wave solutions of the Degasperis–Procesi equation are investigated. The solutions are characterized by

two parameters. For propagation in the positive x-direction, hump-like, inverted loop-like and coshoidal periodic-wave
solutions are found; hump-like, inverted loop-like and peakon solitary-wave solutions are obtained as well. For

propagation in the negative x-direction, there are solutions which are just the mirror image in the x-axis of the

aforementioned solutions. A transformed version of the Degasperis–Procesi equation, which is a generalization of the

Vakhnenko equation, is also considered. For propagation in the positive x-direction, hump-like, loop-like, inverted
loop-like, bell-like and coshoidal periodic-wave solutions are found; loop-like, inverted loop-like and kink-like solitary-

wave solutions are obtained as well. For propagation in the negative x-direction, well-like and inverted coshoidal

periodic-wave solutions are found; well-like and inverted peakon solitary-wave solutions are obtained as well. In an

appropriate limit, the previously known solutions of the Vakhnenko equation are recovered.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

As discussed in [1], the family of equations
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doi:10.
ut � utxx þ ðbþ 1Þuux ¼ buxuxx þ uuxxx; ð1:1Þ
where b is a constant, contains only two integrable equations, namely the dispersionless Camassa–Holm equation for

which b ¼ 2 [2] and the Degasperis–Procesi equation (DPE) for which b ¼ 3 [3]. In this paper we consider the DPE,

namely
ut � utxx þ 4uux ¼ 3uxuxx þ uuxxx ð1:2Þ
which may also be written in the form
ðut þ uuxÞxx ¼ ut þ 4uux: ð1:3Þ
It has been known for some time that the dispersionless Camassa–Holm equation has a weak solution in the form of

a single �peakon’ [2]
uðx; tÞ ¼ ve�jx�vtj; ð1:4Þ
where v is a constant, and an N-peakon solution [4] that is just a superposition of peakons, namely
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uðx; tÞ ¼
XN
j¼1

pjðtÞe�jx�qjðtÞj; ð1:5Þ
where the pjðtÞ and qjðtÞ satisfy a certain associated dynamical system. More recently Degasperis, Holm and Hone [1]

proved the integrability of the DPE by constructing its Lax pair, and showed that the equation also has single and N -
peakon solutions of the form (1.4) and (1.5) respectively; the peakon dynamics were discussed and compared with the

analogous results for Camassa–Holm peakons.

The first aim of this paper is to find all the periodic and solitary-wave solutions to the DPE. Naturally, one of the

solitary-wave solutions turns out to be the single peakon solution (1.4).

Some years ago we introduced the Vakhnenko equation (VE) [5], namely
o

ox
Duþ u ¼ 0; where D :¼ o

ot
þ u

o

ox
; ð1:6Þ
and subsequently investigated some of its properties [6–10]. Hone and Wang [11] have shown that there is a subtle

connection between the Sawada-Kotera hierarchy and the VE, between the DPE and the VE, and between the Lax pairs

of the DPE and VE. In particular they noted that the application of the transformations
x ! ~eex� t
3~ee

; t ! ~eet; u ! u� 1

3~ee2
ð1:7Þ
to the DPE (1.3), where ~ee is a real positive constant, results in
ððut þ uuxÞx þ uÞx ¼ ~ee2ðut þ 4uuxÞ: ð1:8Þ
In the limit ~ee ! 0, (1.8) reduces to the derivative of the VE for which Hone and Wang found a new Lax pair [11].

In this paper we refer to (1.8) as the transformed DPE. The second aim of this paper is to find a subset of possible

periodic and solitary-wave solutions of the transformed DPE and to show that, in the limit ~ee ! 0, the known solutions

of the VE as discussed in [5,6] are recovered.

In Section 2 we show that, for travelling-wave solutions, the DPE may be reduced to a first-order ODE involving

two arbitrary constants A and B. We show that there are four distinct periodic solutions corresponding to four different

ranges of values of A; for a given allowed value of A, B is restricted to a range of values. By using results established in

Appendix A we express the periodic solutions in implicit form; these solutions involve elliptic integrals and Jacobian

elliptic functions with parameter m, where 0 < m < 1. We also investigate the limiting form of these solutions when

m ¼ 1.

In Section 3 we perform the corresponding analysis for the transformed DPE. We consider the case for which the

first-order ODE to which the transformed DPE may be reduced involves only a single integration constant B. We find

that there are eight distinct solution regimes corresponding to four different ranges of values of ~ee2 and to the two

possible directions of propagation. In each case B is restricted to a range of values. We show that, when ~ee ! 0, the

periodic and solitary-wave solutions to the VE are recovered. (For convenience the solutions to the VE as obtained in

[5,6] are summarized in Appendix B.)

In Section 4 we summarize our results and make an intriguing speculation.
2. Solutions of the DPE

In this section we seek travelling-wave solutions of the DPE (1.3). Note that there are no bound stationary solutions

of (1.3) that are in the form u ¼ uðxÞ. That being the case, it is convenient to introduce a new dependent variable z
defined by
z ¼ ðu� vÞ=jvj ð2:1Þ
and to assume that z is an implicit or explicit function of g, where
g ¼ x� vt � x0; ð2:2Þ
v and x0 are arbitrary constants, and v 6¼ 0. Then (1.3) becomes
ðzzgÞgg ¼ ð4zþ 3cÞzg; where c :
v
jvj ¼ 	1: ð2:3Þ
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After two integrations (2.3) gives
ðzzgÞ2 ¼ f ðzÞ; ð2:4Þ
where
f ðzÞ :¼ z4 þ 2cz3 þ Az2 þ B 
 ðz� z1Þðz� z2Þðz3 � zÞðz4 � zÞ ð2:5Þ
and A and B are real constants. For the solutions that we are seeking, z1, z2, z3 and z4 are real constants with

z1 6 z2 6 z6 z3 6 z4. Eq. (2.4) is of the same form as (A.1) in Appendix A with e ¼ 1. Hence we can make use of the

solutions given in Appendix A but with e ¼ 1.

Note that (2.3) is invariant under the transformation z ! �z, c ! �c; this corresponds to the transformation

u ! �u, v ! �v. Here we will seek the family of solutions of (2.3) for which v > 0 and so, from here on in this section,

we set c ¼ 1.

For convenience we define gðzÞ and hðzÞ by
f ðzÞ ¼ z2gðzÞ þ B; where gðzÞ :¼ z2 þ 2zþ A; ð2:6Þ
and
f 0ðzÞ ¼ 2zhðzÞ; where hðzÞ :¼ 2z2 þ 3zþ A; ð2:7Þ
and define zL, zU , BL and BU by
zL :¼ � 1

4
ð3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

p
Þ; zU :¼ � 1

4
ð3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

p
Þ; ð2:8Þ

BL :¼ �z2LgðzLÞ ¼
A2

4
� 9A

8
þ 27

32
þ 1

32
ð9� 8AÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

p
; ð2:9Þ

BU :¼ �z2UgðzU Þ ¼
A2

4
� 9A

8
þ 27

32
� 1

32
ð9� 8AÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

p
; ð2:10Þ
zL and zU are the roots of hðzÞ ¼ 0.

Provided A is non-zero and is such that A < 9=8, f ðzÞ has three distinct stationary points that occur at z ¼ zL, z ¼ zU
and z ¼ 0, and comprise two minimums separated by a maximum. In this case (2.4) has periodic and solitary-wave

solutions that have different analytical forms depending on the values of A and B as follows:

2.1. A < 0

In this case zL < 0 < zU with f ðzLÞ < f ðzU Þ. For each value of A satisfying A < 0 there are periodic inverted loop

solutions to (2.4) given by (A.5) and (A.7) with 0 < B < BU so that 0 < m < 1, and with wavelength given by (A.8); see

Fig. 1(a) for an example.

B ¼ BU corresponds to the limit z3 ¼ z4 ¼ zU so that m ¼ 1, and then the solution is an inverted loop-like solitary

wave given by (A.9) with z2 6 z < zU and
z1 ¼ � 1

4
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

p
Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

pq
; ð2:11Þ

z2 ¼ � 1

4
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

p
Þ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

pq
; ð2:12Þ
see Fig. 2(a) for an example. Note that z2 ! 0 and zU ! 0 as A ! 0. The amplitude zU � z2 of the solitary wave in-

creases from 0 as jAj increases from 0.

The loop-like nature of the solitary wave is due to the fact that z ¼ 0 is in the range z2 6 z < zU . For small z, (2.4)
gives zg ’ 	

ffiffiffiffiffiffi
BU

p
=z and so jznj ! 1 as z ! 0. It follows that the solution curve (see Fig. 2(a) for example) is normal to

the g axis at the points ð�W =2; 0Þ, where W is the maximum width of the loop; from (A.9), W is given by
W ¼ 4 tanh�1
ffiffiffiffi
z2
z1

r� �
� 2zU

p
tanh�1

ffiffiffiffiffiffiffi
z2
nz1

r� �
: ð2:13Þ
W increases from 0 as jAj increases from 0. Near the points ð�W =2; 0Þ the loop is approximately parabolic and given by
z2 ’ 2
ffiffiffiffiffiffi
BU

p W
2

�
	 g

�
: ð2:14Þ



Fig. 2. Solutions of the DPE with m ¼ 1: (a) A ¼ �27, B ¼ BU , W ¼ 0:788; (b) A ¼ 15=16, B ¼ 0, k ¼ 4:127; (c) A ¼ 1, B ¼ 0; (d)

A ¼ 135=128, B ¼ BL.

Fig. 1. Periodic solutions of the DPE with 0 < m < 1: (a) A ¼ �27, B ¼ 0:75BU so m ¼ 0:842, k ¼ 0:466; (b) A ¼ 15=16, B ¼ 0:5BU so

m ¼ 0:746, k ¼ 3:941; (c) A ¼ 1, B ¼ 0:5BU ¼ �1=32 so m ¼ 0:746, k ¼ 5:038; (d) A ¼ 135=128, B ¼ 0:5ðBU þ BLÞ so m ¼ 0:729,

k ¼ 6:140.
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2.2. 0 < A < 1

In this case zL < zU < 0 with f ðzLÞ < f ð0Þ. For each value of A satisfying 0 < A < 1 there are periodic hump so-

lutions to (2.4) given by (A.5) and (A.7) with BU < B < 0 so that 0 < m < 1, and with wavelength given by (A.8); see

Fig. 1(b) for an example.

B ¼ 0 corresponds to the limit z3 ¼ z4 ¼ 0 so that m ¼ 1, and then the solution has z2 6 z6 0 and is given by (A.9)

with z1 and z2 given by the roots of gðzÞ ¼ 0, namely
z1 ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� A

p
; z2 ¼ �1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� A

p
: ð2:15Þ
In this case we obtain a weak solution, namely the periodic upward-cusp wave
z ¼ zðg � 2jgmÞ; ð2j� 1Þgm 6 g6 ð2jþ 1Þgm; j ¼ 0;	1;	2; . . . ; ð2:16Þ
where
zðgÞ :¼ ½z2 � z1 tanh
2ðg=2Þ� cosh2ðg=2Þ 
 �1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� A

p
cosh g ð2:17Þ
and
gm ¼ 2 tanh�1
ffiffiffiffi
z2
z1

r� �

 cosh�1 1ffiffiffiffiffiffiffiffiffiffiffiffi

1� A
p

� �
; ð2:18Þ
see Fig. 2(b) for an example. (2.16) is similar in form to the spatially periodic solution of the Camassa–Holm equation

that has been dubbed a �coshoidal wave’ by Boyd [14]. Note that z2 ! 0 and gm ! 0 as A ! 0, and that z2 ! �1 and
gm ! 1 as A ! 1. Hence the amplitude jz2j of the coshoidal wave (2.16) increases from 0 to 1 as A increases from 0 to 1,

and its wavelength k :¼ 2gm increases from 0 to infinity.
2.3. A ¼ 1

In this case zL < zU < 0 with f ðzLÞ ¼ f ð0Þ. For A ¼ 1 there are periodic hump solutions to (2.4) given by (A.11) and

(A.12) with BU < B < 0 so that 0 < m < 1, where BU ¼ �1=16, and with wavelength given by (A.13); see Fig. 1(c) for an
example. An alternative solution is given by (A.5) and (A.7); this is just the former solution phase-shifted by k=2.

B ¼ 0 corresponds to the limit z1 ¼ z2 ¼ zL ¼ �1 and z3 ¼ z4 ¼ 0. In this case neither (A.9) nor (A.14) is appropriate.

Instead we consider (2.4) with f ðzÞ ¼ z2ðzþ 1Þ2 and note that the bound solution has �1 < z6 0. On integrating (2.4)

and setting z ¼ 0 at g ¼ 0 we obtain the weak solution
z ¼ e�jgj � 1; ð2:19Þ
i.e. a single peakon with amplitude 1; see Fig. 2(c). In terms of the original dependent variable u, (2.19) is equivalent to
(1.4) with v > 0.
2.4. 1 < A < 9=8

In this case zL < zU < 0 with f ðzLÞ > f ð0Þ. For each value of A satisfying 1 < A < 9=8 there are periodic hump

solutions to (2.4) given by (A.11) and (A.12) with BU < B < BL so that 0 < m < 1, and with wavelength given by (A.13);

see Fig. 1(d) for an example.

B ¼ BL corresponds to the limit z1 ¼ z2 ¼ zL so that m ¼ 1, and then the solution is a hump-like solitary wave given

by (A.14) with zL < z6 z3 and
z3 ¼ � 1

4
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

p
Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

pq
; ð2:20Þ

z4 ¼ � 1

4
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

p
Þ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8A

pq
; ð2:21Þ
see Fig. 2(d) for an example. Note that zL ! �1 and z3 ! 0 as A ! 1, and that zL ! 3=4 and z3 ! �3=4 as A ! 9=8.
The amplitude z3 � zL of the solitary wave decreases from 1 to 0 as A increases from 1 to 9/8.
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3. Solutions of the transformed DPE

In this section we seek travelling-wave solutions of the transformed DPE (1.8). Note that there are no bound sta-

tionary solutions of (1.8) that are in the form u ¼ uðxÞ. That being the case, it is convenient to introduce a new de-

pendent variable z defined by
z ¼ ðu� vÞ=jvj ð3:1Þ
and to assume that z is an implicit or explicit function of g, where
g ¼ ðx� vt � x0Þ=jvj1=2; ð3:2Þ
v and x0 are arbitrary constants, and v 6¼ 0. Then, with e ¼ ~eejvj1=2, (1.8) becomes
ððzzgÞg þ zþ cÞg ¼ e2ð4zþ 3cÞzg; where c :¼ v
jvj ¼ 	1: ð3:3Þ
After one integration (3.3) gives
ðzzgÞg þ zþ c ¼ e2ð2z2 þ 3czÞ þ c1; ð3:4Þ
where c1 is an arbitrary real constant. Note that, in terms of z and g, the VE (1.6) becomes
ðzzgÞg þ zþ c ¼ 0 ð3:5Þ
(see Eq. (2.2) in [6]). The solitary-wave solution to (3.5) is such that zg ! 0, zgg ! 0 and zþ c ! 0, as jgj ! 1. We

choose c1 in (3.4) so that these conditions are satisfied. Accordingly, in this paper we restrict attention to the particular

case in which c1 ¼ c2e2. Then, after one integration, (3.4) gives
ðzzgÞ2 ¼ e2f ðzÞ; ð3:6Þ
where
f ðzÞ :¼ z4 � 2

3e2
ð1� 3ce2Þz3 � c

e2
ð1� ce2Þz2 þ B 
 ðz� z1Þðz� z2Þðz3 � zÞðz4 � zÞ ð3:7Þ
and B is a real constant. For the solutions that we are seeking, z1, z2, z3 and z4 are real constants with z1 6 z2 6 z6 z3 6 z4.
Eq. (3.6) is of the same form as (A.1) in Appendix A. Hence we can make use of the solutions given in Appendix A.

For convenience we define gðzÞ and hðzÞ by
f ðzÞ ¼ z2gðzÞ þ B; where gðzÞ :¼ z2 � 2

3e2
ð1� 3ce2Þz� c

e2
ð1� ce2Þ; ð3:8Þ
and
f 0ðzÞ ¼ 2zhðzÞ; where hðzÞ :¼ 2z2 � 1

e2
ð1� 3ce2Þz� c

e2
ð1� ce2Þ; ð3:9Þ
and define zL, zU , BL and BU by
zL :¼ �c; zU :¼ 1

2e2
ð1� ce2Þ; ð3:10Þ

BL :¼ �z2LgðzLÞ ¼
c
3e2

; ð3:11Þ

BU :¼ �z2UgðzU Þ ¼
1

48e8
ð1þ 3ce2Þð1� ce2Þ3; ð3:12Þ
zL and zU are the roots of hðzÞ ¼ 0.

Provided that e2 > 0 and e2 6¼ 1, f ðzÞ has three distinct stationary points that occur at z ¼ zL, z ¼ zU and z ¼ 0, and

comprise two minimums separated by a maximum. In this case (3.6) has periodic and solitary-wave solutions that have

different analytical forms depending on the values of e2 and B as follows:
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3.1. c ¼ 1, e2 > 1

In this case zL < zU < 0 with f ðzLÞ < f ð0Þ. For each value of e2 satisfying e2 > 1 there are periodic hump solutions to

(3.6) given by (A.5) and (A.7) with BU < B < 0 so that 0 < m < 1, and with wavelength given by (A.8); see Fig. 3(a) for

an example.

B ¼ 0 corresponds to the limit z3 ¼ z4 ¼ 0 so that m ¼ 1, and then the solution has z2 6 z6 0 and is given by (A.9)

with z1 and z2 given by the roots of gðzÞ ¼ 0, where g is defined in (3.8), namely
Fig. 3

e2 ¼ 1=

k ¼ 0:9
z1 ¼
1

3e2
ð1� 3e2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e2

p
Þ; z2 ¼

1

3e2
ð1� 3e2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e2

p
Þ: ð3:13Þ
In this case we obtain a weak solution, namely the coshoidal wave
z ¼ zðg � 2jgmÞ; ð2j� 1Þgm 6 g6 ð2jþ 1Þgm; j ¼ 0;	1;	2; . . . ; ð3:14Þ
where
zðgÞ :¼ ½z2 � z1 tanh
2ðeg=2Þ� cosh2ðeg=2Þ 
 1

3e2
ð1� 3e2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e2

p
coshðegÞÞ ð3:15Þ
and
gm ¼ 2

e
tanh�1

ffiffiffiffi
z2
z1

r� �

 1

e
cosh�1 3e2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3e2
p

� �
; ð3:16Þ
see Fig. 4(a) for an example. Note that z2 ! 0 as e2 ! 1, and that z2 ! �1 as e2 ! 1. Hence the amplitude jz2j of the
coshoidal wave increases from 0 to 1 as e2 increases from 1 to infinity. As e2 increases from 1, the wavelength k :¼ 2gm

increases from 0, reaches a maximum value of 1.827 at e2 ¼ 2:769, and then decreases to 0 as e2 ! 1.
. Periodic solutions of the transformed DPE with c ¼ 1 and 0 < m < 1: (a) e2 ¼ 8, B ¼ 0:25BU so m ¼ 0:869, k ¼ 1:507; (b)

2, B ¼ 0:6BU so m ¼ 0:730, k ¼ 0:458; (c) e2 ¼ 1=3, B ¼ 0:75 so m ¼ 0:928, k ¼ 4:562; (d) e2 ¼ 1=4, B ¼ 0:75BL so m ¼ 0:842,

32.



Fig. 4. Solutions of the transformed DPE with c ¼ 1 and m ¼ 1: (a) e2 ¼ 8, B ¼ 0, k ¼ 1:561; (b) e2 ¼ 1=2, B ¼ BU , W ¼ 0:818; (c)

e2 ¼ 1=3, B ¼ 1; (d) e2 ¼ 1=4, B ¼ BL, W ¼ 1:577.
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3.2. c ¼ 1, 1=3 < e2 < 1

In this case zL < 0 < zU with f ðzLÞ < f ðzU Þ. For each value of e2 satisfying 1=3 < e2 < 1 there are periodic inverted

loop solutions to (3.6) given by (A.5) and (A.7) with 0 < B < BU so that 0 < m < 1, and with wavelength given by (A.8);

see Fig. 3(b) for an example.

B ¼ BU corresponds to the limit z3 ¼ z4 ¼ zU so that m ¼ 1, and then the solution is an inverted loop-like solitary

wave given by (A.9) with z2 6 z < zU and
z1 ¼
1

6e2
ð�1� 3e2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9e4 � 1Þ

p
Þ; z2 ¼

1

6e2
ð�1� 3e2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9e4 � 1Þ

p
Þ; ð3:17Þ
see Fig. 4(b) for an example. The maximum width W of the loop is
W ¼ 1

e
4 tanh�1

ffiffiffiffi
z2
z1

r� ��
� 2zU

p
tanh�1

ffiffiffiffiffiffiffi
z2
nz1

r� �	
: ð3:18Þ
Note that z2 ! 0 and zU ! 0 as e2 ! 1, and that z2 ! �1 and zU ! 1 as e2 ! 1=3. As e2 decreases from 1 to 1/3, the

amplitude zU � z2 of the solitary wave increases from 0 to 2, and W increases from 0 to infinity.

3.3. c ¼ 1, e2 ¼ 1=3

In this case zL < 0 < zU with f ðzLÞ ¼ f ðzU Þ. The z3 term in the expression for f ðzÞ given by (3.7) is not present and

hence f ðzÞ is even so that, for 0 < B < 1 (with BU ¼ BL ¼ 1), z1 ¼ �z4 and z2 ¼ �z3. Then from the definition of m in

(A.6) and the definitions of n in (A.5) or (A.11) we obtain the relation
mþ n2 � 2n ¼ 0: ð3:19Þ
With (3.19), the results 141.01 and 414.01 in [12] may be used to show that k given by (A.8) or (A.13) is zero, and hence
that g given by (A.7) or (A.12) is periodic in w with period 2K, where K :¼ KðmÞ and KðmÞ is the complete elliptic
integral of the first kind. It follows that, for each value of B such that 0 < B < 1, the solution to (3.6) given by (A.5) and

(A.7), or by (A.11) and (A.12), is just a closed curve around the origin in the ðg; zÞ plane. This curve is symmetrical with
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respect to z and g and has infinite slope at the two points where z ¼ 0. A periodic bell solution to (3.6), with wavelength

k :¼ 4gð3K=2Þ, may be constructed in parametric form as follows:
z ¼ zðwÞ; ð3:20Þ

g ¼ gðwÞ þ ð2þ 4jÞgð3K=2Þ; �K=2þ 2jK 6w6K=2þ 2jK;
gðwÞ þ 4jgð3K=2Þ; K=2þ 2jK 6w6 3K=2þ 2jK;



ð3:21Þ
where zðwÞ and gðwÞ are given by (A.5) and (A.7) respectively, and j ¼ 0;	1;	2; . . . ;; see Fig. 3(c) for an example.

B ¼ BL ¼ BU ¼ 1 corresponds to the limit z1 ¼ z2 ¼ zL ¼ �1 and z3 ¼ z4 ¼ zU ¼ 1. In this case neither (A.9) nor

(A.14) is appropriate. Instead we consider (3.6) with f ðzÞ ¼ ðzþ 1Þ2ð1� zÞ2 and note that the bound solutions have

�1 < z < 1. On integrating (3.6) and setting z ¼ 0 at g ¼ 0 we find that there are two such solutions, namely the kink-

like solitary waves
z ¼
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�2jgj=

ffiffiffi
3

p
Þ

q
; g < 0;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�2jgj=

ffiffiffi
3

p
Þ

q
; g > 0;

8<
: ð3:22Þ
and
z ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�2jgj=

ffiffiffi
3

p
Þ

q
; g < 0;

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�2jgj=

ffiffiffi
3

p
Þ

q
; g > 0;

8<
: ð3:23Þ
see Fig. 4(c) in which the solid and dashed curves correspond to (3.22) and (3.23) respectively.

3.4. c ¼ 1, 0 < e2 < 1=3

In this case zL < 0 < zU with f ðzU Þ < f ðzLÞ. For each value of e2 satisfying 0 < e2 < 1=3 there are periodic loop

solutions to (3.6) given by (A.11) and (A.12) with 0 < B < BL so that 0 < m < 1, and with wavelength given by (A.13);

see Fig. 3(d) for an example. For a given choice of B, it is easy to verify numerically that, as e2 is made ever smaller (but
not zero), the aforementioned solution tends to the solution given by (B.2) with C ¼ e2B; in other words the periodic

loop solution of the VE for the case v > 0 is recovered in the limit e2 ! 0.

B ¼ BL corresponds to the limit z1 ¼ z2 ¼ zL ¼ �1 so that m ¼ 1, and then the solution is a loop-like solitary wave

given by (A.14) with �1 < z6 z3 and
z3 ¼
1

3e2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3e2

p
Þ; z4 ¼

1

3e2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3e2

p
Þ; ð3:24Þ
see Fig. 4(d) for an example. The maximum width W of the loop is
W ¼ 1

e
4 tanh�1

ffiffiffiffi
z3
z4

r� ��
� 2

p
tanh�1

ffiffiffiffiffiffiffi
z3
nz4

r� �	
: ð3:25Þ
In the limit e2 ! 0, it is straightforward to show analytically that the solitary-wave solution reduces to (B.4) and that

(3.25) reduces to (B.5); hence, as expected, the loop-like solitary-wave solution of the VE for the case v > 0 is recovered.

As e2 increases from 0 to 1/3, the amplitude z3 þ 1 of the solitary wave increases from 3/2 to 2, and W increases from

the value given by (B.5), namely 0.830, to infinity.

3.5. c ¼ �1, 0 < e2 < 1=3

In this case 0 < zL < zU with f ð0Þ > f ðzU Þ. For each value of e2 satisfying 0 < e2 < 1=3 there are periodic well so-

lutions to (3.6) given by (A.11) and (A.12) with BL < B < 0 so that 0 < m < 1, and with wavelength given by (A.13); see

Fig. 5(a) for an example. For a given choice of B, it is easy to verify numerically that, as e2 is made ever smaller (but not
zero), the aforementioned solution tends to the solution given by (B.2) with C ¼ e2B; in other words the periodic well

solution of the VE for the case v < 0 is recovered in the limit e2 ! 0.

B ¼ 0 corresponds to the limit z1 ¼ z2 ¼ 0 so that m ¼ 1, and then the solution has 06 z6 z3 and is given by (A.14)

with z3 and z4 given by the roots of gðzÞ ¼ 0, where g is defined in (3.8), namely



Fig. 5. Periodic solutions of the transformed DPE with c ¼ �1 and 0 < m < 1: (a) e2 ¼ 1=4, B ¼ 0:25BL so m ¼ 0:842, k ¼ 7:600; (b)

e2 ¼ 1=3, B ¼ 0:25BL ¼ �0:25 so m ¼ 0:928, k ¼ 9:809; (c) e2 ¼ 1=2, B ¼ 0:25BL þ 0:75BU so m ¼ 0:803, k ¼ 11:103; (d) e2 ¼ 8,

B ¼ 0:25BU þ 0:75BL so m ¼ 0:869, k ¼ 2:258.
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z3 ¼
1

3e2
ð1þ 3e2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3e2

p
Þ; z4 ¼

1

3e2
ð1þ 3e2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3e2

p
Þ: ð3:26Þ
In this case we obtain a weak solution, namely the inverted coshoidal wave
z ¼ zðg � 2jgmÞ; ð2j� 1Þgm 6 g6 ð2jþ 1Þgm; j ¼ 0;	1;	2; . . . ; ð3:27Þ
where
zðgÞ :¼ ½z3 � z4 tanh
2ðeg=2Þ� cosh2ðeg=2Þ 
 1

3e2
ð1þ 3e2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3e2

p
coshðegÞÞ ð3:28Þ
and
gm ¼ 2

e
tanh�1

ffiffiffiffi
z3
z4

r� �

 1

e
cosh�1 3e2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3e2
p

� �
; ð3:29Þ
see Fig. 6(a) for an example.

In the limit e2 ! 0, it is straightforward to show analytically that the inverted coshoidal wave solution (3.27) reduces,

as expected, to the inverted paraboidal-wave solution (B.6) of the VE for the case v < 0.

As e2 increases from 0 to 1/3, the amplitude z3 of the coshoidal wave increases from 3/2 to 2, and its wavelength

k :¼ 2gm increases from 6 to infinity.

3.6. c ¼ �1, e2 ¼ 1=3

In this case 0 < zL < zU with f ð0Þ ¼ f ðzU Þ. With BL < B < 0 so that 0 < m < 1, where BL ¼ �1, there are periodic
well solutions to (3.6) given by (A.5) and (A.7), with wavelength given by (A.8); see Fig. 5(b) for an example. An

alternative solution is given by (A.11) and (A.12); this is just the former solution phase-shifted by k=2.
B ¼ 0 corresponds to the limit z1 ¼ z2 ¼ 0 and z3 ¼ z4 ¼ zU ¼ 2. In this case neither (A.9) nor (A.14) is appropriate.

Instead we consider (3.6) with f ðzÞ ¼ z2ð2� zÞ2 and note that the bound solution has 06 z < 2. On integrating (3.6) and

setting z ¼ 0 at g ¼ 0 we obtain the weak solution



Fig. 6. Solutions of the transformed DPE with c ¼ �1 and m ¼ 1: (a) e2 ¼ 1=4, B ¼ 0, k ¼ 7:699; (b) e2 ¼ 1=3, B ¼ 0; (c) e2 ¼ 1=2,

B ¼ BU ; (d) e2 ¼ 8, B ¼ BL.
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z ¼ 2ð1� exp½�jgj=
ffiffiffi
3

p
�Þ; ð3:30Þ
i.e. a single inverted peakon with amplitude 2; see Fig. 6(b).

3.7. c ¼ �1, 1=3 < e2 < 1

In this case 0 < zL < zU with f ð0Þ < f ðzU Þ. For each value of e2 satisfying 1=3 < e2 < 1 there are periodic well so-

lutions to (3.6) given by (A.5) and (A.7) with BL < B < BU so that 0 < m < 1, and with wavelength given by (A.8); see

Fig. 5(c) for an example.

B ¼ BU corresponds to the limit z3 ¼ z4 ¼ zU so that m ¼ 1, and then the solution is a well-like solitary wave given by

(A.9) with z2 6 z < zU and
z1 ¼
1

6e2
ð�1þ 3e2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9e4 � 1Þ

p
Þ; z2 ¼

1

6e2
ð�1þ 3e2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9e4 � 1Þ

p
Þ; ð3:31Þ
see Fig. 6(c) for an example. Note that z2 ! 1 and zU ! 1 as e2 ! 1, and that z2 ! 0 and zU ! 2 as e2 ! 1=3. As e2

decreases from 1 to 1/3, the amplitude zU � z2 the solitary wave increases from 0 to 2.

3.8. c ¼ �1, e2 > 1

In this case 0 < zU < zL with f ð0Þ < f ðzLÞ. For each value of e2 satisfying e2 > 1 there are periodic well solutions to

(3.6) given by (A.5) and (A.7) with BU < B < BL so that 0 < m < 1, and with wavelength given by (A.8); see Fig. 5(d) for

an example.

B ¼ BL corresponds to the limit z3 ¼ z4 ¼ zL ¼ 1 so that m ¼ 1, and then the solution is a well-like solitary wave

given by (A.9) with z2 6 z < zL and
z1 ¼
1

3e2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e2

p
Þ; z2 ¼

1

3e2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e2

p
Þ; ð3:32Þ
see Fig. 6(d) for an example. Note that z2 ! 1 as e2 ! 1, and that z2 ! 0 as e2 ! 1. As e2 increases from 1 to infinity,

the amplitude 1� z2 of the solitary wave increases from 0 to 1.
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4. Summary and conclusion

We have found expressions for the travelling-wave solutions to the DPE that travel in the positive x-direction with

speed v. These solutions depend, in effect, on two parameters A and m. In addition to the expected single peakon so-

lution (with A ¼ 1, m ¼ 1) there are inverted loop-like (A < 0, m ¼ 1) and hump-like (1 < A < 9=8, m ¼ 1) solitary-wave

solutions. For 0 < m < 1 there are periodic inverted loop (A < 0) and periodic hump (0 < A < 9=8) solutions. For
m ¼ 1 and 0 < A < 1 there are (periodic) coshoidal solutions. For each of the aforementioned solutions expressed with

u as the dependent variable, there is a solution for u that is the mirror image in the x-axis and travels with the same

speed but in the opposite direction.

We have also found expressions for the travelling-wave solutions to the transformed DPE. These solutions depend,

in effect, on two parameters e2 and m, and also on the direction of propagation.

For propagation in the positive x-direction there are inverted loop-like (1=3 < e2 < 1, m ¼ 1), kink-like (e2 ¼ 1=3,
m ¼ 1) and loop-like (0 < e2 < 1=3, m ¼ 1) solitary-wave solutions. For 0 < m < 1 there are periodic hump (e2 > 1),

periodic inverted-loop (1=3 < e2 < 1), periodic bell (e2 ¼ 1=3) and periodic loop (0 < e2 < 1=3) solutions. For m ¼ 1

and e2 > 1 there are (periodic) coshoidal solutions. In the limit e2 ! 0, the periodic loop solutions (0 < m < 1) and

loop-like solitary-wave solutions (m ¼ 1) to the VE are recovered.

For propagation in the negative x-direction there are inverted peakon (e2 ¼ 1=3, m ¼ 1) and well-like (1=3 < e2 < 1

and e2 > 1, m ¼ 1) solitary-wave solutions. For 0 < m < 1 there are periodic well (0 < e2 < 1 and e2 > 1) solutions. For

m ¼ 1 and 0 < e2 < 1=3 there are (periodic) inverted coshoidal solutions. In the limit e2 ! 0, the periodic well solutions

(0 < m < 1) and (periodic) inverted paraboidal solutions (m ¼ 1) to the VE are recovered.

Recently we have introduced and investigated generalizations of the VE, namely the �generalized Vakhnenko

equation’ [15,16]
o

ox
D2u

�
þ 1

2
u2 þ bu

�
þDu ¼ 0 ð4:1Þ
or equivalently
ou
ox

�
þD

�
o

ox
Du

�
þ uþ b

�
¼ 0;
where b is an arbitrary real constant, and the �modified generalized Vakhnenko equation’ [17]
o

ox
ðD2uþ qu2 þ buÞ þ qDu ¼ 0; ð4:2Þ
where q is an arbitrary positive constant. These equations have hump-like, loop-like and cusp-like soliton solutions. It is
interesting to speculate whether either of these new equations has a counterpart that is related to the DPE or a gen-

eralization of it.
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Appendix A

Here we consider solutions to
ðzzgÞ2 ¼ e2f ðzÞ; ðA:1Þ
where
f ðzÞ :¼ ðz� z1Þðz� z2Þðz3 � zÞðz4 � zÞ; ðA:2Þ
for the solutions that we are seeking, z1, z2, z3 and z4 are real constants with z1 6 z2 6 z6 z3 6 z4.
Following [6] we introduce f defined by
dg
df

¼ z
e

ðA:3Þ
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so that (A.1) becomes
z3f ¼ f ðzÞ: ðA:4Þ
(A.4) has two possible forms of solution.

The first form of solution of (A.4) is found using result 254.00 in [12]. It is
z ¼ z2 � z1n sn2ðwjmÞ
1� n sn2ðwjmÞ with n ¼ z3 � z2

z3 � z1
; ðA:5Þ
where
w ¼ pf; p ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz4 � z2Þðz3 � z1Þ

p
and m ¼ ðz3 � z2Þðz4 � z1Þ

ðz4 � z2Þðz3 � z1Þ
: ðA:6Þ
In (A.5) snðwjmÞ is a Jacobian elliptic function, where the notation is as used in Chapter 16 of [13]. On using result

400.01 in [12] we find from (A.5) and (A.3) that
g ¼ 1

ep
wz1½ þ ðz2 � z1ÞPðn;wjmÞ�; ðA:7Þ
where Pðn;wjmÞ is the elliptic integral of the third kind and the notation is as used in Section 17.2.15 of [13]. The

solution to (A.1) is given in parametric form by (A.5) and (A.7) with w as the parameter. With respect to w, z in (A.5) is
periodic with period 2KðmÞ, where KðmÞ is the complete elliptic integral of the first kind. It follows from (A.7) that the

wavelength k of the solution to (A.1) is
k ¼ 2

ep
z1KðmÞj þ ðz2 � z1ÞPðnjmÞj; ðA:8Þ
where PðnjmÞ is the complete elliptic integral of the third kind. When z3 ¼ z4, m ¼ 1 and so (A.5) and (A.7) become
z ¼ z2 � z1n tanh
2 w

1� n tanh2 w
; g ¼ 1

e
wz3
p

�
� 2 tanh�1ð

ffiffiffi
n

p
tanhwÞ

	
: ðA:9Þ
In (A.9) g was obtained by using
Pðn;wj1Þ ¼ 1

1� n
w
�

�
ffiffiffi
n

p
tanh�1ð

ffiffiffi
n

p
tanhwÞ

�
; ðA:10Þ
cf. result 111.04 in [12].

The second form of solution of (A.4) is found using result 255.00 in [12]. It is
z ¼ z3 � z4n sn2ðwjmÞ
1� n sn2ðwjmÞ with n ¼ z3 � z2

z4 � z2
; ðA:11Þ
where w, p and m are as in (A.6). On using result 400.01 in [12] we find from (A.11) and (A.3) that
g ¼ 1

ep
½wz4 � ðz4 � z3ÞPðn;wjmÞ�: ðA:12Þ
The solution to (A.1) is given in parametric form by (A.11) and (A.12) with w as the parameter. The wavelength of this

solution is
k ¼ 2

ep
z4KðmÞj � ðz4 � z3ÞPðnjmÞj: ðA:13Þ
When z1 ¼ z2, m ¼ 1 and so (A.11) and (A.12) become
z ¼ z3 � z4n tanh
2 w

1� n tanh2 w
; g ¼ 1

e
wz2
p

�
þ 2 tanh�1ð

ffiffiffi
n

p
tanhwÞ

	
: ðA:14Þ
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Appendix B

Here we summarize the solutions to the VE obtained in [5,6] but in a notation consistent with that used in Section 3.

The VE (3.5) may be integrated once to obtain the equation given by setting e ¼ 0 in (3.6) and (3.7), namely
ðzzgÞ2 ¼ � 2z3

3
� cz2 þ C 
 ðz� z1Þðz� z2Þðz3 � zÞ; ðB:1Þ
where Cð
 e2BÞ is a real constant. The required solutions to (B.1) are such that z1 6 z2 6 z6 z3, where z1, z2 and z3 are
real constants. These solutions are given implicitly by
z ¼ z3 � ðz3 � z2Þsn2ðwjmÞ; g ¼
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3 � z1

p ½z1wþ ðz3 � z1ÞEðwjmÞ�; ðB:2Þ
where m ¼ ðz3 � z2Þ=ðz3 � z1Þ and EðwjmÞ is the elliptic integral of the second kind.

The wavelength of the solution (B.2) is
k ¼ 2
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3 � z1

p z1KðmÞj þ ðz3 � z1ÞEðmÞj; ðB:3Þ
where EðmÞ is the complete elliptic integral of the second kind.

The VE has two families of solutions corresponding to v > 0 and v < 0 respectively, where v is as defined in (3.1) and
(3.2).

With v > 0 we have c ¼ 1. Then, with 0 < C < 1=3, there are periodic loop solutions given by (B.2) with 0 < m < 1.

With C ¼ 1=3, z1 ¼ z2 ¼ �1 and z3 ¼ 1=2 so that m ¼ 1 and then (B.2) reduces to the loop-like solitary wave of am-

plitude 3/2 given by
z ¼ 1

2
� 3

2
tanh2 w; g ¼ �2wþ 3 tanhw; ðB:4Þ
with maximum loop width
W ¼ 2
ffiffiffi
3

p
� 4 tanh�1 1ffiffiffi

3
p

� �
: ðB:5Þ
In [7] we showed that the solitary wave given by (B.4) is a soliton.

With v < 0 we have c ¼ �1. Then, with �1=3 < C < 0, there are periodic well solutions given by (B.2) with

0 < m < 1. With C ¼ 0, z1 ¼ z2 ¼ 0 and z3 ¼ 3=2 so that m ¼ 1 and then (B.2) reduces to the spatially periodic inverted

�paraboidal’ wave of amplitude 3/2 given by
z ¼ zðg � 6jÞ; �36 g � 6j6 3; j ¼ 0;	1;	2; . . . ; ðB:6Þ
where
zðgÞ :¼ 3

2
� 1

6
g2: ðB:7Þ
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